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Abstract. Power System State Estimation (PSSE) is one of the main tools for energy mana-
gement systems, responsible for gathering information of the network and evaluating the real
time operating condition of the system. This work presents the application and comparison
of nonlinear optimization methods and the classical algorithm based on the Gauss-Newton
Method, applied to PSSE. Simulations were made using the IEEE benchmarking test systems
and performance of the methods were evaluated in terms of computational efficiency, nume-
rical precision and implementation. The main goal of this work is to evaluate the nonlinear
optimization algorithms applied to PSSE and also to reduce the distance from optimization
researchers to power systems engineers in the context of power grids monitoring.
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1 Introduction

Since its conception in the early 70’s, PSSE has consolidated its presence in trans-
mission systems operation. It is responsible for the real time monitoring of the power
system, providing reliable information about its operational condition. This is accom-
plished by obtaining the state variables of the power system [1]. PSSE is based on a set of
redundant real time measurements obtained from the SCADA system, and the nonlinear
measurement model that relates those measurements with the state variables.

Essentially PSSE is formulated as an optmization problem in the sense of minimization
of the measurement model residue [1]. The large scale of power systems (it can have from
thousands to hundred of thousands state variables) and the need of fast calculation (since
it is a real time application) are key aspects that a state estimator must be able to deal
with. Numerical aspects are also of major importance in PSSE, such as sparsity and ill-
conditioning problems. This has driven researches related to nonlinear optmization and
for more efficient numerical methods applied to PSSE [2–4].
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2 PSSE Formulation and Solution

Given a power system with m measurements and n state variables, the state estimation
problem is formulated using the following measurement model [1]:

z = h(x) + ε (1)

where z ∈ Rm is the measurement vector with the observed values obtained from the
SCADA system; x ∈ Rn is the state variables vector composed of the voltage magnitude
and voltage angle at each node of the power system; h(x) : Rn → Rm is the set of nonlinear
equations that relates the measurements with the state variables; and ε ∈ Rm is the error
vector assumed as independent normally distributed random variables, with zero mean
and known covariance matrix W−1.

The measurement model equations are given accordingly to the type of electrical quan-
tity being measured, and are typically nonlinear functions related to power flows [1]. The
state variables are defined as the complex nodal voltages at each node of the system
x = [V, θ]′. The active and reactive power flow (pkm and qkm) trough a branch of the
power system, i.e. from node k to node m, can be expressed by:

pkm(x) = gkm.V
2
k − Vk.Vm.(gkm. cos(θk − θm) + bkm. sin(θk − θm)) (2)

qkm = −(bkm + bshkm).V 2
k − Vk.Vm.(gkm. sin(θk − θm) + bkm. cos(θk − θm)) (3)

where, gkm and bkm are the real and imaginary parts of the series admittance and bshkm
the parallel admittance of branch k −m (network electrical parameters); θk and θm the
voltage angle of nodes k and m (state variables); and Vk and Vm the voltage magnitude of
nodes k and m (state variables). Power injections are expressed as a sum of power flows.

Given the statistical nature of the model, the joint probability function is:

f(ε|x) = f(ε1|x, ..., εm|x) =

m∏
i=1

f(εi|x) =

m∏
i=1

1

2πσ2
i

exp
− (zi−hi(x))

2

2σ2
i (4)

where σi is the standard deviation of the measurement i related to the precision of the
measurement devices. The maximum likelihood estimator for the state vector x can be
found by the following unconstrained optimization problem:

min J(x) =
1

2

m∑
i=1

(zi − hi(x))2

σ2
i

=
1

2
[z − h(x)]′.W.[z − h(x)] (5)

The gradient vector of the above minimization problem is given by:

∇J(x) = −H(x)′.W.[z − h(x)] (6)

where H(x) is the Jacobian matrix of the nonlinear model h(x).

And the Hessian matrix of the above minimization problem is given by:



∇2J(x) = H(x)′.W.H(x)−
m∑
i=1

(zi − hi(x))

σ2
i

.
∂2hi(x)

∂x2
(7)

The classical approach for solving the state estimation problem, i.e, finding the optimal
value of x, is based on the linearization of h(x) in equation (5) and using the iterative
Gauss-Newton method [1]. The linearization of h(x) is obtained trough the first order
term of its Taylor expansion around a point xk. The optimal value of x is then calculated
by finding the optimal solution of (5) trough the first-order optimality condition:

H(xk)′.W.H(xk).∆x = H(xk)′.W.[z − (h(xk)] (8)

where ∆x = (xk+1 − xk) is the update value of x for the next iteration k and G(x) =
H(xk)′.W.H(xk) is known as the Gain matrix of the state estimator. The solution of the
above equation is generally obtained trough a direct method for linear systems, such as
LU or QR factorization.

The second-order optimality condition in this case is given by H(xk)′.W.H(xk) > 0. If
the system is observable, then H(x) is full rank [5]. Also the covariance matrix is always
definite positive. Thus, a solution of (8) always satisfies the second order optimality
condition. The method is iterative in the sense that equation (8) is calculated sequentially.
Convergence is achieved when two successive values of x have its difference less than a
pre-specified tolerance ‖∆x‖∞ ≤ tol

3 Numerical Optimization Methods

3.1 Linear Search Methods

Linear Search Methods starts at a point x0 and for a given descent direction p0 performs
a linear search, i.e., the next point x1 will be given by (9) for some scalar αk.

xk+1 = xk + αkpk (9)

The Inexact Linear Search Method starts with an initial step α0 and verifies if it has
an sufficient decrease, given the the Armijo condition as shown in expression (10) [6].

f(xk + αpk) ≤ f(xk) + c1α∇f>k pk (10)

Where c1 is the Armijo’s constant, strictly positive and usually small. This condition
assures that not only the step will provide a point with a lower objective function value,
but also assures that this difference will be at least c1α∇f>k pk smaller, i.e., the algorithm
will not drift around a vicinity of xk. The Armijo’s condition provides a test method for
a given value of α. But if a given α0 fails the test, a new α1 should be provided. Since
the direction pk is descending at least for some small value of α this condition is satisfied.

Gradient Method:
The Gradient Method is a first-order Local Search Method. The choosen direction for

this method is pk = −∇f(xk), which is a descent direction, as shown in (11).



∇f(xk)>pk = −∇f(xk)>∇f(xk) = −‖∇f(xk)‖2 < 0 (11)

Modified Newton Method:

The Newton Method is a second-order Local Search Method, characterized by the
choice of direction given by (12), where ∇2f(xk) is the Hessian Matrix. This direction, un-
like the Gradient direction, could in fact not be descending. If ∇f(xk)>∇2f(xk)∇f(xk) <
0 for a given xk this is a descent direction. Therefore, if the Hessian is positive define,
(12) holds for every xk.

pk = −∇2f(xk)∇f(xk) (12)

The Modified Newton Method uses the enhancement provided by the second-order
information for the Newton Step, trying to avoid the problems related to some points
which the direction is not descent. Some options are available: one could apply some
transformation on the Hessian Matrix to make it sufficiently positive define; or use a
positive define approximation of the Hessian Matrix, instead of the Hessian itself. For this
method the direction is given by pk = −B∇f(xk), where B is a hessian approximation.

3.2 Trust Region Methods

Trust Region Methods, like the Linear Search Methods, produces a decreasing sequence
[f(xk)]k→∞ that stops when reaches an inflection point of f . Both methods rely on the
quadratic approximation model mk of the function f in the vicinity of xk. However, the
Trust Region Methods defines a region where mk is considered to be a good approximation,
usually this is an open ball of radius ∆k. The problem can be formulated as (13).

min mk(p) = f(xk) +∇f(xk)>p+
1

2
p>Bkp

subject to: ‖p‖ ≤ ∆k

(13)

Where Bk is a symmetrical matrix. It is necessary to highlight that the step size and
direction are calculated simultaneously by this method [6].

Cauchy Step:

The Cauchy Step for the Trust Region method is based on a linear approximation of
the quadratic model to obtain a direction pSk . This direction is the maximum scalar of the
gradient that does not violates the radius restriction. Then the quadratic model is solved

for τk > 0 in that direction. If pSk
>
Bkp

S
k > 0, then the function mk is a convex quadratic.

In that case τk is either the convex quadratic unconstrained solution or it is equal to 1,
which occurs first. Finally the Cauchy Step pCk will be given as (14).

pCk = −τk
∆k

‖∇f(xk)‖
∇f(xk) (14)

Where τk is given as (15).



τk =

1, if pSk
>
Bkp

S
k ≤ 0

min{1, ‖∇f(xk)‖3

∆k∇f(xk)>Bk∇f(xk)
}, otherwise

(15)

Dogleg Step:

For the Dogleg Step the matrix Bk needs to be positive define. With the unconstrained
solution for (13) and taking the first order expansion of f as the approximation model,
two directions are obtained to build the Dogleg Step, namely pBk and pUk . In case the
unconstrained solution for the quadratic approximation is within the trust region (‖pBk ‖ ≤
∆k), then this step is used. Otherwise, if the solution for the linear approximation is also
outside the trust region, the the direction will be ∆k

‖pUk ‖
pUk , which is the greatest scalar in

the pUk direction that is within the trust region. Finally, in case the linear approximation
solution pUk is within the trust region and the quadratic solution pBk is outside, then the
Dogleg Step will be a combination of pUk and pBk . Geometrically, the Dogleg Step will step
the full pUk step and then combine it with the pBk direction with the maximum scalar that
keeps the full step inside the trust region. The Dogleg Step pDk is given as (16).

pDk =


pBk , if ‖pBk ‖ ≤ ∆k

∆k

‖pUk ‖
pUk , if ‖pBk ‖ > ∆k and ‖pUk ‖ ≥ ∆k

pUk + τ(pBk − pUk ), otherwise

(16)

Where τ is the smallest solution for the given quadratic polynomial (17).

‖pBk − pUk ‖
2
τ2 + 〈2pUk , pBk − pUk 〉τ + ‖pUk ‖

2 −∆2
k = 0 (17)

4 Simulation Results and Discussion

The test systems used in this work are the IEEE benchmarking energy transmission
systems: IEEE14, IEEE30, IEEE57 and IEEE118 with all possible voltage magnitudes,
power flows and injections measurements. All simulations were run in a i7-4500U 1800
GHz with 8GB RAM. All algorithms were implemented in C and a limit of 100 iterations
for each was fixed for analysis. A tolerance of 10−5 was used for all test cases. For the
Gradient Method the initial step was set in 10 and for the Newton Method it was 1. The
Armijo’s constant c1 was set as 10−3. All methods use as initial value of x the flat start,
i.e. all voltage magnitude of the system are set to 1.0 pu and 0 degrees.

Initially the convergence of each method is under investigation, by evaluating the
value of the objective function f and the gradient norm ‖∇f‖ for all test systems for each
iteration. Neither the Gradient Method nor the Trust Region with Cauchy Step converges
under 100 iterations. Take note that those approaches behave like a first-order method,
while the Newton and Dogleg Step behave like a second-order method. Figure 1 shows
the results for function value and gradient norm on IEEE118.

Similar convergence characteristics were obtained for the other test systems. Note that
the Gauss-Newton reaches convergence in 4 iterations, while Modified Newton reaches in
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Figura 1: Performance of each method on IEEE118 Test Power System

5 iterations. The next algorithm to converge was the Trust Region with Dogleg Step,
taking 7 iterations. It should be highlighted that for the IEEE118 the Gauss-Newton and
Modified Newton differ on the number of iterations to converge, what is related to the
convergence criterion of each method. The first uses the norm of subsequent updates of
x, while the second has its convergence based on the norm of the gradient.

In Table 1 some performance metrics are shown for each algorithm for all four test
system. The number of iterations (#It), objective function evaluation (#F), gradient
evaluation (#G), hessian evaluation (#H) and time in seconds are shown.

Tabela 1: Performance Evaluation Results

Method Gauss-Newton Gradient* Mod. Newton TR Cauchy* TR Dogleg
#It 4 100 4 100 5
#F 4 2011 10 200 10
#G 4 100 4 200 10
#H 4 0 4 100 4

IEEE14

Time <0,001 0,062 <0,001 0,016 <0,001
#It 4 100 4 100 5
#F 4 2265 10 200 10
#G 4 100 4 200 10
#H 4 0 4 100 4

IEEE30

Time 0,094 0,36 0,078 2,281 0,094
#It 4 100 4 100 7
#F 4 2373 10 200 14
#G 4 100 4 200 14
#H 4 0 4 100 6

IEEE57

Time 0,656 0,672 0,482 14,939 0,922
#It 4 100 5 100 7
#F 4 2776 13 200 14
#G 4 100 5 200 14
#H 4 0 4 100 6

IEEE118

Time 13,673 2,36 14,25 339,465 20,925

Some values have a visible discrepancy between methods, like the #F which is used



twenty fold by the Gradient Method when compared to the Modified Newton or the Trust
Region with Dogleg Step. The reason behind those high number is explained by the
backtracking algorithm for the Gradient Method. Although the number of evaluation of
the Hessian Approximation could indicate a high use of second order information, it’s
not that direct. Taking into account the number of evaluations by the Trust Region
with Cauchy Step is equal for each iteration to the Trust Region with Dogleg Step, the
first behaves like the Gradient Method in terms of convergence. This is due to lack of
extrapolation of this information beyond the Trust Region Radius, hence offering a crude
linearization in a small vicinity of a given point.

5 Conclusion

This work presented approaches of nonlinear optimization for the PSSE problem, tes-
ted on IEEE benchmark test power systems. Two distinct Numerical Optimization fra-
meworks were used (Linear Search and Trust Region) and for each one two methods were
implemented, one with first order and another with second order information. The clas-
sical method, Gauss-Newton, is used for comparison. It is shown that the incorporation
of second order information highly improves the convergence rate of the method, with
a marginal increasing on the CPU process time. We hope to make improvements with
special treatment for sparsity and algorithm optimization in a future work.
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