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SZLENK INDEX OF C(K)®,C(L)
R.M. CAUSEY, E. GALEGO, C. SAMUEL

ABsTRACT. We compute the Szlenk index of the projective tensor product C(K)®,C(L)
of spaces C(K),C(L) of continuous functions on arbitrary scattered, compact, Hausdorff
spaces. In particular, we show that it is simply equal to the maximum of the Szlenk in-
dices of the spaces C(K),C(L). We deduce several results regarding non-isomorphism of
C(K)®,C(L) and C(M) or C(M)®,C(N) for particular choices of K, L, M, N.

1. INTRODUCTION

Since Grothendieck established the theory of tensor products [12], it has been clear that
projective tensor products play a fundamental role in the geometry of Banach spaces. How-
ever, due to the intractable nature of the projective tensor product, a number of elementary
questions remain unanswered. For example, although the isomorphism classes of C(K)
are well understood when K is countable, compact, Hausdorff, the isomorphism classes of
C(K)®,C(L) are not known when K, L are countable, compact, Hausdorff.

A classical result in Banach space theory is that the isomorphism class of C'(K) when K
is an infinite, countable, compact, Hausdorff spaces is determined by its Szlenk index, which
in turn is fundamentally connected to the Cantor-Bendixson index of K. More precisely,
Bessaga and Pelczyniski [1] showed that each such K is isomorphic to C'(w“*+) for exactly
one countable ordinal {. The third named author [19] showed that for a countable ordinal
¢, the Szlenk index Sz(C(w* +)) of C(w* +) is equal to wt*'. Since the Szlenk index is an
isomorphic invariant, the fact that the Szlenk index of C' (w“’é—l—) is equal to w**! implies,
independently of the result of Bessaga and Pelczynski, that the spaces C' (ww£+), & countable,
are mutually non-isomorphic. Moreover, since the Szlenk index of a Banach space is at least
as large as the Szlenk index of any of its subspaces or quotients, this result actually implies
that C'(w**+) is not isomorphic to any subspace of any quotient of C(w“‘+) when &,(
are countable ordinals with ( < £. One goal of the present work is to establish a partial
solution to the problem of an isomorphic classification of the projective tensor products
C(K)®,C(L) for infinite, countable, compact, Hausdorff spaces K, L using the Szlenk index
as an isomorphic invariant. Our main result regarding the Szlenk index is the following.

Theorem 1.1. Let K, L be compact, Hausdorff topological spaces. Then
Sz(C(K)®,C(L)) = max{Sz(C(K)), Sz(C(L))}.
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Asymptotic smoothness properties are generally stable under the formation of injective
tensor products. However, the same is not true under the formation of projective tensor
products. In general, since the Szlenk index can be thought of as a quantification of the
smoothness of a norm, and by classical duality the weak*-convexity properties of the dual
norm, a Banach space whose dual admits large, transfinite ¢, structures cannot have a small
Szlenk index. We recall that for Banach spaces X,Y, (X®,Y)* is isometrically identifiable
with £(X,Y*), the space of bounded, linear operators from X into Y*. Since (X®,Y)*
is a space of operators, it often contains large, transfinite /., structures, or even a fully
copy of /., even when the factors spaces X, Y separately have good smoothness properties.
The most natural example is fo&,0ls, in which (e; ® e;)%2, is isometrically equivalent to the
canonical ¢; basis. Following Corollary 6.8, we provide further examples of the delicate
nature of asymptotic smoothness nature under the formation of projective tensor products
by noting the existence of a subspace X of C'(w*+) such that X®,X fails to be Asplund.
The stability of asymptotic smoothness properties under projective tensor products depends
not only on factor spaces themselves considered separately, but on properties of the pair
which are checked on £(X,Y*). Our proof of Theorem 1.1 will use Grothendieck’s theorem
to obtain the required properties of £(C(K), C(L)*).

As a result of Theorem 1.1, we establish the following.

Theorem 1.2. If £, ¢, i, v are countable ordinals such that C(w* 4+)&,C(w* +) is isomor-
phic to C(w*" +)&,C(w" +), then max{¢, ¢} = max{u,v}.

We will actually reach the conclusion of Theorem 1.2 under the weaker conclusion that
each of the spaces C(w* +)&,C(w* +), C(w*" +)®,C(w*" +) is isomorphic to a subspace of
a quotient of the other.

Our result combines Grothendieck’s theorem [11] with the notion of {-asymptotic uniform
flatness introduced in [5]. Grothendieck’s theorem gives a fundamental inequality on the
2-weakly summing norm of a sequence (f; ® ¢;)2°, € C(K)®,C(L) in terms of the weakly
l-summing norm of (f;)7°, and the supremum norm of (g;)°,. Some recent results from [7]
show that the full strength of Grothendieck’s theorem may not be needed, although the basic
ingredients used there are reminiscent of the ingredients of Grothendieck’s theorem. More
precisely, the key insight in [7] regarded the g-weakly summing norm of a sequence (x; ®
Y:)2, C X®,Y, where (;)22, is 1-weakly summing, (y;)%, is bounded, and Y* has cotype g.
The notion of £-asymptotic uniform flatness, together with the fact that Sz(C(K)) = w* if
and only if C'(K) admits an equivalent {-asymptotically uniformly flat norm, will allow us to
find weakly 1-summing sequences among prescribed convex combinations of weakly null trees
in the projective tensor product C'(K)®,C(L). Grothendieck’s inequality will then allow
us to deduce that certain convex combinations in the branches of weakly null trees in the
projective tensor product are weakly 2-summing, and therefore the projective tensor product
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admits an equivalent £-2-asymptotically uniformly smooth norm for an appropriately large
€. This result is a transfinite version of the result of Dilworth and Kutzarova from [9], where
it was shown that cy®,co admits an equivalent norm which is 2-asymptotically uniformly
smooth, which is the £ = 0 case of our result for separable C'(K) spaces.

Throughout, unless otherwise stated, we assume all Banach spaces are infinite dimensional
and all subspaces are closed, linear subspaces. We close the introduction by briefly describing
some non-standard notation and terminology which we will use, and where the corresponding
definitions can be found. In Section 2, we provide notation and terminology related to trees
and rank. We also introduce the notation 7.D, where T is a tree and D is a directed set.
These will be convenient index sets, where the tree T" controls the rank of the structure 7.D
and D is a directed set. Section 3 introduces notions related to the Szlenk index, higher
order asymptotic smoothness, and weakly null trees. We will be concerned with weakly null
trees, so most of our applications of 7.D will involve the choice of directed set D = C'D(X),
where X is a Banach space and CD(X) is the set of finite codimensional subspaces of X.
In order to separate the required combinatorial results from the specifics of our applications
to weakly null trees, we build the weak nullity of the trees into the index set itself using
the notion of normal weak nullity, defined in Section 3.2. Also in Section 3.2, we recall the
notions of &-p-asymptotic uniform smoothness (£-p-AUS) and &-asymptotic uniform flatness
(¢&-AUF). Since we will be concerned with C'(K') spaces, we will also use the notion of normal
pointwise nullity, in which the pointwise nullity of a collection of C'(K) is built into the index
set of the collection. This notion is defined in Section 6. There, for a compact, Hausdorff
space K and a finite subset F' of K, we also introduce the notion

Ann(F) ={f e C(K) : flr = 0}.

2. TREES AND GAMES

2.1. Trees. Given a set 2, Q=¥ will denote the set of finite sequences of elements of 2. This
includes the empty sequence, denoted @. We let Q“ denote the set of infinite sequences
whose members lie in Q and let Q¥ = QY U Q<. For t € Q<¥, we let || denote the length
of t. For t € Q¥ and n < w, we let ¢|n be the initial segment s of ¢ such that |s| = n. For
s,t € Q¥ we write s < ¢ if s = t|n for some n < w. If t € Q=¥ satisfies 0 < [t| < w, we let
t~ =t|(|t| — 1). That is, ¢~ is the immediate predecessor of ¢. For s € Q<% and t € Q¥ we
let s ~ ¢ denote the concatenation of s with ¢.

A subset T of Q< \ {@} is said to be a tree on Q (or simply a tree) if @ < s < t and
t € T implies s € T'. A subset T of 2<“ is said to be a rooted tree on € (or simply a rooted
tree) if s <t and ¢t € T implies s € T. A rooted tree is said to be hereditary if it contains
all subsequences of its members. We let M AX(T') denote the set consisting of all maximal
members of T with respect to the initial segment ordering. A tree T C 2<% is said to be
pruned if it is non-empty and MAX(T) = @.
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Given a tree T', we define the derivative of T, denoted by T', by T" =T\ MAX(T). We
define the transfinite derivatives of T' by

T =T,

T = (1),

and if £ is a limit ordinal,

ﬁ:ﬂﬂ

¢<¢
We say T is well-founded if there exists £ such that T¢ = @, and in this case we define the
rank of T by

rank(7") = min{¢ : T° = @}.

A tree which is not well-founded is said to be ill-founded. If T is ill-founded, we agree to the
convention that rank(7") = co. Every pruned tree is ill-founded. Given a tree 7' on €, we
define the body of T by

T ={r€Q*:(VneN)(rlneT)}.

Note that T" is well-founded if and only if [T] = @.
Given a tree T on € and t € Q<¥, we let

T,={seQ¥\{g}:t ~seT}.

Note that this is also a tree, which is well-founded (resp. pruned) if 7" is. An easy proof by
induction shows that for any tree T', any t € Q<“, and any ordinal &,

(Tg)t = (Tt)g
Therefore the notation Tf can be used unambiguously.
Remark 2.1. Let ( an ordinal be given. There exists a tree of rank (.

Proof. Let S¢ = { ()=, : 0< v, <--- <1 <(}. Note that S, = @ if and only if { = 0.
Also, S; is a tree on the interval of ordinals [0,(), and (v;)", € MAX(S;) if and only if
vy, =0, so

St={(W)ic, : 1< <--- < <(}.

More generally, an easy induction argument yields that for any ordinal ¢,

S={ ()i : 6 << < <(}

Of course, this means Sg = @ if and only if § > ¢, from which it follows that rank(S¢;) =
¢ O
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Given a tree T on €2 and a non-empty set D, we let
T.D = {(G,u)izy € (X D)™+ (G)iLy € T}

We consider the members of T.D as sequences of pairs. That is, (¢;,u;)", is treated as a
sequence of length n whose i member is ((;,u;). Therefore if a = (G, u;)7y € T.D, then
for 0 <m < n, alm = (G,u;)™,. Given a tree T, t = (¢;)I; € T and v = (u;)!-, € D=, we
let t.v = (G, u;)y € T.D. We also agree that @.@ = &. Note that if 7" is a tree on €2, then
T.D is a tree on Q x D. Furthermore, for any ordinal &, any ¢t € Q<“, and v € D<* with
|t| = |v], it holds that T¢.D = (T.D)* and T;.D = (T.D);,. In particular, T.D is pruned if T
is, and rank(7") = rank(7.D). We also define [T].D = {({;,u;)2, € (Ax D) : (§)2, € [T]}-
For 7 = ((;)2, € Q¥ and v = (u;)52, € DY, we let 7.v = ((;,u;)52,, which is treated as the
member of (2 x D) whose i member is (;, u;).

2.2. Games. Let B be a set and let D be a non empty subset of the power set of B Let g
be a subset of the power set of B such that for every u € D, there exists G € g such that
G Cu.

Let T be a pruned tree and let £ be a subset of [T].g. We define a two player game. Player
S chooses u; € D and (; € Q2 such that ((;) € T. Player V chooses G € g such that G; C uy.
Player S chooses us € D and (3 € Q2 such that ((;,(3) € T. Player V' chooses G5 € g such
that G C ug. Play continues in this way until 7 = ()2, € [T], v = (Gi)2, € g¥, and
(u;)$2, € D¥ are chosen. Player S wins if 7.y € £, and Player V' wins otherwise. We refer
to &€ as the target set. We refer to this game as the £ game on g, T, D, or simply the £ game
if g, T, and D are understood.

If n turns of the game have been played (n = 1,...), resulting in a choice ¢t € T for Player
S and g € g=¥ for Player V, the remainder of the game is equivalent to a new game with
target set

Cg={ae[l]g:tgracl}

played on the tree T;.

A strategy for Player S in the (€,g,T) game (sometimes just called a strategy for Player
S) is a function x : {@} UT.g — Q x D such that if x(&) = ((,u), then (¢) € T, and if
X(t.g) = ((,u), then t ~ (¢) € T. A strategy for Player V in the (£,g,T) game (sometimes
just called a strategy for Player V') is a function ¢ : T.D — g such that if ¢ ((¢;, w;),) = G,
then G C u,.

Given a strategy x for Player S, t € T, and g € g=“ with |t| = |g|, we say t.g is x-admissible
if t =g = o orif for each 0 < i < |¢t], if x((t.9)|i) = (¢,u), then G;11 C u, where G, is the
i+ 15" member of the sequence g. For 7 € [T] and vy € g, we say 7.7 is y-admissible if 7.|n
is xy-admissible for all n < w.

A strategy v for Player V in the (£, g,T) game is called a winning strategy for Player V
if for any T.v € [T].D, if G, = ¥(r.vn) for n = 1,2,..., and if v = (G,,)?2;, then 7.y ¢ E.

A strategy x for Player S in the (£, g,7T) game is called a winning strategy for Player S if
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whenever « € [T].g is x-admissible, then a € £. A strategy x for Player S in the (£,g,T)

<@ are such

game is called a defensive strategy for Player S if whenever t € T and g € g
that t.g is y-admissible, then Player V' does not have a winning strategy in the (& ,,9,7})
game. Informally, if Player S plays according to the strategy x, then Player V will not have
a winning strategy at any point during the progress of the game.

We say that a target set £ C [T].g is closed if whenever o € [T].g \ &, there exists n € N
such that

{Be[Tlg:Bln=an}né=2.
The concepts behind the following result are standard, but due to the specificity of our

construction, we give the proof.

Proposition 2.2. Let T' be a pruned tree on a set 2. Let B be a non-empty set and let D, g
be non empty subsets of the power set of B. Suppose that @ ¢ D, @ ¢ g and any u € D,
there exists G € g such that G C u. The following hold.

(1) If for every (() € T and uw € D, there exists G = G((,u) € g such that G C u
and Player V' has a winning strategy in the (E¢.q), 8, T(c)) game, then Player V has a
winning strategy in the (€,9,T) game.

(i1) For any target set £ C [T].g, either Player S has a defensive strategy or Player V' has
a winning strategy in the (£,9,T) game.

(111) If € is closed, then any defensive strategy for Player S in the (€,9,T) game is a winning
strategy for Player V in the (€,9,T) game.

() If € is closed, exactly one of Player S and Player V' has a winning strategy in the
(&,8,T) game.

(v) If there exists a subset F of T.g such that & = [F], then & is closed.

Proof. (i) For each (¢) € T and v € D, let G(¢,) C u be such that Player V' has a winning
strategy Ve @ Tie)-D — g in the (£¢.q),8,T()) game. Define o) : T.D — g by letting
P((¢,u)) = Gy and for a € T.D with |a| > 1, write a = (¢, u) ~ a; and let 1 (a) = ¢ u(a1).
It is straightforward to verify that 1 is a winning strategy in the (€, g,7T) game.

(77) Assume Player V' has no winning strategy in the (£, g,7") game. We define a defensive
strategy x for Player S in the game. More precisely, we define x(a) for a € {@} UT.g by
induction on |a|. Since Player V' does not have a winning strategy in the (€, g,7T) game, by
negating the conditions in (7), there must exist (o € Q2 and uy € D such that ({) € T and
for any G € 2" N g, Player V does not have a winning strategy in the (£¢.ay, 9, 7(¢)) game.
Define x(2) = (Go, o).

Now assume that for some a = t.y € T.g, x(a) = ({,u) has been defined, which means
t ~(¢) € T. Assume further that if a = (¢;, G;)"; and for any 0 < i < n, if x(a|i) = ({', ')
and G; C v/, then for any G € g with G C u, Player V has no winning strategy in the
(Eanicc): 8, Tin()) game. For G € g, we define x(a ~ ((,G)) in cases. If G ¢ u, define
x(a ~ (¢,G)) arbitrarily. For the remaining cases, assume G C u. If a = &, then since
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G C u, by (¢) and our assumption that Player V' has no winning strategy in the (£¢.q), 9, 7(¢))
game, there exists ((') € T; and v’ € D such that for any G’ € g such that G’ C «, Player
V' does not have a winning strategy in the (£ u)~(c'w), 8 T(¢cc)) game. In this case, define
x(a ~ ((,GQ)) = (¢,u). If a = ((,G;)y and for any 0 < @ < n, if x(ali) = (¢',v') and
G; C v/, then since G C u, our assumptions together with (7) yield the existence of some
(") € Ty and «’' € D such that for any G’ € g such that G’ C «/, Player V' does not have a
winning strategy in the (€,~¢,a)~¢".¢): 8 Ti~(c,¢)) game. Define x(a ~ (¢, G)) = (¢, ). In
the remaining case that a = ((;, G;), and for some 0 < i < n, x(ali) = ({',u') and G; ¢,
define x(a ~ (¢, u)) arbitrarily. This completes the recursive process. It is routine to verify
that x is a defensive strategy for Player S in the (€,g,T) game.

(17) Assume & is closed. Assume x is a defensive strategy for Player S in the (£,g,7T)
game and o = 7.¢ € [T].g is x-admissible. Seeking a contradiction, assume « € [T].g \ €.
Then there exists n € N such that

{elT]g:Bln=aln}nN&=w0.

Then a|n is x-admissible, but Player V' has a winning strategy in the (£qn, 9, T7n) game.
In fact, any strategy for Player V' is a winning strategy in this game, since &), = @.

(iv) If € is closed, then either Player S has a defensive (and therefore winning) strategy
in the (£,9,7) game or Player V' has a winning strategy in the (£,g,7) game. Therefore
at least one of the two players has a winning strategy. Of course, at most one of the two
players can have a wining strategy.

(v) Assume & = [F] for some F C T.g. Fix a € [T].g\ €. Since a ¢ £ = [F], there
exists n € N such that a|n ¢ F. Then for any § € [T].g such that |n = a|n, it follows that
Bln=aln ¢ F,and g € [T].g\ [F] = [T]g\£.

0

[tem (7i7) above states that closed games, in the narrower sense that we have defined games,
are determined. A remarkable theorem of Martin [14] yields in the very general setting of
Gale-Stewart games that games with Borel target sets are determined. The games above are
special cases of such Gale-Stewart games, and we could have cited Martin’s theorem rather
than providing a direct proof. However, we find the direct proof in the case of closed games
to be simple and illustrative.

Lemma 2.3. Let T be a pruned tree on a set (). Let B be a non-empty set and let D, g be
subsets of the power set of B such that for any uw € D, there exists G € g such that G C u.
Then for a target set £, Player V has a winning strategy in the (€,9,T) game if and only if

there exists a collection (G,)eer.p C @ Such that

(1) for each a = (G, u;)f_y € T.D, Gy C Up,
(ii) for each o = T.v € [T].D, 7.(Gan)oz; € [T].9\ €.
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Proof. 1f 1) is a winning strategy for Player V' in the (£, g, T) game, then the collection given
by G, = 1¥(a) satisfies the conclusions of the lemma. If (G,).er.p is as in the lemma, then
(a) = G, defines a winning strategy v for Player V in the (£,g,T) game.

]

Negating one direction of the previous result yields the following.

Corollary 2.4. Let T be a pruned tree on a set ). Let B be a non-empty set and let D, g be
subsets of the power set of B such that for any uw € D, there exists G € g such that G C u.
Let € be a target set and assume Player S has a winning strategy in the (€,9,T) game. Then
for any collection (Gy)eer.p C @ such that for each a = (¢, u;)™, € T.D, G, C u,, there
exists o = T.v € [T].D such that T7.(Gapn)oe, € €.

3. SZLENK INDEX, WEAKLY NULL TREES, AND MODULI

A real Banach space X is said to be Asplund if every continuous, convex function defined
on a convex, open subset U of X is Fréchet differentiable on a dense Gy subset of X [8,
Definition 5.1]. A complex Banach space is said to be Asplund if it is Asplund as a real
Banach space. In particular, the norm of an Asplund space is Fréchet differentiable on a
dense Gy subset of X. On the other hand, every non-Asplund space admits an equivalent
rough norm [8, Theorem 5.3]. Rough norms can be thought of as “uniformly non-Fréchet
differentiable.” Therefore Asplundness is fundamentally connected to smoothness of the
norm. Another characterization of the Asplund property is weak*-fragmentability of the
dual ball, Bx«. This means that for any non-empty K C Bx+ and any € > 0, there exists
a weak® open set U such that K N U # @ and the norm diameter of K N U is less than e.
It is this characterization of the Asplund property which the Szlenk index, defined below,
will characterize. Therefore smallness of the Szlenk index is a smoothness condition. More
precise information is encoded not just in the Szlenk index of a space, but in the growth rate
of the e-Szlenk indicies Sz(X, ¢) as € decreases to 0. For example, although we will not use
this direct argument, one can generally prove that for a scattered, compact, Hausdorff space
K whose Cantor-Bendixson index lies in (wé, wé*!), C(K) is not isomorphic to C(K)®,C(K)
because

min{n € N: Sz(C(K),¢) < wn}
grows on the order of 1/e, while

min{n € N: Sz(C(K)®,C(K)) < w'n}

grows on the order of 1/e%. The degree of smoothness can be encoded in the modulus of
&-asymptotic uniform smoothness, which we also define below, and which are the subject of

our renorming theorems.
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3.1. Szlenk index. Throughout, we let K denote the scalar field, which is either R or C.
For a Banach space X, we let By denote the closed unit ball of X and we let Sy denote the
unit sphere of X. In particular, Bx denotes the set of scalars with modulus not exceeding 1.
Given a Banach space X, a weak*-compact subset K of X*, and € > 0, we define the
e-Szlenk derivation s.(K) of K to be the set of those * € K such that for any weak*-
neighborhood V' of z*, diam(V N K) > e. We define the transfinite derivations by

and for a limit ordinal &,

(<¢

It is easy to see that each derivation s¢(K) is also weak*-compact. If there exists an ordinal
¢ such that s$(K) = @, we let S2(K,¢) denote the minimum such &. If no such & exists, we
agree to the convention that Sz(K,e) = co. We also agree to the convention that £ < oo for
each ordinal &, so that Sz(K,e) < oo means that an ordinal ¢ exists such that s$(K) = @.
We define Sz(K) = sup,.,Sz(K,¢), where sup,.o Sz(K,e) = o0 if Sz(K,e) = oo for some
e > 0. If X is a Banach space, we let Sz(X,¢) = Sz(Bx+,¢) and Sz(X) = Sz(Bx+). The
condition that Sz(X) < oo is equivalent to X being an Asplund space [13, Theorem 3.10].

We recall that for a topological space K and a subset L of K, the Cantor-Bendizson
derivative of K is the subset of L consisting of those points in L which are not isolated in L.
We denote the Cantor-Bendixson derivative of L by L’. We define the transfinite derivatives
by

I’=1,

L = (L,

ﬁ:ﬂﬁ

¢<¢
We say that K is scattered if there exists an ordinal ¢ such that K¢ = @, and in this case, we
define the Cantor-Bendizson index CB(K) of K to be the minimum & such that K¢ = &.
We note that K is scattered if and only if any non-empty subset of K has an isolated point.

and if £ is a limit ordinal,

If K is compact, then C'B(K') cannot be a limit ordinal, and since by convention we exclude
the empty set from our definitions of topological space, C B(K') cannot be zero. Therefore
for a compact, Hausdorff topological space, C'B(K) must be a successor ordinal.

We note that if K = [0,w*], the ordinal interval with its usual compact order topology,
then for any ordinal ¢ < &,

KS={uSYU{w + ...+ > > ... 26, 2} ={w0:0 <w'},

where ¢ + pu = &. Therefore K¢ = {w*} and CB(K) = £ + 1.
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The following Szlenk index computations were shown in [19] for countable K, in [2] for
K =10,¢], € an arbitrary ordinal, and in [5] for general K.

Theorem 3.1. Let K be a compact, Hausdorff topological space. Then C(K) is Asplund
if and only if K is scattered. Moreover, if K is infinite and scattered and & is the unique
ordinal such that w® < CB(K) < w*™! then Sz(C(K)) = wT.

In particular, for any ordinal &, SZ(C[O,w“’g]) = &L

Of course, if K is finite, then C(K) ~ (7, for some n, and Sz(C(K)) = 1, since B k- is

norm compact in this case.

3.2. Weakly null trees and weak derivatives. For convenience, whenever 7' is a tree
and (G )q.er is a collection indexed by T', we use the notation (Gy)p<, to refer to (Gy)p<p<a
rather than (Gp)g<p<a-

Suppose that T is a tree and X is a Banach space. We say a collection (x;);er of X is
weakly null provided that for each for all £ and all t € (T'U {@})5+,

weak
0O€{z,:seTlt s =t}

It will often be useful to assume the weakly null trees (x;);er are indexed by a tree T'
which has some specific form, namely I'.D for some directed set D. There are two natural
choices for such a D. We can let D be any neighborhood basis at 0 with respect to the
relative weak topology on Bx. Alternatively, we can let

D =CD(X) :={Byz : Z subspace of X and dim(X/Z) < oo}.

For D = CD(X) and a tree I', we say that a collection (z,)qer.p of X is normally weakly
null if whenever a = (¢, u;)!, € I.D, z, € u,. Such a collection is weakly null according
to the definition given above. To see this, let a = t.v € ({@} UT.D)**1), there exists ¢ such
that t ~ (¢) € T, Then for any u € D, a ~ (¢,u) € (I'.D)%, and a = (a ~ ({,u))”. Since
Tan~(Cu) € Uy

weak weak

0€{zacuwy:ueD}  C{ap:be (D)5, b~ =a}
We will also be interested in the more general construction. We say a collection of subsets

(Ga)aer.p of Bx is normally weakly null if for each a = (¢;,u;)"; € I.D, G, C .
We recall that

Swe = {(G)1<icn; 0< G < oo < G < W'}

is a tree of rank wS.

Remark 3.2. Let T be a tree with rank(T) = w* and let (x;)ier C Bx be a weakly null
collection. Then for every r > 0 there exist a map ¢ : Sye.D — T such that for all a €
Swe- D, Y — zg@)ll <7, ¢(all) < é(al2) < ... < ¢(a). Moreover, if a = ((;, Bz,)i<i<n, then
d(a) € T
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Proof. We construct ¢ by induction on the length of the element a € S, ¢.D. Let a = (¢, By).
Fix t € T¢. It is obvious that for every s € T such that s~ = ¢t~ we have s € T¢. Let u be a
weak neighborhood of 0 in X such that for every x € u N By there existsz € By satisfying
|z — z|| < r. The collection (x;)er a weakly null so there exists s € T¢ such that s~ = ¢~
and z, € u. Let y( B,) € Bz such that ||z, — y(,p,) € Bz|| <r. We define ¢(¢, Bz) = s.
Next, assume that n > 1 and ¢ has been defined on the elements of S ¢.D of length
n—1. Let a = ((¢, Bz,))y € S.e.D. Assume also that ¢(a™) € TS, We have ¢, < (,_1
so T=1 C T and there exists t € T such that t~ = ¢(a”). In order to define ¢(a) we
proceed as in the definition of the image of an element of length 1. O

For an ordinal £, a number ¢ > 0, an infinite dimensional Banach space X, and y € X,
we define the modulus of &-asymptotic smoothness by o (o,y) by

o5 (0,y) = sup{inf{”y +ox||—1:t €T,z € co(xs)s<t} :(x¢)er C Bx weakly null,
rank(7") = wé}.

That is, o5 (0,y) < C if and only if for any C; > C, any tree T' of rank w¢, and any weakly
null collection (x;)er C Bx, there exists a convex combination x of some branch (xy)s<; of
the collection such that ||y +oz| < 14 Cy. We isolate here the important special case £ = 0,
in which case 0% (0,y) = px(c,y) is the familiar modulus of asymptotic smoothness given
by

0 .
o,y) = inf su + oz|| — 1.
ox(0,y) dim(X/Z)@ozeBP;Hy |

It is easy to see that in the definitions of Qg((a, y) and Qi(a), it is sufficient to take the
supremum over weakly null collections of the form (z;)ierp C By, where I' is any fixed
tree of rank w®, and T(¢u)r, € Un as above. This is because collection (x¢)ter C By, if
rank(7T') = w®, then for a tree I' with rank(T'), we can find a normally weakly null collection
(Ya)aer.p C Bx whose branches are small perturbations of the branches of (z;)er. See [6,
Proposition 2.1] for more details.

It is clear that for a fixed o, ggf(a, -) is 1-Lipschitz on X, and for a fixed y € X, Qi—(', Y)
is 1-Lipschitz as a function of 0. We define

o5 (o) = sup g% (o, ).
yEBx

We say X is é-asymptotically uniformly smooth (in short, £&-AUS) if inf,~q o5 (0)/o = 0.
For 1 < p < oo, we say X is &-p-asympotically uniformly smooth (in short, &-p-AUS) if
SUPy~0 gi(a)/ap < oo. We say X is -asymptotically uniformly flat (in short, (-AUF) if
there exists some oy > 0 such that Qi(()'o) = 0. We say that X is &-asymptotically uniformly
smoothable (resp. &-p-asymptotically uniformly smoothable, &-asymptotically uniformly flat-
tenable) if there exists an equivalent norm |- | on X such that (X,|-|) is £&-AUS (resp.
&-p-AUS, ¢-AUF).
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Remark 3.3. If X is &-p-AUS and 1/p+1/g = 1, then by [6, Proposition 3.2] and standard
Young duality, there exists a constant ¢ > 0 such that for any ¢ > 0, s**(Bx+) C (1—ce?)Bx-.
From here, an easy homogeneity argument yields that Sz(X,e) < w®"!. Therefore if a
Banach space X is £&-p-AUS, then Sz(X) < w®*!. Since the Szlenk index is an isomorphic
invariant, if X is £-p-AUS-able, then Sz(X) < w1

Let X be a Banach space. If & is a rooted, hereditary tree on on a subset g of 28x,
the power set of Bx, we define the weak derivative of &, denoted by (&), to be the set
of all sequences g € & such that for any u € D, there exists G € g such that G C u and

g~ (G) € &.
We define the transfinite weak derivatives by
(®)s =,
(&)5 = ((8)%)0:

and if £ is a limit ordinal,
(&) = ()(®)5,
(<¢
If there exists an ordinal £ such that (8)$ = &, then we define w(®) to be the minimum
such £. If no such £ exists, we use the notation w(®) = oo. For consistency, if & = &,
(6)8 = @ and w(2) = 0.

Remark 3.4. Above, the weak derivative was defined using D = CD(X). However, we
could have defined (&), in the same way, except with D being a fixed weak neighborhood

basis at 0 in Bx. For all of our applications, an easy perturbation argument yields that these
two distinct definitions will lead to the same results.

We note that if & is a rooted, hereditary tree and g € g<*, then

B(g):={g1 €9~ :9~g1 € B}

is empty if and only if g € g=¥ \ &, and otherwise &(g) is a rooted, hereditary tree. Note
that we use the notation &(g), which denotes a rooted tree, rather than the previously used
&,, which was not rooted. An easy proof by induction yields that for any ordinal &,

(8(9))% = (8)5(9).
We establish some consequences of the definitions above. In what follows, for a fixed

(understood) Banach space X, let s denote the set of singleton subsets of By, f the set of
finite, non-empty subsets of By, and ¢ the set of non-empty, norm compact subsets of Bx.

Lemma 3.5. Let X be a Banach space and let D = CD(X). Let g be a set of subsets of

Bx and let & be a tree on g. For any ordinal &, the following are equivalent.

(i) For every tree T with rank(T) = &, there exists a normally weakly null collection
(Ga)aer.p C @ such that for every a € T.D, (GQH)L‘L € 6.
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(11) There exist a tree T with rank(T) = & and a normally weakly null collection (Gy)eer.p C
g such that for every a € T.D, (Ga‘i)ﬂl €.
(1i1) (&) >
Proof. (i) = (ii) In light of the previous paragraph, (i) = (ii) is trivial, since for any &, at
least one tree of rank & exists.

(17) = (di7) Assume rank(7) = € and (Gy)eer.p C & is such that (Ga”)l;a_‘l € & for all
a € T.D. We will prove by induction that for any ¢ < &, ifa € ({@}UT.D)¢, (Gah)La‘l € (®)S,.
For the base case, the result holds for a € T.D by hypothesis, and for a = @ because
(Gopi)l_y = @ € &, since & is a rooted tree. The limit ordinal case of the induction is clear.
Assume ¢ + 1 < ¢ and the ¢ case of the induction holds. Fix a = t.v € ({g} UT.D)"*!
(where t = v = @ if a = &). Then there exists A such that t ~ (\) € T¢, and for all B; € D,
a ~ (A\,Bz) € T°.D. Therefore for any finite codimensional subspace Z of X, because
the collection is normally weakly null, G,~\5,) C Bz, and by the inductive hypothesis,
(Ga) ) ~ (Gamrpy) € (B)S,. This yields that (Ga), € ()5

Since rank(T) = &, @ € ({9} UT.D)%, and the previous induction yields that & € (&)
Therefore (&) > €.

(#4) = (¢) By induction on £. The £ = 0 case is vacuous. Assume (&) > £+ 1, the result
holds for &, and T is a tree of rank £ + 1. Since w(®) > £+ 1, @ € (&)5. This means that
for any Bz € D, there exists GZ such that G? C Bz and (G?) € (&)5,. For any length 1
sequence (\) € T, let G, 5,) = G?. Since (G%) € ()5, @ € (6(G?))5,, and w(B(G?)) > &.
By the inductive hypothesis, there exists a normally weakly null collection (G?)aer,,,
such that for each a € T(y).D, (G Z)‘“'1 € B(G%). Then for a = (\,Bz) ~ a; € T.D, we

define G, = Go:#. This collection c‘learly satisfies the conclusions.

Assume now that £ is a limit ordinal and the result holds for all smaller ordinals. Let
T be a tree with rank . Let R denote the set of all length 1 sequences in 7" and for each
t€ R, let Tit] = {s € T : t < s}. Then by standard properties of well-founded trees,
rank(7T'[t]) < £ for each t € R, and T = U;egTt] is a totally incomparable union. From
the latter fact, T.D = U;cgT'[t].D is a disjoint union. By the inductive hypothesis, for each
t € R, there exists a collection (G%)serp.p such that for all a € T[t].D, (Gt )‘f'1 € &. Then
define (G,)qer.p by letting G, = G whenever a € T[t].D. This collection clearly satisfies
the conclusions.

O

Forye X, 0 >0, and p € R, we let

S(0,y,p) = {2} U{(zi)ies - (Vo € co(ws)iZy)(lly + ol = p+ 1)}

Note that &(o,y, p) is a rooted, hereditary tree. Note also that ||y + oz| = p + 1 for all
x € co(z;) if and only if ||z|| = p+ 1 for all x € co(y + oz;)!,. By the geometric Hahn-
Banach theorem, (z;), € &(0,y,p) if and only if there exists 2* € Bx« such that for all
1<i<n, Rea*(y+ox;) =2 p+ 1.
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For a set g of subsets of Bx, we let &4(o,y,p) denote the set consisting of the empty
sequence together with the set of all sequences (G;)!, € g* such that &(o,y,p)N[[—, Gi #
@. That is, (G;)l, € S4(0,y,p) if and only if G; € g for all 1 < i < n and there exist
(z;)_, € [1i=, Gi and z* € Bx- such that for all 1 <i < n, Re 2*(y + ox;) > p+ 1.

Recall that s denotes the set of singleton subsets of Bx, from which it follows that

Ss(0,y,p) = {91 Uiz D)isy : ()i € 6(o,y,0)}-

Proposition 3.6. Let & be an ordinal and let X be a Banach space. For o >0 and y € X,

o5 (0, y) = sup{p : w(S(0,y,p)) > w'}.

Proof. For the o = 0 case, Qg((o, y) = |lyll = 1 = sup{p : w(&,(0,y,p)) > ws}. For the
remainder of the proof, we consider the case o > 0.

Fix C' < Cy < ¢%(0,y). Then there exists a tree T with rank(T") = w® and a weakly null
collection (x;)ier of Bx such that for every t € T and x € co(xy)s<s, ||y + ox|| = 1+ Ci.
Fix 0 <e < Cy — C. . Recall also that D = CD(X). We recall that by Remark 3.2 there
exists ¢ : S,e.D — T and (ya)aeswé,D a normally weakly null family (ya)aegwg,p of Bx such
that for all a € S,¢.D, ||y — 24| < €/0 and ¢(a|l) < ... < ¢(a). From the last two
properties, it will follow that for any a € Syc.D and x = 7, wyyp, € co(y, = b < a), since

1z = Zbga WpTe(v) € co(xp : b < P(a)),

ly + ozl = [ly + o2/ =0 > wefo>1+Cr—e>1+C.
b<a
From this it follows that C' < sup{p : w(S&s(0,y,p)) > w*}. For a = (¢) € S,e and Bz € D,
pick a weak neighborhood u of 0 in X such that for any x € u N By, there exists y € By
such that ||z — y|| < ¢/o. Choose t € T® # & and let s =t~ € {@} UT. Since (x,).cr is
weakly null, there exists r € TS such that r~ = s ==t~ and z, € uN Bx. Let Y,By) € Bz
be such that ||y« 5,) — #,|| < ¢/0 and define ¢(¢, Bz) = r. Note that ¢({, Bz) € T¢.

Next, assume that for some n > 1 and a = ((;, Bz,); € S,¢.D, ¢(a™) has been chosen.
Assume also that ¢(a™) € T%!. Fix a weak neighborhood u of 0 in X such that for any
r € uN By, there exists y € By, such that ||x — y|| < e/0. Since ¢(a~) € T*~* and since
Cae1 < Cp, there must exist some t € T such that t~ = ¢(a~). Since (,),er is weakly null,
there exists r € T such that z, € uN Bx. Choose y, € By, such that ||y, — .|| < /0 and
let ¢(a) = r. This completes the recursive construction. Clearly the conclusions are satisfied
by this construction.

Next, fix C' < sup{p : w(Ss(0,y,p)) > w*}. By Lemma 3.5, there exist a tree T with
rank(7T") = w® and a normally weakly null collection (z4)qer.p of Bx such that for all a € T.D
and z € co(z, : b < a), ||y + oz|| > 1+ C. Then ¢ (0,y) > C. This yields that

sup{p : 0(&,(0,y,p)) > v} < 0% (0, y).
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We next prove that one can move from singletons to norm compact sets in the preceding
proposition.
Lemma 3.7. Let X be a Banach space. For g € <, we let [[g = [/, Gi if g = (Gy)I,
and [[g={2} ifg=92

(i) Let Sy, ..., S, be hereditary, non-empty, rooted trees on Bx. For each 1 < k < n, let

Fk:{Q}U{gEf<“’:SkﬂHg7é®}.
Then for any ordinal C,

(Un), e Ufser=:cuinTloz2})

(i1) If € is an ordinal, @ # H C [0,00) x X s finite, and £ > 0, then

m( U Gf(a,y,6+gg((a,y))> < Wb
(

oy)EH

(111) If € is an ordinal, @ # H C [0,00) x X is compact, and € > 0, then

t’o( U GC(a,y,a—l—gg((a,y))) < Wb,
(

oy)eH

Proof. (i) We work by induction on . The ¢ = 0 case holds by the definition of the weak
derivative.

¢+1
Assume the result holds for (. Fix g € (Uz 1 Fk> . Seeking a contradiction, suppose

that for each 1 <k < n and t € []g, there exists Bz, , € D such that for each » € By, ,,
¢+1

t ~ () ¢ (Sk)S. Then let Z = N, (Mierpy Zrt € D. Since g € (Uk:1 Fk> , there

¢
exists G C By such that g ~ (G) € <UZ:1 Fk> . Then there exist 1 < k < n and some

(z:)1y ~ (x) € (Sk)5 NTI(g ~ (G)) contradicting our choice of By C By, ,. The existence
of such a k and (z;)!, ~ (z) follows from the definition of the sets F; in the ( = 0 case, and
from the inductive hypothesis in the ( > 0 case. Therefore there must exist some 1 < k < n
and t € [] g such that for any Bz € D, there exists x € By such that t ~ (z) € (Sy)$,. This

yields that
{hef<W~ ﬂHh#@}

Assume C is a limit ordinal and the result holds for all ordinals less than (. Fix g €

(Uk 1 Fk> Seeking a contradiction, suppose that for each ¢t € [[ g and 1 < k < n, there
exists (p; < ¢ such that ¢ ¢ (Sk)g"t. Let

G=max{Gs:1<k<nte][gt+1<C

finishing the successor case.
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@)
Since g € (UZ:1 F k) , the inductive hypothesis yields the existence of t € [[gand 1 < k <
n such that ¢t € (S;)$, contradicting our choice of (5. Therefore there exist some t € [] g

w )

and 1 < k < n such that for all {y < ¢, t € (S,)$. From this it follows that ¢ € (S;)S,, and

{h€f<“’- mHh;«é@}

finishing the limit ordinal case.
(i1) We prove the £ = 0 case using the characterization of ¢%(c,y) given by

ox(o,y) = inf{sup{|ly + ox|| = 1: 2 € By} : dim(X/Z) < oo}

For each (o0,y) € H, there exists By, , € D such that for all € By, |ly + oz| <
1+e+ 0% (0,y). Let Z = Noyen Z- Then for any (0,y) € H, any G C Bz, and any = € G,
|y + oz|| < 14 &+ 05 (0,y). This shows that

g §é U 6f<0—7ya1+5+gﬁ((0—7y))7

(oy)eH
from which it follows that
w( U Siope+ekloy)) <1=u
(oy)eH

Next we complete the & > 0 case. Note that in this case, w¢ is a limit ordinal. Note
also that since a rooted tree is either empty or contains &, it is not possible for (&) = w®
whenever & is a rooted, hereditary tree. Therefore by Proposition 3.6, for any ¢ > 0 and
ye X, w(S(0,y,e+ 0%(0,y)) <. Let

¢ = max{w(&(0,y.e + ok (0,y)) : (0,y) € H} <w.

Then by (i),
(U Gf(a,y,€+@§((a,y))>C c U {ser:@©0y.e+don)n]lo+ 2}
(o,y)eH v (o,y)eH
= {gef<“:®ﬂHg7é®}
(o,y)eH
= 2.

This completes the & > 0 case.

(17i) First we prove the £ = 0 case. Fix ¢ > 0 and a compact subset H C [0,00) x X. Let
Hy, C H be a finite set such that for any (o,y) € H, there exists (0o, y0) € Ho such that
lo — oo + |ly — wol| < &/3. Note that for any 0,09 > 0 and y,yo € X,

0% (0, y) — 0% (90, 90)| < |o — 0| + [ly — wol-

For each (o,y) € Hy, fix a subspace Z,, of X such that dim(X/Z,,) < co and

sup{|ly +oz| :x € By, ,} <1+¢/3+ 0% (0, 7).
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Let Z = (\,,)em, Zoy and note that for each (0,y) € H and x € By, if (00, yo) € Ho is such
that |0 — oo| + ||y — yol| < €/3,
ly +ozll < lo = ool + lly = yoll + [lyo + o]
< 1+ 2¢/3+ 0% (00,90) < 14 2¢/3 4 0% (0,y) + o — ao| + [ly — ol
<1+e+o%(o,y).
From this it follows that @ ¢ U, ey Sc(0,y, € + 0% (0,y)).

Fix R > 0 such that for any (0,y) € H, |o| < R. Fixe > 0 and let ¢ : ¢ — f be such that for
each G € ¢, p(G) is a finite subset of G such that for each y € G, there exists yg € ¢(G) such
that ||y —yo|| < £/4. Choose a finite subset Hy of H such that for any (o,y) € H, there exists
(00,Y0) € Hp such that |0 — og| + ||y — yo|| < €/4R. To obtain a contradiction, assume that
1o (U(my)eH & (o,y,e+ g_gx (o, y))) > w¢. Since w¢ is a limit ordinal, the inequality here must
be strict. By Lemma 3.5, there exist a tree T' with rank(T") = w® and a normally weakly null
collection (Gg)aer.p C ¢ such that for each a € T.D, (Gp)p<a € U(U,y)GH S.(o,y, g—l—gﬁ((a, Y))-
Since ¢(G,) C G, for each a € T.D, the collection (p(G,))aer.p is normally weakly null. We

claim that for each a € T.D, (¢(G))v<a € Uy)em, ©1(0, 9, £/4+ 6% (0,y)), which, combined
with Lemma 3.5, will yield that

m( U Gi(o,y,e/4 + 0% (o, y))> > w.
(oy)EHo
This inequality will contradict (i7) and finish the proof. Fix a € T.D and note that, since
(Goo<a € U(pyyem Sclo,y, e+ 05 (0,y)), there exist (o,y) € H and (24)p<q € [Iy<, G such
that for any = € co(zp : b < a),
ly +ox| = 1+e+ d(o,y).

Fix (0o,y0) € Ho such that |0 — oo + [ly — wol| < €/4R and (2))s<a € [y, ©(Gs) such
that for each b < a, ||z, — 23)|| < €/4. For any zy = >, _, wyzy € co(ay : b < a), since
Ti= ), weTy € co(zp 1 b < a),

lyo + o0zoll = lly + ozoll = o = 0| = |y = yoll > lly + o] = o Y wpll — 3| — £/4

b<a
>1+4e+05(0,y) — R(e/AR) — /4
> 1+ ¢+ 0% (00,50) — |0 — 00| = [ly — voll — &/3
>14+¢e/4+ Qg((ffo,yo)-

Therefore
(2(Gb))b<a € S(00, 90, 1 + £/4 + 05 (00, %0))
C U Si(a',y, 1 +e/4+ ok (o', 1)),

(Ulzy/)eHO

as claimed.
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We are now ready to prove the following simultaneity result. Recall that C'D(X) denotes
the set of finite codimensional subspaces of X.

Corollary 3.8. Let & be an ordinal, X a Banach space, let D = CD(X), and let T be any
tree with rank w¢. Let Gy C X be norm compact and let (Ga)aer.p C ¢ be a normally weakly
null collection. Then for any € > 0 and o1 > 0, there exists a € MAX(T.D) such that for
any y € G, any (Tp)v<a € [[y<, Go, and any o € o1 Bk,

min{|ly + ozl : v € co(x,,; : 1 <i < a|)} <1+e+ o (0, y).

Proof. By replacing G with its balanced hull, we can assume that G4 is balanced. We can
also replace each set G, a € T.D, with its balanced hull, noting that the resulting sets still
form a normally weakly null collection.

Seeking a contradiction, assume 7 is a tree with rank w®, assume (Go)aer.p C ¢is normally
weakly null and € > 0 are such that for every a € MAX(T.D), there exist y € Gy, 0 € [0, 01],
and (7p)p<a € [ [, Gb such that for every x € co(xy, : b < a), ly + ozl =2 1+¢+ o5 (0, y).
Then

(Gb>b<a € U 6((07 Y, 1 +e+ Qg((au y))
(O',y)e[o,a'l]XGg

By Lemma 3.5,
t’o( U GC(J,y,l—F&—i—Qg{(U,y))) > w?,
(0,y)€[0,01]x Gy

which contradicts Proposition 3.6(ii7) with H = [0, 0] X Gg. From this it follows that there
exists a € T.D such that for every y € Gg, every (z3)p<a € [, Gb, and every o € [0, 0],
there exists « € co(zy : b < a) such that ||y + oz|| < 1 + ¢ + ¢%(0,y). Since each of the
sets Gy, @ < b < a, is balanced, the same inequality holds for any ¢ € o, Bx with Qi(a, xo)
replaced by 6% (o], o).

O

4. SOME SPECIAL TREES

Note that in the context of Corollary 3.8, given a compact Gy C X and a normally weakly
null collection (G,)aer.p, for any o1 > 0, we obtained a single branch (Gj)p<, such that for
any y € Gy, any (7p)p<a € [ [, Gb, and any o with |o| < oy, there is a convex combination
 of (3)p<q such that ||y +oz|| < 14+ o5 (0,y). However, based on this result, the convex
coefficients of the convex combination z could be different for different choices of y, o, and
(xp)b<a- As we will see later, for our purposes, we will want the convex coefficients not to
depend on these choices. Achieving this result is the content of this section.

If t = (¢;)™, is a sequence of ordinals and if ¢ is an ordinal, we define ¢ +¢ = ({ + ;)™ ,.
We make the same convention for an infinite sequence of ordinals. If 7T is a tree on some
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set [0,7] of ordinals, we define ( +7 = {( +t:t € T}. We now define for each ordinal £
and n € N a particular tree I'¢, which will play an important role in our later results. We
will also define for each such & and n a function Pe,, : I'¢,, — [0,1]. We will also define
some special subsets of I'¢ ,, called the levels of I'¢ ,,, denoted by A¢p1,..., Aenpn. We will
also define some ill-founded analogues of these trees, I'¢ o, with levels A¢ o 1, Agoo2, - - -, and
corresponding functions P¢ o : I'e o — [0, 1].

We define

Fop ={(0)},

the tree consisting of a single node, (0). We define Py ;((0)) = 1.

Next, assume that for some n € N and each 1 < k < n, I'cy, and A¢gq, ..., Agxr have
been defined. Suppose also that ¢ is a tree on [0, w*k). Let

Aﬁ,n—&-l,l = {wgn +i:t€ FEJ}
and for 1 <17 < n, let
A{,n-ﬁ-l,i—i—l = {S ~t:s€ MAX(Agm_H,l),t € Aﬁ,mi}'

Note that ¢ <> wsn+t is a bijection of ¢ ; with Ag 011, and Ag 411 is a tree on [wén, w®(n+
1)). We define P¢,, 11 on Ag 111 by letting Pe 41 (w*n+t) = P¢1(t). Note also that for each
s € MAX(A¢nt11), t > s ~ tis a bijection of Ag,q1,; with {t € Agpy101 05 < t}. We
define P¢ .11 on Agpp1,41 by letting

Penti(s ~ ) = Pea(t),

where s ~ ¢ is the unique representation of a member of A¢ ;1,41 as a concatenation of a
member s of MAX (A¢py11) and a member ¢ of Ag,, ;.

Next assume that for some { and each n € N, I'¢ ,,, P, have been defined. Let A¢i11,1 =
Fepr1q = UpZ e, and define IP’§+171|F£,” = %Pg,n. Note that the union I'g 1 ; = Up2 T'e , is a
totally incomparable union, since any sequence (;)¥_; € T, satisfies w®(n — 1) < ¢; < wén.

For a limit ordinal &, if I'¢c1 11 has been defined for each ¢ < &, we let

Aean =Ter = [ (@ +Tehn).
c<é

This is a totally incomparable union, since for each ¢ < £ and (¢;)%; € w® + T¢yra, W <
(1 < w*'. Moreover, we define P¢ 1|,cqr,,,, by

Pe1(w® +t) = Peyra(t).
We also define A¢ oo1, Agoo 2, - .. by letting
N
and, if A¢ o1, ..., A¢ooi have been defined, letting
A£’w7i+1 = {S ~ (wgz + t) s € MAX(A&OOﬂ),t € Fﬁ,l}
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. We note that A¢ o ;41 admits the alternative description

Atooirt = {51~ (WS +89) ~ oo~ (Wi — 1) + 8) ~ (WS +8) :s € Tey,
S1,...,8; € MAX(FSJ)}

Note that such a representation s; ~ (w® + s3) ~ ... ~ (w¥ + ), s1,...,8 € MAX(T¢ ),
s € I'¢1, is unique. We define

Peoo(51 ~ (W +52) ~ .o~ (WS +8)) = Pey(s).

We let I'e oo = U2 A¢ oo,i and note that this is a disjoint union. We note also that I'¢ o is a
pruned tree, and a member 7 of [I'¢ o] is uniquely representable as

T =5 ~ (W +53) ~ (W24 53) ~ ...,

where s1,59,... € MAX(T'¢1). Moreover, A¢oo1 = I'ey and for any ¢ € N and any s €
MAX (Agooi), t <> s ~ (W& +t) is a bijection of ¢, with {t € Teo : s < ¢} which
identifies A¢ oo With {t € A¢oirj @ s < t} for each j € N, and which satisfies P¢ oo(s ~
(w¥i 4+ t)) = Pea(t) for all t € T¢q. Therefore for such an s, {t € Agooip1 @ s < t} is
naturally identifiable with I'¢ ; in a way which equates values of P¢ , and P¢ ;. Similarly, for
any i € N, any s € MAX (A¢ i), the map 7 <> s ~ (w®i + 7) is a bijection of [['¢ ] with
{7 € [I¢oo) : s < 7}. We will use these natural identifications often in the sequel.

For t € A¢ oo, we define \o(t),..., \i—1(t) by letting \o(t) = @ and A;(¢) be the initial
segment of ¢ such that \;(t) € MAX(A¢o ;). For 7 € [Ieoo], we define \o(7), Ai(7),. ..
similarly.

We also use the notations and analogous identifications above for the trees I'c;.D and
I¢oo.D. By an abuse of notation, Pe; (resp. P¢ o) will denote the function defined on I'g;
(resp. T'¢ ) as well as I'¢ 1.D (resp. I'¢oo.D) defined by Peq(t.v) = Peq(t) for t.v € I'ey.D
(resp. Peoo(t.v) = Pe oo(t) for ¢t € I'¢ .D). The functions \; will also be defined on subsets
of I'¢ oo.D U [I'¢ o). D in the analogous way.

We collect the following obvious facts regarding these constructions, which indicate the
connection between our functions defined above and convex combinations. For a more thor-
ough discussion of I'¢; and I'¢ o, see [3] and [4].

Proposition 4.1. Let & be an ordinal.
(i) For eacht € MAX(T¢1), >, Pea(s) = 1.

(it) For each 7 € [I'¢ o] and each n € N, ZAg,m,nss« Peoo(5) = 2on, 1 (r)<tcnn(r) Peoolt) =
1.

Next, we prove an improved simultaneity result.

Lemma 4.2. Let & be an ordinal and X a Banach space. Let Gy C X be norm compact and
let (Ga)acre,.0 C ¢ be normally weakly null. Then for any ¢ > 0 and o1 > 0, there exists
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a € MAX(U¢1.D) such that for ally € Gy, all o with |o| < o1, and all (zp)p<a € [[,<, G,
Hy + UZIP’g,l(b)wbH <1+e+ k(o).
b<a
Proof. Toward a contradiction, suppose we have compact sets Gy, a normally weakly null

collection (Ga)acr,,.0 C ¢, and € > 0 such that for each a € MAX(T¢;.D), there exist
Yo € Gg, 04 With |o,| < 01, and (2§)p<a € [ [, Gb such that

Yo+ a3 Pea(®)as| > 1+ 2+ o (1ol ).

b<a

For each a € MAX(I'¢;.D), fix x} € Bx« such that

Re z}, (ya + 04 Z IP’&l(b)xg) = ||Ya + 0, Z P§,1(b)$§H-

b<a b<a

Let
H={(ba) ele1.DxTe1.D:b<aec MAX(I'¢1.D)}

Define f : II — R by

f(b,a) = Re @ (yo + 0azf) — 05 (|0al, va)-

Note that since G is bounded, |o,| < 1, Gy € By for each b € Te1.D, and 6% (0,y) < ||yl|+o
for any y € X and o € K, it follows that f is a bounded function. By hypothesis, for each
a€ MAX(I'¢1.D),

D Pea(b)f(b.a) = Y Pea(b) [Re (v + o) — ool )|
b<a b<a
= Re ) (i + 00 Y_ Pea(D)ef) — (ol )
b<a

Yo+ 00y Pea(V)ag| = kol va) > 1+ <.
b<a

By [3, Theorem 4.2] applied with ¢ replaced by 1+ ¢ and § = £/2, there exist functions
d:T¢1.D - T¢q1.Dand e: MAX(I'¢y.D) - MAX(I'¢q.D) such that
(i) for each b,a € I'¢1.D such that b < a, it follows that d(b) < d(a),
(ii) for each a € MAX(I'¢1.D), d(a) < e(a),
(iil) if b = (¢, u;)y and d(b) = (v, v;)1,, then v, C Uy,
(iv) for each (b,a) € I, either f(d(b),e(a)) >1+e—¢/2=1+¢/2o0r
> Pea e(a)) <1+e.
b<e(a)

Above we showed that the inequality 37, ) Pe1(b) f(b,e(a)) < 1+¢ in (iv) is not possible,
so f(d(b),e(a)) = 1+¢/2 for all (b,a) € I1.
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Note that item (iii) implies that the collection (Gy(w))er.,.p is also normally weakly null.
Define Iy = Gy and Fy, = Gy for each b € I'¢y.D. By Corollary 3.8, there exists a €
MAX(T¢1.D) such that for every y € Fy, o with |o| < o1,and (2)pca € ]y, Fb, there
exists © € co(zp : b < a) such that

ly + o] — o5 (lof,y) < 1+¢/2.

However, for each a € MAX(T'¢1.D), ye(a) € Fa, (xd(( )))b<a € [Iy<q Fr, and ()| < o1, but

e(a)

for each v =%, . wbxd( b € co(:cd((b)) :b<a),

1Y) + Te@y @ — 0% (10e(@)] Yea)) = Re 50y Ye(a) + Te(a)T) — 0% (10e(@)], Ye(a))

:Zwa ,e(a))}Zwb(l—i-»S/Z):l—i—e/Q.

b<a b<a

This contradiction finishes the proof.
O

Corollary 4.3. Let Y be a Banach space and let B C By be such that ©6(B) = By. Then
for any o >0,

o5 (o) = sup o (0, ).
yeB
Proof. 1t clear that for any o > 0,
05 (0) = sup 65 (0,y) = sup o5 (a,y) = sup o5 (0,y).
yEBy y€Eco(B) yEB

We will show the reverse inequalities.
Recall that for each o > 0, 65 (0, -) is 1-Lipschitz. Since co(B) is dense in By,

sup o5 (0,y) < sup 65 (0,y).

yEBy y€Eco(B)
Fixo >0, C > sup,cp QY(O' Y), Y1, - - - Yn, a normally weakly null collection (74 )ser, ;.0 C
By, and non-negative numbers wy, ..., w, such that 1 = > w;. By Lemma 4.2 applied

with Go = {y1,...,yn} and G, = {x,}, there exists « € MAX(I'¢;.D) such that for each
1 <1< n,

HZ wiY; + 0 Z ng(@%” < Z w;
i=1 b<a i=1

This shows that

Yi + UZP5,1(5)$I;H <1+C.

b<a

Then

yri—UZP@ :va <1+C.

b<a

& (0> ww) <€
=1
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Since C' > sup,cp Qé(()‘, Y), Y1,---,Yn € B, and wy, ..., w, were arbitrary,

sup 0% (0,y) < sup &} (0,y).
y€Eco(B) yeEB

O

Proposition 4.4. Fiz an ordinal & and 1 < p < oco. For a Banach space X, the following
are equivalent.

(i) X is &-p-AUS.

(ii) There exists a constant ¢ > 0 such that for any compact G C Bx, any normally weakly

null collection (Ga)eer,.0 C ¢, and any € > 0, there exists a € MAX(I'¢1.D) such
that for any y € Gg, any o with |o| <1, and any (zp)s<a € [y G,

lv+0 > Pt < 1+ ol +=.
b<a
(11i) There ezists a constant ¢; > 0 such that for any compact Gz C X, any normally weakly
null collection (Ga)eer,,.0 C ¢, and any € > 0, there exists a € MAX(I'¢,.D) such
that for any y € Gg,any o with [o| < 1, and any (xs)p<a € [y<, Gb,

p
v+ Y Pealas| <yl + ol + 2.

b<a

Proof. (i) = (i) If X is &-p-AUS, then ¢ := sup,-, 6% (¢)/0” < oo. Then by Lemma 4.2, X
satisfies (i7) with this choice of c.

(i1) = (i) The property in (ii) clearly implies that ¢% (o) < co? for any o > 0.

(i1) = (4i7) Assume (ii) holds with constant c¢. Fix G5 C X norm compact, a normally
weakly null collection (G )aer,,.p C ¢, and € > 0. Fix R > sup,¢, ||7| and

0 < & < min{e'/?/2,¢/RP}.

Define Fy = {z/||z|| : z € Gg, ||z|| > ¢}, which is a norm compact subset of Bx. Define
F, = G, for a € I'¢;.D, which is normally weakly null. By hypothesis, there exists a € I'¢ 1.D
such that for any y € Fy, any o with [o| < 1,and any (z3)p<a € [ [, Fb

ly+o > Peit)a| < 1+ lol +5
b<a

Now fix y € Gy, a scalar o with || < 1, and (z4)p<a € [[,<, Gb. Consider three cases.
Case 1: ||y|| < |o|. Then by the triangle inequality,

Hy +o Z Pe1(b)xp

b<a

p
|" < (ll + 1ol < 2210 <yl + (27 + &) ol + <.
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Case 2: |o] < ||y|| < 6. Then by the triangle inequality,

HWUZPU@%H [0+ |of]P < 2P0P < ¢

b<a

< ylP + (28 + &)|o]? + &
Case 3: ||y|| = max{9, |o|}. Then |J/||y||| < 1 and y/||y|| € Fz, so

v+ > Peams| =yl ] e oo

" Wt Toll &

<Nyl (1+ ol /Iyl +6) <yl + (27 + &) |af? + <.

Therefore (7i7) is satisfied with ¢} = 27 4 ¢P.

(73i) = (ii) Assume (i77) holds with constant ¢;. Fix compact Gz C By, any normally
weakly null collection (G4)eere,.p C ¢, and € > 0. By uniform continuity of the function
f(z) = (1+2)"? on [0, 2+}], there exists § > 0 such that (1+c|o|P4+0)Y/? < (1+&|o|P) /P 4e
for any o with |o| < 1. Note also that since the function f is concave on [0, 00), for any
x>0,

(1+z)/P —1
x

< f(0) = 1/p.
Therefore for any o with |o] < 1

Plo|P
1+ ol +6)P <1+ alol , .
p
By our assumption that (i74) holds with constant ¢y, there exists a € MAX(I'¢;.D) such
that for any y € Gy, any o with |o| < 1, and any (73)p<a € [ [, Gb,

o+ o ST Besm]| < (ol + o +6)

b<a
Since Gz C By, we deduce that for any y € G, any o with |o| < 1, any (24)p<q € [ [, Gb,

1/p Flo|P
[+ 03 B 0| < (1l + o +0) " <14 A

b<a

Therefore (ii) holds with ¢® = ¢ /p.
0

Proposition 4.5. Fiz an ordinal £. For a Banach space X, the following are equivalent.
(i) X is §&-AUF.
(ii) There exists a constant g > 0 such that for any compact Gz C Bx, any normally
weakly null collection (Ga)aere,.0 C ¢, and any € > 0, there exists a € MAX (I'¢1.D)
such that for any y € Gg, any o with |o| < oo, and any (zp)s<a € [Ty, G,

Hy + JZPg,l(b)bu <l+e

b<a
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(111) There exists a constant ¢; > 0 such that for any compact Gy C X, any normally weakly
null collection (Ga)eer,.0 C ¢, and any € > 0, there exists a € MAX(I'¢,.D) such
that for any y € Gg, any scalar o with [o| < 1, and any (vp)p<a € [[y<q Gos

lv+ 0> Peav)a| < max{liyl,erlol} +e.

b<a

Proof. (i) = (i) If X is &-AUF, then there exists og > 0 such that ¢ (09) = 0. By Lemma
4.2 applied with o1 = 0¢, X satisfies (i¢) with this choice of 0.

(i1) = (i) The property in (i7) clearly implies that ¢ (c0) = 0.

(i1) = (d¢i7) Assume (i) holds with constant oy > 0. Fix Gy C X norm compact,
(Ga)aere,.p C ¢ normally weakly null. Let

Fo ={a/|z]l: x € Fo, |[z]| > €}

and for each a € I'¢1.D, let F, = G,. Fix 0 < § such that 6Gy C eBy. Since (i7) holds with
constant oy, there exists a € MAX(I'¢;.D) such that for any y € F, any o with |o| < 1,
and any (p)o<a € [[p<q Fos

Hy + O'Z]P)g’l(b)l’b” <1+ 0.

b<a
Case 1: |ly|| < e. Then
lv+ 0> Peav)an| < e+ lof < maxdllyll, (1 +1/o0)lol} + <.
b<a
Case 2: ||ly|]| < |o|/o¢. Then by the triangle inequality,
v+ Yo Bea)ms| < llyll + ol < (1+ 1/00)]o]

b<a

< max{|ly[[, (1 +1/o0)[o]} +&.

Case 3: ||y|| = max{|o|/og,e}. Then

Yy 2
o o 3 Bestohan]| = ol + o S Peaha| < Nl +0) <l +-<
b<a b<a

< max{[jy, (1 +1/00)[o]} +&.
Therefore (7i7) is satisfied with constant ¢; = 1 + 1/0y.

(49i) = (i) Fix Gy C Bx compact and (Go)eer,,.p0 C ¢ normally weakly null. By
hypothesis, there exists a € MAX (I'¢1.D) such that for any y € Gy, o with |o| < 1, and

(@6)b<a € [1peq G
lv+ 0> Pea)a| < max{liyl,erlol} +e.

b<a
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It follows that with og = 1/¢y that for any y € G4, any o with |o] < 09, and any (2)p<a €
Hbga Gb’

HyHZPg,l(b)bu max{|[y|l,c1]o]} +e < 1+e.

b<a
U
Lemma 4.6. Let £ be an ordinal and 1 < p < oo. Let (X, - ||) be a Banach space and
suppose | - | is an equivalent norm on X. Assume B C BQ is such that ¢o(B) = B'Q.

(i) If for each y € B, each o > 0, and each (vq)ser,,.0 C By normally weakly null in

il |y P C<itor
aeMAlxn(rg,lD +sz<; e1(b)zs T
then (X,|-|) is E&-p-AUS.
(ii) If for each y € B, each o > 0, and each (24)acre,.0 C Bﬂé” normally weakly null in
(X’ ” ) ”)7 ’

inf ’ + 0o P x‘<1,
CLEMAXF&lD y ; 51 ol =
a

then (X,|-|) is £&-AUF.

Proof. (i) Fix C > 0 such that %lel C Bg('”. Fix y € B, (7a)aere,.0 C B')ﬁ normally weakly
null in (X, -]), and o > 0. Then (C~'x,)4er,,.0 C Bg('” is normally weakly null in (X, |- ]).
Therefore

inf ‘ +O'ZP51 $b‘: inf ‘y%—aCZIF’U C Tp

EMAX(T¢1.D) EMAX(T¢1.D)
a ( &L b<a “ o b<a

p
<@+ Oloryr <1+ I

Here we used the concavity of f(z) = (1 + z)'/? together with the fact that f'(0) =
1/p. This shows that Q?X’H)(O', y) < CPlo|P/p for any y € B. We then deduce that
SUp,~ OF x o)/ < CF/p by Corollary 4.3.

(1) Fix C' > 0 such that éB‘)(' C BM. Fix y € B, (Z4)aere,.0 C B')Q normally weakly null
in (X,]-|), and 0 > 0. Then (C~'%4)aer,,.0 C By is normally weakly null in (X, - |[|).
Therefore with oy = 1/C,

inf ‘y+aoZ]P>51 xb‘ inf ‘y+Z]P’£1 C xp| < 1.

EMAX(T¢1.D) EMAX(T¢1.D)
a (Te1- b<a “ ot b<a

Therefore for any y € B, QfX,\-I)(U()? y) = 0. By Corollary 4.3, g’fx".')(ag) =0. O
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5. TWO RENORMING THEOREMS

In this section, we provide an isomorphic characterization of &-p-AUS renormability and
of ¢&-AUF renormability in terms of games. Isomorphic characterizations of these properties
were previously given in [5] in terms of big and inevitable subsets of I'¢ ..D, quite technical
notions which we are able to avoid in the present paper.

Recall that for a Banach space X, 1 < ¢ < 00, and a sequence (z,)%; C X, we define

> 1/q
H(mnﬁozl”zu = SUP{ <Z |z (xn)‘q> cxt € BX*}.
n=1

We also use this notation for finite sequences. That is, we denote

“ 1/q
iy = sup{ (3 2 @a)l?) ™ s 2" € By |
n=1

We note that with 1/p +1/q = 1, |[(z,)5Z, |y (vesp. |[[(xn)n2|l;) is the operator norm of

the formal inclusion I : (cgo, ¢p) — X given by e, — z,. Also for a sequence (z,,)52

o1, we let

()51 || = sup,, ||x||, and we use the same notation for finite sequences (z,)" ;.

Recall that for a Banach space X, C'D(X) denotes the set of finite codimensional subspaces
of X. In this section, let £ be an ordinal, X a Banach space, and D = CD(X). Recall that
s, F, ¢ denote the sets of singleton, non-empty finite, and non-empty compact subsets of By,
respectively.

Recall that for each 7 € [I'¢ o], the sequence @ = A\o(7) < A1(7) < ... are such that for each
n € N, \,(7) is the initial segment of 7 such that A, (1) € MAX (A¢ ). We have a similar
definition of \o(t) < ... < A,_1(¢) for each t € A¢ . Similarly, for @ = 7.v € [['¢ oo]. D, we
define \o(a) = @ and A\, (a) € MAX (A¢ oo . D) for each n € N.

for a sequence v = (G;)2, € ¢, we let [[y = [[;2;Gi- Fix 1 < p < oo and let
1/p+1/q = 1. For a constant C, we let £ denote the set of all 7.7 =€ [I'¢ »].c such that

o0 w 00
sup{H( Z ]P’g,oo(t)xm)n:l D(m)2, € H’y} < C.
A1 (1) <t<An (1) e
If we let FZ denote the set of t.g € I'¢ .c such that, if ¢ € Ag o, then
m—1[|% 00
Sup{H( Z Pg,m(t)xm)n:l H D(m)2, € Hv} < C,
An—1(7) <t<An (7) 1

then & = [F§]. By Proposition 2.2, £/ is closed, so either Player S or Player V has a
winning strategy in the (3, ¢, ¢ ) game.

Our next two results are the main renorming theorems of the paper.

Theorem 5.1. Fiz 1 < p < oco. The following are equivalent.

(i) X admits an equivalent &-p-AUS norm.
(ii) There exists C > 0 such that Player S has a winning strategy in the (5, ¢,T'¢ ) game.
(iii) There exists C' > 0 such that Player S has a winning strategy in the (£5, F,T'e o) game.
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(iv) There exists C' > 0 such that Player S has a winning strategy in the (£5,5,T¢ ») game.

Proof. (i) = (ii) Since the condition in (i7) is an isomorphic invariant, we can assume X is
&-p-AUS. By Theorem 4.4, there exists a constant ¢ > 0 such that for any compact Gy C X,
any normally weakly null (G4)aer,,.0 C Bx, and any € > 0, there exists a € MAX (T'¢1.D)
such that for any y € G, any scalar o with |o| < 1, and any (24)p<q € [],<, G,

Jv+ 0> Beams|| < Iyl + lof +<
b<a
By replacing ¢ with a larger value if necessary, we may assume ¢ > 1. We claim that for
any C' > ¢, Player S has a winning strategy in the (£5,¢,T'¢ o) game. We prove this by
contradiction. Assume that C' > ¢ is such that Player S does not have a winning strategy
in the (€2,¢,T¢ o) game.

Since &7 is closed and we have assumed Player S does not have a winning strategy in the
(&L, ¢,T¢ o0) game, Proposition 2.2 yields that Player V' has a winning strategy in this game.
By Lemma 2.3, there exists a collection (G4)qer, ..p C ¢ such that
(a) for a = (G, w;)l € le . D, Gy C uy,

(b) for each v = 7.0 € [Te00]. D, T.(Gajn)y € [Teool.€\ EC-

We will recursively select a; < as < ... such that for all n € N, a,, € MAX (A¢ o0 00.D) and
such that, if & = 7.0 € [I'¢ ). D is the sequence such that \,(a) = a, for all n € N, then
T.(Gap)iZy € &4 This contradiction will finish the first implication.

Fix (g,)52, C (0,1) such that ¢® + >~ , &, < CP. Let ap = @. Fix a1 € MAX (A¢,00,1.D)
arbitrary. Now assume that a; < ... < a, have been chosen. Recall that I'¢ ;.D is canonically
identifiable with

{a € A¢ on1.D 2 a, < a}

via the map a — a,, ~ (wn + a). Let

Fo={3 Y aPenla)rs: (@i € By (tuca, € ]| Gu},

=1 a;_1<a<an a<an

which is norm compact. Define I, = G y(q), where f is the bijection above. Then there exists
a € MAX(T'¢;.D) such that for any y € Fy, any o with |o| < 1, and any (z3)p<q € Hbga E,,

p
o+ o S Bea )| < ol + ot + 21
b<a

Let any1 = f(a). Then since P¢;(b) = Peoo(f(a)), it follows that for any y € Gy, any

(%b) g <b<anss € Han<b<an+1 Gy, and any o with |o] < 1,

p
ly+o S Beattn| <yl + loP + 2nin

ap<b<an+1

This completes the recursive construction.
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Let a = 7.v be the sequence which has a;, as, ... as initial segments. Let v = (Gajn)nZ;-

Fix (24)a<a € [[7 and (¢,)32 € coo such that Y °  |¢,|P = 1. Fix m € N such that ¢, =0
for all n > m. If m = 1, then by the triangle 1nequal1ty, since C' > 1

[oe)

P P
Hch Z Pe (@), :Hq Z Pgoo ), <Cp|cl|p<CpZ|cn|p.
n=1

An—1(a)<a<An(a) a<(a n=1

If m > 1, then by the preceding paragraph, letting I, = {a € I'c oo.D : a1 < a < a,,},

Hi% Y. Pl = icnng,oo(a)x

An—1(a)<a<An(a) n=1 a€ly
m—1
= Zc ZPgm a)x, + cm ZP5°° :vb
n= a€ly, beln,
i p
< ZC Z]P}, a)xq|| + lem|’ + em
n—= aEIn
< chzpfoo xa_’_cml Z ]P)foo CUb
aEIn be[m 1
+ Plem|? +em
HZ en D Peoc
acly,
+ P (leml” + leml”) + (Em—1 + &m)

<.

< Hcl Z Pe oo (@), g + P Z len|? + Zen
acly n=2 n=2
< cpf:|cn|p—|—§:5n :cp—l—isn < CP.
n=1 n=2 n=2

By homogeneity, H D 1(a)<a<in(a) Peoo(a)T )O@Zl
q

trary, 7.y € £4. This is the necessary contradiction.

< C. Since (T4)a<ca € [[7 was arbi-

(11) = (1it) = (iv) These are clear, since any winning strategy for Player S in the
(EL,¢,Teno) game is a winning strategy for Player S in the (€2, F,T¢ ) game, and any
winning strategy for Player (5, F,T'¢ ) game is a winning strategy for Player S in the
(EL,8,T¢ o) game.

(iv) = (i) Our proof is a modification of Pisier’s celebrated renorming theorem for p-
smooth Banach spaces [15]. In this problem, for ease of notation, we will write x in place
of {z} for members of s. We also refer to the games by their target set rather than by the
usual triple, since s and I'¢ o, are understood. Assume C' > 2 is such that Player S has a
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winning strategy in the £, /o game. Fix such a winning strategy xo. For each y € X and
A >0, let F, \ be the set of all 7.y = ((, 2¢)t<- such that for any (c,)5>, € coo,

Y+ ch Z Pe oo (t) " Z enlP < NP

n=1 teAL(T) n=1

cr

For each y € X, let [y] denote the infimum of A > 0 such that Player S has a winning
strategy in the F, y game. Let

n

lyl = inf{Z[%’] neNy= iyl}

i=1 i=1
We will prove that | - | is an equivalent £&-p-AUS norm on X.

Obviously [y],|y| > 0 for all y € X. Note that for any y € X and A\ > 0, if Player S
plays the game according to the strategy xo fixed above, and the game results in choices

7.7 = ((t, Tt)1<r, then for any (c,)22 ,,

y+zcn Y Pewlt) Z\ cnl” < QPH‘ZHP tn Y Peoo(t)as

n=1 teA,(T) n=1 teAn(T)
o0
=2 leal’
n=1
o0 oo
<NylP+ D leal? = leal”
n=1 n=1

= [lyl”-

C’p

Therefore for any y € X, x¢ is a winning strategy for Player S in F, |, game. From this it
follows that for any y € X, |y| < [y] < ||y||. Moreover, for a given y € X, Player S cannot
have a winning strategy in the game F, , game for any A < ||y||/C, which can be seen by
playing any strategy of Player S against the strategy for Player V' which consists of choosing
the zero vector on every turn. Therefore for any y € Y,

Iyll/C < |yl < [y] < lyll-

Next, note that if for some y € X and A > 0, x is a winning strategy for Player S in the
Fy game, then for any non-zero scalar c, x is also a winning strategy for Player S in the
Fey,lepr game. Indeed, if Player S plays according to x, resulting in 7.y = ({;, 7¢)s<-, then for

any (¢,)5%; € coo,

”cy+zcn Z IP>£oo Ty

= teAn(

_Z|C P = |cf?

< e,

by > Pt —z%p]
teA( =1

From this it easily follows that |cy| = |c||y| for any scalar ¢ and y € X.
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It is obvious from construction that | - | satisfies the triangle inequality. Therefore | - | is
an equivalent norm on X.

Next note that for any y € X and A > 0, the set F ) is closed, and therefore the F, y game
is determined. In order to see this, note that for some ar.y = (¢, 2¢)i<r € [Leoo)-8 \ Fyn,

there exists (¢,)22, € coo such that

y+zcn Z IPJ§oo T

n=1 teAn (T

Z|Cn|f’ > AP,

Choose m € N such that ¢, = 0 for all n. > 0 and fix r € N such that Uy, A, (7) = {(&)2
j <y Thenif f =79 = (i, Y)icr € [I'ec].5 is such that Blr = a|r, it follows that
v = G and yp = x4 for all t € Uj_A,(7'), and

C’p

Z ]P)ioo yt Z‘Cnlp_ @ Z/"‘ch Z ]P)ﬁoo _Z|Cn‘p
n=1  t€Au( =1 t€An(r) n=1
= Clp y+zcn Z IP>§o<> Ty _Z|cn|p
= teN,(T) n=1
- Clp y+zcn Z IP>£oo Tt _Z|Cn|p
— teAn(T) n=1
> NP

and € [[e0)5 \ Fyar

Let B={y € X : [y] < 1} and note that B‘)g is the closed, convex hull of B. Fix y € B,
o > 0, and any collection (7,)acr,.. C By normally weakly null in (X, || - ||). Fix a real
number g such that

f ‘ Pe oo (b ’ > 1
b WZ eccB)s] > 1+

Then

p
y+o Z ]P)g,oo(b)l'b

b<a

inf [y +o Z ]P)f,oo(b)xb]p > inf

a€MAX (T¢ 1) — a€MAX (T¢ 1)

> 1+ p.

From this and the previous paragraph, it follows that for each a« € M AX (I'¢;.D), Player V
has a winning strategy in the Fy s~ 5, (5)a, (140> game. By Lemma 2.3, for each a €
MAX (¢ 1.D), there exists a collection (2§)ser, .0 C Bx normally weakly null in (X, - ||)

such that for each 5 = (b, wp)p<p € [Leoo)-D;y (Coy 28 )< € [Feoo)-6 \ F, Y+ S Pe o, (140)1/7-
This means that for each 5 = ((p, up)p<p € [Fg ). D, there exists (¢,)s; € coo such that

C Hy‘i‘O'Z]Pgoo iL‘b+ZCn Z ]P)ﬁoo

n=1  teAn(B)

Zlcn!”>1+u
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Extend the collection (wy)per,,.p to a collection (x4)per, ..o by letting xf = 24 (e ipeta)-
Here we recall that A¢q1.D = T¢1.D and for each a € MAX(T¢1.D), b+ a ~ (w® + )
is a bijection from ¢ o..D onto {b € I'¢ o.D : @ < b} which identifies A¢ o . D with {b €
A¢omt1-D : a < b} and such that Pe oo (b) = Py oo(a ~ (w*+b)) for all b € T'¢ oo.D. From this
it follows that for each 5 = ((p, up)pep € [Le00)- D, if @ < 5 is such that a € MAX(T¢ o.D)
and if a ~ (W + a) = B, then there exists (¢, )%, € cgo such that, with ¢; = o,

oSS 3 rtml -Skr
n=1 " beAn(B)
y+o Z Pgoo xb+ch Z IP’& H —Z|Cn|P

Cp beA1(B n=2 beEAR( n=2
- = yﬂZPsoo waCn > ﬂ»& Zw
= teA, (a
>14+p

But since y € B, [y] < 1, so there exists a winning strategy for Player S in the F,; game.
If B = (¢p,up)p<p is chosen according to such a winning strategy, it follows that for any

(€n)22 € coo, With ¢ = 0,

43 en S ety o~ 3 e <1
n=2

n=1 beAn(B)

Combining this inequality with the previous inequality yields that 14+ < 1+0?, and p <
By Lemma 4.6, (X, |- ]) is {&-p-AUS.

Theorem 5.2. The following are equivalent.

(1) X admits an equivalent §-AUF norm.
(it) There exists C > 0 such that Player S has a winning strategy in the (E&°,¢,T'¢ ) game.
(111) There exists C > 0 such that Player S has a winning strategy in the (E°, F,Le o)
game.
(iv) There exists C > 0 such that Player S has a winning strategy in the (£2°,8, ¢ o) game.

Proof. (i) = (ii) This is similar to the implication (i) = (i7) of Theorem 5.1. More precisely,
we select a constant ¢ from Proposition 4.5, C' > ¢, and positive numbers (e,,)2, such that
Yo 5en < C'—c. Then in the recursive construction of the a,, the sequences are chosen
according to so that for each

y € Gy = {i—cm S Peel@)ra : (en)iy € Bun, e [T6a}

am—1<a<am asan
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each o with o < 1, and each (24)a,<a<an.s € ]

Hy+0 > Peoola)za

an<a<an+1

an<a<ani1 a

< max{|[yl, clof} + ensa-

After completing the recursive construction, we define o and +y as in the proof of (i) = (i)
of Theorem 5.1 and compute for any (2,).<o € [[7 and (¢,)32, € B, such that ¢, = 0 for
all n > m that, with [,, = {a € ¢ .D : a1 < a < a,},

360 Pt =[S
a€ln acln
—Hzcnngw l’a—i‘CmZPgo@ IbH
acly belnm,
{Hzcnzpﬁoo a)Tq 7c‘cm‘}+€m
aEIn
< max{max{HZ Z Pe (@), ,c|cm_1|} + Em—1, c|cm|} + em
n=1 a€l,
< max{HZ Pe oo (@) g ||, clem—-1], c|cm|} +éem_1+Em
a€ly

<.

o0
< ¢ max ||+ E em < C.
1<n<m 1
n—=

(11) = (#i1) = (iv) These are clear, since any winning strategy for Player S in the
(&€8°,¢,T'e o) game is a winning strategy for Player S in the (£, F,I'¢ ) game, and any
winning strategy for Player (£2°, F,T'¢ ) game is a winning strategy for Player S in the
(€¢°,8,T¢ ) game.

(iv) = (i) As in the proof of Theorem 5.1(iv) = (i), we refer to games simply by their
target sets. Assume that C' > 0 is such that Player S has a winning strategy in the £ game.
Let xo be such a strategy. For y € X and A > 0, let G, » be the set of all 7.7 = ({, %4 )1<r
such that

<A

SUPHerZ > Peoo(t)m

n=1 teA, (1)

For y € X, let g(y) be the infimum of A > 0 such that Player S has a winning strategy in the
Gy.n game. It is obvious from the triangle inequality that for any y € X, the strategy xo is
a winning strategy for Player S in the G, |, j+c game. Therefore g(y) < ||y|| + C. Obviously
g(y) = |ly|| for any y € X, which can be seen by considering the strategy for Player V'
consisting of choosing the zero vector on each turn. Let G ={y € X : g(y) < 1+ C}. By
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the preceding remarks,
int(Bx) C G C (1+C)Bx

Let | - | be the Minkowski functional of the closed, convex hull of G. By the preceding
remarks, | - | is an equivalent norm on X. We will show that (X,|-|) is &-AUF. Fix y € G
and a collection (74)4er ;.0 C By which is normally weakly null in (X, | - ||). Seeking a
contradiction, assume that

inf ‘ + P a:’
CLEMAX(Fs’l Z 61 b

Since G C B‘)'(l, it follows that for each a € MAX(I'¢1.D), y + >y, Pea(b)ry ¢ G, which
means g(y + 2 hea Pg,l(b)xb) > 1+ C. Therefore

inf <y+ZP§1 J,) > 1+C.

a€MAX(T¢ 1.D -
a

Since y € G, g(y) < 1+ C. Fix g(y) < ¢ < 1+ C. The remainder of the proof is similar
to Theorem 5.1(iv) = (i). For each a € MAX(I'¢,.D), we fix a collection (2)er, .0
and then use these to extend the collection (I’a)aerg’m_ p. Moreover, this tree is constructed

from the collections (7f)ser, .0 such that for any a € [[¢o].D, if @ < «a is such that
0 € MAX (A¢oor.D) = MAX(Te,.D),

supHy#—Z Z Pe oo (b .Z‘bH supHy—FZIP’gl xb—i-z Z IP’goo

n=1 beA, () n=1beA, (8

> ¢,

where @ = a ~ (w®+f3). The existence of such a collection contradicts the fact that g(y) < ¢,
according to Lemma 2.3. This shows that for any y € GG and any collection (.Z'a)aepgyl. p C Bx
which is normally weakly null in (X, || -||),

Ul T P <1

Therefore (X, |- 1) is {&~AUF by Lemma 4.6.
U

Remark 5.3. In [10], Godefroy, Kalton, and Lancien showed that AUF-renormability is a
Lipschitz invariant. The notion of £&-AUF-renormability was developed to be a candidate for
higher ordinal versions of their theorem. However, there remain obstructions to the proof of
the analogous theorems, namely the need for a strengthening of the Gorelik principle which
can be applied multiple times during games of the type studied in this work, and which
approximately preserves the values of functionals chosen during the game.
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6. GAMES ON C(K) SPACES

In this section, we discuss projective tensor products. We recall that for Banach spaces
X,Y, the projective tensor norm defined on X ® Y is defined by

ISz @] = el - S e @ = Y ).
=1 i=1 i=1 i=1

The completion of X ® Y with respect to this norm is denoted by X®,Y. We state now
the two main properties of the projective tensor product which we will need in the sequel.
First, By y is the closed, convex hull of {x ® y : © € Bx,y € By}. The second fact is that
if S: X - Xand T :Y — Y are operators, then there is a bounded, linear operator from
ST : X®,Y — X®,Y such that (S®T)(z®@y) = Sr® Ty for all z € X and y € Y, and
IS @7l = ST

For a compact, Hausdorff space K, and a subset M of K, we let iso(M) denote the set of

relatively isolated points in M. For M C K, we define the Cantor-Bendizson derivative of
M by M'" = M \iso(M). We note that M’ is closed in the relative topology of M. Therefore
if M is closed in K, so is M’. We define the transfinite Cantor-Bendixson derivatives by

M° =M

MEH — (4,
and if £ is a limit ordinal,

M& = (M.

(<¢

We say that K is scattered if any non-empty subset of K has an isolated point. It is obvious
this is equivalent to the condition that there exists an ordinal ¢ such that K¢ = @. If
K is scattered, we let CB(K) denote the minimum ordinal v such that K = @. The
value C'B(K) is the Cantor-Bendizson index of K. If K is compact, then by our preceding
remarks, K¢ is either compact or empty for each ordinal £. From this it follows that for

a scattered, compact, Hausdorff topological space, C'B(K) must be a successor ordinal.
Moreover, CB(K) = 1 if and only if K is finite.

Example 6.1. For any ordinal £, it is easy to see that if ordinal intervals are endowed with
their order topology, for ¢ <&,

0,07 = { JU{w™ + .. . +w™ e >... >, > ()
From this it follows that [0,w*]® = {w®} and CB([0,w]) = £ + 1.
Let us isolate the following standard facts about the Cantor-Bendixson index.

Proposition 6.1. Let K be compact, Hausdorff space and let &, be ordinals.
(i) It holds that (K¢)¢ = K¢,
(ii) If CB(K) = € + ¢, then CB(K¢®) = (.
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(iii) If n is a positive integer and F C K=V \ K" then CB(F) < w*.
3
(iv) For Ty, ..., T C K, (u;r;OTj> = U TS,
(v) For Ty,..., T, C K, CB (u;?;ﬂ}) — maxoejem CB(T}).

Proof. Item (7) follows from an easy induction argument and item (4i) follows from (7). For
(ii), F** € F N (K< 0-Dy — po Kot —
Item (iv) is an easy induction, and item (v) follows from (iv).
U

We next recall the following formulation of Grothendieck’s inequality from [16, Theorem
5.5, page 55]. In what follows, k¢ is Grothendieck’s constant and a scalar-valued, bounded,
bilinear form ¢ : C(K) x C(L) — K is endowed with the norm

lell = sup{|e(f,9)| : f € Bow), 9 € Bow)-

Theorem 6.2. Let K, L be compact, Hausdorff sets. For any bounded, bilinear form ¢ :
C(K) x C(L) = K, there exist Borel probability measures u,v on K, L, respectively, such
that for any f € C(K) and g € C(L),

o(f 9)l < kGH(pH(/K‘f|2du)1/2(/L\g\2du>l/2

For the following proof, we recall the definition of the g-weakly summing norms. For a
Banach space X, a sequence (z,)22, C X, and 1 < ¢ < 0o, we define

IGzn)nally = sup{ll(e™(zn))nlille, : 2% € B

For convenience, we will assume the value ||(z,)52,[|y’ to be defined for any sequence in X,
even if the value is finite. For (z,);2; C X such that [[(z,);2,[];y < oo, we refer to the
value [|(z,)52, ][y as the g-weakly summing norm of (r,);2,, and we say (x,)p2; is g-weakly
summing.

Corollary 6.3. Let K be a compact, Hausdorff space. Assume C > 0,0 =19 <11 < ...

are integers, (w;)32, is a sequence of positive numbers such that 1 = Zg”r L w; =1 for

each n € N, and (F) 21 C Bek) 1s a sequence of sets such that for any m € N and any
(i) € T P, Hzn T wlfil| < 0
(i) For any compact, Hausdorff space L, any (f;)52, € [[;2, Fj, and any (g;)51 C Bo(w),
(St @a) |, <o
(ii) If (z))72, C C(K )@:C(L) is such that for each j € N, z; € co{f @ g: f € Fj,g €
e (e o) | e
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Proof. (i) Fix a compact, Hausdorff space L, (f;)52; € [[}2, Fj, and (g;);2; € Be,). To
finish (), it is sufficient to show that for any m € N and scalars (¢, )", such that Y " | |c,|* =
, it holds that HZ L Cn it i Wifi® ng < keC. To that end, fix m € N and scalars

(cn) *_, such that 37 |e,|? = 1. Recall that (C(K)®,C(L))* is the space of all bounded,
bilinear forms on C'(K ) x C(L). Fix a bounded, bilinear form ¢ on C(K) x C(L) such that
|¢l| = 1. By Theorem 6.2, there exist Borel probability measures u, v on K, L, respectively,

1/2 1/2
such that for any f € C(K) and g € B(L), |¢(f, g)] <kg<fK|f|2du> (fL |g|2d1/> . We
note that since 1 = ZT” 41 wj for each n € N, it follows from Jensen’s inequality that for

each n € N together with the fact that | f;ll <1forall j €N that

([ 1) Q;H“’j [k < (30w [ i)

J=rn— 1+1 Jj=rn—1+1

Therefore

‘<%ch Z waJ®gJ>’_‘ZCn Z wip(fi,95)

n=1 Jj=rn—1+1 = j=rn—1+1

Tn

<Z!cn| > wile(f,95)]

j:T'n 1+1

T" 1/2 1/2
kGZ ol 30w 1) ([ o)
L

Jj=r 71+1

7“" 1/2
kgzycn\ wr ([ 1) s

Jj=rn—1+1

k’GZ|Cn| Tn Wy /|f]|dﬂ>

J=rn— 1+1

< kGZ el w; / ldn)”

.7 Tn— 1+1

—kGZ|cn| / 3 wj|fj|du)

] Tn— 1+1

<kG(Z\cnr Z . S wlpln)”

Jj=rn—1+1

— ke /Z > wlsldn)”

n=1j=r; 1+1

<k 3wl

n=1 j=rp_1+1

/
< kaCV2,
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(79) Let (z;)32, be as in the statement of (i7). Fix m € N and (c,);.; be such that
> 1 len| = 1. Note that since z; € co{f @ g : f € Fj, g € Ber}, it follows that

Yo Y wmeo{Ya Y cwfien: ()5 [[Fo e Bow )
n=1 j=rp—1+1 n=1 j=rp—1+1 j=1

C kCl/QBC(K)®7,C(L) ,

where the last containment follows from (7). Since m and (c,)i, were arbitrary, we are
done.
U

The preceding result involves sequences in C'(K') sequence which are 1-absolutely summing.
Our next goal is to show that we may always find such collections. In what follows, for a
compact, Hausdorff space K and a finite, non-empty subset N of K, we let Ann(N) ={f €
C(K): fln =0}. We let Ax denote the set of all finite, non-empty subsets of K. Given a
tree T' and a collection (F})per 4, of subsets of C'(K), we say (F})per.a, 1S normally pointwise
null provided that for any a = ({;, N;)I, € T. Ak, F, C Ann(NV,,) (that is, if f|y, = 0 for
every f € Fp).

We next define the Grasberg norm for a scattered, compact, Hausdorff space. If K is
compact, Hausdorff, scattered, then there exist a unique ordinal £ and positive integer k
such that K**~1) £ & and K“* = @. We then define the equivalent norm [] on C(K) by

[f] = max 2j”f|Kw5(j71)||-

1<y<k
Of course, for any f € C(K),
LA < [T < 2511

The Grasberg norm is a &-AUF norm on C(K), which will be shown as a consequence of the
following result. In what follows, when C(K) is written without a specific reference to the
norm, it will be understood that the norm in question is the usual norm. When we wish to
refer to the Grasberg norm, we will make it explicit.
For the following result, we also establish the following notation. For h € C'(K) and ¢ > 0,
we let
M;(h,¢) = {H e KU . 93 |p(k)] > c}

and
k—1
M(h,c) = U M;(h,c).
§=0

For a finite subset H of C(K), we let M;(H,c) = UpegM;(h,c) and M (H,c) = Upeg M (h, c).
Of course, M;(h,c), M;(H,c), M(h,c), M(H,c) are compact for any h € C(K), H C K
finite, and any ¢ > 0.

Lemma 6.4. Let K be scattered, compact, Hausdorff and let & be an ordinal. Assume that
K¢ £ &5 and K“*% = @. In what follows, || denotes the Grasberg norm on C/(K).
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(i) If h € C(K), then for any ¢ > [h], CB(M(h,c)) < w®.
(i) If H is a finite subset of C(K) and ¢ > maxueg|h], then CB(M(H,c)) < w®.
(iii) If M C K is compact and C B(M) < w®, then for any normally pointwise null collection
(Fb)vere.ax C foux) and any € > 0, there exists a € MAX (U'¢1.Ak) such that for all

(fo)v<a € [pea I
(Srawn), <

(iv) Assume 1 < C < C', H,F are finite subsets of C(K) such that for each h € H and
ferlF, [n<C,f] <1/2, and || flamcnl < ch. Then for any (h, f) € H x F,
h+ f]<C.

Proof. (i) Let h,c be as in (7). Since for any h € C'(K) and ¢ > 0,

0<y<k

CB(M(h,c)) = CB(U M;(h, c)) = max CB(M;(h,c)),

in order to prove (4), it is sufficient to show that C'B(M;(h,c)) < w® for each 0 < j < k.
First consider the case £ = 0. In this case, CB(M;(h,c)) < w’ = 1 is equivalent to
the condition that M;(h,c) is finite. If M;(h,c) were infinite, then there would exist some
accumulation point s of M;(h,c) ¢ K*"0~) = Ki~! Since an accumulation point in
K771 cannot be isolated in K771, it follows that k € K7. If j = k, this is the necessary
contradiction, since K* = @, so assume j < k. Since 27|h(rg)| > ¢ for all kg € M;(h,c),
since  is an accumulation point of M;(h, ¢), and since h is continuous, 27|h(x)| = ¢. Then

c>[h] > 2j|h(n)| > ¢,

which is the necessary contradiction in the 7 < k case. This concludes the £ = 0 case.

Now consider the £ > 0 case. In order to show that CB(M;(h,c)) < w?®, it is sufficient to
show that there exists ¢ < w® such that M;(h,c) N KwtU- 1)+< = @. Indeed, if M;(h,c)N
K< U=+ = g then M,(h,c) ¢ K<*U~D\ K« 0D+ and

CB(M;(h,c)) < CB(K“U=D\ K00+ — ¢ < f,

In order to obtain a contradiction, assume that for every ¢ < w®, M;(h,c)N K@ 0D+ £ g,
Then since (M;(h,c) N K Wi 71)+<)C<w§ is a decreasing chain of compact, non-empty sets,
which therefore have the finite intersection property, it follows that

M;(h,c) N K< = M;(h,c) N (| K005 = () (M(h,c) N K< 0D £ .

(<wé (<wé

As in the previous paragraph, if j = k, we reach a contradiction by noting that K Wi =
K“* = @ and if j < k we reach a contradiction by noting that if £ € M;(h, ¢) N K**, then

c>[h] = 27h(K)| > c
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(i4) By (i), CB(M(h,c)) < w® for each h € H. Since H is finite,

CB(M(H,c)) = (JB( L M(n, c)> = max CB(M(h,c)) < o,
heH
(49i) We also work by contradiction. If { = 0, then M is finite. Therefore if (Fy)per, .4, =
(Fy)bero.Ax is normally pointwise null, we can choose a = (0, M) € MAX(T'g;.Ax) and
note that for any f, € F,, by the definition of normal pointwise nullity, f,|»; = 0. Of course

|2 )] || = st =0,

Now consider the £ > 0 case. Assume that (Fb)bef‘g’lh Ax C fo(x) is normally pointwise null
and for each a € MAX (¢ ;. Ak), there exist r, € M and (f{)p<a € [[,<, Fb such that

e <Y Pea(O)|fil(ka)-

b<a

this implies that

We argue as in Lemma 4.2.

Let
II = {(b, a) S Fﬁ,l-AK X Fé’,l-AK b <aé€E MAX(F&JAK)}
Define ¢ : Il — R by
p(b,a) = [ fi'|(Ka).
Note that ¢ maps into [0, 1], since F,, C Bk for all b € I'e ;. Ag.
By hypothesis, for each a € MAX (T'¢ 1. Ak),
D Bei(b)p(b,a) = > Pea(b)|fl(ka) > e
b<a b<a
By [3, Theorem 4.2], there exist functions d : I'e 1. Ax — I'e 1. Ag and e : MAX(I'¢1.Ag) —
MAX (T'¢1.Ak) such that
(i) for each b,a € I'¢ 1. Ak such that b < a, it follows that d(b) < d(a),
(ii) for each a € MAX (I'¢1.Ak), d(a) < e(a),
(iii) if b = (¢, N;)™, and d(b) = (v;, P;),, then P, C N,,,
(iv) for each (b,a) € II, either f(d(b),e(a)) 2 e —¢/2=¢/2 or
> Peai(b)f(b,e(a) <e.
b<e(a)
Above we showed that the inequality >, ., Pe1(b)¢(b,e(a)) < & in (iv) is not possible, so
[F55) | (eta)) = (d(b), e(a)) > 2/2 for all (b,a) € II.
We next claim that for any 7 < w® and a € Fgl.AK, there exist w, € M" and (hy)p<a €
[Tp<o Faw such that for all b < a, |hy|(wa) = /2. In particular, this will imply that for each
n < ws, M" # &. By compactness of M and the finite intersection property, this will imply

that M** = N,cwe M7 # @, contradicting the fact that C'B(M) < w®. We prove the claim
from the first sentence of the paragraph by induction on 7.
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Base case, 7 = 0. In this case, for a € I'} | . Ax = I'¢1. A and b < a, let hy = fj((g)) € Fyu)
and w, = Keq) € M = M°. Tt follows from the properties of d and e that |hy|(w,) =
130 (eg) > €/2

Limit case: Assume 1 < w® is a limit ordinal and the result holds for every v < 7. Fix
a € ngl.AK = ﬂv<n I'Y 1. Ak. By the inductive hypothesis, for each v < 7, there exists
(@os (M )b<a) € M X []yey Fae) such that for each v < 7, w, € M" and for each b < a,
|hy|(wo0) = €/2. Since M x [],, Faw) is compact,

ﬂ {(w’yv (hg)b<a> e = U} ?é .

v<n

Then if (@, (hp)v<a) € Nyey {(@, (1) )<a) : 7 = v}, it holds that

we | M =M,

v<n

(ho)o<a € [lpeq Fap), and by continuity of the map (7, (gn)s<a) — (Ig5](7))p<a on M x
[To<q Faw), it follows that [hy|(cw) > £/2 for each b < a.

Successor case: Assume that the claim holds for some 7 < w®. Fix a = t.f € ngl.AK.
Note that since t € ngl, there exists ¢ such that ¢ ~ (¢) € I'/;. Then for each finite,
non-empty subset N of K, a ~ ((,N) € I‘gl.AK. Let D denote the set of finite, non-empty
subsets of K and direct D by inclusion. By the inductive hypothesis, for each N € D,
there exist wy € M", (Y )p<a € [I<o Fawy, and gn € Fya~c,ny) such that for each b < a,
|hy'[(wn) > /2, and such that |gn|(wy) > €/2. By compactness of M" x [],_, Fyw), we can
select (@, (hy)o<a) € M" X [y, Faw) which is the limit of a subnet of ((wn, (7} )v<a))neD-
As in the previous paragraph, we deduce that |hy|(w) > /2 for each b < a. We claim that
w € M"™!. Since w is the limit of a net in M7, it follows that @ € M". To show that
n € M it is sufficient to show that w is not isolated in M". To that end, let U be any
open set in K containing w. Since (@, (hy)p<q) is the limit of a subset of ((@x, (7 )o<a))NeD,
there exists N € D such that {w} C N and wy € U. Let d(a ~ ((,N)) = (¢;, E;), and
note that by property (iii) above, N C E,,. Also, by the definition of normally pointwise
null, it follows that for each g € Fy~(c,n)) and each 7 € E,,, h(7) = 0. Since w € N C E,,,
it follows that for each g € Fyq~(c,n)), 9(@w) = 0. Recall that gy € Fyq~(c,n)) has the
property that |gn|(wn) > €/2. Since gy € Fya~c,n), gn(w) = 0, from which it follows that
wy # w. Therefore w # wy € U N M". Since U was an arbitrary neighborhood of w, it
follows that @ is not isolated in M7, and w € M"*!. This completes the proof of (ii4).

(iv) Fixh € Hand f € F. Fix0< j < kand k € KU~V If x € M,;(H,C") € M(H,C"),

then |f(r)| < %€ and

. . j—1
2 () + F(8)] < 27 ()| + e (O O) < B+ (0= O) <O+ ¢ —C = C.
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If k € K“*U-D\ M,;(H,C"), then 27'h(k)| < C"/2, so
27Hh(k) + f(R)] < 2THR(R) + 277 f(R) S C'/2 4 [f] < C'/2+1/2< O

This shows that 2/71|(h 4 f)|wep-1) < C'. Since this holds for 0 < j <k, [h+ f] < C'

U

We now define a game closely related to the games associated with ¢&-AUF-renormability.
For a compact, Hausdorff space 2, C' > 0, and an ordinal &, Player S chooses (; such that
(¢1) € I't o and a finite, non-empty subset Ny of 2 (equivalently, Player S chooses ({1, Z1) €
IeooAq, where Z; = Ann(Ny)), and Player V' chooses a finite subset F; of Ann(/N;). Player
S then chooses ¢y such that ((;)7; € T¢o and a finite, non-empty subset Ny of €, and
Player V' chooses a finite, non-empty subset F» of Ann(N,). Play continues in this way
until & = (o, Ann(N,))aca € [Teoo]- Ao and (Fi)aca € fox) have been chosen so that
F, C Ann(N,) for all a < a. Player S wins if for all (f,)s<a and m € N,

SupH sup Peoo(a)] fal
1 a€An(a)

More formally, if 2 and £ are understood, we let Zx denote the space of all & = ({4, F,)a<a €

[I'e.00)-f (o) such that for all m € N and (f,)a<a € [[,<q Fa
S 5wl <
=1 acAn(

Then the game above is the game (Z¢, o), I'¢ o), where D = Aq.

Lemma 6.5. Assume & is an ordinal, r is a positive integer, and ) is a scattered, compact,
Hausdorff space such that Q=Y £ & and Q" = @. Then for any C' > 2", Player S has
a winning strategy in the (Zc, fo@), Less) game.

Proof. In the proof, let [-] denote the Grasberg norm on 2. Note that

LA < [F] <277

for all f € C(2). Therefore for f € Bey, [|f]/2"] < 1/2.

Fix C' > 2". It is easy to see that IC is closed, so the game is determined. Assume
Player S does not have a winning strategy in the (Z¢, fo(q), I'e,c0) game. Since the game is
determined, Player V' has a winning strategy. By Proposition 2.3, there exists a normally
pointwise null collection (F},)aer, .4, such that for any a € [I'¢ o]. Aq,

supmaX{HZ Z Pe oo (@) | fal :(fa)a<a€HFa}>C’.

n=1 aeAn(a a<o

1=C) < C] <...with sup,, C! = C/2". We will recursively choose a; < ay < ... with
an, € MAX(A&OOJL.AQ).
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First we perform the base step. Fix a1 € MAX (A¢ 1.Aq) arbitrary. Let

Hy = {3 Pelful /27 (fo)azar € [ £

a<ay a<al
and note that [h] < 1/2 < 1= C{ for all h € H;.
Now assume that a; < ... < a,, have been chosen. Assume also that with
{Z S Peocl@)lfal/2: (foasan € [ Fa}.
n=1 a€An(am) asam

it holds that [h] < C! | for all h € H,,. By lemma 6.4(ii), CB(M(H,,,C"))) < w*. Using
the canonical identification of I'¢1.Aq with {a € A¢oomi1-Aa @ am < a} together with
Lemma 6.4(i77), there exists a1 € MAX(A¢ comt1-Aq) such that a,, < a,,41 and for any

(fa)aeAm+1(am+1) S HaeAm+1(am+1) Faa

I Pecl@lfl) e < G = Cic
a€Am41(am+1)

Define

F={ 3 Pel@lfel/?: Udocrmistonn € 1] Fa

a€Amy1(am+1) a€lmi1(am+1)

and

m—+1

Hyp1 = {Z > Peocl@)fal /27 (fa)azames € ] Fa} ={h+f:heH,fecF}

n=1 a€An(am) a<am+41
By the assumptions on H,,, [h] < C/ _, for each h € H,,. By the ﬁrst line of the proof,
[f] < 1/2 for each f € F. By our ch01ce of @1, ||| Mol < “n—Cm-t for each feF.

Then by Lemma 6.4(iv), it follows that
max = max{[h+ f]: (h, f) € H, x F} < C,

9€EHm 41
This completes the recursive process.
If @ € [[¢no]-Aq is the sequence which has ay,as, ... as initial segments, it follows from

the recursive construction that

supmax{HZ Z Pe oo (a)] fal

m

t (fa)a<a € HFa}

n=1 aeA,(a) a<a
— 2 supma{|[3 Y Bexloll/2] - oo € TT £}
n=1 acAn( a<a
<2 supmax{ [Z Z Pe oo (a)] fal /27"} : (fa)a<a € H Fa}
m n= 1aEA (o) a<la
SupC’ L, =0C.

This contradicts the properties of (I )ser, .4, and finishes the proof.
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0

We next provide the last technical piece prior to our main results. In what follows, for
a compact, Hausdorff space K and w € K, §, € C(K)* denotes the Dirac measure on K

given by (0w, f) = f(w@).

Lemma 6.6. If K, L are compact, Hausdorff spaces, FF C K, and G C L, then for any
u € Bogoya,om M ayerxc Ker(d: ®0x) and any e > 0, there exist finite sets A,C C Bex)
and finite sets B, E' C Bery and x,y € Begyz, oy such that

(i) A C Ann(F) and E C Ann(G),

(it) € co{f®g: feAyge B},
(i) y € co{f ®g: feC,ge€ FE},

(v) ||u—4(z+y)|| <e.

Proof. Since |lul| < 1, there exist m € N, positive numbers (w;)?; such that " w; = 1,
and functions (f;)72; C Bk, (9:)it1 C Beqry such that |Ju — 307 wif; ® gif| < €/2.

Let (Uy)wer be pairwise disoint open subsets of K such that for each k € F, k € U,,. Let
(VA)aec be pairwise disjoint open subsets of L such that for each A € G, A € V). For each
k € F, we can fix a continuous function e, : K — [0, 1] such that e.(x) = 1 and e,|x\v, = 0.
Similarly, for each A\ € G, we ca fix a continuous function hy : L — [0, 1] such that hy(\) =1
and hy|p\v, = 0.

Define Py, Q@ : C(K) — C(K) by Pif = > .cp f(k)e, and Q1 f = f — P f. Note that
| P1|| = 1, so that ||@Q1]] < 2. Note also that @, is a projection whose range is Ann(F).

Next, define P, Qs : C(L) = C(L) by Pog =3 . 9(A)hx and Q29 = g — Pag. Note that
||| = 1, so that ||@Q2|| < 2. Note also that Q) is a projection whose range is Ann(G).

Define R, S, T : C(K)®,C(L) — C(K)&,C(L) by letting R = P, @ P5, S = Q, ® P, and
T =1 ® @2, where I = Io(k). Note also that |R| = || P[] = 1, ||S]| = |Q:]/[|[ ] < 2,
and ||T|| = |1]|||@2]| < 2. Note also that for any v € C(K)®,C(L), Rv + Sv + Tv = v.
Indeed, if J denotes the identity on C'(L),

IRJ=1IR(Po+Q)=1Q0P+1Q:=(P+Q1)@P+T=R+S+T.

Note that for an elementary tensor f ® g,
Rf@g= (D fe) ® (Do) = D (0,00 @ ghes @ hn.
KEF AeG (r,\)EFXG

From this we can see that Rv = 0 for any v € ﬂ(,w\)eFXc ker(d, ® 0y).

Let u € Boyza, o) N Nwnerxa ker(dx ® 0x) be as in the statement of the lemma. For
e > 0, we can fix m € N, positive numbers (w;)"; such that 1 = "™ w;, and (f;)", C
Be(ky, (9:)1%1 C Bery such that ||u—>""  wif; ® g;|| <e/2. Let v=>3""_, w;f; ® g;. Since
|R|| =1and Ru=0, |Rv| < ||Rul| + ||R||||v — u|| < &/2. Let z = 1Sv and y = 1Tv. Then

lu—2(x+ )| =|lu—Sv—Tv|| <||lu—2|+||Rv|]| <e/24+¢/2=c¢.
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Let
A={Q1fi/2:1<i<n} C Bewu) NAm(F)
and
B ={Pyg;:1<i<n}C Beu

and note that

x = %S;mﬂ@giZsz’(Qlfi/Q)@ngi c€co{f®g:feAge B}

i=1
Let
C={fi:1<i<n}C Bew
and
E={Q29:;/2:1<i<n} C BeryNAnn(G)

and note that
1 n n
y= §T2wifi ®gi= > wifi ® (Qagi/2) Eco{f®g: feC,geE}
i=1 i=1

O

Theorem 6.7. Assume & is an ordinal and K, L are compact, Hausdorff spaces such that
w¢ < max{CB(K),CB(L)} < wt'. Then C(K)®,C(L) is £&-2-AUS-renormable.

Proof. Without loss of generality, we can assume CB(K) > CB(L). We can assume K, L
are disjoint. Fix k € N such that K**=D £ g and K“** = @. Fix ¢ > kg2¥2, where
ke denotes Grothendieck’s constant. We claim that Player S has a winning strategy in the
(€2,50(k)8.0(1): Le.co) game as defined in Theorem 5.1. We prove this by contradiction, which
means we assume Player V' has a winning strategy in this game. Since we are playing the
game with singleton sets s¢x)g_c(z), this means we may assume there exist (uq)aere .0 C
Borys, oy normally weakly null such that for every a = (Cu,ta)aca € [Leoo]-D, ¢ <
I (Zae/\n(a) ]P’&oo(a)ua)zole’é”. Here, D = CD(C(K)®,C(L)), the set of finite codimensional
subspaces of C(K)®,C(L).

Let 2 = K& L be the topological disjoint sum of K and L. Note that CB(2) = CB(K) €
[w(k — 1),w®k). Fix 28 < ¢; such that 4kgc; < c. By Lemma 6.5, Player S has a winning
strategy in the (Z.,,sc(q), [¢0) game. Let x be such a strategy. Fix (e,)p2; such that
dkger + Y7 jen <c.

In the proof, for f € C(K), let f+0 € C(Q) be the function such that (f + 0)|x = f
and (f +0)|, = 0. Similarly, for g € C(L), let 0+ g € C(Q2) be given by (04 ¢)|x =0 and
(04 g)| = g. For a finite subset M of Q, we will denote M = (M NK)® (M NL).

Let x(@) = ({1, F1 @ G4). By enlarging Fy, Gy if necessary, we may assume these sets are
each non-empty. Let Z1 = [\, e xq, Ker(dx ® 0x) and by = ((, Z1) € D'¢1.D. Since wy, €
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Byz,, by Lemma 6.6, we can fix A;,Cy C Bek) be such that A; C Ann(Fy), By, By C Ber
be such that F; C Ann(Gy), and

T €Eco{f®g: f € A,g€ B},

ypeco{f®yg: felge bl
and |lup, — 2(x1 +y1)|| < 1. Let

Ni={f+0:fe€A}U{0+g:g€ £},

which is a finite subset of Begy N Ann(Fy @ Gy).

Now assume that b, = ((;, BZ )7y € It oo.D has been chosen. Assume also that we have
sets Ay, ..., An, C1,...,Cp C Boky, Bry ..., Bp, Ev, ... By C Begy, F1@Gy, .., F, @G, C
Q, z1,.. ., 0, Y1, -+ Yn € Bogys, o) such that for all 1 <i<n

(i) A; € Ann(F;),

(ii) E; C Ann(G;),

(ili) z; €co{f®g: f € Aj,g € B},
yi€co{f®g: feC;,ge€ E}, and
lup, — 2(x; +u3)|| < e

(iv
(v

Let x((G, Ni)Py = (Cus1, Frt1 ® Gry1). By enlarging F, 11, G,y if necessary, we can assume

- - L Z

these sets are non-empty. Let
D1 = ﬂ ker (6, ® 0)
(R A)EFp+1XGnt1
and let b,11 = (G, Bz,)!?!. By Lemma 6.6, we can find A, 1,Chi1 C Bex) such that
Any1 C Ann(F, 1), Bpy1, B C Beqry such that E,y € Ann(Gpqa), T € co{f ® g :
f€Ani1,9 € Bpia},and yp1 € co{f®g: f € Cpy1,9 € Epyr} such that |lup,,, —2(xn1 +
Y1) < Ensa Let

Npy1 = {f+0 fEAn+1}U{0+g QEEnJrl}

which is a finite subset of Ann(F,11 ® Gpi1).

The end result of this process is a sequence by < by < ... such that b, = b, for all n € N.
Let a € [I'¢ o). D be the sequence such that a|n = b, for alln € N. Let @ = ag < a; < ... be
such that a,, < @ and a, € MAX(A¢ oo n.D) for all n € N. Let 1, = |a,| for n =0,1,2,....
Since x is a winning strategy for Player S in the (Z.,,5c ), '¢,o0) game, it follows that for

any (h/a)a<oc S Ha<o¢ N|a\a

supHZ Z ]P’goo

n=1 a€An,(

Therefore for any (fo)a<a € [[,cq Ajals fa +0 € Ny for all a < o, and

supHZ > Pela |fa —SHPHZ > Pewola |f“+0|H

=1 aeAp(a) =1 aeAp(a)
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By Corollary 6.3(ii), it follows that

w

(5 pentma)? [ bt <

beAR(

Similarly, using the properties of the sets (E,,)>%

n=1

H( Z Pfoo y\bl> le < keer? < kger.

beAR(

Therefore

H( Z Pfoo “\bl> 1H;U<Z||“|b\—2($\b|+y|b|)ll
beAn(
+2H( Z Pﬁoo x|b|)

w

(5 et

n=1 n=112

<Z€n+4-kzgc1<c.

n=1

This contradicts the properties of (ub)bepgm, D, and this contradiction finishes the proof.
O

Here we recall the convention that if is a Banach space which fails to be Asplund, then
we write Sz(X) = co. In what follows, for Banach spaces X,Y, we agree to the conven-
tion that Sz(Y) < Sz(X) is true if Sz(X) = co. We also agree to the convention that
max{Sz(X), Sz(Y)} = oo if either Sz(X) = o0 or Sz(Y) = oc.

Corollary 6.8. Let K, L be compact, Hausdorff topological spaces. Then
Sz(C(K)@)ﬂC(L)) = max{Sz(C(K)),Sz(C(L))}.

Proof. Since C(K), C(L) are each isomorphic to subspaces of C'(K)&,C(L),
S2(C(K)®,C(L)) > max{Sz(C(K)), Sz(C(L))}.
If either K or L fails to be scattered, then max{Sz(C(K)), Sz(C(L))} = co, and
00 = Sz(C(K)®,C(L)) = max{Sz(C(K)), Sz(C(L))}

holds. Therefore
Sz(C(K)®,C(L)) < max{Sz(C(K)),Sz(C(L))}

by the conventions established prior to the corollary.
Assume K, L are both scattered. If both K and L are finite, then so is C'(K)®,C(L), and

1 = S2(C(K)®,C(L)) = max{Sz(C(K)), Sz(C(L))}.
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Assume K, L are both scattered and at least one of K, L is infinite. Without loss of
generality, assume CB(L) < CB(K) € (w*, w**1). Then

max{Sz(C(K)),Sz(C(L))} = Sz(C(K)) = w**.
By Theorem 6.7, C(K)®,C(L) is £&-2-AUS renormable, from which it follows that
Sz(C(K)®,C (L)) < w*™ = S2(C(K)).

Remark 6.9. We recall that the Schreier family &; is given by

S ={g}U{FECN:@+#FE |F| <minFE}.
We endow the power set 2V of N with the Cantor topology, which is the topology induced
by identifying F with its indicator function 1z € {0,1}" and endowing {0,1}" with the
product topology. It is known that S; is a compact subset of 2V whose Cantor-Bendixson

index is w + 1 and such that Sy = {@}. Therefore &; is homeomorphic to w*+, and C(S;)
is isometrically isomorphic to C'(w*“+). The Schreier space X; is the completion of ¢y with

S

el

respect to the norm

= sup
X1 EeSy

HZ a;C;
i=1

Of course, this space is isometrically embeddable into C'(S;) via the map that takes x =
> oy aie; to the function f, given by fu(E) = > .. a;. We note that the canonical basis
of X; is unconditional and dominates the canonical dual basis in X;. From this it follows
that X;®,X; contains an isomorphic copy of ¢;, and therefore X,®.X; is non-Asplund.
Therefore by Corollary 6.8, Sz(C(w“+)®,C(w*+)) = w?, C(w*+) has a subspace X; such
that X;®,X; is non-Asplund. Since X; has all of the same asymptotic smoothness properties
of C(w“+), this is yet another example which illustrates the intricacies of the preservation
of asymptotic smoothness properties during the formation of projective tensor products.

7. APPLICATIONS

In this section, for an ordinal «, we let a+ = [0, a].

Theorem 7.1. If K, L, M are countable, compact, Hausdorff spaces, then C(M) is isomor-
phic to a quotient of a subspace of C(K)®C(L) if and only if C(M) embeds isomorphically
into either C(K) or C(L). In particular, C(w*) ¥ co@xco.

Proof. There exist countable ordinals «, 3,7 such that C(K),C(L),C(M) are isomorphic
to C(w"+), C(w*’+), and C(w*” +), respectively. Without loss of generality, assume that
a < B. Moreover, Sz(C(K)) = w*tt, Sz(C(L)) = w?* and Sz(C(M)) = ! [19]. By
Corollary 6.8 and our assumption that a < f3,

Sz(C(K)®,S2z(L)) = max{w**!, w1}
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If v > B, then Sz(C(M)) > Sz(C(K)®,C(L)), and C(M) does not isomorphically embed
into C(K),C(L), or C(K)®-C(L). Here we are using the fact that the Szlenk index is an
isomorphic invariant, and the Szlenk index of a Banach space cannot be less than the Szlenk
index of any quotient of any of its subspaces.

If v < 3, then w*”+ is a clopen subset of w*’+, and C'(M) ~ C(w*"+) embeds isomor-
phically into C(w*”) ~ C(L), which embeds into C'(K)&,C/(L).

O

Remark 7.2. The preceding result does not extend to uncountable sets K, L, M. Indeed,
it is known that C(w; - 24) does not embed into C(w;+) [20]. However, by [2], Sz(w1+) =
Sz(wy-2+) = wr . Moreover, C(w; -24) embeds isomorphically into 2, &,C(w;+). There-
fore we have an example with K = {0,1}, L = wy+, and M = w; -2+ in which C(M) embeds
into C'(K)®,C(L) but not into C(K) or C(L).

However, in this example, w;+ and w; - 2+ have the same Cantor-Bendixson index. For
general compact, Hausdorft K, L, M, we have the following.

Corollary 7.3. If K, L, M are compact, Hausdorff spaces such that
max{CB(K),CB(L)}w < CB(M),
then C(M) is not isomorphic to any subspace of any quotient of C(K)®,C(L).

Proof. Assume max{CB(K),CB(L)}w < CB(M). By our conventions on the Cantor-
Bendixson index, if K or L fails to be scattered, max{CB(K),CB(L)} = oco. By our
conventions, max{CB(K),CB(L)}w < CB(M) implies that K, L are scattered. There-
fore there exists a minimum ordinal ¢ such that max{CB(K),CB(L)} < w®fl. This
means w¢ < max{CB(K),CB(L)}, and w**! < CB(M). Therefore Sz(C(M)) > ws*? >
Wit = S2(C(K)®,C(L)), and C(M) is no isomorphic to any subspace of any quotient of
C(K)®.C(L). O

We last show the sharpness of the exponent 2 in Theorem 6.7.

Theorem 7.4. Let K be an infinite, compact, Hausdorff, scattered topological space. Let
¢ be such that w® < CB(K) < W, Then co®,C(K) is not &-p-AUS-renormable for an
2 <p<oo.

Proof. Let € be such that w® < CB(K) < ws*. Then Sz(C(K)) = w*™ > w®. This means
there exists € > 0 such that, if D is a fixed weak neighborhood basis at 0 in X, there exist
£ > 0 and a normally weakly null collection (g,)acr,.,.0 C Be(x) such that

ol IS Peab)gs| = >0,
aEMAl)?(ngl.D) bZ; 5’1( )9 c

We note that € can be taken to be 1, but this is not necessary for the proof.
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Fix n € N. We next extend the collection from the previous paragraph to a normally
weakly null collection (hq)aer,,,.0 C Beox) by letting

P (n—1) a1 )~ (@& (n=2)+az) ~..c~(wE (n—i)+a;) = Ja;-

That is, (ga)aepgyl, p is simply repeated on each level of the tree. Now by a standard pruning
argument, we may extract from the branches of this collection some new normally weakly
null collection (fy)acr,,,.0 C Be(x) such that for each a € MAX(I'¢,,.D), (fb)p<a is basic
with basis constant not more than 2. Moreover, by the property of (ga)aepm_ p from previous
paragraph, for any a € MAX(I'¢,,.D) and 1 < i < n,

H > Pi,n(b)fbH > e
Ai—1(a)<b<Ai(a)

Fixn € N. Let 2" = {£1}" and for 1 < i < n, letg; : 2" — R be given by &;(wy, ..., w,) =
w;. Endow 2" with the uniform probability measure. Note that (¢;)?, is an orthonormal

system in L9(2"), so by Jensen’s inequality, for any scalars (a;)!",,

Y - o 1/2
H; a;€; Lo < H; a;€; L - (Z ‘%”2) .

Now define the weakly null collection (uq)qser,.0 C By @ma.cx) by letting u, = & @ fa,
where 1 < 7 < n is such that a € A¢,,;.D. Note that this collection is weakly null but
not normally weakly null. However, this collection could be made normally weakly null by

another pruning.
Fix a € MAX(T'¢,.D) and let (pf)’, be the Hahn-Banach extensions to the biorthogonal

functionals of the basic sequence (Z)\ (@) <b<ri(a) Pen(b )fb) . Note that ||u}]] < 6/e for
=1

all 1 <i < n. Fix a scalar sequence (b;)_; and let
= Z b S Pobu = beo ( S Pead) fb>.
i=1 )\ifl(a)<b<)\i(a) i=1 )\ifl(a)<b<)\i(a)

1/2
Let (a;)7_; sequence such that 1 =>""  |a;[* =1 and Y a;b; = (Z?Zl \bi|2> . Let

T— Y b i € Li2VBCIKY C (Lul2)BrC()) = S(C(R). L(2").

i=1

We claim that |[u*|| < 6/e. To see this, fix f € Boky. Then

|77 = H;am,m o € (Z i D) < (6/2) (Z )’

Note that

n

|<T,u)|:Zaibi<ui, Y Pead) >5m Zazb_<2|b|)

i=1 Ai—1(a)<b<Ai(a)
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1/2
From this it follows that |[u|| > (¢/6) (Z?:l |bi]2> . Therefore we have shown that for any

a e MAX(I¢,.D), (Z)\ifl(a)<b<)\i(a) P&n(b)Ub) :_L_l satisfies a lower ¢4 estimate with constant
£/6. Note that the constant £/6 does not depend on n.

Let 0 = s¢ and let s,, = s,,_1+n for n € N. Since L., (2") is isometric to a 1-complemented
subspace of ¢y, we can build a full normally weakly null collection (vp)ser, .0 C B g.ci)
by letting the first n level be built as in the previous paragraph for n = 1, the next two levels
built as in the previous paragraphs for n = 2, etc. Then for any a € [[¢ ].D, the sequence

<Z>\i71(a)<b@i(a) IP’gpo(b)vb)‘ is not weakly g-summing for any 1 < ¢ < 2, since for each

n €N, (Z/\iil(a)@@\i(a) Pg,oo(b)vb> i; e is a sequence of length n satisfying an /6 lower
0% estimate.

O

If K is as in the previous theorem, C(K) is {&-AUF renormable, which implies that it is
&-p-AUS-renormable for all 2 < p < oco. Since these properties are isomorphic invariants
and pass to subspaces and quotients, we deduce the first part of the following corollary. The
second part of the following corollary follows from the fact that if L is an infinite, compact,
Hausdorff space, then ¢ is isometrically isomorphic to a 1-complemented subspace of C'(L),
s0 co®,C(K) embeds isomorphically into C(L)®,C(K).

Corollary 7.5. Let K, L be compact, Hausdorff topological spaces such that L is infinite and
K is scattered. Then neither co®,C(K) nor C(L)®,C(K) is isomorphic to any subspace of
any quotient of C'(K).

Remark 7.6. We conclude by stating known results analogous to Corollary 7.5 for projective
tensor products with more than two factors, where the picture is far from complete. As shown
in 7], for any n € N and any scattered, compact, Hausdorff spaces K7, ..., K,

(®:,i=10(Ki)) * = @)Zi:lgl(Ki)

There it was also shown that for integers m,n with m < n, @:ﬁl is not isomorphic to any
subspace of @?61. From this it follows that if m, n are not equal and if Ky, ..., K,,, L1,..., Ly,

are infinite, scattered, compact, Hausdorff spaces, then @ ._,C (K;) is not isomorphic to any

m

=1
C(L;). However, this does not yield that &,
v O(Ly).

[t was also shown in [7] that for any integer n, @inco, the 2n-fold projective tensor product

quotient of & C(K;) cannot be isomorphic

mi=1 mi=1

to a subspace of ®n,i=1
of ¢y, admits an equivalent (n — 1)-2-AUS norm, and @in_lcg admits an equivalent (n — 1)-
AUF norm. Moreover, both of these are sharp, which implies that @:co is not isomorphic
to any subspace of any quotient of @:LCQ for integers m,n with m < n.
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