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Abstract. We consider fully nonlinear uniformly elliptic cooperative systems
with quadratic growth in the gradient, such as

−Fi(x, ui, Dui, D2ui)−〈Mi(x)Dui, Dui〉 = λci1(x)u1+· · ·+λcin(x)un+hi(x),

for i = 1, · · · , n, in a bounded C1,1 domain Ω ⊂ RN with Dirichlet boundary

conditions; here n ≥ 1, λ ∈ R, cij , hi ∈ L∞(Ω), cij ≥ 0, Mi satisfies 0 <

µ1I ≤Mi ≤ µ2I, and Fi is an uniformly elliptic Isaacs operator.
We obtain uniform a priori bounds for systems, under a weak coupling

hypothesis that seems to be optimal. As an application, we also establish exis-

tence and multiplicity results for these systems, including a branch of solutions
which is new even in the scalar case.

1. Introduction. In this paper we study the following system of fully nonlinear
uniformly elliptic equations−Fi(x,Dui, D

2ui)− 〈Mi(x)Dui, Dui〉 = λ

n∑
j=1

cij(x)uj + hi(x) in Ω

u1 = · · · = un = 0 on ∂Ω

(Pλ)

where Ω is a bounded C1,1 domain in RN , λ ∈ R, n,N ≥ 1, cij , hi ∈ L∞(Ω), and
Mi is a bounded nondegenerate matrix. Scalar product is denoted with 〈·, ·〉. We
assume cij ≥ 0 in Ω, which means that the system is noncoercive and cooperative
when λ > 0. The latter is a parameter which measures the size of the zero order
matrix C = (cij)

n
i,j=1.
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A very particular case, for which our results are new as well, is when each Fi is the
Laplacian; Fi can also be a linear operator in nondivergence form Fi(x,Du,D

2u) =
tr(Ai(x)D2u) + 〈bi(x), Du〉, or it can even have a fully nonlinear structure as an
Isaacs operator. We note that nondivergence fully nonlinear equations with natural
growth are particularly relevant for applications, since problems with such growth
in the gradient are abundant in control and game theory, and more recently in
mean-field problems, where Hamilton-Jacobi-Bellman and Isaacs operators appear
as infinitesimal generators of the underlying stochastic processes. We refer to Sec-
tion 2 of [9] for more on applications of this type of systems.

It is notable that the two terms in the left-hand side of (Pλ) have the same scaling
with respect to dilations, so the second order term is not dominating when we zoom
into a given point. This type of gradient dependence is usually named “natural” in
the literature, and is the object of extensive study. Another important property of
(Pλ) is the invariance of this class of systems with respect to diffeomorphic changes
of variable, in x or u.

We start with a brief review of the literature for scalar equations (n = 1). It
is known that the sign of λ dramatically influences the solvability and properties
of the solution set of (Pλ). For the so-called strictly coercive case λc(x) << 0,
existence and uniqueness when F is in divergence form goes back to the works
[4, 5, 7, 8, 17]. However, in the case of weakly coercive equations (say, λ = 0)
existence and uniqueness can be proved only under a smallness assumption on c
and M , as was first observed in [15]. These works use the weak integral formulation
of the equation.

The third author showed in [26] that the same type of existence and uniqueness
results can be proved for general coercive equations in nondivergence form, by using
techniques based on the maximum principle. In that paper it was also observed,
for the first time and with a rather specific example with the Laplacian, that the
solution set can be very different in the “noncoercive” case λc > 0, and in particular
more than one solution may appear. It was also conjectured in that paper that a
refined analysis should be doable in order to embrace more general structures.

In the last few years appeared several papers which unveil the complex nature of
the solution set for noncoercive equations, in the particular case of the Laplacian
– see [1, 12, 16, 29]. In all these works the crucial a priori bounds for u in the
L∞-norm rely on the fact that the second order operator is the Laplacian, or a
divergence form operator.

In [21] the first and the third author obtained similar results for general operators
in nondivergence form, by using different techniques adapted to such operators. In
particular, the conjectures in [26] for noncoercive equations were established through
a new method of obtaining a priori bounds in the uniform norm. The method is
based on some standard estimates from regularity theory, such as half-Harnack
inequalities, and their recent boundary extensions in [25], in addition to a Vázquez
strong maximum principle; see also [28] for an extensive description of the method.

However, up to our knowledge, nothing was known about systems with natural
gradient growth. This is what this work is devoted to, complement and extend the
results in [21] to the context of systems of the form (Pλ). We develop a machinery
to obtain the crucial a priori bounds for the system (Pλ) via a nondegeneracy
hypothesis on the matrix C(x) that seems to be optimal. In combination with
these estimates we also exploit a Fredholm theory for fully nonlinear operators
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with unbounded weight, which turns out to be an important tool in investigating
existence and multiplicity of solutions.

It is worth noting that general systems as (Pλ) do not have variational charac-
terization even if the second order operators Fi are in divergence form, such as the
Laplacian; so variational methods do not apply to such systems.

The paper is organized as follows. The next section contains the statements of
our results. In the preliminary section 3 we recall some known results that will be
used throughout the text. Section 4 is devoted to the proofs of the a priori bounds
in the uniform norm for solutions of the noncoercive problem (Pλ). In Section 5
we sketch the proof of our existence and multiplicity results, which resemble to the
scalar case [21] after some appropriate changes. Section 6, in turn, consists of a
multiplicity result which is new even for single equations in nondivergence form,
see Theorem 6.2. It is based on a version of the anti-maximum principle, proven in
section 7 together with some tools involving eigenvalues.

2. Main results. We assume that the matrices Mi satisfy the nondegeneracy con-
dition

µ1I ≤Mi(x) ≤ µ2I a.e. in Ω (M)

for some µ1, µ2 > 0, and that Fi in (Pλ) has the following structure
Fi(x, 0, X) is continuous in x ∈ Ω,

M−(X − Y )− b|~p− ~q| ≤ Fi(x, ~p,X)−Fi(x, ~q, Y )

≤M+(X − Y ) + b|~p− ~q|
(SC)

for a.e. x ∈ Ω, where b ≥ 0 andM−,M+ are the Pucci extremal operators (see the
next section) with constants 0 < λP ≤ ΛP . For simplicity, the reader may think
that each Fi[u] = Fi(x,Du,D

2u) is in one of the following forms

tr(Ai(x)D2u) + 〈bi(x), Du〉 or M±λP ,ΛP (D2u)± bi(x)|Du| (1)

where Ai are continuous matrices whose spectrum is in [λP ,ΛP ], and bi are bounded
vector functions. Only at the expense of trivial technicalities we can consider more
general operators as in [21], with zero order terms, and coefficients bi, cij , hi be-
longing to Lp, p > N . We prefer to avoid such technicalities here, in order to
concentrate on what is new due to the presence of a system rather than a scalar
equation.

Solutions of the Dirichlet problem (Pλ) are understood in the Lp-viscosity sense
(see Definition 3.1 below) and belong to C(Ω), so are bounded. We also use the

notion of strong solutions, which are functions in W 2,p
loc (Ω) satisfying the equation

almost everywhere. Strong solutions are viscosity solutions, [19]. Conversely, it
follows from the regularity results in [22] that, if the operator Fi has property (H2)
below, then viscosity solutions are strong. Hypothesis (SC) guarantees that the
Lp-viscosity solutions of (Pλ) have global C1,α regularity and estimates, by [22].

We denote F [u] := (F1[u1], · · · , Fn[un] ), u = (u1, · · · , un), f = (f1, · · · , fn), fix
p > N , and consider the Dirichlet problem

−F [u] = f(x) in Ω, u = 0 on ∂Ω. (2)

The model operators in (1) have the following properties.

For each f ∈ Lp(Ω)n, there exists a unique Lp-viscosity solution of (2). (H1)
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For each f ∈ Lp(Ω)n, any solution u of (2) belongs to W 2,p(Ω)n. (H2)

More generally, operators satisfying (SC) and convex/concave in the Hessian matrix
satisfy (H1)–(H2), by [11, 22, 30]. We stress that (H2) above implies (H2) from [21]
in the scalar case, by the proof of the W 2,p regularity in [22].

Since we want to study the way the nature of the solution set changes when we
go from negative to positive zero order term (i.e. from λ < 0 to λ > 0), we will
naturally assume that the problem with λ = 0 has a solution.

The problem (P0) has a strong solution u0 = (u0
1, · · · , u0

n). (H0)

Theorem 1(ii) of [26] ensures (H0) for instance if µ2hi has small Lp-norm for
each i (notice that (P0) is a system of n uncoupled equations, hence Theorem 1
of [26] applies to each of these equations separately). Examples showing that in
general this hypothesis cannot be removed are also found there. The function u0 is
the unique Lp-viscosity solution of (P0), by Theorem 1(iii) of [26].

We use the following order in the space E := C1(Ω)n.

Definition 2.1. Let u = (u1, · · · , un), v = (v1, · · · , vn) ∈ E. We denote u ≤ v in
Ω to mean ui ≤ vi in Ω for all i = 1, · · · , n. Also, we say that u � v if, for all
i ∈ {1, . . . , n}, ui < vi in Ω, and for any x0 ∈ ∂Ω we have either ui(x0) < vi(x0),
or ui(x0) = vi(x0) and ∂νui(x0) < ∂νvi(x0), where ~ν is the interior unit normal
to ∂Ω. We also write u ≤ C (≥ C) to mean ui ≤ C (respectively, ≥ C) for any
i = 1, · · · , n.

As in any study of systems of equations, it is essential to determine the coupling of
the system, that is, the way each of the equations influences each of the components
of the vector u. A fully coupled system is one which cannot be split into two
subsystems such that one of which does not depend on the other. In our context,
(Pλ) would be fully coupled if the matrix C is irreducible, in the sense that for each
nonempty I, J ⊂ {1, . . . , n}, I ∩ J = ∅, I ∪ J = {1, . . . , n} there exist i ∈ I, j ∈ J ,
such that cij(x) 	 0 in Ω.

Every matrix C = (cij)
n
i,j=1 can be written in the block triangular form

C(x) = (Ckl(x))n
′

k,l=1, (3)

where 1 ≤ n′ ≤ n, Ckl are tk × tl matrices,
∑n′

k=1 tk = n, Ckk is irreducible for each
k = 1, . . . , n′, and Ckl ≡ 0 in Ω, for all k, l ∈ {1, . . . , n′} with k < l. This is easy to
achieve by renumbering lines and columns of C, that is, by changing the order of the
equations in (Pλ) and renumbering the components of u. Indeed, if C is irreducible,
we can take n′ = 1, C11 = C; if not, there are two subsets I, J as in the previous
paragraph, and we renumber so that I = {1, . . . k} with k = |I|, then repeat the
same until reaching (3). See Section 4.2 below, and Section 8 in [9].

From now on we assume that C in (Pλ) is in the form (3). We will say that
u � v in some block if there exists some k ∈ {1, . . . , n′} such that ũ � ṽ in Ω,
where for any w ∈ Rn we denote with w̃ the vector (wsk−1+1, · · · , wsk), and s0 = 0,

sk =
∑k
i=1 ti.

The additional assumption that we need to impose, which extends and plays the
role of hypothesis c 	 0 from the scalar case, is the following.

In (3) there is no 1× 1 block with a zero coefficient,

i.e. if tk = 1 then Ckk 6≡ 0. (H3)
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This hypothesis seems to be optimal for our kind of systems, see Remark 1. To our
knowledge, this is the first time such a hypothesis appears in the study of elliptic
systems.

We now state our results. The first theorem is a uniform estimate for solutions of
(Pλ), which is both important in itself and instrumental for the existence statements
below.

Theorem 2.2. Suppose (M), (SC), (H3) hold. Let Λ1,Λ2 with 0 < Λ1 < Λ2.
Then every Lp-viscosity solution (u1, . . . , un) of (Pλ) satisfies

‖ui‖∞ ≤ C, for all λ ∈ [Λ1,Λ2], i = 1, . . . , n,

where C depends on n,N, p, µ1, µ2,diam(Ω),Λ1,Λ2, ‖b‖∞ , ‖cij‖∞ , ‖hi‖∞, λp,Λp,
and on a lower bound on the measure of the sets where the cij are positive, for those
i, j which determine the irreducibility of the blocks in the form (3).

The next theorems describe the solution set of (Pλ).

Theorem 2.3. Assume (M), (SC), (H0), (H1), and (H3).
1. Then, for λ ≤ 0, the problem (Pλ) has an Lp-viscosity solution uλ that con-

verges to u0 in E as λ→ 0−. Moreover, the set Σ = { (λ, u) ∈ R×E ; u solves (Pλ) }
possesses an unbounded component C+ ⊂ [0,+∞]× E such that C+ ∩ ({0} × E) =
{u0}.

2. This component is such that: either it bifurcates from infinity to the right of
the axis λ = 0 with the corresponding solutions having a positive part blowing up to
infinity in C(Ω) as λ→ 0+; or its projection on the λ axis is [0,+∞).

3. There exists λ̄ ∈ (0,+∞] such that, for every λ ∈ (0, λ̄), the problem (Pλ)
has at least two Lp-viscosity solutions, uλ,1 and uλ,2 , satisfying uλ,1 → u0 in E;
maxΩ uλ,2 → +∞ as λ → 0+; and if λ̄ < +∞, the problem (Pλ̄) has at least one
Lp-viscosity solution. The latter is unique if F (x, ~p,X) is convex in (~p,X).

4. If (H2) holds, the solutions uλ for λ ≤ 0 are unique among Lp-viscosity
solutions; whereas the solutions from 3. for λ > 0 are ordered in some block. If in
addition the system is fully coupled, uλ,1 � uλ,2 in the sense of Definition 2.1, for
all λ > 0.

In the next two theorems, we show that it is possible to obtain a more precise
description of the set Σ, provided we know the sign of u0. For this, we need to
extend the hypothesis c(x)u0 6≡ 0 from the scalar case to the context of the system.
The following assumption is a natural requirement in view of our weak coupling
hypothesis (H3).

(Cu0)i 6≡ 0 for at least one i ∈ Sk = {sk−1 + 1, . . . , sk},
for all k ∈ {1, . . . , n′}, (H4)

where s0 = 0, sk =
∑k
i=1 ti, with ti and n′ coming from (3).

Notice that hypothesis (H4) is consistent with the results obtained for single
equations in nondivergence form in [21]. In the particular case n′ = 1, namely if
the system is fully coupled, we recover the assumption C(x)u0 6≡ 0, as a vector.

Theorem 2.4. Suppose (M), (SC), (H0), (H1), (H2), (H3), (H4), and u0 ≤ 0.
Then every nonpositive solution of (Pλ) with λ > 0 satisfies u � u0. Further-

more, for every λ > 0, the problem (Pλ) has at least two nontrivial strong solutions
uλ,1 ≤ uλ,2 , such that uλ2,1 � uλ1,1 � u0 if 0 < λ1 < λ2 , and uλ,1 → u0 in E;
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Figure 1. Illustration of Theorem 2.4.

maxΩ uλ,2 → +∞ as λ→ 0+. If F (x, ~p,X) is convex in (~p,X) then maxΩ uλ,2 > 0
for all λ > 0.

Theorem 2.5. Suppose (M), (SC), (H0), (H1), (H2), (H3), (H4), and u0 ≥ 0.
Then every nonnegative solution of (Pλ) with λ > 0 satisfies u� u0. Moreover,

there exists λ̄1 ∈ (0,+∞) such that for every λ ∈ (0, λ̄1), the problem (Pλ) has at
least two nontrivial strong solutions with uλ,1 ≤ uλ,2 , where u0 � uλ1,1 � uλ2,1

if 0 < λ1 < λ2 , uλ,1 → u0 in E, and maxΩ uλ,2 → +∞ as λ→ 0+. The problem
(Pλ̄1

) has at least one nonnegative strong solution, which is unique if F is convex

in (~p,X); and for λ > λ̄1, the problem (Pλ) has no nonnegative solution.
Furthermore, there exists some δ > 0 such that, if supi µ2‖hi‖Lp(Ω) ≤ δ, with

h 	 0, then we have the existence of λ̄2 > λ̄1 such that (Pλ) has at least two strong
solutions for λ > λ̄2, with uλ,1 � 0 in Ω and minΩ uλ,2 < 0. The problem (Pλ̄2

) has
at least one nonpositive strong solution, which is unique if F is convex in (~p,X);
and for λ < λ̄2, the problem (Pλ) has no nonpositive solution.

Moreover, as in item 4 of Theorem 2.3, in theorems 2.4 and 2.5 the solutions uλ,1,
uλ,2 are ordered in at least one block; and uλ,1 � uλ,2 in the sense of Definition
2.1, for all λ > 0 if (Pλ) is fully coupled, see Claim 5.5.

We remark that the hypotheses u0 ≤ 0, resp u0 ≥ 0, of the above theorems are
implied for instance by h ≤ 0, resp h ≥ 0. See Remark 6.25 of [21] for a proof.

We stress that theorems 2.2–2.5 are new even for systems involving the Lapla-
cian operator. Moreover, the second part in Theorem 2.5 is new even for a single
equation, in the context of nondivergence form operators.

3. Preliminaries. In this section we briefly recall some definitions and previous
results which we use in the sequel. More comments can be found in the preliminary
section of [21].

Let Fi (x, ~p,X) : Ω × RN × SN → R be a measurable function satisfying (SC),
where

M+(X) := sup
λP I≤A≤ΛP I

tr(AX) , M−(X) := inf
λP I≤A≤ΛP I

tr(AX)

are the Pucci’s extremal operators with constants 0 < λP ≤ ΛP . See, for example,
[10] for their properties. Also, denote L±[u] :=M±(D2u)± b|Du|, for b ≥ 0.
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Figure 2. Illustration of Theorem 2.5 for µ2h 	 0 small in Lp-norm.

Definition 3.1. Let f ∈ Lploc(Ω)n. We say that u ∈ C(Ω) is an Lp-viscosity
subsolution (respectively, supersolution) of the system F [u] = f(x) in Ω if, for each

i ∈ {1, · · · , n}, whenever φ ∈W 2,p
loc (Ω), ε > 0 and O ⊂ Ω open are such that

Fi(x, ui(x), Dφ(x), D
2φ(x))− fi(x) ≤ −ε (Fi(x, ui(x), Dφ(x), D

2φ(x))− fi(x) ≥ ε)

for a.e. x ∈ O, then ui − φ cannot have a local maximum (minimum) in O.

If both Fi and fi are continuous in x, for all i = 1, · · · , n, we can use the more
usual notion of C-viscosity sub and supersolutions – see [13].

On the other side, a strong sub or supersolution belongs to W 2,p
loc (Ω)n and satisfies

the inequality at almost every point. As we already mentioned, this is intrinsically
connected to the notion of Lp-viscosity solution; more precisely we have the following
fact.

Proposition 1. Let Fi satisfy (SC) and fi ∈ Lp(Ω), µ ≥ 0. Then, ui ∈ W 2,p
loc (Ω)

is a strong subsolution (supersolution) of Fi[ui] + µ|Dui|2 = fi in Ω if and only if
it is an Lp-viscosity subsolution (supersolution) of this equation.

See Theorem 3.1 and Proposition 9.1 in [19] for a proof. For scalar equations it
is also well known that the pointwise maximum of subsolutions, or supremum over
any set (if this supremum is locally bounded), is still a subsolution, see [18].

The next proposition follows from Theorem 4 in [26] or Proposition 9.4 in [19].

Proposition 2. (Stability) Let F , Fk be scalar operators satisfying (SC), p > N ,
f, fk ∈ Lp(Ω), uk ∈ C(Ω) an Lp-viscosity subsolution (supersolution) of

Fk(x, uk, Duk, D
2uk) + 〈M(x)Duk, Duk〉 ≥ (≤)fk(x) in Ω , for all k ∈ N.

Suppose uk → u in L∞loc(Ω) as k →∞ and, for each B ⊂⊂ Ω and ϕ ∈ W 2,p(B), if
we set

gk(x) := Fk(x, uk, Dϕ,D
2ϕ)〉 − fk(x) , g(x) := F (x, u,Dϕ,D2ϕ)− f(x)



3864 GABRIELLE NORNBERG, DELIA SCHIERA AND BOYAN SIRAKOV

we have ‖(gk − g)+‖Lp(B) (‖(gk − g)−‖Lp(B)) → 0 as k → ∞. Then u is an Lp-

viscosity subsolution (resp., supersolution) of F (x, u,Du,D2u) + 〈M(x)Du,Du〉 ≥
(≤)f(x) in Ω .

The following result follows from Lemma 2.3 in [26], see also the appendix of
[21].

Lemma 3.2. (Exponential change) Let p > N and u ∈ C(Ω). For m > 0 set
mv = emu − 1 and mw = 1 − e−mu. Then the following inequalities hold in the
Lp-viscosity sense

M±(D2u) +mλP |Du|2 ≤
M±(D2v)

1 +mv
≤M±(D2u) +mΛP |Du|2,

M±(D2u)−mΛP |Du|2 ≤
M±(D2w)

1−mw
≤M±(D2u)−mλP |Du|2.

The following scalar estimates will play a pivotal role in our proofs. The first one
is a global variant of the Local Maximum Principle (LMP); see [23, 25] for a proof.

Theorem 3.3 (GLMP). Let u be a locally bounded Lp-viscosity subsolution of{
L+(D2u) + ν(x)u ≥ −f(x) in Ω

u ≤ 0 on ∂Ω

with f ∈ Lp(Ω), ν ∈ Lp1(Ω), for some p, p1 > N . Then, for each r > 0,

sup
Ω
u+ ≤ C

((∫
Ω

(u+)r
)1/r

+ ‖f+‖Lp(Ω)

)
,

where C depends only on N, p, p1, λ, Λ, r, b, and ‖ν‖Lp1 (Ω).

We recall the following two global scalar versions of the quantitative strong maxi-
mum principle (QSMP) and the weak Harnack inequality (WHI), which follow from
theorems 1.1 and 1.2 in [25]. Denote d = d(x) = dist(x, ∂Ω).

Theorem 3.4 (GQSMP). Assume u is an Lp viscosity supersolution of L−[u] −
gu ≤ f , u ≥ 0 in Ω, and let f, g ∈ Lp(Ω), p > n. Then there exist constants
ε, c, C > 0 depending on n, λ,Λ, b, p, and ‖g‖p such that

inf
Ω

u

d
≥ c

(∫
Ω

(f−)ε
)1/ε

− C
∥∥f+

∥∥
p
.

Theorem 3.5 (GWHI). Suppose g, f ∈ Lp, p > n. Assume u is an Lp viscosity
supersolution of L−[u]− gu ≤ f , u ≥ 0 in Ω. Then there exist constants ε, c, C > 0
depending on n, λ,Λ, b, p and ‖g‖p such that

inf
Ω

u

d
≥ c

(∫
Ω

(u
d

)ε)1/ε

− C
∥∥f+

∥∥
p
.

In [25], theorems 3.4 and 3.5 are proved for g ≡ 0, but exactly the same proofs
there work for any g ≥ 0. Moreover, since the function u has a sign, g−u ≥ 0 and
they are also valid for nonproper operators. Theorem 3.5 implies, in particular, the
strong maximum principle (SMP) for single equations when f = 0, i.e. for Ω ∈ C1,1

and u an Lp-viscosity solution of L−[u]− gu ≤ 0, u ≥ 0 in Ω, where g ∈ Lp(Ω), we
have either u ≡ 0 in Ω or u > 0 in Ω; in the latter case, if u(x0) = 0 at x0 ∈ ∂Ω,
then ∂νu(x0) > 0, by Hopf lemma. We are going to refer to these simply as SMP
and Hopf throughout the text.
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4. A priori estimates for systems. This section contains the proof of Theorem
2.2, that is, we establish uniform a priori bounds for the system (Pλ). We will
develop ideas in [27, 28].

For simplicity, we carry over the proofs in the model case n = 2. We just refer
to the differences from the general case when needed.

4.1. Estimates from below. The first step to obtain a priori estimates, as in
[21, Section 5], is to prove that any Lp-viscosity supersolution of (Pλ) is uniformly
bounded from below.

Theorem 4.1. Suppose (SC) and let Λ2 > 0. Then every Lp-viscosity supersolu-
tion (u1, . . . , un) of (Pλ) satisfies∥∥u−i ∥∥∞ ≤ C1, for all λ ∈ [0,Λ2], i = 1, . . . , n,

where C1 depends only on n,N, p, µ1,Ω,Λ2, ‖b‖∞ , ‖cij‖∞ ,
∥∥h−i ∥∥∞ , λp,Λp.

Proof. First we take Ui = u−i and we make the following exponential change

wi =
1− e−mUi

m
, i = 1, 2, with m =

µ1

Λp
.

By Lemma 3.2 we know that (w1, w2) satisfies

−L+
1 [wi] ≤

λ

m
ci1(x) |ln(1−mw1)| (1−mwi)

+
λ

m
ci2(x) |ln(1−mw2)| (1−mwi) + h−(x) in Ω

with wi = 0 on ∂Ω, where L+
1 [w] = L+[w]−mh−(x)w and h− = max{h−1 , h

−
2 }.

Now we consider{
−L+

1 [w] ≤ h−(x) + 2λ
m c(x) |ln(1−mw)| (1−mw) in Ω

w = 0 on ∂Ω
(4)

where c = maxi,j{cij}. Notice that w = max{w1, w2} satisfies (4). Define

w̄ = supA, where A := {w : w is an Lp-visc. solution of (4); 0 ≤ w < 1/m in Ω}.
As a supremum of subsolutions, w̄ is a subsolution of (4).

Next we proceed as in [21, Proposition 5.2] to prove that w̄ 6= 1
m . Indeed,

w̄(x) ≤ C
∥∥f+

∥∥
p

dist(x, ∂Ω)→ 0 as x→ ∂Ω

where

f(x) = h−(x) +
λ

m
c(x) |ln(1−mw̄)| (1−mw̄).

Assume by contradiction that there exists a sequence of supersolutions (uk1 , u
k
2) of

(Pλ) with unbounded negative parts, namely there exists a subsequence such that

(uk1)−(xk) =
∥∥(uk1)−

∥∥
∞ →∞, xk ∈ Ω̄, xk → x0 ∈ Ω̄

with xk ∈ Ω for large k since uk1 ≥ 0 on ∂Ω. One has

wk1 (xk) =
1

m
{1− e−m(uk1 )−(xk)} → 1

m
.

Take wk = max{wk1 , wk2} < 1/m. Then,

wk(xk)→ 1

m
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and wk ∈ A. In particular, for every ε > 0 there exists k0 such that

1

m
≥ w̄(xk) ≥ wk(xk) ≥ 1

m
− ε, for all k ≥ k0

thus

w̄(x0) ≥ lim inf
xk→x0

w̄(xk) = lim
k→∞

w̄(xk) =
1

m
.

As a consequence, x0 ∈ Ω and w̄(x0) = 1
m . Then we reach a contradiction as in [21,

Proposition 5.2], by applying a nonlinear version of the strong maximum principle
[21, Lemma 5.3].

4.2. Estimates from above. First we recall that the matrix C = (cij)
n
i,j=1 is

said to be irreducible – equivalently we say that the system (Pλ) is fully coupled
for λ > 0 – if for any nonempty sets I, J ⊂ {1, · · · , n} such that I ∩ J = ∅ and
I ∪ J = {1, · · · , n}, there exist i0 ∈ I and j0 ∈ J for which

meas{x ∈ Ω; ci0j0(x) > 0} > 0. (5)

This means that the system cannot be split into two subsystems in which one of
them does not depend on the other. For instance, if n = 2, it says that c12 	 0 and
c21 	 0 in Ω. Of course if both c12 and c21 are identically zero, then we already
know multiplicity from [21], as soon as c11 	 0 and c22 	 0.

For simplicity, when (5) holds we write ci0j0 	 0 in Ω. We can fix ρ > 0 such
that the sets {x ∈ BR; ci0j0(x) ≥ ρ} have positive measures. Let ω > 0 be a lower
bound for these measures.

Then we recall our main result concerning a priori estimates for systems.

Theorem 4.2. Suppose (SC) holds and let Λ1,Λ2 with 0 < Λ1 < Λ2. Assume
further that C(x) = (cij)

n
i,j=1 is in the block triangular form (3), and that (H4)

holds, namely C has no 1 × 1 diagonal blocks with a zero coefficient. Then every
Lp-viscosity solution (u1, . . . , un) of (Pλ) satisfies

‖ui‖∞ ≤ C, for all λ ∈ [Λ1,Λ2], i = 1, . . . , n,

where C depends on n,N, p, µ1, µ2,diamΩ,Λ1,Λ2, ‖b‖∞ , ‖cij‖∞ , ‖hi‖∞, λp,Λp, and
ω.

Remark 1. Notice that if C(x) is in the form (3) and has a 1 × 1 diagonal block
with a zero coefficient, then there is no chance of getting a priori bounds for (Pλ),
in general. Indeed, say that block is in the i0-th line. Even if we could prove
that all preceding functions u1, . . . , ui0−1 are uniformly bounded, then ui0 solves a
scalar equation without a zero-order term. Specifically, ui0 solves an equation like

(P0), but with hi0 replaced by hi0 + λ
∑i0−1
j=1 ci0juj ; however, as we recalled after

(H0) such an equation admits in general a priori bounds only if hi0 is small, while
resonance phenomena may appear otherwise, see [14] and [26].

See also section 6 for a two parameter dependence in the problem (Pλ), obtained
for a large parameter λ but a small h.

Remark 2. Clearly, if (Pλ) is fully coupled then it satisfies the hypotheses of
Theorem 4.2, just take n′ = 1. The other extreme is a diagonal matrix such that
ckk 	 0 for any k, by choosing n′ = n, which corresponds to n independent scalar
equations with positive zero-order term coefficients, and Theorem 4.2 reduces to
[21, Theorem 2.1].
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Now we prove Theorem 4.2. As a first step, we assume that (Pλ) is fully coupled.
Again, in order to avoid cumbersome notation, we assume n = 2, and we point out
how to adapt the proof for n ≥ 2 when necessary.

By Theorem 4.1, solutions are bounded from below by a uniform constant C1.
Fix δ > 0. Notice that vi := ui + C1 + δ, is a nonnegative viscosity solution of

M−(D2vi)− b |Dvi| ≤ −λci1(x)v1 − λci2(x)v2 − µ1 |Dvi|2 + h̃i(x) in Ω,

where h̃i = h−i + Λ2{ci1 + ci2}(C1 + δ). Thus, by Lemma 3.2, the functions

wi :=
1

m1
{em1vi − 1}, i = 1, 2,

where m1 = µ1

Λp
, form a nonnegative viscosity supersolution of

L−i [wi] ≤ fi(x) in Ω, i = 1, 2

with L−i [w] = M−(D2w) − b |Dw| −m1h̃i(x)w and fi(x) = − λ
m1
ci1(x)(1 + m1wi)

ln(1 +m1w1)− λ
m1
ci2(x)(1 +m1wi) ln(1 +m1w2) + h̃i(x). Let

I1 = inf
Ω

w1

d
, I2 = inf

Ω

w2

d
.

Since f+
i ∈ Lp(Ω) (see the proof of Theorem 5.1 in [21]), we can apply Theorem 3.4

to obtain suitable constants such that

I1 ≥ c0
(∫

Ω

(f−1 )ε
)1/ε

− C0

∥∥f+
1

∥∥
Lp

= c0

(∫
Ω

{( λ

m1
c11(x)(1 +m1w1) ln(1 +m1w1)

+
λ

m1
c12(x)(1 +m1w1) ln(1 +m1w2)− h̃1(x)

)+}ε)1/ε

− C

≥ c0 inf
Ω

w1

d

(∫
Ω

((
λc11(x)

1 +m1w1

m1w1
d ln(1 +m1w1)

+ λc12(x)
1 +m1w1

m1w1
d ln(1 +m1w2)− h̃1(x)

1 +m1w1

w1
d
)+)ε)1/ε

− C

≥ c0I1
(∫

Ω

{(
λc11(x)d ln(1 + I1m1d) + λc12(x)d ln(1 + I2m1d)

−m1h̃1(x)d
)+}ε)1/ε

− C

Therefore

I1

{
c0

(∫
Ω

dε
((
λc11(x) ln(1 + I1m1d) + λc12(x) ln(1 + I2m1d)

−m1h̃1(x)
)+)ε)1/ε

− 1
}
≤ C (6)

and analogously

I2

{
c0

(∫
Ω

dε
((
λc21(x) ln(1 + I1m1d) + λc22(x) ln(1 + I2m1d)

−m1h̃2(x)
)+)ε)1/ε

− 1
}
≤ C. (7)

We prove in the sequel that both I1 and I2 are bounded from above. By full
coupling, c12 	 0 and c21 	 0. Since I1 ≥ 1

m1
{em1δ − 1} > 0, (6) implies∫

Ω

dε
((
λc11(x) ln(1 + I1m1d) + λc12(x) ln(1 + I2m1d)−m1h̃1(x)

)+)ε
≤ C.



3868 GABRIELLE NORNBERG, DELIA SCHIERA AND BOYAN SIRAKOV

In particular, ∫
Ω

dε
((
λc12(x) ln(1 + I2m1d)−m1h̃1(x)

)+)ε
≤ C,

and analogously by (7),∫
Ω

dε
((
λc21(x) ln(1 + I1m1d)−m1h̃2(x)

)+)ε
≤ C,

whence I1, I2 ≤ C as in [21, p.1829]. In the general case n ≥ 2, we just observe that
by full coupling for any fixed k = 1, . . . , n there exists an index j = 1, . . . , n, j 6= k,
such that cjk 	 0. Thus, exploiting the j-th equation we get∫

Ω

dε
((
λcjk(x) ln(1 + Ikm1d)−m1h̃j(x)

)+)ε
≤ C,

and Ik turns out to be bounded, for all k = 1, · · · , n.
Let us now turn back to the model case n = 2. By Theorem 3.5 and I1 ≤ C we

find constants such that(∫
Ω

(w1)ε1
)1/ε1

≤ diamΩ

(∫
Ω

(w1

d

)ε1)1/ε1

≤ C0 {I1 +
∥∥f+

1

∥∥
p
} ≤ C. (8)

Similarly, using I2 ≤ C we obtain(∫
Ω

(w2)ε2
)1/ε2

≤ C. (9)

Set

zi =
1

m2
{em2ui − 1}, i = 1, 2,

where m2 = µ2

λp
. Since

M+(D2zi) + b |Dzi|+
λ

m2zi
ci1(x)(1 +m2zi) ln(1 +m2z1)zi

+
λ

m2zi
ci2(x)(1 +m2zi) ln(1 +m2z2)zi ≥ −h+

i (x)(1 +m2zi) in Ω,

with zi = 0 on ∂Ω, then z := max{z1, z2} satisfies the following problem{
M+(D2z) + b |Dz|+ ν(x)z ≥ −h+(x) in Ω

z = 0 on ∂Ω,
(10)

where

ν(x) =
2λ

m2z
c(x)(1 +m2z) ln(1 +m2z) +m2h

+(x),

c(x) = maxi,j{cij(x)}χ{z>0}, and h+ = max{h+
1 , h

+
2 }. Notice that

zi =
1

m2
{(1 +m1wi)

m2
m1 e−m2(C1+δ) − 1}.

Moreover, for any s there exists Cs such that

|ν| ≤ Csc(x)(1 + |z|s).
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Set ε = min{ε1, ε2}. If we take s = εm1

m2

p−N
p(p+N) and p1 = p+N

2 , then, by Hölder,

given 1
p1

= 1
p + 1

p2
, we obtain

‖c |z|s‖p1 ≤ ‖c‖p ‖|z|
s‖p2 ≤ ‖c‖p ‖|z1|s‖p2 + ‖c‖p ‖|z2|s‖p2

= ‖c‖p

(∫
Ω

|z1|ε
m1
m2

) p−N
p(p+N)

+ ‖c‖p

(∫
Ω

|z2|ε
m1
m2

) p−N
p(p+N)

.

Recall that both I1 and I2 are bounded from above, and both (8) and (9) are
satisfied. Then

‖ν‖p1 ≤ C ‖c‖p + ‖c |z|s‖p1 +m2‖h+‖p ≤ C.

Thus we have, by Theorem 3.3 applied to (10),

sup
Ω
z+ ≤ C

{(∫
Ω

|z1|ε1
m1
m2

) m2
ε1m1

+

(∫
Ω

|z2|ε2
m1
m2

) m2
ε2m1

+
∥∥h+

∥∥
p

}
≤ C.

Hence, u+
1 and u+

2 are uniformly bounded in Ω. This proves that Theorem 4.2 holds
for any fully coupled system.

Next, take a system whose matrix is in the block triangular form (3), with no
1× 1 zero diagonal blocks. Consider the first t1 equations. They are either a fully
coupled system (if t1 > 1), or a scalar equation with a nonvanishing zero order
coefficient (if t1 = 1). Hence, by the above and [21, Theorem 5.1] we conclude
that u1, . . . , ut1 are uniformly bounded. We can now consider these t1 functions as
being part of the h-terms in the next t2 equations, which in turn become a fully
coupled system (if t2 > 1) or a scalar equation with a positive zero order coefficient
(if t2 = 1). The reasoning iterates, and one proves uniform bounds for u1, . . . , un.

5. Multiplicity results for systems. In this section we extend to systems the
arguments in [21]. Our goal is to point out the main differences that come from the
nature of the system, and refer to [21] for further details and references.

Throughout this section, 〈M(x)Du,Du〉 will be the shorthand notation for the
vector with entries 〈Mi(x)Dui, Dui〉, i = 1, · · · , n. We set E := C1(Ω)n, the Banach
space with the norm ‖u‖E = max1≤i≤n ‖ui‖C1(Ω), where u = (u1, · · · , un).

We start with some auxiliary results.

Definition 5.1. An Lp-viscosity subsolution ξ ∈ E (respectively, supersolution η)
of (Pλ) is said to be strict if every Lp-viscosity supersolution (subsolution) u ∈ E
of (Pλ) such that ξ ≤ u (u ≤ η) in Ω, also satisfies ξ � u (u� η) in Ω.

Under hypothesis (H1), we define the operator Tλ : E → E that takes u =
(u1, · · · , un) into Tλu = U = (U1, · · · , Un) , the unique Lp-viscosity solution of the
problem

−F [U ] = λC(x)u+ 〈M(x)Du,Du〉+ h(x) in Ω, U = 0 on ∂Ω, (T uλ )

for any λ ∈ R, where h = (h1, · · · , hn).

Theorem 5.2. Suppose (SC), and (H1). Let ξ = max1≤i≤κ ξi , η = min1≤j≤ι ηj ,
where ξi , ηj ∈ W 2,p(Ω)n are strong sub and supersolutions of (Pλ) respectively,
with ξ ≤ η in Ω. Then (Pλ) has an Lp-viscosity solution satisfying ξ ≤ u ≤ η in Ω.
Furthermore,
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(i) If ξ and η are strict in the sense of Definition 5.1, then for large R > 0 we
have deg(I − Tλ,S, 0) = 1 where S = O ∩ BR, for O = {u ∈ C1

0 (Ω); ξ � u�
η in Ω}.

(ii) If (H2) holds and λ ≥ 0, there exists a minimal and a maximal solution,
u and u, of (Pλ) in the sense that every (strong) solution u of (Pλ) in the
order interval [ξ, η] (i.e. such that ξ(x) ≤ u(x) ≤ η(x) for all x ∈ Ω) satisfies
ξ ≤ u ≤ u ≤ u ≤ η in Ω.

Moreover, the conclusion is true if we replace C(x) by C(x, u), which is defined by
(C(x, u))ijuj = cij(x)Ra(uj) for i, j = 1, . . . , n, where Ra is defined as Ra(uj) = uj
for u ≥ a, Ra(uj) = a for uj < a.

Proof. Analogously to [21, Claim 4.1], we see that Tλ is completely continuous in
compact intervals of λ, by using C1,α regularity estimates in each equation.

Fix some λ ∈ [Λ1,Λ2] and consider R ≥ max{C, ‖ξ‖E , ‖η‖E}+1, where C is such
that ‖ui‖C1,α(Ω) ≤ C, i = 1, · · · , n, for every solution u of (Pλ) which is in the order

interval [ξ, η], and for all λ ∈ [Λ1,Λ2]. The existence of a solution in [ξ, η] follows by

constructing a modified problem (P̃λ), which corresponds to the truncation made
in [21, p.1820] componentwise. Then:

(a) solutions of (P̃λ) are fixed points of a truncated operator T̃λ;

(b) the problems (P̃λ) and (Pλ) coincide in the order interval [ξ, η];

(c) ‖T̃λu‖E < R0, for all u ∈ E, for some R0 > R, and deg(I − T̃λ,BR0
, 0) = 1.

Indeed, (b) follows by applying the maximum principle for each i. Moreover,
if ξ, η are strict, then the degree computation in S is exactly the same as in [21,
p.1823].

For the existence of extremal solutions under (H2) we just need to note that,
if u, v are solutions of (Pλ), then η̃ := min{u, v} is an Lp-viscosity supersolution
of (Pλ). Indeed, if λ ≥ 0, then ui and vi satisfy the equation −Fi [w] ≥ λci1η̃1 +
· · · + λcinη̃n + 〈Mi(x)Dui(x), Dui(x)〉 + hi in the Lp-viscosity sense, and so does
η̃i = min{ui, vi}. Once we know this, the proof of Theorem 5.2(ii) follows as in [21,
Claim 4.5].

Now we work with an auxiliary problem (Pλ,k) which has no solutions for large
k, and such that (Pλ,0) reduces to (Pλ). Fix Λ2 > 0. Recall that constants are
understood as vector constants when we are dealing with the system, as in Definition
2.1. Then, Proposition 4.1 gives us an a priori lower uniform bound C0, depending
on Λ2, such that

u ≥ −C0 for every Lp-viscosity supersolution of (Pλ), for all λ ∈ [0,Λ2].

Consider, thus, the system{
−F [u] = λC(x)u+ h(x) + 〈M(x)Du,Du〉+ k h̃(x) in Ω

u = 0 on ∂Ω
(Pλ,k)

for k ≥ 0, λ ∈ [0,Λ2]. Also, if h− = (h−1 , · · · , h−n ), then h̃ = (h̃1, · · · , h̃n) is such
that

h̃(x) = h̃Λ2
(x) := h−(x) + (A+ Λ2 C0) c̃(x); c̃ = max

1≤i≤n

n∑
j=1

cij ∈ L∞+ (Ω), (11)

with A := λ1/m , m = µ1/ΛP . Here, λ1 = λ+
1 (L−(c̃),Ω) > 0 is the first eigenvalue

with weight c̃ associated to the positive scalar eigenfunction ϕ1 ∈W 2,p(Ω) given by
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Theorem 7.1 (see section 7), namely

(L− + λ1c̃ ) [ϕ1] = 0 and ϕ1 > 0 in Ω, ϕ1 = 0 on ∂Ω. (12)

Note that every Lp-viscosity solution of (Pλ,k) is also supersolution of (Pλ), since

kh̃ ≥ 0, and so satisfies u ≥ −C0. From this and (11) we have, for all k ≥ 1,

λC(x)u+ h(x) + k h̃(x) ≥ −Λ2C0 c̃(x)− h−(x) + h̃(x)

= Ac̃(x) 	 0 a.e. in Ω. (13)

Lemma 5.3. For each fixed Λ2 > 0, (Pλ,k) has no solutions for all k ≥ 1 and
λ ∈ [0,Λ2].

Proof. First observe that, from (13), every Lp-viscosity solution of (Pλ,k) is positive
in Ω for λ ∈ [0,Λ2]. Let us assume by contradiction that (Pλ,k) has a solution u.
Then it is also a solution of

L−[u] ≤ −µ1|Du|2 −Ac̃(x) and u > 0 in Ω,

and from Lemma 3.2, −L−[v] ≥ λ1c̃(x)v + Ac̃(x) and v > 0 in Ω, using mA = λ1 ,
where mvi = emui − 1, for m and A from (11), i = 1, · · · , n. Now, since each vi is
a supersolution of −L−[vi] ≥ λ1c̃(x)vi +Ac̃(x), thus v := min1≤i≤n vi satisfies

(L− + λ1c̃ )[ v ] � 0 and v > 0 in Ω. (14)

Then (12), (14), and Proposition 3 yield v = tϕ1 for some t > 0. But this contradicts
the first line in (14), since (L− + λ1c̃)[ tϕ1] = t(L− + λ1c̃)[ϕ1] = 0 in Ω.

When we are assuming hypothesis (H2) we just say solutions to mean strong solu-
tions of (Pλ). However, it is worth mentioning that sub and supersolutions, in gen-
eral, are not strong, since we are considering the problem in the Lp-viscosity sense.
In order to avoid possible confusion, we make explicit the notion of sub/supersolution
we are referring to.

The next result is important in degree arguments, bearing in mind the set S in
Theorem 5.2(i). This will play the role of the strong subsolution ξ in that theorem.

Lemma 5.4. Suppose (SC), and (H2). Then, for every λ ≥ 0, there exists a strong
strict subsolution ξλ of (Pλ) which is strong minimal, in the sense that every strong
supersolution η of (Pλ) satisfies ξλ ≤ η in Ω.

Proof. Let K > 0 from Proposition 4.1 be such that every Lp-viscosity supersolution
η of

−F [η] ≥ λC(x)η + 〈M(x)Dη,Dη〉 − h−(x)− 1 in Ω, η ≥ 0 on ∂Ω (Qλ)

satisfies η ≥ −K in Ω. Let ξ0 be the strong solution of the problem

L−[ξ0] = λKC(x) + h−(x) + 1 in Ω, ξ0 = 0 on ∂Ω, (15)

given, for example, by [9]. Then, as the right hand side of (15) is positive, by ABP,
SMP and Hopf, we have ξ0 � 0 in Ω. As in [21, Claim 6.3], we see that

every Lp-viscosity supersolution η of (Pλ) satisfies η ≥ ξ0 in Ω. (16)

Indeed, notice that η is an Lp-viscosity supersolution of (Qλ) and so satisfies η ≥
−K. Second, by (SC) and M ≥ 0, η is also an Lp-viscosity supersolution of

−L−[η] ≥ λC(x)η + h(x) ≥ −λKC(x)− h−(x)− 1 in Ω.
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Then v := η−ξ0 is an Lp-viscosity solution of L−[v] ≤ 0, since ξ0 is strong. Further,
v ≥ 0 on ∂Ω, then v ≥ 0 in Ω by ABP, which proves (16). Moreover, setting

(C (x, t))ij = cij(x) if tj ≥ −K; (C (x, t))ij = −K cij(x)/tj if tj < −K,

we have 0 ≤ (C (x, t))ij ≤ cij(x) a.e. in Ω and (C (x, t))ijtj ≥ −Kcij(x) for all
tj ∈ R. Then,

−F [ξ0] ≤ −L−[ξ0] ≤ λ C (x, ξ0)ξ0 + 〈M(x)Dξ0, Dξ0〉 − h−(x)− 1,

and so ξ0 is a strong subsolution of (Qλ), where (Qλ) is the problem (Pλ) with C, h
replaced by C = C(x, u), h = −h− − 1. In addition, (C(x, u))ijuj = cij(x)R−K(uj)
for i, j = 1, . . . , n, with R−K as in Theorem 5.2.

Let η0 be some fixed strong supersolution of (Pλ) (if it does not exist, the proof
is finished). Then, by (16), we have ξ0 ≤ η0 in Ω. Also, in that proof we observed
that η0 ≥ −K, so C (x, η0) ≡ C(x) a.e. x ∈ Ω, which implies that η0 is a strong
supersolution of (Qλ). By Theorem 5.2(iii), we obtain an Lp-viscosity solution w
of this problem, with ξ0 ≤ w ≤ η0 in Ω, which is strong and can be chosen as the
minimal solution in the order interval [ξ0, η0], by (H2) and λ ≥ 0. As in [21, Claim
6.5], since λ ≥ 0, we easily see that η is a strict supersolution of (Pλ), with η ≥ w
in Ω – we only need to pay attention in performing the same argument in the end
of the proof of Theorem 6.3 in [21] in order to have the minimum of supersolutions
as a supersolution.

Now we turn to the proof of Theorems 2.3, 2.4 and 2.5.

5.1. Proof of Theorem 2.3. We start with the coercive case. Of course ξ =
u0 − ‖u0‖∞ and η = u0 + ‖u0‖∞ are strong sub and supersolutions of the problem
(Pλ), for each λ < 0, with ξ ≤ u0 ≤ η in Ω. Indeed, it is just a question of using
(SC) to obtain F [ξ] ≥ F [u0] ≥ F [η], together with λc(x)ξ ≥ 0 ≥ λc(x)η. Then
Theorem 5.2 provides a solution uλ ∈ [ξ, η], for all λ < 0.

To show ‖uλ − u0‖E → 0 as λ → 0+, we take an arbitrary sequence λk → 0+,
and obtain – via stability, C1,α regularity and compact inclusion – the existence of
a limit function u such that uk → u in E, which is an Lp-viscosity solution of (P0).
From the uniqueness of the solution at λ = 0, u = u0.

For the existence of a continuum from u0, we fix ε > 0 and look at the pair
ξ = u0 − ε and η = u0 + ε, which are strong sub and supersolutions for (P0). Since
u0 is the unique Lp-viscosity solution of the problem (P0), ξ and η are strict. Then,
Theorem 5.2(i) and the uniqueness of the solution u0 give us ind(I − T0 , u0) = 1.
Thus, by the well known degree theory results (see [3, Theorem 3.3] for instance)
there exists a continuum, whose components are unbounded in both directions
R+ × E and R− × E. This proves item 1 of Theorem 2.3. Item 2, in turn, is
just a consequence of the a priori bounds obtained for every interval [Λ1,Λ2] not
including the origin, and a priori estimates from below for every interval [0,Λ2].

For the multiplicity results in item 3, we notice that
(a) There exists a λ0 > 0 such that deg(I − Tλ ,S, 0) = 1 , for all λ ∈ (0, λ0);
(b) (Pλ) has two solutions when λ ∈ (0, λ0/2];

are both easy consequences of the topological methods used in [21, Claim 6.7, Claim
6.9], once we have a priori bounds and C1,α estimates. Also, we exploit Lemma 5.3
in place of [21, Lemma 6.1]. This permits us to define the quantity

λ̄ := sup{µ ; ∀λ ∈ (0, µ), (Pλ) has at least two solutions} ∈ [λ0/2,+∞]
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and then infer that the two solutions obtained, for λ ∈ (0, λ̄), satisfy the properties
stated in Theorem 2.3.

To finish the proof, we must show the statements in items 3 and 4 concerning
ordering and uniqueness. Notice that (H2) automatically implies that uλ,1 and uλ,2
are strong, as well as every Lp-viscosity solution of (Pλ). The uniqueness result in
item 3 follows as in [21, p.1839] under a convexity assumption on F , by exploiting
Lemma 5.4 above. The ordering is proved in the next claim.

Recall that the matrix C(x) is in the form (3).

Claim 5.5. uλ,1 � uλ,2 in at least one block, for all λ ∈ (0, λ̄).

Proof. Fix λ ∈ (0, λ̄) and consider the strict strong subsolution ξ = ξλ given by
Lemma 5.4. Since in particular ξ ≤ u for every (strong) solution of (Pλ), we can
choose uλ,1 as the minimal strong solution such that uλ,1 ≥ ξ in Ω. We first note
that this choice yields

(uλ,1)i ≤ (uλ,2)i in Ω for all i = 1, · · · , n. (17)

Otherwise there exists x0 ∈ Ω and one index i such that (uλ,1)i(x0) > (uλ,2)i(x0).
Consider uλ := min{uλ,1, uλ,2} ≥ ξ in Ω. Then Theorem 5.2 gives us a solution u
of (Pλ) such that ξ ≤ u ≤ uλ � uλ,1, which contradicts the minimality of uλ,1, and
implies (17).

Next define v = uλ,2 − uλ,1 in Ω, which is a nonnegative vector by (17). Then,
since uλ,1 and uλ,2 are strong, v satisfies, almost everywhere in Ω,

−L−[v] ≥ −F [uλ,2] + F [uλ,1] ≥ λC(x)v − 2µ2|Duλ,1| |Dv|. (18)

Hence, v is a nonnegative strong solution of

M−(D2v)− b̃ |Dv| ≤ 0 in Ω, for b̃ = b+ 2µ2‖Duλ,1‖∞. (19)

Of course uλ,1 6= uλ,2, then there exists one index j such that vj 	 0 in Ω.
Consider the block from where it belongs; say the first one, j ∈ {1, . . . , t1}. So, by
(19) and SMP, vj > 0 in Ω. Now look at the j-th column of this block. By (3) we
know that there exists an index k 6= j, k ∈ {1, . . . , t1}, such that ckj 6= 0.

Finally, let us turn back to (18), and consider the k-th equation of it. Since
ckjvj 	 0, by (19) and SMP we obtain that vk > 0 in Ω. Using the full coupling of
C(x), we can iterate this process t1 times, by visiting all the equations. Therefore
vj > 0 for all j ∈ {1, . . . , t1}. Applying Hopf, we conclude that v � 0 in this
block.

5.2. Proof of Theorems 2.4 and 2.5. Both results are an easy extension of
considerations made in [21], as long as we exploit Lemma 5.4 instead of [21, Lemma
6.2]. In particular, for Theorem 2.4 we just need to be careful when applying the
SMP, as we make explicit in the next lemma – which is the extension to a system
of [21, Lemma 6.14].

Claim 5.6. u0 is a strict strong supersolution of (Pλ), for all λ > 0.

Proof. Since λC(x)u0 � 0 in Ω, u0 is a strong supersolution of (Pλ). To see that it
is strict, we take u ∈ E an Lp-viscosity subsolution of (Pλ) such that u ≤ u0 in Ω,
and set U := u0− u. Then, since u0 is strong, U is an Lp-viscosity supersolution of

−L−[U ] ≥ λC(x)U − 〈M(x)DU,DU〉+ 〈M(x)Du0, DU〉+ 〈M(x)Du0, DU〉
≥ −µ2 |DU |2 − 2µ2 |Du0| |DU |,
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so L̂−[w] ≤ 0 in Ω in the Lp-viscosity sense, where

L̂−[w] :=M−(D2w)− b̂ |Dw|, for b̂ = b+ 2µ2 ‖Du0‖∞, (20)

and mwi = 1− e−mUi , m = µ2/λP , by Lemma 3.2, for i = 1, · · · , n.
Assume that there exists an index j in the first block {1, . . . , t1} such that

wj(x0) = 0. Then by SMP we have wj ≡ 0, hence Uj ≡ 0. Let us turn back
to (Pλ), and consider the j-th equation. By (3) we know that there exists an index
k 6= j, k ∈ {1, . . . , t1}, such that cjk 6= 0. This, combined with Uj ≡ 0, implies
Uk(x1) = 0 for some point x1. We now apply again SMP, to get Uk ≡ 0. As each
diagonal block in C(x) is fully coupled, we can iterate t1 times, and visit all the
equations, therefore Uj ≡ 0 for any j ∈ {1, . . . , t1}. However, hypothesis (H4) pro-
vides a contradiction, and hence Uj > 0 for all j ∈ {1, . . . , t1}. Taking into account
each block separately, and applying Hopf, we conclude U � 0.

As for Theorem 2.5, showing that every nonnegative supersolution in E of (Pλ)
for λ > 0 satisfies u� u0 follows by analogous considerations to those made in the
proof of Claim 5.6 above. Everything else works as in the scalar case, up to obvious
modifications. The only point which requires some attention in our multiplicity
analysis is the analog of Claim 6.20 in [21] which is our Claim 5.7 ahead. Recall
that nonexistence type results were obtained in Lemma 5.3 via (13). There, the
possibility of taking a large parameter k overcame the difficulty. Here we have a
different situation because we need to conclude the existence of two distinct positive
solutions without using Proposition 5.4 – note that in Theorem 2.4 it is simpler as
soon as we have u0 as supersolution. Therefore we need to work with problem (Pλ)
itself, in which nonexistence for the system does not seem to be a consequence of
the scalar framework, at least not in the general case.

Claim 5.7. (Pλ) has no nonnegative Lp-viscosity supersolutions for λ large.

Proof. Consider the matrix C(x) in the form (3).

Let λ ≥ λ̂1, where λ̂1 = λ+
1 (L̂−(ĉ ),Ω) > 0 is the principal eigenvalue of the

operator L̂− defined in (20), but now with weight ĉ(x) 	 0, where

ĉ(x) = min
1≤i≤t1

n∑
j=1

cij(x) a.e. in Ω, with t1 from (3),

which is associated to the positive eigenfunction ϕ̂1 = ϕ+
1 (L̂−(ĉ ),Ω) ∈ W 2,p(Ω),

that is,

(L̂− + λ̂1 ĉ ) [ ϕ̂1] = 0 and ϕ̂1 > 0 in Ω, ϕ̂1 = 0 on ∂Ω. (21)

Notice that if t1 = 1, then ĉ(x) = c11(x) which is nontrivial by hypothesis (H3).
Suppose, then, in order to obtain a contradiction, that there exists a nonnegative

Lp-viscosity supersolution u of (Pλ) and set v = u−u0 in Ω. One proves v � 0 in Ω
by performing the same SMP argument done in Claim 5.6. Now, since u0 is strong,
we can use it as a test function into the definition of Lp-viscosity supersolution of
u, to obtain

−L−[v] ≥ λC(x)v + λC(x)u0 + 〈M(x)Dv,Dv〉+ 〈M(x)Dv,Du0〉+ 〈M(x)Du0, Dv〉

	 λ̂1C(x)v − 2µ2|Du0| |Dv|,
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using C(x)u0 	 0. Then each vi satisfies −L̂−[vi] 	 λ̂1 ĉ(x) v in Ω, for i = 1, · · · , t1,
in the Lp-viscosity sense, where v := min1≤i≤t1 vi, since λ, cij , vi ≥ 0. Hence,

(L̂− + λ̂1 ĉ ) [ v ] � 0 and v > 0 in Ω (22)

Thus we apply Proposition 3 to (21) and (22), from where v = tϕ̂1 for some t > 0.

But this contradicts (22), since (L̂− + λ̂1 ĉ ) [ tϕ̂1] = 0 in Ω.

In the next section we prove the second part of Theorem 2.5 only in the scalar
case n = 1, since the extension to systems can be established as above.

6. Complementary multiplicity for scalar equations. Here and in the next
section, E = C1(Ω). Now we consider the scalar problem{

−F [u] = λc(x)u+ 〈M(x)Du,Du〉+ γh(x) in Ω
u = 0 on ∂Ω

(Pλ,γ)

where Ω is a bounded C1,1 domain in RN , λ ∈ R, γ > 0, N ≥ 1, c, h ∈ Lp(Ω),
c 	 0, M is a bounded matrix, and F is a fully nonlinear uniformly elliptic operator
which satisfies (SC), (H1), and (H2). The results in this section are related to [14]
and in particular extend to nondivergence form equations [12, Corollary 1.9], where
variational problems were considered.

By Theorem 1(ii) of [26], there exists Γ0 > 0 such that the problem (P0,γ) has
an Lp-viscosity solution, namely u0,γ , for each γ ∈ [0,Γ0]. Note that u0,γ is strong
by regularity, and so unique by Theorem 1(iii) of [26].

Say that h 	 0, then u0,γ ≥ 0, with c(x)u0,γ 	 0, for all γ ∈ (0,Γ0] (see Remark

6.25 in [21]). Thus, there exists λ1 > 0 such that (Pλ,γ) has at least two positive
solutions for λ ∈ (0, λ̄1), it has at least one nonnegative strong solution at λ = λ̄1,
and no nonnegative Lp-viscosity solutions for λ > λ̄1.

Let λ ≥ λ−1 , where λ−1 := λ−1 (L+(c),Ω) > 0 is the principal positive weighted
eigenvalue of L+ associated to the negative eigenfunction ϕ−1 := ϕ−1 (L+(c),Ω) ∈
W 2,p(Ω) from Theorem 7.1, that is,

(L+ + λ−1 c)[ϕ
−
1 ] = 0 and ϕ−1 < 0 in Ω, ϕ−1 = 0 on ∂Ω. (23)

Notice that, since L+ is convex, then

λ+
1 := λ+

1 (L+(c),Ω) ≤ λ−1 (L+(c),Ω) = λ−1 . (24)

Claim 6.1. λ̄1 < λ−1 .

In other words, Claim 6.1 says that (Pλ,γ) does not admit nonnegative solutions
for λ ≥ λ−1 . To see this, we observe that if such a solution u existed, since γh 	 0,
then u would satisfy −L−[u] 	 λ−1 c(x)u, so u > 0 in Ω by SMP. But then this strict
inequality combined with Proposition 3 and (23) produces u = tϕ−1 for some t > 0,
a contradiction.

Theorem 6.2. There exists a positive Γ ≤ Γ0 such that, for each γ ∈ (0,Γ), we
have the existence of λ̄2 > 0 for the problem (Pλ)=(Pλ,γ) satisfying

(i) for λ > λ̄2, (Pλ) has at least two solutions which satisfy uλ,1 � 0 in Ω and
minΩ uλ,2 < 0;

(ii) for λ = λ̄2, (Pλ) has at least one nonpositive solution, which is unique if F is
convex;

(iii) for λ < λ̄2, the problem (Pλ) has no nonpositive solution.
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Proof. Firstly we are going to prove that there exists Γ > 0 such that the problem
(Pλ0,γ) has a nonpositive supersolution ηγ , for all γ ∈ (0,Γ), where λ0 is some
positive number independent of λ and γ.

Let w be some (fixed) strong solution of{
−L+[w] = λ0 c(x)w + 1 + h(x) in Ω

w = 0 on ∂Ω
(25)

for some λ0 ∈ (λ−1 , λ
−
1 + ε0), ε0 > 0. The existence of w is ensured by Theorem 7.2,

since the operator L+ satisfies the W 2,p regularity hypothesis (H2).
Then, let C0 > 0 be such that ‖Dw‖2∞ ≤ C0, and set Γ := min{Γ0, (µ2 C0)−1}.

Claim 6.3. Up to taking a smaller ε0, we have w � 0 in Ω.

Assuming Claim 6.3, we define η = ηγ := γw, for 0 < γ ≤ Γ, which is a negative
function. Then we have, in the Lp-viscosity sense,

−F [η] ≥ −L+[η] = λ0 c(x)η + γ + γh(x) ≥ λ0 c(x)η + γ2µ2 C0 + γh(x)

≥ λ0 c(x)η + 〈M(x)Dη,Dη〉+ γh(x).

That is, η is a supersolution of (Pλ0,γ), for all γ ∈ (0,Γ), with η � 0 in Ω.

Proof of Claim 6.3. We are going to prove a stronger result, i.e. that there exists a
small ε0 > 0 such that every solution w ∈ E of (25) satisfies w < 0 in Ω – which in
turn yields w � 0 in Ω, by Hopf.

Assume the contrary, then there exists a sequence λk → λ−1 and wk satisfying{
−L+[wk] = λk c(x)wk + f(x) in Ω

wk = 0 on ∂Ω,
(26)

but each wk is such that

max
Ω

wk = wk(xk) ≥ 0, where xk ∈ Ω, and Du(xk) = 0, for all k. (27)

By taking a subsequence, xk → x0 ∈ Ω. Since f 6≡ 0, of course wk 6≡ 0, for all k.
We claim that there is a subsequence such that

‖wk‖∞ →∞. (28)

Indeed, if this was not the case, ‖wk‖∞ ≤ C, for some positive constant C inde-
pendent of k. By C1,α regularity, compact inclusion and stability, this would give
us some w ∈ E, which is a viscosity solution of{

−L+[w] = λ−1 c(x)w + f(x) in Ω
w = 0 on ∂Ω.

Now, if w was nonnegative in Ω, it should be positive by SMP; then λ−1 ≤ λ+
1 by

the definition of λ+
1 . Hence λ−1 = λ+

1 by (24). Proposition 3 (see section 7 below)
would imply so w = tϕ+

1 , for some t > 0, which contradicts f 6= 0. Thus, we must
have w(x1) < 0 for some x1 ∈ Ω. This yields w = tϕ−1 , t > 0 by Proposition 3,
contradiction. Thus, (28) holds.

Then, for the sequence in (28), we define vk := wk/‖wk‖∞, which satisfies{
−L+[vk] = λk c(x)vk + f/‖wk‖∞ in Ω

vk = 0 on ∂Ω.
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Since ‖vk‖C1,α(Ω) ≤ C, then passing to a subsequence, vk converges in E to some

function v, which is a solution of −L+[v] = λ−1 c(x)v in Ω, v = 0 on ∂Ω, by stability.

Note that ‖v‖∞ = limk |vk(yk)| = 1, for some sequence of points yk ∈ Ω.
If we had v(x1) < 0 for some x1 ∈ Ω, by Proposition 3 we would obtain v =

ϕ−1 < 0. Thus, by (27), v(x0) = 0 and x0 ∈ ∂Ω. So the application of Hopf at x0

contradicts (27).
Therefore, we must have v ≥ 0 in Ω, i.e. v > 0 in Ω by SMP. Then λ−1 = λ+

1 , by
the definition of λ+

1 and (24). Hence, Proposition 3 yields v = ϕ+
1 > 0 in Ω. Now

Hopf gives us ∂νv > 0 on ∂Ω. This fact and the convergence of vk to v in E imply
that vk > 0 in Ω for large k. Therefore, for large k, vk is a solution of

−L+[vk] 	 λ+
1 c(x)vk and vk > 0 in Ω, vk = 0 on ∂Ω.

Thus vk = tϕ+
1 , for some t > 0, by Proposition 3 again. The above strict inequality

finally provides the last contradiction, and proves Claim 6.3.

Next let us fix some γ ∈ (0,Γ] and look at the problem (Pλ) = (Pλ,γ).
Recall that (Pλ) has a strong strict subsolution ξλ for all λ ≥ 0. However, notice

that our η constructed above, besides being a supersolution for only a fixed λ0, has
no reason to be strict. Nevertheless, we can check that a slight variation of the
argument in the proof of Theorem 1.7 in [12] ensures the strictness for an arbitrary
λ and enables us to use Theorem 5.2. For the sake of completeness, we give the
details at the points in which the general context of Lp-viscosity solutions requests
an extra care.

Note that c(x)η � 0 in Ω. Otherwise the problem (P0) would have a solution v
such that ξ0 ≤ v ≤ η < 0, due to Lemma 5.4 and the first part of Theorem 5.2.
Then we define

λ̄2 := inf{λ ≥ 0; (Pλ) has a strong supersolution ηλ ≤ 0 with c(x)ηλ � 0 } ≤ λ0.

Let λ > λ̄2, then there exists λ̃ ∈ (λ̄2, λ) such that (Pλ) has a strong supersolution
ηλ̃ ≤ 0 with c(x)ηλ̃ � 0. But now ηλ̃ is a strong supersolution of (Pλ), which is not
a solution. So, proceeding as in Theorem 2.3 in [21] we see that η is strict. Then
we use Theorem 5.2(i) to obtain that deg(I − Tλ,Sλ, 0) = 1, where

Sλ = {ξη � u� ηλ̃} ∩ BR,

for some R > 0. This gives us the first solution uλ,1 � 0. Thus, for λ small, a
second solution uλ,2 satisfying uλ,2 � uλ,1 is also established as in the scalar case,
as well as the monotonicity of uλ,1 with respect to λ, see [21, Claim 6.9, Claim
6.12].

On the other hand, if λ > λ̄2, we can only have a nonpositive solution u satisfying
c(x)u ≡ 0. In such a case, γh 	 0 and an exponential change from Lemma 3.2
generates a nonpositive solution of L+[v] � 0 in Ω, and v < 0 in Ω by SMP. Since
λ−1 c(x)v ≡ 0, these inequalities and (23), in the application of Proposition 3, yield
a contradiction.

Observe that λ̄2 cannot be zero by Remark 6.22 in [21]. Indeed, via eigenvalue
arguments it was shown there that, for small values of λ, every solution must be
nonnegative.

To finish, we notice that a sequence λk → λ̄2 produces a sequence uλk,1 of
negative solutions of (Pλk). Then, a priori bounds on [λ̄2, λ̄2 + 1], C1,α estimates,
compact inclusion and stability ensure the existence of an Lp-viscosity solution u
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of (Pλ̄2
), which is nonpositive by convergence, and strong by (H2). This completes

the proof.

Remark 3. If F is convex, 1-homogeneous and possesses eigenvalues, for instance
if F = L+ or a HJB operator, then the estimate can be improved. In fact, in this
case in Claim 6.1 we use λ+

1 (F (c)) instead of λ+
1 (L−(c)), which gives us

λ̄1 < λ+
1 (F (c)) ≤ λ−1 (F (c)) < λ̄2.

7. A short miscellaneous on weighted eigenvalues. We consider the more
general structure

M−λ,Λ(X − Y )− b(x)|~p− ~q| − d(x)ω((r − s)+) ≤ F (x, r, ~p,X)− F (x, s, ~q, Y )

≤M+
λ,Λ(X − Y ) + b(x)|~p− ~q|+ d(x)ω((s− r)+) a.e. x ∈ Ω (SCG)

with F (·, 0, 0, 0) ≡ 0, where 0 < λ ≤ Λ, b ∈ Lp+(Ω), p > N , d ∈ L∞+ (Ω), ω a
Lipschitz modulus. Here, the condition over the zero order term in (SCG) means
that F is proper/coercive, i.e. nonincreasing in r. On F we also impose (H1), and
1-homogeneity such as

F (x, tr, t~p, tX) = tF (x, r, ~p,X) for all t ≥ 0. (29)

Notice that solvability in LN -viscosity sense was used in [22], but this notion is
equivalent to solvability in Lp-sense from (H1), once we have the data f in Lp(Ω),
see [23].

For any c ∈ Lp(Ω), with c 	 0 and p > N , and F satisfying the above assump-
tions, we can define, as in [6, 22, 24],

λ±1 = λ±1 (F (c),Ω) = sup
{
λ > 0; Ψ±(F (c),Ω, λ) 6= ∅

}
where

Ψ±(F (c),Ω, λ) :=
{
ψ ∈ C(Ω); ±ψ > 0 in Ω, ±(F [ψ] + λc(x)ψ) ≤ 0 in Ω

}
;

with inequalities holding in the Lp-viscosity sense (equivalent to LN ). Notice that,
by definition, λ±1 (G(c),Ω) = λ∓1 (F (c),Ω), where G(x, r, p,X) := −F (x,−r,−p,
−X).

We recall the following result on existence of eigenvalues with nonnegative un-
bounded weight, from [22].

Theorem 7.1. Let Ω ⊂ RN be a bounded C1,1 domain, c ∈ Lp(Ω), c 	 0 for
p > n, F as above, for b, d ∈ L∞+ (Ω). Then F has two positive weighted eigenvalues

α±1 > 0 corresponding to normalized and signed eigenfunctions ϕ±1 ∈ C1,α(Ω) that
satisfy 

F [ϕ±1 ] + α±1 c(x)ϕ±1 = 0 in Ω
±ϕ±1 > 0 in Ω
ϕ±1 = 0 on ∂Ω

(30)

in the Lp-viscosity sense, with maxΩ (±ϕ±1 ) = 1. If, moreover, the operator F

satisfies (H2), then α±1 = λ±1 and the conclusion is valid also for b ∈ Lp+(Ω).

Of course, Pucci’s extremal operators L±, with b ∈ Lp+(Ω), are examples of F
which satisfy (H2). Such existence results for L± are used several times in the text.

The following proposition for unbounded c is both an auxiliary result for the
proof of Theorem 7.1 and an important tool for proving nonexistence results for
equations in nondivergence form.
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Proposition 3. Let u, v ∈ C(Ω) be Lp-viscosity solutions of{
F [u] + c(x)u ≥ 0 in Ω

u < 0 in Ω
,

 F [v] + c(x)v ≤ 0 in Ω
v ≥ 0 on ∂Ω

v(x0) < 0 x0 ∈ Ω
(31)

with F as above, c ∈ Lp(Ω), p > n. Suppose one, u or v, is a strong solution.
Then, u = tv for some t > 0. The conclusion is the same if F [u] + c(x)u ≤ 0,
F [v] + c(x)v ≥ 0 in Ω, with u > 0 in Ω, v ≤ 0 on ∂Ω and v(x0) > 0 for some
x0 ∈ Ω.

A consequence of the proof of our Claim 6.3 is an improved version of the anti-
maximum principle [2]. We state it for the sake of completeness. Consider the
problem

F [u] + λc(x)u = f(x) in Ω, u = 0 on ∂Ω. (32)

Recall that solutions of this problem are at least C1,α up to the boundary for
Ω ∈ C1,1.

Corollary 1. Let f ∈ Lp(Ω), with p > N and f 	 0. Then then there exists ε0 > 0
such that any solution u of (32), with λ ∈ (λ−1 (F (c),Ω), λ−1 (F (c)) + ε0), satisfies
u < 0 in Ω. An analogous result holds if f � 0, related to λ+

1 (F (c),Ω) and positive
solutions.

We finally turn to the main result of this section, concerning existence for the
Dirichlet problem. This result is needed, for instance, to ensure existence of solu-
tions of (25). We give a proof of it in the sequel, following the ideas of [2, 14], in
the context of Lp-viscosity solutions, for fully nonlinear equations with unbounded
coefficients.

For ease of notation, we will be omitting the information (F (c),Ω) each time in
what follows. Consider λ1 := max{λ+

1 , λ
−
1 }. Then define, as in [2], the following

quantity

λ2(F (c),Ω) := inf{ρ > λ1 such that ρ is an eigenvalue of F in Ω, with weight c}.

Notice that λ2(F (c),Ω) = +∞ is possible.

Theorem 7.2. Assume (SCG), (H1), (H2), and (29). Let f ∈ Lp(Ω), with p > N ,
and let λ1 < λ < λ2. Then there exists a strong solution of the Dirichlet problem
(32).

Proof. We define Fτ [u] = τF [u]+(1−τ)∆u for u ∈ E, which satisfies (SCG), (H1),
(H2), and (29). Then, from Theorem 7.1, we write λ−τ = λ−1 (Fτ (c),Ω), associated
to ϕτ = ϕ−1 (Fτ (c),Ω), which is such that ϕτ ≤ 0 and ‖ϕτ‖∞ = 1, for all τ ∈ [0, 1].

We first claim that the function τ 7→ λ−τ is continuous in the interval [0, 1].
Indeed, let τk ∈ [0, 1], τk → τ0. Hence it follows that the sequence λ−τk is bounded,
by the same procedure done in the proof of Theorem 5.2 in [22]. So, passing to
a subsequence, we can say that λ−τk → λ0 for some λ0. Then, by C1,α estimates,
compactness argument and stability, we obtain a solution ϕ0 ∈ E of (32) with
λ = λ0. Notice that ϕ0 ≤ 0 and ‖ϕ0‖∞ = 1. By the simplicity of the eigenvalues
(which is true under hypothesis (H2), see [22]), we have λ0 = λ−τ0 , and so the

continuity follows. Analogously, τ 7→ λ+
τ is continuous, where λ+

τ = λ+
1 (Fτ (c),Ω).

On the other hand, we infer that the map τ 7→ λ̄τ , given by λ̄τ = λ2(Fτ (c),Ω),
is lower semicontinuous; and therefore, for each λ ∈ (λ1, λ2), we guarantee the



3880 GABRIELLE NORNBERG, DELIA SCHIERA AND BOYAN SIRAKOV

existence of a continuous function µτ in [0, 1] satisfying µ0 = λ, and λτ ≤ µτ ≤ λ̄τ ,
for all τ ∈ [0, 1], Here, λτ = max (λ−τ , λ

+
τ ). In fact, this is accomplished by using

arguments similar to those in Propositions 5.5 and 5.6 of [2] – the slight differences
have already appeared in the proof of Claim 6.3.

Next we define the operator Aτ : E → E which takes a function u into Aτu = U ,
where U is the unique Lp-viscosity solution of the problem

Fτ [U ] = µτ c(x)u+ f(x) in Ω, U = 0 on ∂Ω.

Of course Aτ is completely continuous, for all τ ∈ [0, 1]. In particular, by C1,α

estimates in [22], it follows that ‖Aτ‖E ≤ C{ ‖µτ‖L∞[0,1] ‖c‖Lp‖u‖∞+‖f‖Lp+1 } ≤
C0(1 + ‖u‖∞). Now the conclusion is just a combination of topological arguments
and Fredholm theory for the Laplacian operator, cf. Lemma 5.8, Proposition 5.9
and Theorem 2.4 in [2], over the space E.
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