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SZLENK INDEX OF C(K)̂⊗πC(L)

R.M. CAUSEY, E. GALEGO, C. SAMUEL

Abstract. We compute the Szlenk index of the projective tensor product C(K)̂⊗πC(L)

of spaces C(K), C(L) of continuous functions on arbitrary scattered, compact, Hausdorff

spaces. In particular, we show that it is simply equal to the maximum of the Szlenk in-

dices of the spaces C(K), C(L). We deduce several results regarding non-isomorphism of

C(K)̂⊗πC(L) and C(M) or C(M)̂⊗πC(N) for particular choices of K,L,M,N .

1. Introduction

Since Grothendieck established the theory of tensor products [12], it has been clear that

projective tensor products play a fundamental role in the geometry of Banach spaces. How-

ever, due to the intractable nature of the projective tensor product, a number of elementary

questions remain unanswered. For example, although the isomorphism classes of C(K)

are well understood when K is countable, compact, Hausdorff, the isomorphism classes of

C(K)̂⊗πC(L) are not known when K,L are countable, compact, Hausdorff.

A classical result in Banach space theory is that the isomorphism class of C(K) when K

is an infinite, countable, compact, Hausdorff spaces is determined by its Szlenk index, which

in turn is fundamentally connected to the Cantor-Bendixson index of K. More precisely,

Bessaga and Pe�lczyński [1] showed that each such K is isomorphic to C(ωωξ
+) for exactly

one countable ordinal ξ. The third named author [19] showed that for a countable ordinal

ξ, the Szlenk index Sz(C(ωωξ
+)) of C(ωωξ

+) is equal to ωξ+1. Since the Szlenk index is an

isomorphic invariant, the fact that the Szlenk index of C(ωωξ
+) is equal to ωξ+1 implies,

independently of the result of Bessaga and Pe�lczyński, that the spaces C(ωωξ
+), ξ countable,

are mutually non-isomorphic. Moreover, since the Szlenk index of a Banach space is at least

as large as the Szlenk index of any of its subspaces or quotients, this result actually implies

that C(ωωξ
+) is not isomorphic to any subspace of any quotient of C(ωωζ

+) when ξ, ζ

are countable ordinals with ζ < ξ. One goal of the present work is to establish a partial

solution to the problem of an isomorphic classification of the projective tensor products

C(K)̂⊗πC(L) for infinite, countable, compact, Hausdorff spaces K,L using the Szlenk index

as an isomorphic invariant. Our main result regarding the Szlenk index is the following.

Theorem 1.1. Let K,L be compact, Hausdorff topological spaces. Then

Sz(C(K)̂⊗πC(L)) = max{Sz(C(K)), Sz(C(L))}.
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Asymptotic smoothness properties are generally stable under the formation of injective

tensor products. However, the same is not true under the formation of projective tensor

products. In general, since the Szlenk index can be thought of as a quantification of the

smoothness of a norm, and by classical duality the weak∗-convexity properties of the dual

norm, a Banach space whose dual admits large, transfinite �∞ structures cannot have a small

Szlenk index. We recall that for Banach spaces X, Y , (X ̂⊗πY )∗ is isometrically identifiable

with L(X, Y ∗), the space of bounded, linear operators from X into Y ∗. Since (X ̂⊗πY )∗

is a space of operators, it often contains large, transfinite �∞ structures, or even a fully

copy of �∞, even when the factors spaces X, Y separately have good smoothness properties.

The most natural example is �2̂⊗π�2, in which (ei ⊗ ei)
∞
i=1 is isometrically equivalent to the

canonical �1 basis. Following Corollary 6.8, we provide further examples of the delicate

nature of asymptotic smoothness nature under the formation of projective tensor products

by noting the existence of a subspace X of C(ωω+) such that X ̂⊗πX fails to be Asplund.

The stability of asymptotic smoothness properties under projective tensor products depends

not only on factor spaces themselves considered separately, but on properties of the pair

which are checked on L(X, Y ∗). Our proof of Theorem 1.1 will use Grothendieck’s theorem

to obtain the required properties of L(C(K), C(L)∗).

As a result of Theorem 1.1, we establish the following.

Theorem 1.2. If ξ, ζ, μ, ν are countable ordinals such that C(ωωξ
+)̂⊗πC(ωωζ

+) is isomor-

phic to C(ωωμ
+)̂⊗πC(ωων

+), then max{ξ, ζ} = max{μ, ν}.

We will actually reach the conclusion of Theorem 1.2 under the weaker conclusion that

each of the spaces C(ωωξ
+)̂⊗πC(ωωζ

+), C(ωωμ
+)̂⊗πC(ωων

+) is isomorphic to a subspace of

a quotient of the other.

Our result combines Grothendieck’s theorem [11] with the notion of ξ-asymptotic uniform

flatness introduced in [5]. Grothendieck’s theorem gives a fundamental inequality on the

2-weakly summing norm of a sequence (fi ⊗ gi)
∞
i=1 ⊂ C(K)̂⊗πC(L) in terms of the weakly

1-summing norm of (fi)
∞
i=1 and the supremum norm of (gi)

∞
i=1. Some recent results from [7]

show that the full strength of Grothendieck’s theorem may not be needed, although the basic

ingredients used there are reminiscent of the ingredients of Grothendieck’s theorem. More

precisely, the key insight in [7] regarded the q-weakly summing norm of a sequence (xi ⊗
yi)

∞
i=1 ⊂ X ̂⊗πY , where (xi)

∞
i=1 is 1-weakly summing, (yi)

∞
i=1 is bounded, and Y ∗ has cotype q.

The notion of ξ-asymptotic uniform flatness, together with the fact that Sz(C(K)) = ωξ+1 if

and only if C(K) admits an equivalent ξ-asymptotically uniformly flat norm, will allow us to

find weakly 1-summing sequences among prescribed convex combinations of weakly null trees

in the projective tensor product C(K)̂⊗πC(L). Grothendieck’s inequality will then allow

us to deduce that certain convex combinations in the branches of weakly null trees in the

projective tensor product are weakly 2-summing, and therefore the projective tensor product
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admits an equivalent ξ-2-asymptotically uniformly smooth norm for an appropriately large

ξ. This result is a transfinite version of the result of Dilworth and Kutzarova from [9], where

it was shown that c0̂⊗πc0 admits an equivalent norm which is 2-asymptotically uniformly

smooth, which is the ξ = 0 case of our result for separable C(K) spaces.

Throughout, unless otherwise stated, we assume all Banach spaces are infinite dimensional

and all subspaces are closed, linear subspaces. We close the introduction by briefly describing

some non-standard notation and terminology which we will use, and where the corresponding

definitions can be found. In Section 2, we provide notation and terminology related to trees

and rank. We also introduce the notation T.D, where T is a tree and D is a directed set.

These will be convenient index sets, where the tree T controls the rank of the structure T.D

and D is a directed set. Section 3 introduces notions related to the Szlenk index, higher

order asymptotic smoothness, and weakly null trees. We will be concerned with weakly null

trees, so most of our applications of T.D will involve the choice of directed set D = CD(X),

where X is a Banach space and CD(X) is the set of finite codimensional subspaces of X.

In order to separate the required combinatorial results from the specifics of our applications

to weakly null trees, we build the weak nullity of the trees into the index set itself using

the notion of normal weak nullity, defined in Section 3.2. Also in Section 3.2, we recall the

notions of ξ-p-asymptotic uniform smoothness (ξ-p-AUS) and ξ-asymptotic uniform flatness

(ξ-AUF). Since we will be concerned with C(K) spaces, we will also use the notion of normal

pointwise nullity, in which the pointwise nullity of a collection of C(K) is built into the index

set of the collection. This notion is defined in Section 6. There, for a compact, Hausdorff

space K and a finite subset F of K, we also introduce the notion

Ann(F ) = {f ∈ C(K) : f |F ≡ 0}.

2. Trees and Games

2.1. Trees. Given a set Ω, Ω<ω will denote the set of finite sequences of elements of Ω. This

includes the empty sequence, denoted ∅. We let Ωω denote the set of infinite sequences

whose members lie in Ω and let Ω�ω = Ωω ∪ Ω<ω. For t ∈ Ω<ω, we let |t| denote the length

of t. For t ∈ Ω�ω and n < ω, we let t|n be the initial segment s of t such that |s| = n. For

s, t ∈ Ω�ω, we write s < t if s = t|n for some n < ω. If t ∈ Ω<ω satisfies 0 < |t| < ω, we let

t− = t|(|t| − 1). That is, t− is the immediate predecessor of t. For s ∈ Ω<ω and t ∈ Ω�ω, we

let s � t denote the concatenation of s with t.

A subset T of Ω<ω \ {∅} is said to be a tree on Ω (or simply a tree) if ∅ < s < t and

t ∈ T implies s ∈ T . A subset T of Ω<ω is said to be a rooted tree on Ω (or simply a rooted

tree) if s < t and t ∈ T implies s ∈ T . A rooted tree is said to be hereditary if it contains

all subsequences of its members. We let MAX(T ) denote the set consisting of all maximal

members of T with respect to the initial segment ordering. A tree T ⊂ Ω<ω is said to be

pruned if it is non-empty and MAX(T ) = ∅.
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Given a tree T , we define the derivative of T , denoted by T ′, by T ′ = T \MAX(T ). We

define the transfinite derivatives of T by

T 0 = T,

T ξ+1 = (T ξ)′,

and if ξ is a limit ordinal,

T ξ =
⋂

ζ<ξ

T ζ .

We say T is well-founded if there exists ξ such that T ξ = ∅, and in this case we define the

rank of T by

rank(T ) = min{ξ : T ξ = ∅}.

A tree which is not well-founded is said to be ill-founded. If T is ill-founded, we agree to the

convention that rank(T ) = ∞. Every pruned tree is ill-founded. Given a tree T on Ω, we

define the body of T by

[T ] = {τ ∈ Ωω : (∀n ∈ N)(τ |n ∈ T )}.

Note that T is well-founded if and only if [T ] = ∅.

Given a tree T on Ω and t ∈ Ω<ω, we let

Tt = {s ∈ Ω<ω \ {∅} : t � s ∈ T}.

Note that this is also a tree, which is well-founded (resp. pruned) if T is. An easy proof by

induction shows that for any tree T , any t ∈ Ω<ω, and any ordinal ξ,

(T ξ)t = (Tt)
ξ.

Therefore the notation T ξ
t can be used unambiguously.

Remark 2.1. Let ζ an ordinal be given. There exists a tree of rank ζ.

Proof. Let Sζ = { (νi)ni=1 : 0 � νn < · · · < ν1 < ζ }. Note that Sζ = ∅ if and only if ζ = 0.

Also, Sζ is a tree on the interval of ordinals [0, ζ), and (νi)
n
i=1 ∈ MAX(Sζ) if and only if

νn = 0, so

S ′
ζ = { (νi)ni=1 : 1 � νn < · · · < ν1 < ζ }.

More generally, an easy induction argument yields that for any ordinal δ,

Sδ
ζ = { (νi)ni=1 : δ � νn < · · · < ν1 < ζ }.

Of course, this means Sδ
ζ = ∅ if and only if δ � ζ, from which it follows that rank(Sζ) =

ζ. �
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Given a tree T on Ω and a non-empty set D, we let

T.D = {(ζi, ui)
n
i=1 ∈ (Ω×D)<ω : (ζi)

n
i=1 ∈ T}.

We consider the members of T.D as sequences of pairs. That is, (ζi, ui)
n
i=1 is treated as a

sequence of length n whose ith member is (ζi, ui). Therefore if a = (ζi, ui)
n
i=1 ∈ T.D, then

for 0 � m � n, a|m = (ζi, ui)
m
i=1. Given a tree T , t = (ζi)

n
i=1 ∈ T and v = (ui)

n
i=1 ∈ D<ω, we

let t.v = (ζi, ui)
n
i=1 ∈ T.D. We also agree that ∅.∅ = ∅. Note that if T is a tree on Ω, then

T.D is a tree on Ω × D. Furthermore, for any ordinal ξ, any t ∈ Ω<ω, and v ∈ D<ω with

|t| = |v|, it holds that T ξ.D = (T.D)ξ and Tt.D = (T.D)t.v. In particular, T.D is pruned if T

is, and rank(T ) = rank(T.D). We also define [T ].D = {(ζi, ui)
∞
i=1 ∈ (Ω×D)ω : (ζi)

∞
i=1 ∈ [T ]}.

For τ = (ζi)
∞
i=1 ∈ Ωω and υ = (ui)

∞
i=1 ∈ Dω, we let τ.υ = (ζi, ui)

∞
i=1, which is treated as the

member of (Ω×D)ω whose ith member is (ζi, ui).

2.2. Games. Let B be a set and let D be a non empty subset of the power set of B Let g

be a subset of the power set of B such that for every u ∈ D, there exists G ∈ g such that

G ⊂ u.

Let T be a pruned tree and let E be a subset of [T ].g. We define a two player game. Player

S chooses u1 ∈ D and ζ1 ∈ Ω such that (ζ1) ∈ T . Player V chooses G1 ∈ g such that G1 ⊂ u1.

Player S chooses u2 ∈ D and ζ2 ∈ Ω such that (ζ1, ζ2) ∈ T . Player V chooses G2 ∈ g such

that G2 ⊂ u2. Play continues in this way until τ = (ζi)
∞
i=1 ∈ [T ], γ = (Gi)

∞
i=1 ∈ gω, and

(ui)
∞
i=1 ∈ Dω are chosen. Player S wins if τ.γ ∈ E , and Player V wins otherwise. We refer

to E as the target set. We refer to this game as the E game on g, T,D, or simply the E game

if g, T , and D are understood.

If n turns of the game have been played (n = 1, . . .), resulting in a choice t ∈ T for Player

S and g ∈ g<ω for Player V , the remainder of the game is equivalent to a new game with

target set

Et.g = {α ∈ [Tt].g : t.g � α ∈ E}
played on the tree Tt.

A strategy for Player S in the (E , g, T ) game (sometimes just called a strategy for Player

S) is a function χ : {∅} ∪ T.g → Ω × D such that if χ(∅) = (ζ, u), then (ζ) ∈ T , and if

χ(t.g) = (ζ, u), then t � (ζ) ∈ T . A strategy for Player V in the (E , g, T ) game (sometimes

just called a strategy for Player V ) is a function ψ : T.D → g such that if ψ((ζi, ui)
n
i=1) = G,

then G ⊂ un.

Given a strategy χ for Player S, t ∈ T , and g ∈ g<ω with |t| = |g|, we say t.g is χ-admissible

if t = g = ∅ or if for each 0 � i < |t|, if χ((t.g)|i) = (ζ, u), then Gi+1 ⊂ u, where Gi+1 is the

i+1st member of the sequence g. For τ ∈ [T ] and γ ∈ gω, we say τ.γ is χ-admissible if τ.γ|n
is χ-admissible for all n < ω.

A strategy ψ for Player V in the (E , g, T ) game is called a winning strategy for Player V

if for any τ.υ ∈ [T ].D, if Gn = ψ(τ.υ|n) for n = 1, 2, . . ., and if γ = (Gn)
∞
n=1, then τ.γ /∈ E .

A strategy χ for Player S in the (E , g, T ) game is called a winning strategy for Player S if
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whenever α ∈ [T ].g is χ-admissible, then α ∈ E . A strategy χ for Player S in the (E , g, T )
game is called a defensive strategy for Player S if whenever t ∈ T and g ∈ g<ω are such

that t.g is χ-admissible, then Player V does not have a winning strategy in the (Et.g, g, Tt)

game. Informally, if Player S plays according to the strategy χ, then Player V will not have

a winning strategy at any point during the progress of the game.

We say that a target set E ⊂ [T ].g is closed if whenever α ∈ [T ].g \ E , there exists n ∈ N

such that

{β ∈ [T ].g : β|n = α|n} ∩ E = ∅.

The concepts behind the following result are standard, but due to the specificity of our

construction, we give the proof.

Proposition 2.2. Let T be a pruned tree on a set Ω. Let B be a non-empty set and let D, g

be non empty subsets of the power set of B. Suppose that ∅ /∈ D, ∅ /∈ g and any u ∈ D,

there exists G ∈ g such that G ⊂ u. The following hold.

(i) If for every (ζ) ∈ T and u ∈ D, there exists G = G(ζ, u) ∈ g such that G ⊂ u

and Player V has a winning strategy in the (E(ζ,G), g, T(ζ)) game, then Player V has a

winning strategy in the (E , g, T ) game.

(ii) For any target set E ⊂ [T ].g, either Player S has a defensive strategy or Player V has

a winning strategy in the (E , g, T ) game.

(iii) If E is closed, then any defensive strategy for Player S in the (E , g, T ) game is a winning

strategy for Player V in the (E , g, T ) game.

(iv) If E is closed, exactly one of Player S and Player V has a winning strategy in the

(E , g, T ) game.

(v) If there exists a subset F of T.g such that E = [F ], then E is closed.

Proof. (i) For each (ζ) ∈ T and u ∈ D, let G(ζ,u) ⊂ u be such that Player V has a winning

strategy ψζ,u : T(ζ).D → g in the (E(ζ,G), g, T(ζ)) game. Define ψ : T.D → g by letting

ψ((ζ, u)) = G(ζ,u) and for a ∈ T.D with |a| > 1, write a = (ζ, u) � a1 and let ψ(a) = ψζ,u(a1).

It is straightforward to verify that ψ is a winning strategy in the (E , g, T ) game.

(ii) Assume Player V has no winning strategy in the (E , g, T ) game. We define a defensive

strategy χ for Player S in the game. More precisely, we define χ(a) for a ∈ {∅} ∪ T.g by

induction on |a|. Since Player V does not have a winning strategy in the (E , g, T ) game, by

negating the conditions in (i), there must exist ζ0 ∈ Ω and u0 ∈ D such that (ζ) ∈ T and

for any G ∈ 2u ∩ g, Player V does not have a winning strategy in the (E(ζ,G), g, T(ζ)) game.

Define χ(∅) = (ζ0, u0).

Now assume that for some a = t.γ ∈ T.g, χ(a) = (ζ, u) has been defined, which means

t � (ζ) ∈ T . Assume further that if a = (ζi, Gi)
n
i=1 and for any 0 � i < n, if χ(a|i) = (ζ ′, u′)

and Gi ⊂ u′, then for any G ∈ g with G ⊂ u, Player V has no winning strategy in the

(Ea�(ζ,G), g, Tt�(ζ)) game. For G ∈ g, we define χ(a � (ζ,G)) in cases. If G �⊂ u, define

χ(a � (ζ,G)) arbitrarily. For the remaining cases, assume G ⊂ u. If a = ∅, then since
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G ⊂ u, by (i) and our assumption that Player V has no winning strategy in the (E(ζ,G), g, T(ζ))

game, there exists (ζ ′) ∈ Tt and u′ ∈ D such that for any G′ ∈ g such that G′ ⊂ u′, Player

V does not have a winning strategy in the (E(ζ,u)�(ζ′,u′), g, T(ζ,ζ′)) game. In this case, define

χ(a � (ζ,G)) = (ζ ′, u′). If a = (ζi, Gi)
n
i=1 and for any 0 � i < n, if χ(a|i) = (ζ ′, u′) and

Gi ⊂ u′, then since G ⊂ u, our assumptions together with (i) yield the existence of some

(ζ ′) ∈ Tt and u′ ∈ D such that for any G′ ∈ g such that G′ ⊂ u′, Player V does not have a

winning strategy in the (Ea�(ζ,G)�(ζ′,G′), g, Tt�(ζ,ζ′)) game. Define χ(a � (ζ,G)) = (ζ ′, u′). In

the remaining case that a = (ζi, Gi)
n
i=1 and for some 0 � i < n, χ(a|i) = (ζ ′, u′) and Gi �⊂′,

define χ(a � (ζ, u)) arbitrarily. This completes the recursive process. It is routine to verify

that χ is a defensive strategy for Player S in the (E , g, T ) game.

(iii) Assume E is closed. Assume χ is a defensive strategy for Player S in the (E , g, T )
game and α = τ.φ ∈ [T ].g is χ-admissible. Seeking a contradiction, assume α ∈ [T ].g \ E .
Then there exists n ∈ N such that

{β ∈ [T ].g : β|n = α|n} ∩ E = ∅.

Then α|n is χ-admissible, but Player V has a winning strategy in the (Eα|n, g, Tτ |n) game.

In fact, any strategy for Player V is a winning strategy in this game, since Eα|n = ∅.

(iv) If E is closed, then either Player S has a defensive (and therefore winning) strategy

in the (E , g, T ) game or Player V has a winning strategy in the (E , g, T ) game. Therefore

at least one of the two players has a winning strategy. Of course, at most one of the two

players can have a wining strategy.

(v) Assume E = [F ] for some F ⊂ T.g. Fix α ∈ [T ].g \ E . Since α /∈ E = [F ], there

exists n ∈ N such that α|n /∈ F . Then for any β ∈ [T ].g such that β|n = α|n, it follows that
β|n = α|n /∈ F , and β ∈ [T ].g \ [F ] = [T ].g \ E .

�

Item (iii) above states that closed games, in the narrower sense that we have defined games,

are determined. A remarkable theorem of Martin [14] yields in the very general setting of

Gale-Stewart games that games with Borel target sets are determined. The games above are

special cases of such Gale-Stewart games, and we could have cited Martin’s theorem rather

than providing a direct proof. However, we find the direct proof in the case of closed games

to be simple and illustrative.

Lemma 2.3. Let T be a pruned tree on a set Ω. Let B be a non-empty set and let D, g be

subsets of the power set of B such that for any u ∈ D, there exists G ∈ g such that G ⊂ u.

Then for a target set E, Player V has a winning strategy in the (E , g, T ) game if and only if

there exists a collection (Ga)a∈T.D ⊂ g such that

(i) for each a = (ζi, ui)
n
i=1 ∈ T.D, Ga ⊂ un,

(ii) for each α = τ.υ ∈ [T ].D, τ.(Gα|n)
∞
n=1 ∈ [T ].g \ E.
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Proof. If ψ is a winning strategy for Player V in the (E , g, T ) game, then the collection given

by Ga = ψ(a) satisfies the conclusions of the lemma. If (Ga)a∈T.D is as in the lemma, then

ψ(a) = Ga defines a winning strategy ψ for Player V in the (E , g, T ) game.

�

Negating one direction of the previous result yields the following.

Corollary 2.4. Let T be a pruned tree on a set Ω. Let B be a non-empty set and let D, g be

subsets of the power set of B such that for any u ∈ D, there exists G ∈ g such that G ⊂ u.

Let E be a target set and assume Player S has a winning strategy in the (E , g, T ) game. Then

for any collection (Ga)a∈T.D ⊂ g such that for each a = (ζi, ui)
n
i=1 ∈ T.D, Ga ⊂ un, there

exists α = τ.υ ∈ [T ].D such that τ.(Gα|n)
∞
n=1 ∈ E .

3. Szlenk index, weakly null trees, and moduli

A real Banach space X is said to be Asplund if every continuous, convex function defined

on a convex, open subset U of X is Fréchet differentiable on a dense Gδ subset of X [8,

Definition 5.1]. A complex Banach space is said to be Asplund if it is Asplund as a real

Banach space. In particular, the norm of an Asplund space is Fréchet differentiable on a

dense Gδ subset of X. On the other hand, every non-Asplund space admits an equivalent

rough norm [8, Theorem 5.3]. Rough norms can be thought of as “uniformly non-Fréchet

differentiable.” Therefore Asplundness is fundamentally connected to smoothness of the

norm. Another characterization of the Asplund property is weak∗-fragmentability of the

dual ball, BX∗ . This means that for any non-empty K ⊂ BX∗ and any ε > 0, there exists

a weak∗ open set U such that K ∩ U �= ∅ and the norm diameter of K ∩ U is less than ε.

It is this characterization of the Asplund property which the Szlenk index, defined below,

will characterize. Therefore smallness of the Szlenk index is a smoothness condition. More

precise information is encoded not just in the Szlenk index of a space, but in the growth rate

of the ε-Szlenk indicies Sz(X, ε) as ε decreases to 0. For example, although we will not use

this direct argument, one can generally prove that for a scattered, compact, Hausdorff space

K whose Cantor-Bendixson index lies in (ωξ, ωξ+1), C(K) is not isomorphic to C(K)̂⊗πC(K)

because

min{n ∈ N : Sz(C(K), ε) � ωξn}

grows on the order of 1/ε, while

min{n ∈ N : Sz(C(K)̂⊗πC(K)) � ωξn}

grows on the order of 1/ε2. The degree of smoothness can be encoded in the modulus of

ξ-asymptotic uniform smoothness, which we also define below, and which are the subject of

our renorming theorems.
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3.1. Szlenk index. Throughout, we let K denote the scalar field, which is either R or C.

For a Banach space X, we let BX denote the closed unit ball of X and we let SX denote the

unit sphere of X. In particular, BK denotes the set of scalars with modulus not exceeding 1.

Given a Banach space X, a weak∗-compact subset K of X∗, and ε > 0, we define the

ε-Szlenk derivation sε(K) of K to be the set of those x∗ ∈ K such that for any weak∗-

neighborhood V of x∗, diam(V ∩K) > ε. We define the transfinite derivations by

s0ε(K) = K,

sξ+1
ε (K) = sε(s

ξ
ε(K)),

and for a limit ordinal ξ,

sξε(K) =
⋂

ζ<ξ

sζε(K).

It is easy to see that each derivation sξε(K) is also weak∗-compact. If there exists an ordinal

ξ such that sξε(K) = ∅, we let Sz(K, ε) denote the minimum such ξ. If no such ξ exists, we

agree to the convention that Sz(K, ε) = ∞. We also agree to the convention that ξ < ∞ for

each ordinal ξ, so that Sz(K, ε) < ∞ means that an ordinal ξ exists such that sξε(K) = ∅.

We define Sz(K) = supε>0 Sz(K, ε), where supε>0 Sz(K, ε) = ∞ if Sz(K, ε) = ∞ for some

ε > 0. If X is a Banach space, we let Sz(X, ε) = Sz(BX∗ , ε) and Sz(X) = Sz(BX∗). The

condition that Sz(X) < ∞ is equivalent to X being an Asplund space [13, Theorem 3.10].

We recall that for a topological space K and a subset L of K, the Cantor-Bendixson

derivative of K is the subset of L consisting of those points in L which are not isolated in L.

We denote the Cantor-Bendixson derivative of L by L′. We define the transfinite derivatives

by

L0 = L,

Lξ+1 = (Lξ)′,

and if ξ is a limit ordinal,

Lξ =
⋂

ζ<ξ

Lζ .

We say that K is scattered if there exists an ordinal ξ such that Kξ = ∅, and in this case, we

define the Cantor-Bendixson index CB(K) of K to be the minimum ξ such that Kξ = ∅.

We note that K is scattered if and only if any non-empty subset of K has an isolated point.

If K is compact, then CB(K) cannot be a limit ordinal, and since by convention we exclude

the empty set from our definitions of topological space, CB(K) cannot be zero. Therefore

for a compact, Hausdorff topological space, CB(K) must be a successor ordinal.

We note that if K = [0, ωξ], the ordinal interval with its usual compact order topology,

then for any ordinal ζ � ξ,

Kζ = {ωξ} ∪ {ωε1 + . . .+ ωεn : ξ > ε1 � . . . � εn � ζ} = {ωζθ : θ � ωμ},

where ζ + μ = ξ. Therefore Kξ = {ωξ} and CB(K) = ξ + 1.
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The following Szlenk index computations were shown in [19] for countable K, in [2] for

K = [0, ξ], ξ an arbitrary ordinal, and in [5] for general K.

Theorem 3.1. Let K be a compact, Hausdorff topological space. Then C(K) is Asplund

if and only if K is scattered. Moreover, if K is infinite and scattered and ξ is the unique

ordinal such that ωξ < CB(K) < ωξ+1, then Sz(C(K)) = ωξ+1.

In particular, for any ordinal ξ, Sz(C[0, ωωξ
]) = ωξ+1.

Of course, if K is finite, then C(K) ≈ �n∞ for some n, and Sz(C(K)) = 1, since BC(K)∗ is

norm compact in this case.

3.2. Weakly null trees and weak derivatives. For convenience, whenever T is a tree

and (Ga)a∈T is a collection indexed by T , we use the notation (Gb)b�a to refer to (Gb)∅<b�a

rather than (Gb)∅�b�a.

Suppose that T is a tree and X is a Banach space. We say a collection (xt)t∈T of X is

weakly null provided that for each for all ξ and all t ∈ (T ∪ {∅})ξ+1,

0 ∈ {xs : s ∈ T ξ, s− = t}weak.

It will often be useful to assume the weakly null trees (xt)t∈T are indexed by a tree T

which has some specific form, namely Γ.D for some directed set D. There are two natural

choices for such a D. We can let D be any neighborhood basis at 0 with respect to the

relative weak topology on BX . Alternatively, we can let

D = CD(X) := {BZ : Z subspace of X and dim(X/Z) < ∞}.

For D = CD(X) and a tree Γ, we say that a collection (xa)a∈Γ.D of X is normally weakly

null if whenever a = (ζi, ui)
n
i=1 ∈ Γ.D, xa ∈ un. Such a collection is weakly null according

to the definition given above. To see this, let a = t.v ∈ ({∅} ∪ Γ.D)ξ+1), there exists ζ such

that t � (ζ) ∈ Γξ. Then for any u ∈ D, a � (ζ, u) ∈ (Γ.D)ξ, and a = (a � (ζ, u))−. Since

xa�(ζ,u) ∈ u,

0 ∈ {xa�(ζ,u) : u ∈ D}weak ⊂ {xb : b ∈ (Γ.D)ξ, b− = a}weak.

We will also be interested in the more general construction. We say a collection of subsets

(Ga)a∈Γ.D of BX is normally weakly null if for each a = (ζi, ui)
n
i=1 ∈ Γ.D, Ga ⊂ un.

We recall that

Sωξ = {(ζi)1�i�n ; 0 � ζn < ... < ζ1 < ωξ}

is a tree of rank ωξ.

Remark 3.2. Let T be a tree with rank(T ) = ωξ and let (xt)t∈T ⊂ BX be a weakly null

collection. Then for every r > 0 there exist a map φ : Sωξ .D → T such that for all a ∈
Sωξ .D, ‖ya − xφ(a)‖ < r, φ(a|1) < φ(a|2) < ... < φ(a). Moreover, if a = (ζi, BZi

)1�i�n, then

φ(a) ∈ T ζn .
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Proof. We construct φ by induction on the length of the element a ∈ Sωξ .D. Let a = (ζ, BZ).

Fix t ∈ T ζ . It is obvious that for every s ∈ T such that s− = t− we have s ∈ T ζ . Let u be a

weak neighborhood of 0 in X such that for every x ∈ u ∩ BX there existsz ∈ BZ satisfying

‖x − z‖ < r. The collection (xt)t∈T a weakly null so there exists s ∈ T ζ such that s− = t−

and xs ∈ u. Let y(ζ,BZ) ∈ BZ such that ‖xs − y(ζ,BZ) ∈ BZ‖ < r. We define φ(ζ, BZ) = s.

Next, assume that n > 1 and φ has been defined on the elements of Sωξ .D of length

n − 1. Let a = ((ζi, BZi
))ni=1 ∈ Sωξ .D. Assume also that φ(a−) ∈ T ζn−1 . We have ζn < ζn−1

so T ζn−1 ⊂ T ζn and there exists t ∈ T ζn such that t− = φ(a−). In order to define φ(a) we

proceed as in the definition of the image of an element of length 1. �

For an ordinal ξ, a number σ � 0, an infinite dimensional Banach space X, and y ∈ X,

we define the modulus of ξ-asymptotic smoothness by �ξX(σ, y) by

�ξX(σ, y) = sup
{

inf{‖y + σx‖ − 1 : t ∈ T, x ∈ co(xs)s�t} :(xt)t∈T ⊂ BX weakly null,

rank(T ) = ωξ
}

.

That is, �ξX(σ, y) � C if and only if for any C1 > C, any tree T of rank ωξ, and any weakly

null collection (xt)t∈T ⊂ BX , there exists a convex combination x of some branch (xs)s�t of

the collection such that ‖y+σx‖ � 1+C1. We isolate here the important special case ξ = 0,

in which case �0X(σ, y) = ρX(σ, y) is the familiar modulus of asymptotic smoothness given

by

�0X(σ, y) = inf
dim(X/Z)<∞

sup
x∈BZ

‖y + σx‖ − 1.

It is easy to see that in the definitions of �ξX(σ, y) and �ξX(σ), it is sufficient to take the

supremum over weakly null collections of the form (xt)t∈Γ.D ⊂ BX , where Γ is any fixed

tree of rank ωξ, and x(ζi,ui)ni=1
∈ un as above. This is because collection (xt)t∈T ⊂ BX , if

rank(T ) = ωξ, then for a tree Γ with rank(Γ), we can find a normally weakly null collection

(ya)a∈Γ.D ⊂ BX whose branches are small perturbations of the branches of (xt)t∈T . See [6,

Proposition 2.1] for more details.

It is clear that for a fixed σ, �ξX(σ, ·) is 1-Lipschitz on X, and for a fixed y ∈ X, �ξX(·, y)
is 1-Lipschitz as a function of σ. We define

�ξX(σ) = sup
y∈BX

�ξX(σ, y).

We say X is ξ-asymptotically uniformly smooth (in short, ξ-AUS ) if infσ>0 �
ξ
X(σ)/σ = 0.

For 1 < p � ∞, we say X is ξ-p-asympotically uniformly smooth (in short, ξ-p-AUS ) if

supσ>0 �
ξ
X(σ)/σ

p < ∞. We say X is ξ-asymptotically uniformly flat (in short, ξ-AUF ) if

there exists some σ0 > 0 such that �ξX(σ0) = 0. We say that X is ξ-asymptotically uniformly

smoothable (resp. ξ-p-asymptotically uniformly smoothable, ξ-asymptotically uniformly flat-

tenable) if there exists an equivalent norm | · | on X such that (X, | · |) is ξ-AUS (resp.

ξ-p-AUS, ξ-AUF).
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Remark 3.3. If X is ξ-p-AUS and 1/p+1/q = 1, then by [6, Proposition 3.2] and standard

Young duality, there exists a constant c > 0 such that for any ε > 0, sω
ξ

ε (BX∗) ⊂ (1−cεq)BX∗ .

From here, an easy homogeneity argument yields that Sz(X, ε) < ωξ+1. Therefore if a

Banach space X is ξ-p-AUS, then Sz(X) � ωξ+1. Since the Szlenk index is an isomorphic

invariant, if X is ξ-p-AUS-able, then Sz(X) � ωξ+1.

Let X be a Banach space. If G is a rooted, hereditary tree on on a subset g of 2BX ,

the power set of BX , we define the weak derivative of G, denoted by (G)′w, to be the set

of all sequences g ∈ G such that for any u ∈ D, there exists G ∈ g such that G ⊂ u and

g � (G) ∈ G.

We define the transfinite weak derivatives by

(G)0w = G,

(G)ξ+1
w = ((G)ξw)

′
w,

and if ξ is a limit ordinal,

(G)ξw =
⋂

ζ<ξ

(G)ζw.

If there exists an ordinal ξ such that (G)ξw = ∅, then we define w(G) to be the minimum

such ξ. If no such ξ exists, we use the notation w(G) = ∞. For consistency, if G = ∅,

(G)ξw = ∅ and w(∅) = 0.

Remark 3.4. Above, the weak derivative was defined using D = CD(X). However, we

could have defined (G)′w in the same way, except with D being a fixed weak neighborhood

basis at 0 in BX . For all of our applications, an easy perturbation argument yields that these

two distinct definitions will lead to the same results.

We note that if G is a rooted, hereditary tree and g ∈ g<ω, then

G(g) := {g1 ∈ g
<ω : g � g1 ∈ G}

is empty if and only if g ∈ g<ω \ G, and otherwise G(g) is a rooted, hereditary tree. Note

that we use the notation G(g), which denotes a rooted tree, rather than the previously used

Gg, which was not rooted. An easy proof by induction yields that for any ordinal ξ,

(G(g))ξw = (G)ξw(g).

We establish some consequences of the definitions above. In what follows, for a fixed

(understood) Banach space X, let s denote the set of singleton subsets of BX , f the set of

finite, non-empty subsets of BX , and c the set of non-empty, norm compact subsets of BX .

Lemma 3.5. Let X be a Banach space and let D = CD(X). Let g be a set of subsets of

BX and let G be a tree on g. For any ordinal ξ, the following are equivalent.

(i) For every tree T with rank(T ) = ξ, there exists a normally weakly null collection

(Ga)a∈T.D ⊂ g such that for every a ∈ T.D, (Ga|i)
|a|
i=1 ∈ G.
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(ii) There exist a tree T with rank(T ) = ξ and a normally weakly null collection (Ga)a∈T.D ⊂
g such that for every a ∈ T.D, (Ga|i)

|a|
i=1 ∈ G.

(iii) w(G) > ξ.

Proof. (i) ⇒ (ii) In light of the previous paragraph, (i) ⇒ (ii) is trivial, since for any ξ, at

least one tree of rank ξ exists.

(ii) ⇒ (iii) Assume rank(T ) = ξ and (Ga)a∈T.D ⊂ G is such that (Ga|i)
|a|
i=1 ∈ G for all

a ∈ T.D. We will prove by induction that for any ζ < ξ, if a ∈ ({∅}∪T.D)ζ , (Ga|i)
|a|
i=1 ∈ (G)ζw.

For the base case, the result holds for a ∈ T.D by hypothesis, and for a = ∅ because

(G∅|i)
0
i=1 = ∅ ∈ G, since G is a rooted tree. The limit ordinal case of the induction is clear.

Assume ζ + 1 < ξ and the ζ case of the induction holds. Fix a = t.v ∈ ({∅} ∪ T.D)ζ+1

(where t = v = ∅ if a = ∅). Then there exists λ such that t � (λ) ∈ T ζ , and for all BZ ∈ D,

a � (λ,BZ) ∈ T ζ .D. Therefore for any finite codimensional subspace Z of X, because

the collection is normally weakly null, Ga�(λ,BZ) ⊂ BZ , and by the inductive hypothesis,

(Ga|i)
|a|
i=1 � (Ga�(λ,BZ)) ∈ (G)ζw. This yields that (Ga|i)

|a|
i=1 ∈ (G)ζ+1

w .

Since rank(T ) = ξ, ∅ ∈ ({∅} ∪ T.D)ξ, and the previous induction yields that ∅ ∈ (G)ξw.

Therefore w(G) > ξ.

(iii) ⇒ (i) By induction on ξ. The ξ = 0 case is vacuous. Assume w(G) > ξ+1, the result

holds for ξ, and T is a tree of rank ξ +1. Since w(G) > ξ +1, ∅ ∈ (G)ξ+1
w . This means that

for any BZ ∈ D, there exists GZ such that GZ ⊂ BZ and (GZ) ∈ (G)ξw. For any length 1

sequence (λ) ∈ T , let G(λ,BZ) = GZ . Since (GZ) ∈ (G)ξw, ∅ ∈ (G(GZ))ξw, and w(G(GZ)) > ξ.

By the inductive hypothesis, there exists a normally weakly null collection (Gλ,Z
a )a∈T(λ).D

such that for each a ∈ T(λ).D, (Gλ,Z
a|i )

|a|
i=1 ∈ G(GZ). Then for a = (λ,BZ) � a1 ∈ T.D, we

define Ga = Gλ,Z
a1

. This collection clearly satisfies the conclusions.

Assume now that ξ is a limit ordinal and the result holds for all smaller ordinals. Let

T be a tree with rank ξ. Let R denote the set of all length 1 sequences in T and for each

t ∈ R, let T [t] = {s ∈ T : t � s}. Then by standard properties of well-founded trees,

rank(T [t]) < ξ for each t ∈ R, and T = ∪t∈RT [t] is a totally incomparable union. From

the latter fact, T.D = ∪t∈RT [t].D is a disjoint union. By the inductive hypothesis, for each

t ∈ R, there exists a collection (Gt
a)a∈T [t].D such that for all a ∈ T [t].D, (Gt

a|i)
|a|
i=1 ∈ G. Then

define (Ga)a∈T.D by letting Ga = Gt
a whenever a ∈ T [t].D. This collection clearly satisfies

the conclusions.

�

For y ∈ X, σ � 0, and ρ ∈ R, we let

S(σ, y, ρ) = {∅} ∪ {(xi)
n
i=1 : (∀x ∈ co(xi)

n
i=1)(‖y + σx‖ � ρ+ 1)}.

Note that S(σ, y, ρ) is a rooted, hereditary tree. Note also that ‖y + σx‖ � ρ + 1 for all

x ∈ co(xi)
n
i=1 if and only if ‖x‖ � ρ + 1 for all x ∈ co(y + σxi)

n
i=1. By the geometric Hahn-

Banach theorem, (xi)
n
i=1 ∈ S(σ, y, ρ) if and only if there exists x∗ ∈ BX∗ such that for all

1 � i � n, Re x∗(y + σxi) � ρ+ 1.
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For a set g of subsets of BX , we let Sg(σ, y, ρ) denote the set consisting of the empty

sequence together with the set of all sequences (Gi)
n
i=1 ∈ gω such that S(σ, y, ρ)∩

∏n
i=1 Gi �=

∅. That is, (Gi)
n
i=1 ∈ Sg(σ, y, ρ) if and only if Gi ∈ g for all 1 � i � n and there exist

(xi)
n
i=1 ∈

∏n
i=1 Gi and x∗ ∈ BX∗ such that for all 1 � i � n, Re x∗(y + σxi) � ρ+ 1.

Recall that s denotes the set of singleton subsets of BX , from which it follows that

Ss(σ, y, ρ) = {∅} ∪ {({xi})ni=1 : (xi)
n
i=1 ∈ S(σ, y, ρ)}.

Proposition 3.6. Let ξ be an ordinal and let X be a Banach space. For σ � 0 and y ∈ X,

�ξX(σ, y) = sup{ρ : w(Ss(σ, y, ρ)) > ωξ}.

Proof. For the σ = 0 case, �ξX(σ, y) = ‖y‖ − 1 = sup{ρ : w(Gs(0, y, ρ)) > ωξ}. For the

remainder of the proof, we consider the case σ > 0.

Fix C < C1 < �ξX(σ, y). Then there exists a tree T with rank(T ) = ωξ and a weakly null

collection (xt)t∈T of BX such that for every t ∈ T and x ∈ co(xs)s�t, ‖y + σx‖ � 1 + C1.

Fix 0 < ε < C1 − C. . Recall also that D = CD(X). We recall that by Remark 3.2 there

exists φ : Sωξ .D → T and (ya)a∈S
ωξ .D a normally weakly null family (ya)a∈S

ωξ .D of BX such

that for all a ∈ Sωξ .D, ‖ya − xφ(a)‖ < ε/σ and φ(a|1) < . . . < φ(a). From the last two

properties, it will follow that for any a ∈ Sωξ .D and x =
∑

b�a wbyb ∈ co(yb : b � a), since

x′ =
∑

b�awbxφ(b) ∈ co(xb : b � φ(a)),

‖y + σx‖ � ‖y + σx′‖ − σ
∑

b�a

wbε/σ � 1 + C1 − ε � 1 + C.

From this it follows that C � sup{ρ : w(Ss(σ, y, ρ)) > ωξ}. For a = (ζ) ∈ Sωξ and BZ ∈ D,

pick a weak neighborhood u of 0 in X such that for any x ∈ u ∩ BX , there exists y ∈ BZ

such that ‖x − y‖ < ε/σ. Choose t ∈ T ζ �= ∅ and let s = t− ∈ {∅} ∪ T . Since (xr)r∈T is

weakly null, there exists r ∈ T ζ such that r− = s == t− and xr ∈ u ∩ BX . Let y(ζ,BZ) ∈ BZ

be such that ‖y(ζ,BZ) − xr‖ < ε/σ and define φ(ζ, BZ) = r. Note that φ(ζ, BZ) ∈ T ζ .

Next, assume that for some n > 1 and a = (ζi, BZi
)ni=1 ∈ Sωξ .D, φ(a−) has been chosen.

Assume also that φ(a−) ∈ T ζn−1 . Fix a weak neighborhood u of 0 in X such that for any

x ∈ u ∩ BX , there exists y ∈ BZn such that ‖x − y‖ < ε/σ. Since φ(a−) ∈ T ζn−1 and since

ζn−1 < ζn, there must exist some t ∈ T ζn such that t− = φ(a−). Since (xr)r∈T is weakly null,

there exists r ∈ T ζn such that xr ∈ u∩BX . Choose ya ∈ BZn such that ‖ya−xr‖ < ε/σ and

let φ(a) = r. This completes the recursive construction. Clearly the conclusions are satisfied

by this construction.

Next, fix C < sup{ρ : w(Ss(σ, y, ρ)) > ωξ}. By Lemma 3.5, there exist a tree T with

rank(T ) = ωξ and a normally weakly null collection (xa)a∈T.D of BX such that for all a ∈ T.D

and x ∈ co(xb : b � a), ‖y + σx‖ � 1 + C. Then �ξX(σ, y) � C. This yields that

sup{ρ : w(Ss(σ, y, ρ)) > ωξ} � �ξX(σ, y).

�
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We next prove that one can move from singletons to norm compact sets in the preceding

proposition.

Lemma 3.7. Let X be a Banach space. For g ∈ f<ω, we let
∏

g =
∏n

i=1 Gi if g = (Gi)
n
i=1

and
∏

g = {∅} if g = ∅.

(i) Let S1, . . . , Sn be hereditary, non-empty, rooted trees on BX . For each 1 � k � n, let

Fk = {∅} ∪
{

g ∈ f
<ω : Sk ∩

∏

g �= ∅

}

.

Then for any ordinal ζ,

(
n

⋃

k=1

Fk

)ζ

w
⊂

n
⋃

k=1

{

g ∈ f
<ω : (Sk)

ζ
w ∩

∏

g �= ∅

})

.

(ii) If ξ is an ordinal, ∅ �= H ⊂ [0,∞)×X is finite, and ε > 0, then

w

(

⋃

(σ,y)∈H

Sf(σ, y, ε+ �ζX(σ, y))

)

� ωξ.

(iii) If ξ is an ordinal, ∅ �= H ⊂ [0,∞)×X is compact, and ε > 0, then

w

(

⋃

(σ,y)∈H

Sc(σ, y, ε+ �ζX(σ, y))

)

� ωξ.

Proof. (i) We work by induction on ζ. The ζ = 0 case holds by the definition of the weak

derivative.

Assume the result holds for ζ. Fix g ∈
(

⋃n
k=1 Fk

)ζ+1

w
. Seeking a contradiction, suppose

that for each 1 � k � n and t ∈
∏

g, there exists BZk,t
∈ D such that for each x ∈ BZk,t

,

t � (x) /∈ (Sk)
ζ
w. Then let Z =

⋂n
k=1

⋂

t∈
∏

g Zk,t ∈ D. Since g ∈
(

⋃n
k=1 Fk

)ζ+1

w
, there

exists G ⊂ BZ such that g � (G) ∈
(

⋃n
k=1 Fk

)ζ

w
. Then there exist 1 � k � n and some

(xi)
n
i=1 � (x) ∈ (Sk)

ζ
w ∩

∏

(g � (G)) contradicting our choice of BZ ⊂ BZk,t
. The existence

of such a k and (xi)
n
i=1 � (x) follows from the definition of the sets Fi in the ζ = 0 case, and

from the inductive hypothesis in the ζ > 0 case. Therefore there must exist some 1 � k � n

and t ∈
∏

g such that for any BZ ∈ D, there exists x ∈ BZ such that t � (x) ∈ (Sk)
ζ
w. This

yields that

g ∈
{

h ∈ f
<ω : (Sk)

ξ
w ∩

∏

h �= ∅

}

,

finishing the successor case.

Assume ζ is a limit ordinal and the result holds for all ordinals less than ζ. Fix g ∈
(

⋃n
k=1 Fk

)ζ

w
. Seeking a contradiction, suppose that for each t ∈

∏

g and 1 � k � n, there

exists ζk,t < ζ such that t /∈ (Sk)
ζk,t
w . Let

ζ0 = max{ζk,t : 1 � k � n, t ∈
∏

g}+ 1 < ζ.
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Since g ∈
(

⋃n
k=1 Fk

)ζ0

w
, the inductive hypothesis yields the existence of t ∈

∏

g and 1 � k �
n such that t ∈ (Sk)

ζ0
w , contradicting our choice of ζ0. Therefore there exist some t ∈

∏

g

and 1 � k � n such that for all ζ0 < ζ, t ∈ (Sk)
ζ0
w . From this it follows that t ∈ (Sk)

ζ
w, and

g ∈
{

h ∈ f
<ω : (Sk)

ξ
w ∩

∏

h �= ∅

}

,

finishing the limit ordinal case.

(ii) We prove the ξ = 0 case using the characterization of �0X(σ, y) given by

�0X(σ, y) = inf{sup{‖y + σx‖ − 1 : x ∈ BZ} : dim(X/Z) < ∞}

For each (σ, y) ∈ H, there exists BZσ,y ∈ D such that for all x ∈ BZσ,y , ‖y + σx‖ <

1+ ε+ �0X(σ, y). Let Z =
⋂

(σ,y)∈H Z. Then for any (σ, y) ∈ H, any G ⊂ BZ , and any x ∈ G,

‖y + σx‖ < 1 + ε+ �ξX(σ, y). This shows that

∅ /∈
⋃

(σ,y)∈H

Sf(σ, y, 1 + ε+ �ξX(σ, y)),

from which it follows that

w

(
⋃

(σ,y)∈H

Sf(σ, y, ε+ �ξX(σ, y))
)

� 1 = ω0.

Next we complete the ξ > 0 case. Note that in this case, ωξ is a limit ordinal. Note

also that since a rooted tree is either empty or contains ∅, it is not possible for w(G) = ωξ

whenever G is a rooted, hereditary tree. Therefore by Proposition 3.6, for any σ � 0 and

y ∈ X, w(S(σ, y, ε+ �ξX(σ, y))) < ωξ. Let

ζ = max{w(S(σ, y, ε+ �ξX(σ, y))) : (σ, y) ∈ H} < ωξ.

Then by (i),
(

⋃

(σ,y)∈H

Sf(σ, y, ε+ �ξX(σ, y))
)ζ

w
⊂

⋃

(σ,y)∈H

{

g ∈ f
<ω : (S(σ, y, ε+ �ξX(σ, y)))

ζ
w ∩

∏

g �= ∅

}

=
⋃

(σ,y)∈H

{

g ∈ f
<ω : ∅ ∩

∏

g �= ∅

}

= ∅.

This completes the ξ > 0 case.

(iii) First we prove the ξ = 0 case. Fix ε > 0 and a compact subset H ⊂ [0,∞)×X. Let

H0 ⊂ H be a finite set such that for any (σ, y) ∈ H, there exists (σ0, y0) ∈ H0 such that

|σ − σ0|+ ‖y − y0‖ < ε/3. Note that for any σ, σ0 � 0 and y, y0 ∈ X,

|�0X(σ, y)− �0X(σ0, y0)| � |σ − σ0|+ ‖y − y0‖.

For each (σ, y) ∈ H0, fix a subspace Zσ,y of X such that dim(X/Zσ,y) < ∞ and

sup{‖y + σx‖ : x ∈ BZσ,y} < 1 + ε/3 + �0X(σ, y).
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Let Z =
⋂

(σ,y)∈H0
Zσ,y and note that for each (σ, y) ∈ H and x ∈ BZ , if (σ0, y0) ∈ H0 is such

that |σ − σ0|+ ‖y − y0‖ < ε/3,

‖y + σx‖ � |σ − σ0|+ ‖y − y0‖+ ‖y0 + σx‖
� 1 + 2ε/3 + �0X(σ0, y0) � 1 + 2ε/3 + �0X(σ, y) + |σ − σ0|+ ‖y − y0‖
< 1 + ε+ �0X(σ, y).

From this it follows that ∅ /∈
⋃

(σ,y)∈H Sc(σ, y, ε+ �0X(σ, y)).

FixR > 0 such that for any (σ, y) ∈ H, |σ| � R. Fix ε > 0 and let ϕ : c → f be such that for

each G ∈ c, ϕ(G) is a finite subset of G such that for each y ∈ G, there exists y0 ∈ ϕ(G) such

that ‖y−y0‖ < ε/4. Choose a finite subset H0 of H such that for any (σ, y) ∈ H, there exists

(σ0, y0) ∈ H0 such that |σ − σ0|+ ‖y − y0‖ < ε/4R. To obtain a contradiction, assume that

w

(

⋃

(σ,y)∈H Gc(σ, y, ε+�ξX(σ, y))
)

� ωξ. Since ωξ is a limit ordinal, the inequality here must

be strict. By Lemma 3.5, there exist a tree T with rank(T ) = ωξ and a normally weakly null

collection (Ga)a∈T.D ⊂ c such that for each a ∈ T.D, (Gb)b�a ∈
⋃

(σ,y)∈H Sc(σ, y, ε+�ξX(σ, y)).

Since ϕ(Ga) ⊂ Ga for each a ∈ T.D, the collection (ϕ(Ga))a∈T.D is normally weakly null. We

claim that for each a ∈ T.D, (ϕ(Gb))b�a ∈
⋃

(σ,y)∈H0
Sf(σ, y, ε/4+�ξX(σ, y)), which, combined

with Lemma 3.5, will yield that

w

(
⋃

(σ,y)∈H0

Sf(σ, y, ε/4 + �ξX(σ, y))
)

> ωξ.

This inequality will contradict (ii) and finish the proof. Fix a ∈ T.D and note that, since

(Gb)b�a ∈
⋃

(σ,y)∈H Sc(σ, y, ε + �ξX(σ, y)), there exist (σ, y) ∈ H and (xb)b�a ∈
∏

b�aGb such

that for any x ∈ co(xb : b � a),

‖y + σx‖ � 1 + ε+ �ξX(σ, y).

Fix (σ0, y0) ∈ H0 such that |σ − σ0| + ‖y − y0‖ < ε/4R and (x0
b)b�a ∈

∏

b�a ϕ(Gb) such

that for each b � a, ‖xb − x0
b‖ < ε/4. For any x0 =

∑

b�awbx
0
b ∈ co(x0

b : b � a), since

x :=
∑

b�awbxb ∈ co(xb : b � a),

‖y0 + σ0x0‖ � ‖y + σx0‖ − |σ − σ0| − ‖y − y0‖ � ‖y + σx‖ − σ
∑

b�a

wb‖xb − x0
b‖ − ε/4

� 1 + ε+ �ξX(σ, y)−R(ε/4R)− ε/4

� 1 + ε+ �ξX(σ0, y0)− |σ − σ0| − ‖y − y0‖ − ε/3

� 1 + ε/4 + �ξX(σ0, y0).

Therefore

(ϕ(Gb))b�a ∈ Sf(σ0, y0, 1 + ε/4 + �ξX(σ0, y0))

⊂
⋃

(σ′,y′)∈H0

Sf(σ
′, y′, 1 + ε/4 + �ξX(σ

′, y′)),

as claimed.
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�

We are now ready to prove the following simultaneity result. Recall that CD(X) denotes

the set of finite codimensional subspaces of X.

Corollary 3.8. Let ξ be an ordinal, X a Banach space, let D = CD(X), and let T be any

tree with rank ωξ. Let G∅ ⊂ X be norm compact and let (Ga)a∈T.D ⊂ c be a normally weakly

null collection. Then for any ε > 0 and σ1 > 0, there exists a ∈ MAX(T.D) such that for

any y ∈ G∅, any (xb)b�a ∈
∏

b�aGb, and any σ ∈ σ1BK,

min{‖y + σx‖ : x ∈ co(xa|i : 1 � i � |a|)} < 1 + ε+ �ξX(σ, y).

Proof. By replacing G∅ with its balanced hull, we can assume that G∅ is balanced. We can

also replace each set Ga, a ∈ T.D, with its balanced hull, noting that the resulting sets still

form a normally weakly null collection.

Seeking a contradiction, assume T is a tree with rank ωξ, assume (Ga)a∈T.D ⊂ c is normally

weakly null and ε > 0 are such that for every a ∈ MAX(T.D), there exist y ∈ G∅, σ ∈ [0, σ1],

and (xb)b�a ∈
∏

b�a Gb such that for every x ∈ co(xb : b � a), ‖y + σx‖ � 1 + ε + �ξX(σ, y).

Then

(Gb)b�a ∈
⋃

(σ,y)∈[0,σ1]×G∅

Sc(σ, y, 1 + ε+ �ξX(σ, y)).

By Lemma 3.5,

w

(
⋃

(σ,y)∈[0,σ1]×G∅

Sc(σ, y, 1 + ε+ �ξX(σ, y))
)

> ωξ,

which contradicts Proposition 3.6(iii) with H = [0, σ1]×G∅. From this it follows that there

exists a ∈ T.D such that for every y ∈ G∅, every (xb)b�a ∈
∏

b�a Gb, and every σ ∈ [0, σ1],

there exists x ∈ co(xb : b � a) such that ‖y + σx‖ < 1 + ε + �ξX(σ, y). Since each of the

sets Gb, ∅ � b � a, is balanced, the same inequality holds for any σ ∈ σ1BK with �ξX(σ, x0)

replaced by �ξX(|σ|, x0).

�

4. Some special trees

Note that in the context of Corollary 3.8, given a compact G∅ ⊂ X and a normally weakly

null collection (Ga)a∈T.D, for any σ1 > 0, we obtained a single branch (Gb)b�a such that for

any y ∈ G∅, any (xb)b�a ∈
∏

b�a Gb, and any σ with |σ| � σ1, there is a convex combination

x of (xb)b�a such that ‖y+σx‖ < 1+ ε+�ξX(σ, y). However, based on this result, the convex

coefficients of the convex combination x could be different for different choices of y, σ, and

(xb)b�a. As we will see later, for our purposes, we will want the convex coefficients not to

depend on these choices. Achieving this result is the content of this section.

If t = (ζi)
n
i=1 is a sequence of ordinals and if ζ is an ordinal, we define ζ + t = (ζ + ζi)

n
i=1.

We make the same convention for an infinite sequence of ordinals. If T is a tree on some
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set [0, γ] of ordinals, we define ζ + T = {ζ + t : t ∈ T}. We now define for each ordinal ξ

and n ∈ N a particular tree Γξ,n which will play an important role in our later results. We

will also define for each such ξ and n a function Pξ,n : Γξ,n → [0, 1]. We will also define

some special subsets of Γξ,n, called the levels of Γξ,n, denoted by Λξ,n,1, . . . ,Λξ,n,n. We will

also define some ill-founded analogues of these trees, Γξ,∞, with levels Λξ,∞,1,Λξ,∞,2, . . ., and

corresponding functions Pξ,∞ : Γξ,∞ → [0, 1].

We define

Γ0,1 = {(0)},
the tree consisting of a single node, (0). We define P0,1((0)) = 1.

Next, assume that for some n ∈ N and each 1 � k � n, Γξ,k and Λξ,k,1, . . . ,Λξ,k,k have

been defined. Suppose also that Γξ,k is a tree on [0, ωξk). Let

Λξ,n+1,1 = {ωξn+ t : t ∈ Γξ,1}

and for 1 � i � n, let

Λξ,n+1,i+1 = {s � t : s ∈ MAX(Λξ,n+1,1), t ∈ Λξ,n,i}.

Note that t ↔ ωξn+t is a bijection of Γξ,1 with Λξ,n+1,1, and Λξ,n+1,1 is a tree on [ωξn, ωξ(n+

1)). We define Pξ,n+1 on Λξ,n+1,1 by letting Pξ,n+1(ω
ξn+ t) = Pξ,1(t). Note also that for each

s ∈ MAX(Λξ,n+1,1), t ↔ s � t is a bijection of Λξ,n+1,i with {t ∈ Λξ,n+1,i+1 : s < t}. We

define Pξ,n+1 on Λξ,n+1,i+1 by letting

Pξ,n+1(s � t) = Pξ,n(t),

where s � t is the unique representation of a member of Λξ,n+1,i+1 as a concatenation of a

member s of MAX(Λξ,n+1,1) and a member t of Λξ,n,i.

Next assume that for some ξ and each n ∈ N, Γξ,n, Pξ,n have been defined. Let Λξ+1,1,1 =

Γξ+1,1 = ∪∞
n=1Γξ,n and define Pξ+1,1|Γξ,n

= 1
n
Pξ,n. Note that the union Γξ+1,1 = ∪∞

n=1Γξ,n is a

totally incomparable union, since any sequence (ζi)
k
i=1 ∈ Γξ,n satisfies ωξ(n− 1) � ζ1 < ωξn.

For a limit ordinal ξ, if Γζ+1,1 has been defined for each ζ < ξ, we let

Λξ,1,1 = Γξ,1 =
⋂

ζ<ξ

(ωζ + Γζ+1,1).

This is a totally incomparable union, since for each ζ < ξ and (ζi)
k
i=1 ∈ ωζ + Γζ+1,1, ω

ζ �
ζ1 < ωζ+1. Moreover, we define Pξ,1|ωζ+Γζ+1,1

by

Pξ,1(ω
ζ + t) = Pζ+1,1(t).

We also define Λξ,∞,1,Λξ,∞,2, . . . by letting

Λξ,∞,1 = Γξ,1

and, if Λξ,∞,1, . . . ,Λξ,∞,i have been defined, letting

Λξ,∞,i+1 = {s � (ωξi+ t) : s ∈ MAX(Λξ,∞,i), t ∈ Γξ,1}
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. We note that Λξ,∞,i+1 admits the alternative description

Λξ,∞,i+1 = {s1 � (ωξ + s2) � . . . � (ωξ(i− 1) + si) � (ωξi+ s) :s ∈ Γξ,1,

s1, . . . , si ∈ MAX(Γξ,1)}.

Note that such a representation s1 � (ωξ + s2) � . . . � (ωξi + s), s1, . . . , si ∈ MAX(Γξ,1),

s ∈ Γξ,1, is unique. We define

Pξ,∞(s1 � (ωξ + s2) � . . . � (ωξ + s)) = Pξ,1(s).

We let Γξ,∞ = ∪∞
i=1Λξ,∞,i and note that this is a disjoint union. We note also that Γξ,∞ is a

pruned tree, and a member τ of [Γξ,∞] is uniquely representable as

τ = s1 � (ωξ + s2) � (ωξ2 + s3) � . . . ,

where s1, s2, . . . ∈ MAX(Γξ,1). Moreover, Λξ,∞,1 = Γξ,1 and for any i ∈ N and any s ∈
MAX(Λξ,∞,i), t ↔ s � (ωξi + t) is a bijection of Γξ,∞ with {t ∈ Γξ,∞ : s < t} which

identifies Λξ,∞,j with {t ∈ Λξ,∞,i+j : s < t} for each j ∈ N, and which satisfies Pξ,∞(s �
(ωξi + t)) = Pξ,1(t) for all t ∈ Γξ,1. Therefore for such an s, {t ∈ Λξ,∞,i+1 : s < t} is

naturally identifiable with Γξ,1 in a way which equates values of Pξ,∞ and Pξ,1. Similarly, for

any i ∈ N, any s ∈ MAX(Λξ,∞,i), the map τ ↔ s � (ωξi + τ) is a bijection of [Γξ,∞] with

{τ ∈ [Γξ,∞] : s < τ}. We will use these natural identifications often in the sequel.

For t ∈ Λξ,∞,i, we define λ0(t), . . . , λi−1(t) by letting λ0(t) = ∅ and λj(t) be the initial

segment of t such that λj(t) ∈ MAX(Λξ,∞,j). For τ ∈ [Γξ,∞], we define λ0(τ), λ1(τ), . . .

similarly.

We also use the notations and analogous identifications above for the trees Γξ,1.D and

Γξ,∞.D. By an abuse of notation, Pξ,1 (resp. Pξ,∞) will denote the function defined on Γξ,1

(resp. Γξ,∞) as well as Γξ,1.D (resp. Γξ,∞.D) defined by Pξ,1(t.v) = Pξ,1(t) for t.v ∈ Γξ,1.D

(resp. Pξ,∞(t.v) = Pξ,∞(t) for t ∈ Γξ,∞.D). The functions λi will also be defined on subsets

of Γξ,∞.D ∪ [Γξ,∞].D in the analogous way.

We collect the following obvious facts regarding these constructions, which indicate the

connection between our functions defined above and convex combinations. For a more thor-

ough discussion of Γξ,1 and Γξ,∞, see [3] and [4].

Proposition 4.1. Let ξ be an ordinal.

(i) For each t ∈ MAX(Γξ,1),
∑

s�t Pξ,1(s) = 1.

(ii) For each τ ∈ [Γξ,∞] and each n ∈ N,
∑

Λξ,∞,n�s<τ Pξ,∞(s) =
∑

λn−1(τ)<t�λn(τ)
Pξ,∞(t) =

1.

Next, we prove an improved simultaneity result.

Lemma 4.2. Let ξ be an ordinal and X a Banach space. Let G∅ ⊂ X be norm compact and

let (Ga)a∈Γξ,1.D ⊂ c be normally weakly null. Then for any ε > 0 and σ1 > 0, there exists
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a ∈ MAX(Γξ,1.D) such that for all y ∈ G∅, all σ with |σ| � σ1, and all (xb)b�a ∈
∏

b�aGb,
∥

∥

∥y + σ
∑

b�a

Pξ,1(b)xb

∥

∥

∥ < 1 + ε+ �ξX(σ, y).

Proof. Toward a contradiction, suppose we have compact sets G∅, a normally weakly null

collection (Ga)a∈Γξ,1.D ⊂ c, and ε > 0 such that for each a ∈ MAX(Γξ,1.D), there exist

ya ∈ G∅, σa with |σa| � σ1, and (xa
b )b�a ∈

∏

b�a Gb such that
∥

∥

∥ya + σa

∑

b�a

Pξ,1(b)x
a
b

∥

∥

∥ � 1 + ε+ �ξX(|σa|, ya).

For each a ∈ MAX(Γξ,1.D), fix x∗
a ∈ BX∗ such that

Re x∗
a

(

ya + σa

∑

b�a

Pξ,1(b)x
a
b

)

=
∥

∥

∥ya + σa

∑

b�a

Pξ,1(b)x
a
b

∥

∥

∥.

Let

Π = {(b, a) ∈ Γξ,1.D × Γξ,1.D : b � a ∈ MAX(Γξ,1.D)}

Define f : Π → R by

f(b, a) = Re x∗
a

(

ya + σax
a
b

)

− �ξX(|σa|, ya).

Note that since G∅ is bounded, |σa| � 1, Gb ⊂ BX for each b ∈ Γξ,1.D, and �ξX(σ, y) � ‖y‖+σ

for any y ∈ X and σ ∈ K, it follows that f is a bounded function. By hypothesis, for each

a ∈ MAX(Γξ,1.D),
∑

b�a

Pξ,1(b)f(b, a) =
∑

b�a

Pξ,1(b)
[

Re x∗
a

(

ya + σax
a
b

)

− �ξX(|σa|, ya)
]

= Re x∗
a

(

ya + σa

∑

b�a

Pξ,1(b)x
a
b

)

− �ξX(|σa|, ya)

=
∥

∥

∥ya + σa

∑

b�a

Pξ,1(b)x
a
b

∥

∥

∥ − �ξX(|σa|, ya) � 1 + ε.

By [3, Theorem 4.2] applied with ε replaced by 1 + ε and δ = ε/2, there exist functions

d : Γξ,1.D → Γξ,1.D and e : MAX(Γξ,1.D) → MAX(Γξ,1.D) such that

(i) for each b, a ∈ Γξ,1.D such that b < a, it follows that d(b) < d(a),

(ii) for each a ∈ MAX(Γξ,1.D), d(a) � e(a),

(iii) if b = (ζi, ui)
m
i=1 and d(b) = (νi, vi)

n
i=1, then vn ⊂ um,

(iv) for each (b, a) ∈ Π, either f(d(b), e(a)) � 1 + ε− ε/2 = 1 + ε/2 or
∑

b�e(a)

Pξ,1(b)f(b, e(a)) < 1 + ε.

Above we showed that the inequality
∑

b�e(a) Pξ,1(b)f(b, e(a)) < 1 + ε in (iv) is not possible,

so f(d(b), e(a)) � 1 + ε/2 for all (b, a) ∈ Π.
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Note that item (iii) implies that the collection (Gφ(b))b∈Γξ,1.D is also normally weakly null.

Define F∅ = G∅ and Fb = Gφ(b) for each b ∈ Γξ,1.D. By Corollary 3.8, there exists a ∈
MAX(Γξ,1.D) such that for every y ∈ F∅, σ with |σ| � σ1,and (xb)b�a ∈

∏

b�a Fb, there

exists x ∈ co(xb : b � a) such that

‖y + σx‖ − �ξX(|σ|, y) < 1 + ε/2.

However, for each a ∈ MAX(Γξ,1.D), ye(a) ∈ F∅, (x
e(a)
d(b))b�a ∈

∏

b�a Fb, and |σe(a)| � σ1, but

for each x =
∑

b�a wbx
e(a)
d(b) ∈ co(x

e(a)
d(b) : b � a),

‖ye(b) + σe(a)x‖ − �ξX(|σe(a)|, ye(a)) � Re x∗
e(a)(ye(a) + σe(a)x)− �ξX(|σe(a)|, ye(a))

=
∑

b�a

wbf(d(b), e(a)) �
∑

b�a

wb(1 + ε/2) = 1 + ε/2.

This contradiction finishes the proof.

�

Corollary 4.3. Let Y be a Banach space and let B ⊂ BY be such that co(B) = BY . Then

for any σ � 0,

�ξY (σ) = sup
y∈B

�ξY (σ, y).

Proof. It clear that for any σ � 0,

�ξY (σ) = sup
y∈BY

�ξY (σ, y) � sup
y∈co(B)

�ξY (σ, y) � sup
y∈B

�ξY (σ, y).

We will show the reverse inequalities.

Recall that for each σ � 0, �ξY (σ, ·) is 1-Lipschitz. Since co(B) is dense in BY ,

sup
y∈BY

�ξY (σ, y) � sup
y∈co(B)

�ξY (σ, y).

Fix σ � 0, C > supy∈B �ξY (σ, y), y1, . . . , yn, a normally weakly null collection (xa)a∈Γξ,1.D ⊂
BY , and non-negative numbers w1, . . . , wn such that 1 =

∑n
i=1 wi. By Lemma 4.2 applied

with G0 = {y1, . . . , yn} and Ga = {xa}, there exists a ∈ MAX(Γξ,1.D) such that for each

1 � i � n,
∥

∥

∥yi + σ
∑

b�a

Pξ,1(b)xb

∥

∥

∥ � 1 + C.

Then
∥

∥

∥

n
∑

i=1

wiyi + σ
∑

b�a

Pξ,1(b)xb

∥

∥

∥ �
n

∑

i=1

wi

∥

∥

∥yi + σ
∑

b�a

Pξ,1(b)xb

∥

∥

∥ � 1 + C.

This shows that

�ξY

(

σ,

n
∑

i=1

wiyi

)

� C.
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Since C > supy∈B �ξY (σ, y), y1, . . . , yn ∈ B, and w1, . . . , wn were arbitrary,

sup
y∈co(B)

�ξY (σ, y) � sup
y∈B

�ξY (σ, y).

�

Proposition 4.4. Fix an ordinal ξ and 1 < p < ∞. For a Banach space X, the following

are equivalent.

(i) X is ξ-p-AUS.

(ii) There exists a constant c > 0 such that for any compact G∅ ⊂ BX , any normally weakly

null collection (Ga)a∈Γξ,1.D ⊂ c, and any ε > 0, there exists a ∈ MAX(Γξ,1.D) such

that for any y ∈ G∅, any σ with |σ| � 1, and any (xb)b�a ∈
∏

b�aGb,

∥

∥

∥y + σ
∑

b�a

Pξ,1(b)xb

∥

∥

∥ � 1 + cp|σ|p + ε.

(iii) There exists a constant c1 > 0 such that for any compact G∅ ⊂ X, any normally weakly

null collection (Ga)a∈Γξ,1.D ⊂ c, and any ε > 0, there exists a ∈ MAX(Γξ,1.D) such

that for any y ∈ G∅,any σ with |σ| � 1, and any (xb)b�a ∈
∏

b�aGb,

∥

∥

∥y + σ
∑

b�a

Pξ,1(b)xb

∥

∥

∥

p

� ‖y‖p + cp1|σ|p + ε.

Proof. (i) ⇒ (ii) If X is ξ-p-AUS, then c := supσ>0 �
ξ
X(σ)/σ

p < ∞. Then by Lemma 4.2, X

satisfies (ii) with this choice of c.

(ii) ⇒ (i) The property in (ii) clearly implies that �ξX(σ) � cσp for any σ > 0.

(ii) ⇒ (iii) Assume (ii) holds with constant c. Fix G∅ ⊂ X norm compact, a normally

weakly null collection (Ga)a∈Γξ,1.D ⊂ c, and ε > 0. Fix R > supx∈G∅
‖x‖ and

0 < δ < min{ε1/p/2, ε/Rp}.

Define F∅ = {x/‖x‖ : x ∈ G∅, ‖x‖ � δ}, which is a norm compact subset of BX . Define

Fa = Ga for a ∈ Γξ,1.D, which is normally weakly null. By hypothesis, there exists a ∈ Γξ,1.D

such that for any y ∈ F∅, any σ with |σ| � 1,and any (xb)b�a ∈
∏

b�a Fb,

∥

∥

∥y + σ
∑

b�a

Pξ,1(b)xb

∥

∥

∥ � 1 + cp|σ|p + δ.

Now fix y ∈ G∅, a scalar σ with |σ| � 1, and (xb)b�a ∈
∏

b�aGb. Consider three cases.

Case 1: ‖y‖ � |σ|. Then by the triangle inequality,
∥

∥

∥y + σ
∑

b�a

Pξ,1(b)xb

∥

∥

∥

p

� (‖y‖+ |σ|)p � 2p|σ|p � ‖y‖p + (2p + cp)|σ|p + ε.
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Case 2: |σ| < ‖y‖ � δ. Then by the triangle inequality,
∥

∥

∥y + σ
∑

b�a

Pξ,1(b)xb

∥

∥

∥

p

� [δ + |σ|]p � 2pδp < ε

� ‖y‖p + (2p + cp)|σ|p + ε.

Case 3: ‖y‖ � max{δ, |σ|}. Then |σ/‖y‖| � 1 and y/‖y‖ ∈ F∅, so
∥

∥

∥y + σ
∑

b�a

Pξ,1(b)xb

∥

∥

∥

p

= ‖y‖p
∥

∥

∥

y

‖y‖ +
σ

‖y‖
∑

b�a

Pξ,1(b)xb

∥

∥

∥

p

� ‖y‖p
(

1 + cp|σ|p/‖y‖p + δ
)

< ‖y‖p + (2p + cp)|σ|p + ε.

Therefore (iii) is satisfied with cp1 = 2p + cp.

(iii) ⇒ (ii) Assume (iii) holds with constant c1. Fix compact G∅ ⊂ BX , any normally

weakly null collection (Ga)a∈Γξ,1.D ⊂ c, and ε > 0. By uniform continuity of the function

f(x) = (1+x)1/p on [0, 2+cp1], there exists δ > 0 such that (1+cp1|σ|p+δ)1/p � (1+cp1|σ|p)1/p+ε

for any σ with |σ| � 1. Note also that since the function f is concave on [0,∞), for any

x > 0,
(1 + x)1/p − 1

x
� f ′(0) = 1/p.

Therefore for any σ with |σ| � 1,

(1 + cp1|σ|p + δ)1/p � 1 +
cp1|σ|p
p

+ ε.

By our assumption that (iii) holds with constant c1, there exists a ∈ MAX(Γξ,1.D) such

that for any y ∈ G∅, any σ with |σ| � 1, and any (xb)b�a ∈
∏

b�aGb,

∥

∥

∥y + σ
∑

b�a

Pξ,1(b)xb

∥

∥

∥ �
(

‖y‖p + cp1|σ|p + δ
)1/p

.

Since G∅ ⊂ BX , we deduce that for any y ∈ G∅, any σ with |σ| � 1, any (xb)b�a ∈
∏

b�aGb,

∥

∥

∥y + σ
∑

b�a

Pξ,1(b)xb

∥

∥

∥ �
(

‖y‖p + cp1|σ|p + δ
)1/p

� 1 +
cp1|σ|p
p

+ ε.

Therefore (ii) holds with cp = cp1/p.

�

Proposition 4.5. Fix an ordinal ξ. For a Banach space X, the following are equivalent.

(i) X is ξ-AUF.

(ii) There exists a constant σ0 > 0 such that for any compact G∅ ⊂ BX , any normally

weakly null collection (Ga)a∈Γξ,1.D ⊂ c, and any ε > 0, there exists a ∈ MAX(Γξ,1.D)

such that for any y ∈ G∅, any σ with |σ| � σ0, and any (xb)b�a ∈
∏

b�a Gb,
∥

∥

∥y + σ
∑

b�a

Pξ,1(b)xb

∥

∥

∥ � 1 + ε.
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(iii) There exists a constant c1 > 0 such that for any compact G∅ ⊂ X, any normally weakly

null collection (Ga)a∈Γξ,1.D ⊂ c, and any ε > 0, there exists a ∈ MAX(Γξ,1.D) such

that for any y ∈ G∅, any scalar σ with |σ| � 1, and any (xb)b�a ∈
∏

b�aGb,
∥

∥

∥y + σ
∑

b�a

Pξ,1(b)xb

∥

∥

∥ � max{‖y‖, c1|σ|}+ ε.

Proof. (i) ⇒ (ii) If X is ξ-AUF, then there exists σ0 > 0 such that �ξX(σ0) = 0. By Lemma

4.2 applied with σ1 = σ0, X satisfies (ii) with this choice of σ0.

(ii) ⇒ (i) The property in (ii) clearly implies that �ξX(σ0) = 0.

(ii) ⇒ (iii) Assume (ii) holds with constant σ0 > 0. Fix G∅ ⊂ X norm compact,

(Ga)a∈Γξ,1.D ⊂ c normally weakly null. Let

F∅ = {x/‖x‖ : x ∈ F∅, ‖x‖ � ε}

and for each a ∈ Γξ,1.D, let Fa = Ga. Fix 0 < δ such that δG∅ ⊂ εBX . Since (ii) holds with

constant σ0, there exists a ∈ MAX(Γξ,1.D) such that for any y ∈ F∅, any σ with |σ| � 1,

and any (xb)b�a ∈
∏

b�a Fb,
∥

∥

∥y + σ
∑

b�a

Pξ,1(b)xb

∥

∥

∥ � 1 + δ.

Case 1: ‖y‖ � ε. Then
∥

∥

∥y + σ
∑

b�a

Pξ,1(b)xb

∥

∥

∥ � ε+ |σ| � max{‖y‖, (1 + 1/σ0)|σ|}+ ε.

Case 2: ‖y‖ � |σ|/σ0. Then by the triangle inequality,
∥

∥

∥y + σ
∑

b�a

Pξ,1(b)xb

∥

∥

∥ � ‖y‖+ |σ| � (1 + 1/σ0)|σ|

� max{‖y‖, (1 + 1/σ0)|σ|}+ ε.

Case 3: ‖y‖ � max{|σ|/σ0, ε}. Then
∥

∥

∥y + σ
∑

b�a

Pξ,1(b)xb

∥

∥

∥ = ‖y‖
∥

∥

∥

y

‖y‖ +
σ

‖y‖
∑

b�a

Pξ,1(b)xb

∥

∥

∥ � ‖y‖(1 + δ) � ‖y‖+ ε

� max{‖y‖, (1 + 1/σ0)|σ|}+ ε.

Therefore (iii) is satisfied with constant c1 = 1 + 1/σ0.

(iii) ⇒ (ii) Fix G∅ ⊂ BX compact and (Ga)a∈Γξ,1.D ⊂ c normally weakly null. By

hypothesis, there exists a ∈ MAX(Γξ,1.D) such that for any y ∈ G∅, σ with |σ| � 1, and

(xb)b�a ∈
∏

b�aGb,
∥

∥

∥y + σ
∑

b�a

Pξ,1(b)xb

∥

∥

∥ � max{‖y‖, c1|σ|}+ ε.
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It follows that with σ0 = 1/c1 that for any y ∈ G∅, any σ with |σ| � σ0, and any (xb)b�a ∈
∏

b�a Gb,

∥

∥

∥y + σ
∑

b�a

Pξ,1(b)xb

∥

∥

∥ � max{‖y‖, c1|σ|}+ ε � 1 + ε.

�

Lemma 4.6. Let ξ be an ordinal and 1 < p < ∞. Let (X, ‖ · ‖) be a Banach space and

suppose | · | is an equivalent norm on X. Assume B ⊂ B
|·|
X is such that co(B) = B

|·|
X .

(i) If for each y ∈ B, each σ � 0, and each (xa)a∈Γξ,1.D ⊂ B
‖·‖
X normally weakly null in

(X, ‖ · ‖),

inf
a∈MAX(Γξ,1.D)

∣

∣

∣y + σ
∑

b�a

Pξ,1(b)xb

∣

∣

∣

p

� 1 + σp,

then (X, | · |) is ξ-p-AUS.

(ii) If for each y ∈ B, each σ > 0, and each (xa)a∈Γξ,1.D ⊂ B
‖·‖
X normally weakly null in

(X, ‖ · ‖), ,

inf
a∈MAX(Γξ,1.D)

∣

∣

∣y + σ
∑

b�a

Pξ,1(b)xb

∣

∣

∣ � 1,

then (X, | · |) is ξ-AUF.

Proof. (i) Fix C > 0 such that 1
C
B

|·|
X ⊂ B

‖·‖
X . Fix y ∈ B, (xa)a∈Γξ,1.D ⊂ B

|·|
X normally weakly

null in (X, | · |), and σ � 0. Then (C−1xa)a∈Γξ,1.D ⊂ B
‖·‖
X is normally weakly null in (X, ‖ · ‖).

Therefore

inf
a∈MAX(Γξ,1.D)

∣

∣

∣y + σ
∑

b�a

Pξ,1(b)xb

∣

∣

∣ = inf
a∈MAX(Γξ,1.D)

∣

∣

∣y + σC
∑

b�a

Pξ,1(b)C
−1xb

∣

∣

∣

� (1 + Cp|σ|p)1/p � 1 +
Cp|σ|p

p
.

Here we used the concavity of f(x) = (1 + x)1/p together with the fact that f ′(0) =

1/p. This shows that �ξ(X,|·|)(σ, y) � Cp|σ|p/p for any y ∈ B. We then deduce that

supσ>0 �
ξ
(X,|·|)(σ)/σ

p � Cp/p by Corollary 4.3.

(ii) Fix C > 0 such that 1
C
B

|·|
X ⊂ B

‖·‖
X . Fix y ∈ B, (xa)a∈Γξ,1.D ⊂ B

|·|
X normally weakly null

in (X, | · |), and σ � 0. Then (C−1xa)a∈Γξ,1.D ⊂ B
‖·‖
X is normally weakly null in (X, ‖ · ‖).

Therefore with σ0 = 1/C,

inf
a∈MAX(Γξ,1.D)

∣

∣

∣y + σ0

∑

b�a

Pξ,1(b)xb

∣

∣

∣ = inf
a∈MAX(Γξ,1.D)

∣

∣

∣y +
∑

b�a

Pξ,1(b)C
−1xb

∣

∣

∣ � 1.

Therefore for any y ∈ B, �ξ(X,|·|)(σ0, y) = 0. By Corollary 4.3, �ξ(X,|·|)(σ0) = 0. �
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5. Two renorming theorems

In this section, we provide an isomorphic characterization of ξ-p-AUS renormability and

of ξ-AUF renormability in terms of games. Isomorphic characterizations of these properties

were previously given in [5] in terms of big and inevitable subsets of Γξ,∞.D, quite technical

notions which we are able to avoid in the present paper.

Recall that for a Banach space X, 1 � q < ∞, and a sequence (xn)
∞
n=1 ⊂ X, we define

‖(xn)
∞
n=1‖wq = sup

{(
∞

∑

n=1

|x∗(xn)|q
)1/q

: x∗ ∈ BX∗

}

.

We also use this notation for finite sequences. That is, we denote

‖(xn)
m
n=1‖wq = sup

{(
m

∑

n=1

|x∗(xn)|q
)1/q

: x∗ ∈ BX∗

}

.

We note that with 1/p + 1/q = 1, ‖(xn)
∞
n=1‖wq (resp. ‖(xn)

m
n=1‖wq ) is the operator norm of

the formal inclusion I : (c00, �p) → X given by en �→ xn. Also for a sequence (xn)
∞
n=1, we let

‖(xn)
∞
n=1‖∞ = supn ‖xn‖, and we use the same notation for finite sequences (xn)

m
n=1.

Recall that for a Banach spaceX, CD(X) denotes the set of finite codimensional subspaces

of X. In this section, let ξ be an ordinal, X a Banach space, and D = CD(X). Recall that

s,F , c denote the sets of singleton, non-empty finite, and non-empty compact subsets of BX ,

respectively.

Recall that for each τ ∈ [Γξ,∞], the sequence∅ = λ0(τ) < λ1(τ) < . . . are such that for each

n ∈ N, λn(τ) is the initial segment of τ such that λn(τ) ∈ MAX(Λξ,∞,n). We have a similar

definition of λ0(t) < . . . < λn−1(t) for each t ∈ Λξ,∞,n. Similarly, for α = τ.υ ∈ [Γξ,∞].D, we

define λ0(α) = ∅ and λn(α) ∈ MAX(Λξ,∞,n.D) for each n ∈ N.

for a sequence γ = (Gi)
∞
i=1 ∈ cω, we let

∏

γ =
∏∞

i=1 Gi. Fix 1 < p � ∞ and let

1/p+ 1/q = 1. For a constant C, we let Ep
C denote the set of all τ.γ =∈ [Γξ,∞].c such that

sup
{∥

∥

∥

(
∑

λn−1(τ)<t�λn(τ)

Pξ,∞(t)x|t|
)∞
n=1

∥

∥

∥

w

q
: (xi)

∞
i=1 ∈

∏

γ
}

� C.

If we let Fp
C denote the set of t.g ∈ Γξ,∞.c such that, if t ∈ Λξ,∞,m, then

sup
{∥

∥

∥

(
∑

λn−1(τ)<t�λn(τ)

Pξ,∞(t)x|t|
)m−1

n=1

∥

∥

∥

w

q
: (xi)

∞
i=1 ∈

∏

γ
}

� C,

then Ep
C = [Fp

C ]. By Proposition 2.2, Ep
C is closed, so either Player S or Player V has a

winning strategy in the (Ep
C , c,Γξ,∞) game.

Our next two results are the main renorming theorems of the paper.

Theorem 5.1. Fix 1 < p < ∞. The following are equivalent.

(i) X admits an equivalent ξ-p-AUS norm.

(ii) There exists C > 0 such that Player S has a winning strategy in the (Ep
C , c,Γξ,∞) game.

(iii) There exists C > 0 such that Player S has a winning strategy in the (Ep
C ,F ,Γξ,∞) game.
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(iv) There exists C > 0 such that Player S has a winning strategy in the (Ep
C , s,Γξ,∞) game.

Proof. (i) ⇒ (ii) Since the condition in (ii) is an isomorphic invariant, we can assume X is

ξ-p-AUS. By Theorem 4.4, there exists a constant c > 0 such that for any compact G∅ ⊂ X,

any normally weakly null (Ga)a∈Γξ,1.D ⊂ BX , and any ε > 0, there exists a ∈ MAX(Γξ,1.D)

such that for any y ∈ G∅, any scalar σ with |σ| � 1, and any (xb)b�a ∈
∏

b�a Gb,
∥

∥

∥y + σ
∑

b�a

Pξ,1(b)xb

∥

∥

∥

p

� ‖y‖+ cp|σ|p + ε.

By replacing c with a larger value if necessary, we may assume c � 1. We claim that for

any C > c, Player S has a winning strategy in the (Ep
C , c,Γξ,∞) game. We prove this by

contradiction. Assume that C > c is such that Player S does not have a winning strategy

in the (Ep
C , c,Γξ,∞) game.

Since Ep
C is closed and we have assumed Player S does not have a winning strategy in the

(Ep
C , c,Γξ,∞) game, Proposition 2.2 yields that Player V has a winning strategy in this game.

By Lemma 2.3, there exists a collection (Ga)a∈Γξ,∞.D ⊂ c such that

(a) for a = (ζi, ui)
n
i=1 ∈ Γξ,∞.D, Ga ⊂ un,

(b) for each α = τ.υ ∈ [Γξ,∞].D, τ.(Gα|n)
∞
n=1 ∈ [Γξ,∞].c \ Ep

C .

We will recursively select a1 < a2 < . . . such that for all n ∈ N, an ∈ MAX(Λξ,∞,∞.D) and

such that, if α = τ.υ ∈ [Γξ,∞].D is the sequence such that λn(α) = an for all n ∈ N, then

τ.(Gα|n)
∞
n=1 ∈ Ep

C . This contradiction will finish the first implication.

Fix (εn)
∞
n=2 ⊂ (0, 1) such that cp +

∑∞
n=2 εn < Cp. Let a0 = ∅. Fix a1 ∈ MAX(Λξ,∞,1.D)

arbitrary. Now assume that a1 < . . . < an have been chosen. Recall that Γξ,1.D is canonically

identifiable with

{a ∈ Λξ,∞,n+1.D : an < a}

via the map a �→ an � (ωξn+ a). Let

F∅ =
{

n
∑

l=1

∑

al−1<a�an

clPξ,∞(a)xa : (cl)
n
l=1 ∈ B
n∞ , (xa)a�an ∈

∏

a�an

Ga

}

,

which is norm compact. Define Fa = Gf(a), where f is the bijection above. Then there exists

a ∈ MAX(Γξ,1.D) such that for any y ∈ F∅, any σ with |σ| � 1, and any (xb)b�a ∈
∏

b�a Fb,
∥

∥

∥y + σ
∑

b�a

Pξ,1(b)xb

∥

∥

∥

p

� ‖y‖p + cp1|σ|p + εn+1.

Let an+1 = f(a). Then since Pξ,1(b) = Pξ,∞(f(a)), it follows that for any y ∈ G∅, any

(xb)an<b�an+1 ∈
∏

an<b�an+1
Gb, and any σ with |σ| � 1,

∥

∥

∥y + σ
∑

an<b�an+1

Pξ,∞(b)xb

∥

∥

∥

p

� ‖y‖p + cp1|σ|p + εn+1.

This completes the recursive construction.
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Let α = τ.υ be the sequence which has a1, a2, . . . as initial segments. Let γ = (Gα|n)
∞
n=1.

Fix (xa)a<α ∈
∏

γ and (cn)
∞
n=1 ∈ c00 such that

∑∞
n=1 |cn|p = 1. Fix m ∈ N such that cn = 0

for all n > m. If m = 1, then by the triangle inequality, since C � 1,

∥

∥

∥

∞
∑

n=1

cn
∑

λn−1(α)<a�λn(α)

Pξ,∞(a)xa

∥

∥

∥

p

=
∥

∥

∥c1
∑

a�λ1(α)

Pξ,∞(a)xa

∥

∥

∥

p

� Cp|c1|p � Cp

∞
∑

n=1

|cn|p.

If m > 1, then by the preceding paragraph, letting In = {a ∈ Γξ,∞.D : an−1 < a � an},
∥

∥

∥

∞
∑

n=1

cn
∑

λn−1(α)<a�λn(α)

Pξ,∞(a)xa

∥

∥

∥

p

=
∥

∥

∥

m
∑

n=1

cn
∑

a∈In

Pξ,∞(a)xa

∥

∥

∥

p

=
∥

∥

∥

m−1
∑

n=1

cn
∑

a∈In

Pξ,∞(a)xa + cm
∑

b∈Im

Pξ,∞(b)xb

∥

∥

∥

p

�
∥

∥

∥

m−1
∑

n=1

cn
∑

a∈In

Pξ,∞(a)xa

∥

∥

∥

p

+ cp|cm|p + εm

�
∥

∥

∥

m−2
∑

n=1

cn
∑

a∈In

Pξ,∞(a)xa + cm−1

∑

b∈Im−1

Pξ,∞(b)xb

∥

∥

∥

p

+ cp|cm|p + εm

�
∥

∥

∥

m−2
∑

n=1

cn
∑

a∈In

Pξ,∞(a)xa

∥

∥

∥

p

+ cp(|cm−1|p + |cm|p) + (εm−1 + εm)

� . . .

�
∥

∥

∥c1
∑

a∈I1

Pξ,∞(a)xa

∥

∥

∥

p

+ cp
m

∑

n=2

|cn|p +
∞

∑

n=2

εn

� cp
∞

∑

n=1

|cn|p +
∞

∑

n=2

εn = cp +
∞

∑

n=2

εn < Cp.

By homogeneity,
∥

∥

∥

(∑

λn−1(α)<a�λn(α)
Pξ,∞(a)xa

)∞
n=1

∥

∥

∥

w

q
� C. Since (xa)a<α ∈

∏

γ was arbi-

trary, τ.γ ∈ Ep
C . This is the necessary contradiction.

(ii) ⇒ (iii) ⇒ (iv) These are clear, since any winning strategy for Player S in the

(Ep
C , c,Γξ,∞) game is a winning strategy for Player S in the (Ep

C ,F ,Γξ,∞) game, and any

winning strategy for Player (Ep
C ,F ,Γξ,∞) game is a winning strategy for Player S in the

(Ep
C , s,Γξ,∞) game.

(iv) ⇒ (i) Our proof is a modification of Pisier’s celebrated renorming theorem for p-

smooth Banach spaces [15]. In this problem, for ease of notation, we will write x in place

of {x} for members of s. We also refer to the games by their target set rather than by the

usual triple, since s and Γξ,∞ are understood. Assume C � 2 is such that Player S has a
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winning strategy in the Ep
C/2 game. Fix such a winning strategy χ0. For each y ∈ X and

λ > 0, let Fy,λ be the set of all τ.γ = (ζt, xt)t<τ such that for any (cn)
∞
n=1 ∈ c00,

1

Cp

∥

∥

∥y +
∞

∑

n=1

cn
∑

t∈Λn(τ)

Pξ,∞(t)xt

∥

∥

∥

p

−
∞

∑

n=1

|cn|p � λp.

For each y ∈ X, let [y] denote the infimum of λ > 0 such that Player S has a winning

strategy in the Fy,λ game. Let

|y| = inf
{

n
∑

i=1

[yi] : n ∈ N, y =
n

∑

i=1

yi

}

.

We will prove that | · | is an equivalent ξ-p-AUS norm on X.

Obviously [y], |y| � 0 for all y ∈ X. Note that for any y ∈ X and λ > 0, if Player S

plays the game according to the strategy χ0 fixed above, and the game results in choices

τ.γ = (ζt, xt)t<τ , then for any (cn)
∞
n=1,

1

Cp

∥

∥

∥y +
∞

∑

n=1

cn
∑

t∈Λn(τ)

Pξ,∞(t)xt

∥

∥

∥

p

−
∞

∑

n=1

|cn|p � 2p‖y‖p
Cp

+
2p

Cp

∥

∥

∥

∞
∑

n=1

cn
∑

t∈Λn(τ)

Pξ,∞(t)xt

∥

∥

∥

p

−
∞

∑

n=1

|cn|p

� ‖y‖p +
∞

∑

n=1

|cn|p −
∞

∑

n=1

|cn|p

= ‖y‖p.

Therefore for any y ∈ X, χ0 is a winning strategy for Player S in Fy,‖y‖ game. From this it

follows that for any y ∈ X, |y| � [y] � ‖y‖. Moreover, for a given y ∈ X, Player S cannot

have a winning strategy in the game Fy,λ game for any λ < ‖y‖/C, which can be seen by

playing any strategy of Player S against the strategy for Player V which consists of choosing

the zero vector on every turn. Therefore for any y ∈ Y ,

‖y‖/C � |y| � [y] � ‖y‖.

Next, note that if for some y ∈ X and λ > 0, χ is a winning strategy for Player S in the

Fy,λ game, then for any non-zero scalar c, χ is also a winning strategy for Player S in the

Fcy,|c|λ game. Indeed, if Player S plays according to χ, resulting in τ.γ = (ζt, xt)t<τ , then for

any (cn)
∞
n=1 ∈ c00,

∥

∥

∥cy +
∞

∑

n=1

cn
∑

t∈Λn(τ)

Pξ,∞(t)xt

∥

∥

∥

p

−
∞

∑

n=1

|cn|p = |c|p
[

∥

∥

∥y +
∞

∑

n=1

cn
c

∑

t∈Λn(τ)

Pξ,∞(t)xt

∥

∥

∥

p

−
∞

∑

n=1

∣

∣

∣

cn
c

∣

∣

∣

p
]

� |c|pλp.

From this it easily follows that |cy| = |c||y| for any scalar c and y ∈ X.
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It is obvious from construction that | · | satisfies the triangle inequality. Therefore | · | is
an equivalent norm on X.

Next note that for any y ∈ X and λ > 0, the set Fy,λ is closed, and therefore the Fy,λ game

is determined. In order to see this, note that for some ατ.γ = (ζt, xt)t<τ ∈ [Γξ,∞].s \ Fy,λ,

there exists (cn)
∞
n=1 ∈ c00 such that

1

Cp

∥

∥

∥y +
∞

∑

n=1

cn
∑

t∈Λn(τ)

Pξ,∞(t)xt

∥

∥

∥

p

−
∞

∑

n=1

|cn|p > λp.

Choose m ∈ N such that cn = 0 for all n > 0 and fix r ∈ N such that ∪m
k=1Λn(τ) = {(ζi)ji=1 :

j � r}. Then if β = τ ′.γ′ = (νt, yt)t<τ ′ ∈ [Γξ,∞].s is such that β|r = α|r, it follows that

νt = ζt and yt = xt for all t ∈ ∪r
k=1Λn(τ

′), and

1

Cp

∥

∥

∥y +
∞

∑

n=1

cn
∑

t∈Λn(τ ′)

Pξ,∞(t)yt

∥

∥

∥

p

−
∞

∑

n=1

|cn|p =
1

Cp

∥

∥

∥y +
m

∑

n=1

cn
∑

t∈Λn(τ ′)

Pξ,∞(t)yt

∥

∥

∥

p

−
∞

∑

n=1

|cn|p

=
1

Cp

∥

∥

∥y +
m

∑

n=1

cn
∑

t∈Λn(τ)

Pξ,∞(t)xt

∥

∥

∥

p

−
∞

∑

n=1

|cn|p

=
1

Cp

∥

∥

∥y +
∞

∑

n=1

cn
∑

t∈Λn(τ)

Pξ,∞(t)xt

∥

∥

∥

p

−
∞

∑

n=1

|cn|p

> λp,

and β ∈ [Γξ,∞].s \ Fy,λ.

Let B = {y ∈ X : [y] < 1} and note that B
|·|
X is the closed, convex hull of B. Fix y ∈ B,

σ � 0, and any collection (xa)a∈Γξ,∞ ⊂ B
‖·‖
X normally weakly null in (X, ‖ · ‖). Fix a real

number μ such that

inf
a∈MAX(Γξ,∞)

∣

∣

∣y + σ
∑

b�a

Pξ,∞(b)xb

∣

∣

∣

p

> 1 + μ.

Then

inf
a∈MAX(Γξ,1)

[

y + σ
∑

b�a

Pξ,∞(b)xb

]p

� inf
a∈MAX(Γξ,1)

∣

∣

∣y + σ
∑

b�a

Pξ,∞(b)xb

∣

∣

∣

p

> 1 + μ.

From this and the previous paragraph, it follows that for each a ∈ MAX(Γξ,1.D), Player V

has a winning strategy in the Fy+
∑

b�a Pξ,∞(b)xb,(1+μ)1/p game. By Lemma 2.3, for each a ∈
MAX(Γξ,1.D), there exists a collection (xa

b )b∈Γξ,∞.D ⊂ BX normally weakly null in (X, ‖ · ‖)
such that for each β = (ζb, ub)b<β ∈ [Γξ,∞].D, (ζb, x

a
b )b<β ∈ [Γξ,∞].s \ Fy+

∑
b�a Pξ,∞xb,(1+μ)1/p .

This means that for each β = (ζb, ub)b<β ∈ [Γξ,∞].D, there exists (cn)
∞
n=1 ∈ c00 such that

1

Cp

∥

∥

∥y + σ
∑

b�a

Pξ,∞(b)xb +
∞

∑

n=1

cn
∑

t∈Λn(β)

Pξ,∞(b)xa
b

∥

∥

∥

p

−
∞

∑

n=1

|cn|p > 1 + μ.
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Extend the collection (xb)b∈Γξ,1.D to a collection (xb)b∈Γξ,∞.D by letting xa
b = xa�(ωξ+beta).

Here we recall that Λξ,∞,1.D = Γξ,1.D and for each a ∈ MAX(Γξ,1.D), b �→ a � (ωξ + b)

is a bijection from Γξ,∞.D onto {b ∈ Γξ,∞.D : a < b} which identifies Λξ,∞,n.D with {b ∈
Λξ,∞,n+1.D : a < b} and such that Pξ,∞(b) = Pxi,∞(a � (ωξ+b)) for all b ∈ Γξ,∞.D. From this

it follows that for each β = (ζb, ub)b<β ∈ [Γξ,∞].D, if a < β is such that a ∈ MAX(Γξ,∞.D)

and if a � (ωξ + α) = β, then there exists (cn)
∞
n=2 ∈ c00 such that, with c1 = σ,

∥

∥

∥y +
∞

∑

n=1

cn
∑

b∈Λn(β)

Pξ,∞(b)xb

∥

∥

∥

p

−
∞

∑

n=2

|cn|p

=
1

Cp

∥

∥

∥y + σ
∑

b∈Λ1(β)

Pξ,∞(b)xb +
∞

∑

n=2

cn
∑

b∈Λn(b)

Pξ,∞(b)xb

∥

∥

∥

p

−
∞

∑

n=2

|cn|p

=
1

Cp

∥

∥

∥y + σ
∑

b�a

Pξ,∞(b)xb +
∞

∑

n=2

cn
∑

t∈Λn(α)

Pξ,∞(b)xa
b

∥

∥

∥

p

−
∞

∑

n=2

|cn|p

> 1 + μ

But since y ∈ B, [y] < 1, so there exists a winning strategy for Player S in the Fy,1 game.

If β = (ζb, ub)b<β is chosen according to such a winning strategy, it follows that for any

(cn)
∞
n=2 ∈ c00, with c1 = σ,

∥

∥

∥y +
∞

∑

n=1

cn
∑

b∈Λn(β)

Pξ,∞(b)xb

∥

∥

∥

p

− σp −
∞

∑

n=2

|cn|p � 1.

Combining this inequality with the previous inequality yields that 1+μ � 1+σp, and μ � σp.

By Lemma 4.6, (X, | · |) is ξ-p-AUS.
�

Theorem 5.2. The following are equivalent.

(i) X admits an equivalent ξ-AUF norm.

(ii) There exists C > 0 such that Player S has a winning strategy in the (E∞
C , c,Γξ,∞) game.

(iii) There exists C > 0 such that Player S has a winning strategy in the (E∞
C ,F ,Γξ,∞)

game.

(iv) There exists C > 0 such that Player S has a winning strategy in the (E∞
C , s,Γξ,∞) game.

Proof. (i) ⇒ (ii) This is similar to the implication (i) ⇒ (ii) of Theorem 5.1. More precisely,

we select a constant c from Proposition 4.5, C > c, and positive numbers (εn)
∞
n=2 such that

∑∞
n=2 εn < C − c. Then in the recursive construction of the an, the sequences are chosen

according to so that for each

y ∈ G∅ =
{

n
∑

m=1

cm
∑

am−1<a�am

Pξ,∞(a)xa : (cm)
n
m=1 ∈ B
n∞ , (xa)a�an ∈

∏

a�an

Ga

}

,
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each σ with σ � 1, and each (xa)an<a�an+1 ∈
∏

an<a�an+1
Ga,

∥

∥

∥y + σ
∑

an<a�an+1

Pξ,∞(a)xa

∥

∥

∥ � max{‖y‖, c|σ|}+ εn+1.

After completing the recursive construction, we define α and γ as in the proof of (i) ⇒ (ii)

of Theorem 5.1 and compute for any (xa)a<α ∈
∏

γ and (cn)
∞
n=1 ∈ Bc0 such that cn = 0 for

all n > m that, with In = {a ∈ Γξ,∞.D : an−1 < a � an},
∥

∥

∥

∞
∑

n=1

cn
∑

a∈In

Pξ,∞(a)xa

∥

∥

∥ =
∥

∥

∥

m
∑

n=1

cn
∑

a∈In

Pξ,∞(a)xa

∥

∥

∥

=
∥

∥

∥

m−1
∑

n=1

cn
∑

a∈In

Pξ,∞(a)xa + cm
∑

b∈Im

Pξ,∞(b)xb

∥

∥

∥

� max
{∥

∥

∥

m−1
∑

n=1

cn
∑

a∈In

Pξ,∞(a)xa

∥

∥

∥, c|cm|
}

+ εm

� max
{

max
{∥

∥

∥

m−2
∑

n=1

∑

a∈In

Pξ,∞(a)xa

∥

∥

∥, c|cm−1|
}

+ εm−1, c|cm|
}

+ εm

� max
{∥

∥

∥

∑

a∈In

Pξ,∞(a)xa

∥

∥

∥, c|cm−1|, c|cm|
}

+ εm−1 + εm

� . . .

� c max
1�n�m

|cm|+
∞

∑

n=1

εm < C.

(ii) ⇒ (iii) ⇒ (iv) These are clear, since any winning strategy for Player S in the

(E∞
C , c,Γξ,∞) game is a winning strategy for Player S in the (E∞

C ,F ,Γξ,∞) game, and any

winning strategy for Player (E∞
C ,F ,Γξ,∞) game is a winning strategy for Player S in the

(E∞
C , s,Γξ,∞) game.

(iv) ⇒ (i) As in the proof of Theorem 5.1(iv) ⇒ (i), we refer to games simply by their

target sets. Assume that C > 0 is such that Player S has a winning strategy in the E∞
C game.

Let χ0 be such a strategy. For y ∈ X and λ > 0, let Gy,λ be the set of all τ.γ = (ζt, xt)t<τ

such that

sup
m

∥

∥

∥y +
m

∑

n=1

∑

t∈Λn(τ)

Pξ,∞(t)xt

∥

∥

∥ � λ.

For y ∈ X, let g(y) be the infimum of λ > 0 such that Player S has a winning strategy in the

Gy,λ game. It is obvious from the triangle inequality that for any y ∈ X, the strategy χ0 is

a winning strategy for Player S in the Gy,‖y‖+C game. Therefore g(y) � ‖y‖+C. Obviously

g(y) � ‖y‖ for any y ∈ X, which can be seen by considering the strategy for Player V

consisting of choosing the zero vector on each turn. Let G = {y ∈ X : g(y) < 1 + C}. By
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the preceding remarks,

int(BX) ⊂ G ⊂ (1 + C)BX .

Let | · | be the Minkowski functional of the closed, convex hull of G. By the preceding

remarks, | · | is an equivalent norm on X. We will show that (X, | · |) is ξ-AUF. Fix y ∈ G

and a collection (xa)a∈Γξ,1.D ⊂ B
‖·‖
X which is normally weakly null in (X, ‖ · ‖). Seeking a

contradiction, assume that

inf
a∈MAX(Γξ,1.D)

∣

∣

∣y +
∑

b�a

Pξ,1(b)xb

∣

∣

∣ > 1.

Since G ⊂ B
|·|
X , it follows that for each a ∈ MAX(Γξ,1.D), y +

∑

b�a Pξ,1(b)xb /∈ G, which

means g
(

y +
∑

b�a Pξ,1(b)xb

)

� 1 + C. Therefore

inf
a∈MAX(Γξ,1.D)

g
(

y +
∑

b�a

Pξ,1(b)xb

)

� 1 + C.

Since y ∈ G, g(y) < 1 + C. Fix g(y) < φ < 1 + C. The remainder of the proof is similar

to Theorem 5.1(iv) ⇒ (i). For each a ∈ MAX(Γξ,1.D), we fix a collection (xa
b )b∈Γξ,∞.D

and then use these to extend the collection (xa)a∈Γξ,∞.D. Moreover, this tree is constructed

from the collections (xa
b )b∈Γξ,∞.D such that for any α ∈ [Γξ,∞].D, if a < α is such that

a ∈ MAX(Λξ,∞,1.D) = MAX(Γξ,1.D),

sup
m

∥

∥

∥y +
m

∑

n=1

∑

b∈Λn(α)

Pξ,∞(b)xb

∥

∥

∥ � sup
m

∥

∥

∥y +
∑

b�a

Pξ,1(b)xb +
m

∑

n=1

∑

b∈Λn(β)

Pξ,∞(b)xa
b

∥

∥

∥ > φ,

where α = a � (ωξ+β). The existence of such a collection contradicts the fact that g(y) < φ,

according to Lemma 2.3. This shows that for any y ∈ G and any collection (xa)a∈Γξ,1.D ⊂ BX

which is normally weakly null in (X, ‖ · ‖),

inf
a∈MAX(Γξ,1.D)

∣

∣

∣y +
∑

b�a

Pξ,1(b)xb

∣

∣

∣ � 1.

Therefore (X, | · |) is ξ-AUF by Lemma 4.6.

�

Remark 5.3. In [10], Godefroy, Kalton, and Lancien showed that AUF-renormability is a

Lipschitz invariant. The notion of ξ-AUF-renormability was developed to be a candidate for

higher ordinal versions of their theorem. However, there remain obstructions to the proof of

the analogous theorems, namely the need for a strengthening of the Gorelik principle which

can be applied multiple times during games of the type studied in this work, and which

approximately preserves the values of functionals chosen during the game.
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6. Games on C(K) spaces

In this section, we discuss projective tensor products. We recall that for Banach spaces

X, Y , the projective tensor norm defined on X ⊗ Y is defined by

∥

∥

∥

n
∑

i=1

xi ⊗ yi

∥

∥

∥ = inf
{

m
∑

i=1

‖ui‖‖vi‖ :
n

∑

i=1

xi ⊗ yi =
m

∑

i=1

ui ⊗ vi

}

.

The completion of X ⊗ Y with respect to this norm is denoted by X ̂⊗πY . We state now

the two main properties of the projective tensor product which we will need in the sequel.

First, BX⊗̂πY
is the closed, convex hull of {x⊗ y : x ∈ BX , y ∈ BY }. The second fact is that

if S : X → X and T : Y → Y are operators, then there is a bounded, linear operator from

S ⊗ T : X ̂⊗πY → X ̂⊗πY such that (S ⊗ T )(x⊗ y) = Sx⊗ Ty for all x ∈ X and y ∈ Y , and

‖S ⊗ T‖ = ‖S‖‖T‖.
For a compact, Hausdorff space K, and a subset M of K, we let iso(M) denote the set of

relatively isolated points in M . For M ⊂ K, we define the Cantor-Bendixson derivative of

M by M ′ = M \ iso(M). We note that M ′ is closed in the relative topology of M . Therefore

if M is closed in K, so is M ′. We define the transfinite Cantor-Bendixson derivatives by

M0 = M,

M ξ+1 = (M ξ)′,

and if ξ is a limit ordinal,

M ξ =
⋂

ζ<ξ

M ζ .

We say that K is scattered if any non-empty subset of K has an isolated point. It is obvious

this is equivalent to the condition that there exists an ordinal ξ such that Kξ = ∅. If

K is scattered, we let CB(K) denote the minimum ordinal ν such that Kν = ∅. The

value CB(K) is the Cantor-Bendixson index of K. If K is compact, then by our preceding

remarks, Kξ is either compact or empty for each ordinal ξ. From this it follows that for

a scattered, compact, Hausdorff topological space, CB(K) must be a successor ordinal.

Moreover, CB(K) = 1 if and only if K is finite.

Example 6.1. For any ordinal ξ, it is easy to see that if ordinal intervals are endowed with

their order topology, for ζ � ξ,

[0, ωxi]ζ = {ωξ} ∪ {ωε1 + . . .+ ωεn : ε1 � . . . � εn � ζ}.

From this it follows that [0, ωξ]ξ = {ωξ} and CB([0, ωξ]) = ξ + 1.

Let us isolate the following standard facts about the Cantor-Bendixson index.

Proposition 6.1. Let K be compact, Hausdorff space and let ξ, ζ be ordinals.

(i) It holds that (Kξ)ζ = Kξ+ζ.

(ii) If CB(K) = ξ + ζ, then CB(Kξ) = ζ.
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(iii) If n is a positive integer and F ⊂ Kωξ(n−1) \Kωξn, then CB(F ) � ωξ.

(iv) For T0, . . . , Tm ⊂ K,
(

∪m
j=0Tj

)ξ

= ∪m
j=0T

ξ
m.

(v) For T0, . . . , Tm ⊂ K, CB
(

∪m
j=0Tj

)

= max0�j�mCB(Tj).

Proof. Item (i) follows from an easy induction argument and item (ii) follows from (i). For

(iii), F ωξ ⊂ F ∩ (Kωξ(n−1))ω
ξ
= F ∩Kωξn = ∅.

Item (iv) is an easy induction, and item (v) follows from (iv).

�

We next recall the following formulation of Grothendieck’s inequality from [16, Theorem

5.5, page 55]. In what follows, kG is Grothendieck’s constant and a scalar-valued, bounded,

bilinear form ϕ : C(K)× C(L) → K is endowed with the norm

‖ϕ‖ = sup{|ϕ(f, g)| : f ∈ BC(K), g ∈ BC(L).

Theorem 6.2. Let K,L be compact, Hausdorff sets. For any bounded, bilinear form ϕ :

C(K) × C(L) → K, there exist Borel probability measures μ, ν on K,L, respectively, such

that for any f ∈ C(K) and g ∈ C(L),

|ϕ(f, g)| � kG‖ϕ‖
(

∫

K

|f |2dμ
)1/2(

∫

L

|g|2dν
)1/2

.

For the following proof, we recall the definition of the q-weakly summing norms. For a

Banach space X, a sequence (xn)
∞
n=1 ⊂ X, and 1 � q < ∞, we define

‖(xn)
∞
n=1‖wq = sup{‖(x∗(xn))

∞
n=1‖
q : x∗ ∈ BX∗ .

For convenience, we will assume the value ‖(xn)
∞
n=1‖wq to be defined for any sequence in X,

even if the value is finite. For (xn)
∞
n=1 ⊂ X such that ‖(xn)

∞
n=1‖wq < ∞, we refer to the

value ‖(xn)
∞
n=1‖wq as the q-weakly summing norm of (xn)

∞
n=1, and we say (xn)

∞
n=1 is q-weakly

summing.

Corollary 6.3. Let K be a compact, Hausdorff space. Assume C > 0, 0 = r0 < r1 < . . .

are integers, (wj)
∞
j=1 is a sequence of positive numbers such that 1 =

∑rn
j=rn−1+1wj = 1 for

each n ∈ N, and (Fj)
∞
j=1 ⊂ BC(K) is a sequence of sets such that for any m ∈ N and any

(fj)
∞
j=1 ∈

∏∞
j=1 Fj,

∥

∥

∥

∑m
n=1

∑rn
j=rn−1+1 wj|fj|

∥

∥

∥ � C1/2.

(i) For any compact, Hausdorff space L, any (fj)
∞
j=1 ∈

∏∞
j=1 Fj, and any (gj)

∞
j=1 ⊂ BC(L),

∥

∥

∥

(

∑rn
j=rn−1+1 wjfj ⊗ gj

)∞

n=1

∥

∥

∥

w

2
� kGC.

(ii) If (zj)
∞
j=1 ⊂ C(K)̂⊗πC(L) is such that for each j ∈ N, zj ∈ co{f ⊗ g : f ∈ Fj, g ∈

BC(L)}, then
∥

∥

∥

(

∑rn
j=rn−1+1 wjzj

)∞

n=1

∥

∥

∥

w

2
� kGC

1/2.
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Proof. (i) Fix a compact, Hausdorff space L, (fj)
∞
j=1 ∈

∏∞
j=1 Fj, and (gj)

∞
j=1 ∈ BC(L). To

finish (i), it is sufficient to show that for anym ∈ N and scalars (cn)
m
n=1 such that

∑m
n=1 |cn|2 =

1, it holds that
∥

∥

∥

∑m
n=1 cn

∑rn
j=rn−1+1 wjfj ⊗ gj

∥

∥

∥ � kGC. To that end, fix m ∈ N and scalars

(cn)
m
n=1 such that

∑m
n=1 |cn|2 = 1. Recall that (C(K)̂⊗πC(L))∗ is the space of all bounded,

bilinear forms on C(K)×C(L). Fix a bounded, bilinear form ϕ on C(K)×C(L) such that

‖ϕ‖ = 1. By Theorem 6.2, there exist Borel probability measures μ, ν on K,L, respectively,

such that for any f ∈ C(K) and g ∈ B(L), |ϕ(f, g)| � kG

(

∫

K
|f |2dμ

)1/2(∫

L
|g|2dν

)1/2

. We

note that since 1 =
∑rn

j=rn−1+1 wj for each n ∈ N, it follows from Jensen’s inequality that for

each n ∈ N together with the fact that ‖fj‖ � 1 for all j ∈ N that

rn
∑

j=rn−1+1

wj

(

∫

K

|fj|2dμ
)1/2

�
(

rn
∑

j=rn−1+1

wj

∫

K

|fj|2dμ
)1/2

�
(

rn
∑

j=rn−1+1

wj

∫

K

|fj|dμ
)1/2

.

Therefore

∣

∣

∣

〈

ϕ,

m
∑

n=1

cn

rn
∑

j=rn−1+1

wjfj ⊗ gj

〉∣

∣

∣ =
∣

∣

∣

n
∑

n=1

cn

rn
∑

j=rn−1+1

wjϕ(fj, gj)
∣

∣

∣

�
m

∑

n=1

|cn|
rn

∑

j=rn−1+1

wj|ϕ(fj, gj)|

� kG

m
∑

n=1

|cn|
rn

∑

j=rn−1+1

wj

(

∫

K

|fj|2dμ
)1/2(

∫

L

|gj|2dν
)1/2

� kG

m
∑

n=1

|cn|
rn

∑

j=rn−1+1

wj

(

∫

K

|fj|2dμ
)1/2

‖gj‖

� kG

m
∑

n=1

|cn|
rn

∑

j=rn−1+1

wj

(

∫

K

|fj|2dμ
)1/2

� kG

m
∑

n=1

|cn|
(

rn
∑

j=rn−1+1

wj

∫

K

|fj|dμ
)1/2

= kG

m
∑

n=1

|cn|
(

∫

K

rn
∑

j=rn−1+1

wj|fj|dμ
)1/2

� kG

(
m

∑

n=1

|cn|2
)1/2(

m
∑

n=1

∫

K

rn
∑

j=rn−1+1

wj|fj|dμ
)1/2

= kG

(

∫

K

m
∑

n=1

rn
∑

j=rj−1+1

wj|fj|dμ
)1/2

� kG

∥

∥

∥

m
∑

n=1

rn
∑

j=rn−1+1

wj|fj|
∥

∥

∥

1/2

� kGC
1/2.
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(ii) Let (zj)
∞
j=1 be as in the statement of (ii). Fix m ∈ N and (cn)

m
n=1 be such that

∑m
n=1 |cn| = 1. Note that since zj ∈ co{f ⊗ g : f ∈ Fj, g ∈ BC(L)}, it follows that

m
∑

n=1

cn

rn
∑

j=rn−1+1

wjzj ∈ co
{

m
∑

n=1

cn

rn
∑

j=rn−1+1

cnwjfj ⊗ gj : (fj)
∞
j=1 ∈

∞
∏

j=1

Fj, gj ∈ BC(L)

}

⊂ kC1/2BC(K)⊗̂πC(L),

where the last containment follows from (i). Since m and (cn)
m
n=1 were arbitrary, we are

done.

�

The preceding result involves sequences in C(K) sequence which are 1-absolutely summing.

Our next goal is to show that we may always find such collections. In what follows, for a

compact, Hausdorff space K and a finite, non-empty subset N of K, we let Ann(N) = {f ∈
C(K) : f |N ≡ 0}. We let AK denote the set of all finite, non-empty subsets of K. Given a

tree T and a collection (Fb)b∈T.AK
of subsets of C(K), we say (Fb)b∈T.AK

is normally pointwise

null provided that for any a = (ζi, Ni)
n
i=1 ∈ T.AK , Fa ⊂ Ann(Nn) (that is, if f |Nn ≡ 0 for

every f ∈ Fa).

We next define the Grasberg norm for a scattered, compact, Hausdorff space. If K is

compact, Hausdorff, scattered, then there exist a unique ordinal ξ and positive integer k

such that Kωξ(k−1) �= ∅ and Kωξk = ∅. We then define the equivalent norm [·] on C(K) by

[f ] = max
1�j�k

2j‖f |
Kωξ(j−1)‖.

Of course, for any f ∈ C(K),

‖f‖ � [f ] � 2k−1‖f‖.
The Grasberg norm is a ξ-AUF norm on C(K), which will be shown as a consequence of the

following result. In what follows, when C(K) is written without a specific reference to the

norm, it will be understood that the norm in question is the usual norm. When we wish to

refer to the Grasberg norm, we will make it explicit.

For the following result, we also establish the following notation. For h ∈ C(K) and c > 0,

we let

Mj(h, c) =
{

κ ∈ Kωξ(j−1) : 2j|h(κ)| � c
}

and

M(h, c) =
k−1
⋃

j=0

Mj(h, c).

For a finite subset H of C(K), we let Mj(H, c) = ∪h∈HMj(h, c) and M(H, c) = ∪h∈HM(h, c).

Of course, Mj(h, c), Mj(H, c), M(h, c), M(H, c) are compact for any h ∈ C(K), H ⊂ K

finite, and any c > 0.

Lemma 6.4. Let K be scattered, compact, Hausdorff and let ξ be an ordinal. Assume that

Kωξ(k−1) �= ∅ and Kωξk = ∅. In what follows, [·] denotes the Grasberg norm on C(K).
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(i) If h ∈ C(K), then for any c > [h], CB(M(h, c)) � ωξ.

(ii) If H is a finite subset of C(K) and c > maxh∈H [h], then CB(M(H, c)) � ωξ.

(iii) If M ⊂ K is compact and CB(M) � ωξ, then for any normally pointwise null collection

(Fb)b∈Γξ,1.AK
⊂ fC(K) and any ε > 0, there exists a ∈ MAX(Γξ,1.AK) such that for all

(fb)b�a ∈
∏

b�a Fb,
∥

∥

∥

(
∑

b�a

Pξ,1(b)fb

)∣

∣

∣

M

∥

∥

∥ � ε.

(iv) Assume 1 � C < C ′, H,F are finite subsets of C(K) such that for each h ∈ H and

f ∈ F , [h] � C, [f ] � 1/2, and ‖f |M(H,C′)‖ � C′−C
2k

. Then for any (h, f) ∈ H × F ,

[h+ f ] � C ′.

Proof. (i) Let h, c be as in (i). Since for any h ∈ C(K) and c > 0,

CB(M(h, c)) = CB
(
k−1
⋃

j=0

Mj(h, c)
)

= max
0�j<k

CB(Mj(h, c)),

in order to prove (i), it is sufficient to show that CB(Mj(h, c)) � ωξ for each 0 � j < k.

First consider the case ξ = 0. In this case, CB(Mj(h, c)) � ω0 = 1 is equivalent to

the condition that Mj(h, c) is finite. If Mj(h, c) were infinite, then there would exist some

accumulation point κ of Mj(h, c) ⊂ Kω0(j−1) = Kj−1. Since an accumulation point in

Kj−1 cannot be isolated in Kj−1, it follows that κ ∈ Kj. If j = k, this is the necessary

contradiction, since Kk = ∅, so assume j < k. Since 2j|h(κ0)| � c for all κ0 ∈ Mj(h, c),

since κ is an accumulation point of Mj(h, c), and since h is continuous, 2j|h(κ)| � c. Then

c > [h] � 2j|h(κ)| � c,

which is the necessary contradiction in the j < k case. This concludes the ξ = 0 case.

Now consider the ξ > 0 case. In order to show that CB(Mj(h, c)) � ωξ, it is sufficient to

show that there exists ζ < ωξ such that Mj(h, c) ∩ Kωξ(j−1)+ζ = ∅. Indeed, if Mj(h, c) ∩
Kωξ(j−1)+ζ = ∅, then Mj(h, c) ⊂ Kωξ(j−1) \Kωξ(j−1)+ζ and

CB(Mj(h, c)) � CB(Kωξ(j−1) \Kωξ(j−1)+ζ) = ζ < ωξ.

In order to obtain a contradiction, assume that for every ζ < ωξ, Mj(h, c)∩Kωξ(j−1)+ζ �= ∅.

Then since (Mj(h, c) ∩ Kωξ(j−1)+ζ)ζ<ωξ is a decreasing chain of compact, non-empty sets,

which therefore have the finite intersection property, it follows that

Mj(h, c) ∩Kωξj = Mj(h, c) ∩
⋂

ζ<ωξ

Kωξ(j−1)+ζ =
⋂

ζ<ωξ

(Mj(h, c) ∩Kωξ(j−1)+ζ) �= ∅.

As in the previous paragraph, if j = k, we reach a contradiction by noting that Kωξj =

Kωξk = ∅, and if j < k we reach a contradiction by noting that if κ ∈ Mj(h, c)∩Kωξj, then

c > [h] � 2j|h(κ)| � c.
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(ii) By (i), CB(M(h, c)) � ωξ for each h ∈ H. Since H is finite,

CB(M(H, c)) = CB
(

⋃

h∈H

M(h, c)
)

= max
h∈H

CB(M(h, c)) � ωξ.

(iii) We also work by contradiction. If ξ = 0, then M is finite. Therefore if (Fb)b∈Γξ,1.AK
=

(Fb)b∈Γ0,1.AK
is normally pointwise null, we can choose a = (0,M) ∈ MAX(Γ0,1.AK) and

note that for any fa ∈ Fa, by the definition of normal pointwise nullity, fa|M ≡ 0. Of course

this implies that
∥

∥

∥

(
∑

b�a

fb

)∣

∣

∣

M

∥

∥

∥ = ‖fa|M‖ = 0.

Now consider the ξ > 0 case. Assume that (Fb)b∈Γξ,1.AK
⊂ fC(K) is normally pointwise null

and for each a ∈ MAX(Γξ,1.AK), there exist κa ∈ M and (fa
b )b�a ∈

∏

b�a Fb such that

ε �
∑

b�a

Pξ,1(b)|fa
b |(κa).

We argue as in Lemma 4.2.

Let

Π = {(b, a) ∈ Γξ,1.AK × Γξ,1.AK : b � a ∈ MAX(Γξ,1.AK)}
Define ϕ : Π → R by

ϕ(b, a) = |fa
b |(κa).

Note that ϕ maps into [0, 1], since Fb ⊂ BC(K) for all b ∈ Γξ,1.AK .

By hypothesis, for each a ∈ MAX(Γξ,1.AK),
∑

b�a

Pξ,1(b)ϕ(b, a) =
∑

b�a

Pξ,1(b)|fa
b |(κa) � ε.

By [3, Theorem 4.2], there exist functions d : Γξ,1.AK → Γξ,1.AK and e : MAX(Γξ,1.AK) →
MAX(Γξ,1.AK) such that

(i) for each b, a ∈ Γξ,1.AK such that b < a, it follows that d(b) < d(a),

(ii) for each a ∈ MAX(Γξ,1.AK), d(a) � e(a),

(iii) if b = (ζi, Ni)
m
i=1 and d(b) = (νi, Pi)

n
i=1, then Pn ⊂ Nm,

(iv) for each (b, a) ∈ Π, either f(d(b), e(a)) � ε− ε/2 = ε/2 or
∑

b�e(a)

Pξ,1(b)f(b, e(a)) < ε.

Above we showed that the inequality
∑

b�e(a) Pξ,1(b)ϕ(b, e(a)) < ε in (iv) is not possible, so

|f e(a)
d(b) |(κe(a)) = ϕ(d(b), e(a)) � ε/2 for all (b, a) ∈ Π.

We next claim that for any η < ωξ and a ∈ Γη
ξ,1.AK , there exist �a ∈ Mη and (hb)b�a ∈

∏

b�a Fd(b) such that for all b � a, |hb|(�a) � ε/2. In particular, this will imply that for each

η < ωξ, Mη �= ∅. By compactness of M and the finite intersection property, this will imply

that Mωξ
=

⋂

η<ωξ Mη �= ∅, contradicting the fact that CB(M) � ωξ. We prove the claim

from the first sentence of the paragraph by induction on η.
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Base case, η = 0. In this case, for a ∈ Γ0
ξ,1.AK = Γξ,1.AK and b � a, let hb = f

e(a)
d(b) ∈ Fd(b)

and �a = κe(a) ∈ M = M0. It follows from the properties of d and e that |hb|(�a) =

|f e(a)
d(b) |(κe(a)) � ε/2.

Limit case: Assume η < ωξ is a limit ordinal and the result holds for every υ < η. Fix

a ∈ Γη
ξ,1.AK =

⋂

υ<η Γ
υ
ξ,1.AK . By the inductive hypothesis, for each υ < η, there exists

(�υ, (h
υ
b )b�a) ∈ M ×

∏

b�a Fd(b) such that for each υ < η, �υ ∈ Mυ and for each b � a,

|hυ
b |(�υ) � ε/2. Since M ×

∏

b�a Fd(b) is compact,

⋂

υ<η

{(�γ , (h
γ
b )b�a) : γ � υ} �= ∅.

Then if (�, (hb)b�a) ∈
⋂

υ<η {(�γ , (h
γ
b )b�a) : γ � υ}, it holds that

� ∈
⋂

υ<η

Mυ = Mη,

(hb)b�a ∈
∏

b�a Fd(b), and by continuity of the map (τ, (gb)b�a) �→ (|gb|(τ))b�a on M ×
∏

b�a Fd(b), it follows that |hb|(�) � ε/2 for each b � a.

Successor case: Assume that the claim holds for some η < ωξ. Fix a = t.f ∈ Γη+1
ξ,1 .AK .

Note that since t ∈ Γη+1
ξ,1 , there exists ζ such that t � (ζ) ∈ Γη

ξ,1. Then for each finite,

non-empty subset N of K, a � (ζ,N) ∈ Γη
ξ,1.AK . Let D denote the set of finite, non-empty

subsets of K and direct D by inclusion. By the inductive hypothesis, for each N ∈ D,

there exist �N ∈ Mη, (hN
b )b�a ∈

∏

b�a Fd(b), and gN ∈ Fd(a�(ζ,N)) such that for each b � a,

|hN
b |(�N) � ε/2, and such that |gN |(�N) � ε/2. By compactness of Mη×

∏

b�a Fd(b), we can

select (�, (hb)b�a) ∈ Mη ×
∏

b�a Fd(b) which is the limit of a subnet of ((�N , (h
N
b )b�a))N∈D.

As in the previous paragraph, we deduce that |hb|(�) � ε/2 for each b � a. We claim that

� ∈ Mη+1. Since � is the limit of a net in Mη, it follows that � ∈ Mη. To show that

η ∈ Mη+1, it is sufficient to show that � is not isolated in Mη. To that end, let U be any

open set in K containing �. Since (�, (hb)b�a) is the limit of a subset of ((�N , (h
N
b )b�a))N∈D,

there exists N ∈ D such that {�} ⊂ N and �N ∈ U . Let d(a � (ζ,N)) = (ζi, Ei)
m
i=1 and

note that by property (iii) above, N ⊂ Em. Also, by the definition of normally pointwise

null, it follows that for each g ∈ Fd(a�(ζ,N)) and each τ ∈ Em, h(τ) = 0. Since � ∈ N ⊂ Em,

it follows that for each g ∈ Fd(a�(ζ,N)), g(�) = 0. Recall that gN ∈ Fd(a�(ζ,N)) has the

property that |gN |(�N) � ε/2. Since gN ∈ Fd(a�(ζ,N), gN(�) = 0, from which it follows that

�N �= �. Therefore � �= �N ∈ U ∩Mη. Since U was an arbitrary neighborhood of �, it

follows that � is not isolated in Mη, and � ∈ Mη+1. This completes the proof of (iii).

(iv) Fix h ∈ H and f ∈ F . Fix 0 � j < k and κ ∈ Kωξ(j−1). If κ ∈ Mj(H,C ′) ⊂ M(H,C ′),

then |f(κ)| � C′−C
2k

and

2j−1|h(κ) + f(κ)| � 2j−1|h(κ)|+ 2j−1

2k
(C ′ − C) � [h] + (C ′ − C) � C + C ′ − C = C ′.
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If κ ∈ Kωξ(j−1) \Mj(H,C ′), then 2j−1|h(κ)| � C ′/2, so

2j−1|h(κ) + f(κ)| � 2j−1|h(κ)|+ 2j−1|f(κ)| � C ′/2 + [f ] � C ′/2 + 1/2 � C ′.

This shows that 2j−1‖(h+ f)|
Kωξ(j−1) � C ′. Since this holds for 0 � j < k, [h+ f ] � C ′.

�

We now define a game closely related to the games associated with ξ-AUF-renormability.

For a compact, Hausdorff space Ω, C > 0, and an ordinal ξ, Player S chooses ζ1 such that

(ζ1) ∈ Γξ,∞ and a finite, non-empty subset N1 of Ω (equivalently, Player S chooses (ζ1, Z1) ∈
Γξ,∞AΩ, where Z1 = Ann(N1)), and Player V chooses a finite subset F1 of Ann(N1). Player

S then chooses ζ2 such that (ζi)
2
i=1 ∈ Γξ,∞ and a finite, non-empty subset N2 of Ω, and

Player V chooses a finite, non-empty subset F2 of Ann(N2). Play continues in this way

until α = (ζa,Ann(Na))a<α ∈ [Γξ,∞].AΩ and (Fa)a<α ∈ fC(K) have been chosen so that

Fa ⊂ Ann(Na) for all a < α. Player S wins if for all (fa)a<α and m ∈ N,

sup
m

∥

∥

∥

m
∑

n=1

sup
a∈Λn(α)

Pξ,∞(a)|fa|
∥

∥

∥ � C.

More formally, if Ω and ξ are understood, we let IC denote the space of all α = (ζa, Fa)a<α ∈
[Γξ,∞].fC(Ω) such that for all m ∈ N and (fa)a<α ∈

∏

a<α Fa,

sup
m

∥

∥

∥

m
∑

n=1

∑

a∈Λn(α)

Pξ,∞(a)|fa|
∥

∥

∥ � C.

Then the game above is the game (IC , fC(Ω),Γξ,∞), where D = AΩ.

Lemma 6.5. Assume ξ is an ordinal, r is a positive integer, and Ω is a scattered, compact,

Hausdorff space such that Ωωξ(r−1) �= ∅ and Ωωξr = ∅. Then for any C > 2r, Player S has

a winning strategy in the (IC , fC(Ω),Γξ,∞) game.

Proof. In the proof, let [·] denote the Grasberg norm on Ω. Note that

‖f‖ � [f ] � 2r−1[f ]

for all f ∈ C(Ω). Therefore for f ∈ BC(Ω), [|f |/2r] � 1/2.

Fix C > 2r. It is easy to see that IC is closed, so the game is determined. Assume

Player S does not have a winning strategy in the (IC , fC(Ω),Γξ,∞) game. Since the game is

determined, Player V has a winning strategy. By Proposition 2.3, there exists a normally

pointwise null collection (Fa)a∈Γξ,∞.AΩ
such that for any α ∈ [Γξ,∞].AΩ,

sup
m

max
{∥

∥

∥

m
∑

n=1

∑

a∈Λn(α)

Pξ,∞(a)|fa|
∥

∥

∥ : (fa)a<α ∈
∏

a<α

Fa

}

> C.

1 = C ′
0 < C ′

1 < . . . with supm C ′
m = C/2r. We will recursively choose a1 < a2 < . . . with

an ∈ MAX(Λξ,∞,n.AΩ).
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First we perform the base step. Fix a1 ∈ MAX(Λξ,∞,1.AΩ) arbitrary. Let

H1 =
{

∑

a�a1

Pξ,∞|fa|/2r : (fa)a�a1 ∈
∏

a�a1

Fa

}

and note that [h] � 1/2 � 1 = C ′
0 for all h ∈ H1.

Now assume that a1 < . . . < am have been chosen. Assume also that with

Hm =
{

m
∑

n=1

∑

a∈Λn(am)

Pξ,∞(a)|fa|/2r : (fa)a�am ∈
∏

a�am

Fa

}

,

it holds that [h] � C ′
m−1 for all h ∈ Hm. By lemma 6.4(ii), CB(M(Hm, C

′
m)) � ωξ. Using

the canonical identification of Γξ,1.AΩ with {a ∈ Λξ,∞,m+1.AΩ : am < a} together with

Lemma 6.4(iii), there exists am+1 ∈ MAX(Λξ,∞,m+1.AΩ) such that am < am+1 and for any

(fa)a∈Λm+1(am+1) ∈
∏

a∈Λm+1(am+1)
Fa,

∥

∥

∥

(
∑

a∈Λm+1(am+1)

Pξ,∞(a)|fa|
)

|M(Hm,C′
m)

∥

∥

∥ � C ′
m − C ′

m−1.

Define

F =
{

∑

a∈Λm+1(am+1)

Pξ,∞(a)|fa|/2r : (fa)a∈Λm+1(am+1) ∈
∏

a∈Λm+1(am+1)

Fa

}

and

Hm+1 =
{
m+1
∑

n=1

∑

a∈Λn(am)

Pξ,∞(a)|fa|/2r : (fa)a�am+1 ∈
∏

a�am+1

Fa

}

= {h+ f : h ∈ Hm, f ∈ F}.

By the assumptions on Hm, [h] � C ′
m−1 for each h ∈ Hm. By the first line of the proof,

[f ] � 1/2 for each f ∈ F . By our choice of am+1, ‖f |M(Hm,C′
m)‖ � C′

m−C′
m−1

2r
for each f ∈ F .

Then by Lemma 6.4(iv), it follows that

max
g∈Hm+1

= max{[h+ f ] : (h, f) ∈ Hm × F} � C ′
m.

This completes the recursive process.

If α ∈ [Γξ,∞].AΩ is the sequence which has a1, a2, . . . as initial segments, it follows from

the recursive construction that

sup
m

max
{∥

∥

∥

m
∑

n=1

∑

a∈Λn(α)

Pξ,∞(a)|fa|
∥

∥

∥ : (fa)a<α ∈
∏

a<α

Fa

}

= 2r sup
m

max
{∥

∥

∥

m
∑

n=1

∑

a∈Λn(α)

Pξ,∞(a)|fa|/2r
∥

∥

∥ : (fa)a<α ∈
∏

a<α

Fa

}

� 2r sup
m

max
{[

m
∑

n=1

∑

a∈Λn(α)

Pξ,∞(a)|fa|/2r
]

: (fa)a<α ∈
∏

a<α

Fa

}

� 2r sup
m

C ′
m−1 = C.

This contradicts the properties of (Fa)a∈Γξ,∞.AΩ
and finishes the proof.
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�

We next provide the last technical piece prior to our main results. In what follows, for

a compact, Hausdorff space K and � ∈ K, δ� ∈ C(K)∗ denotes the Dirac measure on K

given by 〈δ�, f〉 = f(�).

Lemma 6.6. If K,L are compact, Hausdorff spaces, F ⊂ K, and G ⊂ L, then for any

u ∈ BC(K)⊗̂πC(L)∩
⋂

(κ,λ)∈F×G ker(δκ⊗ δλ) and any ε > 0, there exist finite sets A,C ⊂ BC(K)

and finite sets B,E ⊂ BC(L) and x, y ∈ BC(K)⊗̂πC(L) such that

(i) A ⊂ Ann(F ) and E ⊂ Ann(G),

(ii) x ∈ co{f ⊗ g : f ∈ A, g ∈ B},
(iii) y ∈ co{f ⊗ g : f ∈ C, g ∈ E},
(iv) ‖u− 4(x+ y)‖ < ε.

Proof. Since ‖u‖ � 1, there exist m ∈ N, positive numbers (wi)
m
i=1 such that

∑m
i=1 wi = 1,

and functions (fi)
m
i=1 ⊂ BC(K), (gi)

m
i=1 ⊂ BC(L) such that ‖u−

∑m
i=1 wifi ⊗ gi‖ < ε/2.

Let (Uκ)κ∈F be pairwise disoint open subsets of K such that for each κ ∈ F , κ ∈ Uκ. Let

(Vλ)λ∈G be pairwise disjoint open subsets of L such that for each λ ∈ G, λ ∈ Vλ. For each

κ ∈ F , we can fix a continuous function eκ : K → [0, 1] such that eκ(κ) = 1 and eκ|K\Uκ ≡ 0.

Similarly, for each λ ∈ G, we ca fix a continuous function hλ : L → [0, 1] such that hλ(λ) = 1

and hλ|L\Vλ
≡ 0.

Define P1, Q1 : C(K) → C(K) by P1f =
∑

κ∈F f(κ)eκ and Q1f = f − P1f . Note that

‖P1‖ = 1, so that ‖Q1‖ � 2. Note also that Q1 is a projection whose range is Ann(F ).

Next, define P2, Q2 : C(L) → C(L) by P2g =
∑

λ∈G g(λ)hλ and Q2g = g−P2g. Note that

‖P2‖ = 1, so that ‖Q2‖ � 2. Note also that Q2 is a projection whose range is Ann(G).

Define R, S, T : C(K)̂⊗πC(L) → C(K)̂⊗πC(L) by letting R = P1 ⊗P2, S = Q1 ⊗P2, and

T = I ⊗ Q2, where I = IC(K). Note also that ‖R‖ = ‖P1‖‖P2‖ = 1, ‖S‖ = ‖Q1‖‖P2‖ � 2,

and ‖T‖ = ‖I‖‖Q2‖ � 2. Note also that for any v ∈ C(K)̂⊗πC(L), Rv + Sv + Tv = v.

Indeed, if J denotes the identity on C(L),

I ⊗ J = I ⊗ (P2 +Q2) = I ⊗ P2 + I ⊗Q2 = (P1 +Q1)⊗ P2 + T = R + S + T.

Note that for an elementary tensor f ⊗ g,

Rf ⊗ g =
(
∑

κ∈F

f(κ)eκ

)

⊗
(
∑

λ∈G

g(λ)hλ

)

=
∑

(κ,λ)∈F×G

〈δκ ⊗ δλ, f ⊗ g〉eκ ⊗ hλ.

From this we can see that Rv = 0 for any v ∈
⋂

(κ,λ)∈F×G ker(δκ ⊗ δλ).

Let u ∈ BC(K)⊗̂πC(L) ∩
⋂

(κ,λ)∈F×G ker(δκ ⊗ δλ) be as in the statement of the lemma. For

ε > 0, we can fix m ∈ N, positive numbers (wi)
m
i=1 such that 1 =

∑m
i=1 wi, and (fi)

m
i=1 ⊂

BC(K), (gi)
m
i=1 ⊂ BC(L) such that ‖u−

∑n
i=1 wifi ⊗ gi‖ < ε/2. Let v =

∑n
i=1 wifi ⊗ gi. Since

‖R‖ = 1 and Ru = 0, ‖Rv‖ � ‖Ru‖+ ‖R‖‖v − u‖ < ε/2. Let x = 1
2
Sv and y = 1

2
Tv. Then

‖u− 2(x+ y)‖ = ‖u− Sv − Tv‖ � ‖u− v‖+ ‖Rv‖ < ε/2 + ε/2 = ε.
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Let

A = {Q1fi/2 : 1 � i � n} ⊂ BC(K) ∩ Ann(F )

and

B = {P2gi : 1 � i � n} ⊂ BC(L)

and note that

x =
1

2
S

n
∑

i=1

wifi ⊗ gi =
n

∑

i=1

wi(Q1fi/2)⊗ P2gi ∈ co{f ⊗ g : f ∈ A, g ∈ B}.

Let

C = {fi : 1 � i � n} ⊂ BC(K)

and

E = {Q2gi/2 : 1 � i � n} ⊂ BC(L) ∩ Ann(G)

and note that

y =
1

2
T

n
∑

i=1

wifi ⊗ gi =
n

∑

i=1

wifi ⊗ (Q2gi/2) ∈ co{f ⊗ g : f ∈ C, g ∈ E}.

�

Theorem 6.7. Assume ξ is an ordinal and K,L are compact, Hausdorff spaces such that

ωξ � max{CB(K), CB(L)} < ωξ+1. Then C(K)̂⊗πC(L) is ξ-2-AUS-renormable.

Proof. Without loss of generality, we can assume CB(K) � CB(L). We can assume K,L

are disjoint. Fix k ∈ N such that Kωξ(k−1) �= ∅ and Kωξk = ∅. Fix c > kG2
k+2, where

kG denotes Grothendieck’s constant. We claim that Player S has a winning strategy in the

(E2
c , sC(K)⊗̂πC(L),Γξ,∞) game as defined in Theorem 5.1. We prove this by contradiction, which

means we assume Player V has a winning strategy in this game. Since we are playing the

game with singleton sets sC(K)⊗̂πC(L), this means we may assume there exist (ua)a∈Γξ,∞.D ⊂
BC(K)⊗̂πC(L) normally weakly null such that for every α = (ζa, ua)a<α ∈ [Γξ,∞].D, c <

‖
(∑

a∈Λn(α)
Pξ,∞(a)ua

)∞
n=1

‖w2 . Here, D = CD(C(K)̂⊗πC(L)), the set of finite codimensional

subspaces of C(K)̂⊗πC(L).

Let Ω = K⊕L be the topological disjoint sum of K and L. Note that CB(Ω) = CB(K) ∈
[ωξ(k − 1), ωξk). Fix 2k < c1 such that 4kGc1 < c. By Lemma 6.5, Player S has a winning

strategy in the (Ic1 , sC(Ω),Γξ,∞) game. Let χ be such a strategy. Fix (εn)
∞
n=1 such that

4kGc1 +
∑∞

n=1 εn < c.

In the proof, for f ∈ C(K), let f + 0 ∈ C(Ω) be the function such that (f + 0)|K ≡ f

and (f + 0)|L ≡ 0. Similarly, for g ∈ C(L), let 0 + g ∈ C(Ω) be given by (0 + g)|K ≡ 0 and

(0 + g)|L ≡ g. For a finite subset M of Ω, we will denote M = (M ∩K)⊕ (M ∩ L).

Let χ(∅) = (ζ1, F1 ⊕G1). By enlarging F1, G1 if necessary, we may assume these sets are

each non-empty. Let Z1 =
⋂

(κ,λ)∈F1×G1
ker(δκ ⊗ δλ) and b1 = (ζ, Z1) ∈ Γξ,1.D. Since ub1 ∈
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BZ1 , by Lemma 6.6, we can fix A1, C1 ⊂ BC(K) be such that A1 ⊂ Ann(F1), B1, E1 ⊂ BC(L)

be such that E1 ⊂ Ann(G1), and

x1 ∈ co{f ⊗ g : f ∈ A1, g ∈ B1},

y1 ∈ co{f ⊗ g : f ∈ C1, g ∈ E1},
and ‖ub1 − 2(x1 + y1)‖ < ε1. Let

N1 = {f + 0 : f ∈ A1} ∪ {0 + g : g ∈ E1},

which is a finite subset of BC(Ω) ∩ Ann(F1 ⊕G1).

Now assume that bn = (ζi, BZi
)ni=1 ∈ Γξ,∞.D has been chosen. Assume also that we have

sets A1, . . . , An, C1, . . . , Cn ⊂ BC(K), B1, . . . , Bn, E1, . . . , En ⊂ BC(L), F1⊕G1, . . . , Fn⊕Gn ⊂
Ω, x1, . . . , xn, y1, . . . , yn ∈ BC(K)⊗̂πC(L) such that for all 1 � i � n,

(i) Ai ⊂ Ann(Fi),

(ii) Ei ⊂ Ann(Gi),

(iii) xi ∈ co{f ⊗ g : f ∈ Ai, g ∈ Bi},
(iv) yi ∈ co{f ⊗ g : f ∈ Ci, g ∈ Ei}, and
(v) ‖ubi − 2(xi + yi)‖ < εi.

Let χ((ζi, Ni)
n
i=1 = (ζn+1, Fn+1⊕Gn+1). By enlarging Fn+1, Gn+1 if necessary, we can assume

these sets are non-empty. Let

Zn+1 =
⋂

(κ,λ)∈Fn+1×Gn+1

ker(δκ ⊗ δλ)

and let bn+1 = (ζi, BZi
)n+1
i=1 . By Lemma 6.6, we can find An+1, Cn+1 ⊂ BC(K) such that

An+1 ⊂ Ann(Fn+1), Bn+1, En+1 ⊂ BC(L) such that En+1 ⊂ Ann(Gn+1), xn+1 ∈ co{f ⊗ g :

f ∈ An+1, g ∈ Bn+1}, and yn+1 ∈ co{f ⊗g : f ∈ Cn+1, g ∈ En+1} such that ‖ubn+1 −2(xn+1+

yn+1)‖ < εn+1. Let

Nn+1 = {f + 0 : f ∈ An+1} ∪ {0 + g : g ∈ En+1},

which is a finite subset of Ann(Fn+1 ⊕Gn+1).

The end result of this process is a sequence b1 < b2 < . . . such that b−n+1 = bn for all n ∈ N.

Let α ∈ [Γξ,∞].D be the sequence such that α|n = bn for all n ∈ N. Let ∅ = a0 < a1 < . . . be

such that an < α and an ∈ MAX(Λξ,∞,n.D) for all n ∈ N. Let rn = |an| for n = 0, 1, 2, . . ..

Since χ is a winning strategy for Player S in the (Ic1 , sC(Ω),Γξ,∞) game, it follows that for

any (ha)a<α ∈
∏

a<α N|a|,

sup
m

∥

∥

∥

m
∑

n=1

∑

a∈Λn(α)

Pξ,∞(a)|ha|
∥

∥

∥

C(Ω)
� c1.

Therefore for any (fa)a<α ∈
∏

a<α A|a|, fa + 0 ∈ N|a| for all a < α, and

sup
m

∥

∥

∥

m
∑

n=1

∑

a∈Λn(α)

Pξ,∞(a)|fa|
∥

∥

∥

C(K)
= sup

m

∥

∥

∥

m
∑

n=1

∑

a∈Λn(α)

Pξ,∞(a)|fa + 0|
∥

∥

∥

C(Ω)
� c1.
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By Corollary 6.3(ii), it follows that
∥

∥

∥

(
∑

b∈Λn(α)

Pξ,∞(b)x|b|

)∞

n=1

∥

∥

∥

w

2
� kGc

1/2
1 � kGc1.

Similarly, using the properties of the sets (En)
∞
n=1,

∥

∥

∥

(
∑

b∈Λn(α)

Pξ,∞(b)y|b|

)∞

n=1

∥

∥

∥

w

2
� kGc

1/2
1 � kGc1.

Therefore
∥

∥

∥

(
∑

b∈Λn(α)

Pξ,∞(b)u|b|

)∞

n=1

∥

∥

∥

w

2
�

∑

b<α

‖u|b| − 2(x|b| + y|b|)‖

+ 2
∥

∥

∥

(
∑

b∈Λn(α)

Pξ,∞(b)x|b|

)∞

n=1

∥

∥

∥

w

2
+ 2

∥

∥

∥

(
∑

b∈Λn(α)

Pξ,∞(b)y|b|

)∞

n=1

∥

∥

∥

w

2

<
∞

∑

n=1

εn + 4 · kGc1 < c.

This contradicts the properties of (ub)b∈Γξ,∞.D, and this contradiction finishes the proof.

�

Here we recall the convention that if is a Banach space which fails to be Asplund, then

we write Sz(X) = ∞. In what follows, for Banach spaces X, Y , we agree to the conven-

tion that Sz(Y ) � Sz(X) is true if Sz(X) = ∞. We also agree to the convention that

max{Sz(X), Sz(Y )} = ∞ if either Sz(X) = ∞ or Sz(Y ) = ∞.

Corollary 6.8. Let K,L be compact, Hausdorff topological spaces. Then

Sz(C(K)̂⊗πC(L)) = max{Sz(C(K)), Sz(C(L))}.

Proof. Since C(K), C(L) are each isomorphic to subspaces of C(K)̂⊗πC(L),

Sz(C(K)̂⊗πC(L)) � max{Sz(C(K)), Sz(C(L))}.

If either K or L fails to be scattered, then max{Sz(C(K)), Sz(C(L))} = ∞, and

∞ = Sz(C(K)̂⊗πC(L)) = max{Sz(C(K)), Sz(C(L))}

holds. Therefore

Sz(C(K)̂⊗πC(L)) � max{Sz(C(K)), Sz(C(L))}

by the conventions established prior to the corollary.

Assume K,L are both scattered. If both K and L are finite, then so is C(K)̂⊗πC(L), and

1 = Sz(C(K)̂⊗πC(L)) = max{Sz(C(K)), Sz(C(L))}.
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Assume K,L are both scattered and at least one of K,L is infinite. Without loss of

generality, assume CB(L) � CB(K) ∈ (ωξ, ωξ+1). Then

max{Sz(C(K)), Sz(C(L))} = Sz(C(K)) = ωξ+1.

By Theorem 6.7, C(K)̂⊗πC(L) is ξ-2-AUS renormable, from which it follows that

Sz(C(K)̂⊗πC(L)) � ωξ+1 = Sz(C(K)).

�

Remark 6.9. We recall that the Schreier family S1 is given by

S1 = {∅} ∪ {E ⊂ N : ∅ �= E, |E| � minE}.

We endow the power set 2N of N with the Cantor topology, which is the topology induced

by identifying E with its indicator function 1E ∈ {0, 1}N and endowing {0, 1}N with the

product topology. It is known that S1 is a compact subset of 2N whose Cantor-Bendixson

index is ω + 1 and such that Sω
1 = {∅}. Therefore S1 is homeomorphic to ωω+, and C(S1)

is isometrically isomorphic to C(ωω+). The Schreier space X1 is the completion of c00 with

respect to the norm
∥

∥

∥

∞
∑

i=1

aiei

∥

∥

∥

X1

= sup
E∈S1

∣

∣

∣

∑

i∈E

ai

∣

∣

∣.

Of course, this space is isometrically embeddable into C(S1) via the map that takes x =
∑∞

i=1 aiei to the function fx given by fx(E) =
∑

i∈E ai. We note that the canonical basis

of X1 is unconditional and dominates the canonical dual basis in X∗
1 . From this it follows

that X1̂⊗πX1 contains an isomorphic copy of �1, and therefore X1̂⊗πX1 is non-Asplund.

Therefore by Corollary 6.8, Sz(C(ωω+)̂⊗πC(ωω+)) = ω2, C(ωω+) has a subspace X1 such

thatX1̂⊗πX1 is non-Asplund. SinceX1 has all of the same asymptotic smoothness properties

of C(ωω+), this is yet another example which illustrates the intricacies of the preservation

of asymptotic smoothness properties during the formation of projective tensor products.

7. Applications

In this section, for an ordinal α, we let α+ = [0, α].

Theorem 7.1. If K,L,M are countable, compact, Hausdorff spaces, then C(M) is isomor-

phic to a quotient of a subspace of C(K)̂⊗πC(L) if and only if C(M) embeds isomorphically

into either C(K) or C(L). In particular, C(ωω) �↪→ c0̂⊗πc0.

Proof. There exist countable ordinals α, β, γ such that C(K), C(L), C(M) are isomorphic

to C(ωωα
+), C(ωωβ

+), and C(ωωγ
+), respectively. Without loss of generality, assume that

α � β. Moreover, Sz(C(K)) = ωα+1, Sz(C(L)) = ωβ+1, and Sz(C(M)) = ωγ+1 [19]. By

Corollary 6.8 and our assumption that α � β,

Sz(C(K)̂⊗πSz(L)) = max{ωα+1, ωβ+1}.
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If γ > β, then Sz(C(M)) > Sz(C(K)̂⊗πC(L)), and C(M) does not isomorphically embed

into C(K), C(L), or C(K)̂⊗πC(L). Here we are using the fact that the Szlenk index is an

isomorphic invariant, and the Szlenk index of a Banach space cannot be less than the Szlenk

index of any quotient of any of its subspaces.

If γ � β, then ωωγ
+ is a clopen subset of ωωβ

+, and C(M) ≈ C(ωωγ
+) embeds isomor-

phically into C(ωωβ
) ≈ C(L), which embeds into C(K)̂⊗πC(L).

�

Remark 7.2. The preceding result does not extend to uncountable sets K,L,M . Indeed,

it is known that C(ω1 · 2+) does not embed into C(ω1+) [20]. However, by [2], Sz(ω1+) =

Sz(ω1 ·2+) = ωω1+1. Moreover, C(ω1 ·2+) embeds isomorphically into �2∞̂⊗πC(ω1+). There-

fore we have an example with K = {0, 1}, L = ω1+, and M = ω1 ·2+ in which C(M) embeds

into C(K)̂⊗πC(L) but not into C(K) or C(L).

However, in this example, ω1+ and ω1 · 2+ have the same Cantor-Bendixson index. For

general compact, Hausdorff K,L,M , we have the following.

Corollary 7.3. If K,L,M are compact, Hausdorff spaces such that

max{CB(K), CB(L)}ω < CB(M),

then C(M) is not isomorphic to any subspace of any quotient of C(K)̂⊗πC(L).

Proof. Assume max{CB(K), CB(L)}ω < CB(M). By our conventions on the Cantor-

Bendixson index, if K or L fails to be scattered, max{CB(K), CB(L)} = ∞. By our

conventions, max{CB(K), CB(L)}ω < CB(M) implies that K,L are scattered. There-

fore there exists a minimum ordinal ξ such that max{CB(K), CB(L)} < ωξ+1. This

means ωξ � max{CB(K), CB(L)}, and ωξ+1 < CB(M). Therefore Sz(C(M)) � ωξ+2 >

ωξ+1 = Sz(C(K)̂⊗πC(L)), and C(M) is no isomorphic to any subspace of any quotient of

C(K)̂⊗πC(L). �

We last show the sharpness of the exponent 2 in Theorem 6.7.

Theorem 7.4. Let K be an infinite, compact, Hausdorff, scattered topological space. Let

ξ be such that ωξ < CB(K) < ωξ+1. Then c0̂⊗πC(K) is not ξ-p-AUS-renormable for an

2 < p < ∞.

Proof. Let ξ be such that ωξ < CB(K) < ωξ+1. Then Sz(C(K)) = ωξ+1 > ωξ. This means

there exists ε > 0 such that, if D is a fixed weak neighborhood basis at 0 in X, there exist

ε > 0 and a normally weakly null collection (ga)a∈Γξ,1.D ⊂ BC(K) such that

inf
a∈MAX(Γξ,1.D)

∥

∥

∥

∑

b�a

Pξ,1(b)gb

∥

∥

∥ = ε > 0.

We note that ε can be taken to be 1, but this is not necessary for the proof.
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Fix n ∈ N. We next extend the collection from the previous paragraph to a normally

weakly null collection (ha)a∈Γξ,n.D ⊂ BC(K) by letting

h(ωξ(n−1)+a1)�(ωξ(n−2)+a2)�...�(ωξ(n−i)+ai) = gai .

That is, (ga)a∈Γξ,1.D is simply repeated on each level of the tree. Now by a standard pruning

argument, we may extract from the branches of this collection some new normally weakly

null collection (fa)a∈Γξ,n.D ⊂ BC(K) such that for each a ∈ MAX(Γξ,n.D), (fb)b�a is basic

with basis constant not more than 2. Moreover, by the property of (ga)a∈Γξ,1.D from previous

paragraph, for any a ∈ MAX(Γξ,n.D) and 1 � i � n,
∥

∥

∥

∑

λi−1(a)<b�λi(a)

Pξ,n(b)fb

∥

∥

∥ � ε.

Fix n ∈ N. Let 2n = {±1}n and for 1 � i � n, let εi : 2
n → R be given by εi(�1, . . . , �n) =

�i. Endow 2n with the uniform probability measure. Note that (εi)
n
i=1 is an orthonormal

system in L2(2
n), so by Jensen’s inequality, for any scalars (ai)

n
i=1,

∥

∥

∥

n
∑

i=1

aiεi

∥

∥

∥

L1(2n)
�

∥

∥

∥

n
∑

i=1

aiεi

∥

∥

∥

L2(2n)
=

(
n

∑

i=1

|ai|2
)1/2

.

Now define the weakly null collection (ua)a∈Γξ,n.D ⊂ BL∞(2n)⊗̂πC(K) by letting ua = εi ⊗ fa,

where 1 � i � n is such that a ∈ Λξ,n,i.D. Note that this collection is weakly null but

not normally weakly null. However, this collection could be made normally weakly null by

another pruning.

Fix a ∈ MAX(Γξ,n.D) and let (μ∗
i )

n
i=1 be the Hahn-Banach extensions to the biorthogonal

functionals of the basic sequence
(

∑

λi−1(a)<b�λi(a)
Pξ,n(b)fb

)n

i=1
. Note that ‖μ∗

i ‖ � 6/ε for

all 1 � i � n. Fix a scalar sequence (bi)
n
i=1 and let

u =
n

∑

i=1

bi
∑

λi−1(a)<b�λi(a)

Pξ,n(b)ub =
n

∑

i=1

biεi ⊗
(

∑

λi−1(a)<b�λi(a)

Pξ,n(b)fb

)

.

Let (ai)
n
i=1 sequence such that 1 =

∑n
i=1 |ai|2 = 1 and

∑n
i=1 aibi =

(

∑n
i=1 |bi|2

)1/2

. Let

T =
n

∑

i=1

biεi ⊗ μi ∈ L1(2
n)̂⊗εC(K)∗ ⊂ (L∞(2n)̂⊗πC(K))∗ = L(C(K), L1(2

n)).

We claim that ‖u∗‖ � 6/ε. To see this, fix f ∈ BC(K). Then

‖Tf‖ =
∥

∥

∥

n
∑

i=1

ai〈μi, f〉εi
∥

∥

∥

L1(2n)
�

(
n

∑

i=1

|ai〈μi, f〉|2
)1/2

� (6/ε)
(

n
∑

i=1

|ai|2
)1/2

.

Note that

|〈T, u〉| =
n

∑

i=1

aibi

〈

μi,
∑

λi−1(a)<b�λi(a)

Pξ,n(b)fb

〉

〈εi, εi〉 =
n

∑

i=1

aibi =
(

n
∑

i=1

|bi|2
)1/2

.
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From this it follows that ‖u‖ � (ε/6)
(

∑n
i=1 |bi|2

)1/2

. Therefore we have shown that for any

a ∈ MAX(Γξ,n.D),
(

∑

λi−1(a)<b�λi(a)
Pξ,n(b)ub

)n

i=1
satisfies a lower �n2 estimate with constant

ε/6. Note that the constant ε/6 does not depend on n.

Let 0 = s0 and let sn = sn−1+n for n ∈ N. Since L∞(2n) is isometric to a 1-complemented

subspace of c0, we can build a full normally weakly null collection (vb)b∈Γξ,∞.D ⊂ Bc0⊗̂πC(K)

by letting the first n level be built as in the previous paragraph for n = 1, the next two levels

built as in the previous paragraphs for n = 2, etc. Then for any α ∈ [Γξ,∞].D, the sequence
(

∑

λi−1(α)<b�λi(α)
Pξ,∞(b)vb

)∞

i=1
is not weakly q-summing for any 1 < q < 2, since for each

n ∈ N,
(

∑

λi−1(α)<b�λi(α)
Pξ,∞(b)vb

)sn

i=sn−1+1
is a sequence of length n satisfying an ε/6 lower

�n2 estimate.

�

If K is as in the previous theorem, C(K) is ξ-AUF renormable, which implies that it is

ξ-p-AUS-renormable for all 2 < p < ∞. Since these properties are isomorphic invariants

and pass to subspaces and quotients, we deduce the first part of the following corollary. The

second part of the following corollary follows from the fact that if L is an infinite, compact,

Hausdorff space, then c0 is isometrically isomorphic to a 1-complemented subspace of C(L),

so c0̂⊗πC(K) embeds isomorphically into C(L)̂⊗πC(K).

Corollary 7.5. Let K,L be compact, Hausdorff topological spaces such that L is infinite and

K is scattered. Then neither c0̂⊗πC(K) nor C(L)̂⊗πC(K) is isomorphic to any subspace of

any quotient of C(K).

Remark 7.6. We conclude by stating known results analogous to Corollary 7.5 for projective

tensor products with more than two factors, where the picture is far from complete. As shown

in [7], for any n ∈ N and any scattered, compact, Hausdorff spaces K1, . . . , Kn,

(

̂⊗n

π,i=1C(Ki)
)∗

= ̂⊗n

ε,i=1�1(Ki)

There it was also shown that for integers m,n with m < n, ̂⊗n

ε �1 is not isomorphic to any

subspace of ̂⊗m

ε �1. From this it follows that ifm,n are not equal and ifK1, . . . , Kn, L1, . . . , Lm

are infinite, scattered, compact, Hausdorff spaces, then ̂⊗n

π,i=1C(Ki) is not isomorphic to any

quotient of ̂⊗m

π,i=1C(Li). However, this does not yield that ̂⊗n

π,i=1C(Ki) cannot be isomorphic

to a subspace of ̂⊗m

π,i=1C(Li).

It was also shown in [7] that for any integer n, ̂⊗2n

π c0, the 2n-fold projective tensor product

of c0, admits an equivalent (n− 1)-2-AUS norm, and ̂⊗2n−1

π c0 admits an equivalent (n− 1)-

AUF norm. Moreover, both of these are sharp, which implies that ̂⊗n

πc0 is not isomorphic

to any subspace of any quotient of ̂⊗m

π c0 for integers m,n with m < n.
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