

23rd Colloquium of African Geology South Africa

January 8-14, 2011

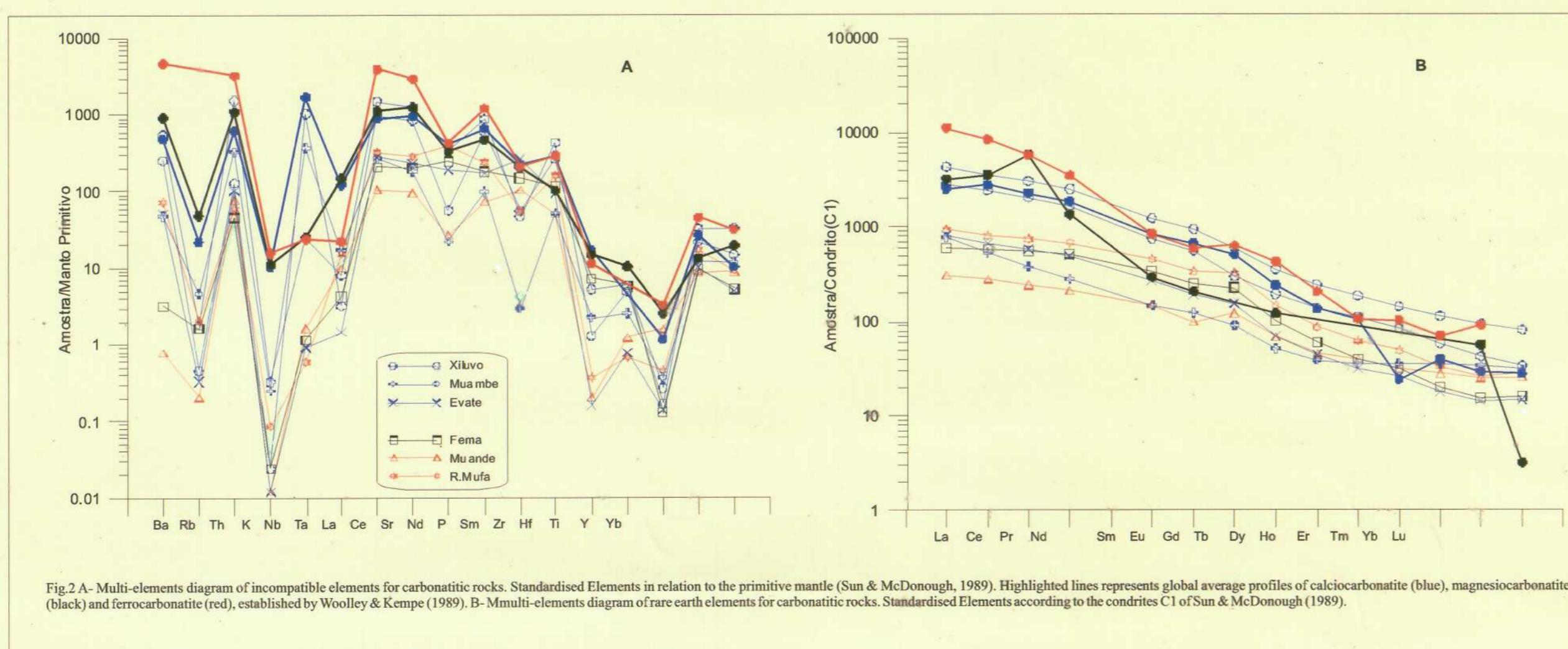
ISOTOPE GEOCHEMISTRY OF SOME CARBONATITES FROM MOZAMBIQUE

Chauque, F¹., Cordani, U¹., Onoe, A¹., Lucena de Souza, S¹ & Jamal, D²

¹Instituto de Geociências, Universidade de São Paulo, Brasil; fchauque@usp.br

²Departamento de Geologia, Universidade Eduardo Mondlane, Moçambique

1. INTRODUCTION


Several intrusive carbonatitic bodies occur in central-western Mozambique, and correspond to anorogenic igneous activities cutting through the Precambrian basement of the Mozambique Belt. Of these, the carbonatites of Xiluvo, Muambe, Muande, Fema and Rio Mufa were considered in this work. In addition, the much older and deformed Evate carbonatite was also studied, for comparison. The geological characterization of them can be found in Chauque (2009). With the exception of the Evate carbonatite, the Mozambican bodies occur adjacent to the neighbouring country, Malawi (Fig.1), and also form part of the Chilwa Alkaline Province, defined by Bloomfield (1968) in the Malawian side, related to the East African Rift System, in the central-western part of Mozambique and Malawi. According to Real (1966), the carbonatites from the Mozambican territory show great petrographic affinity, not only among themselves, but also with known occurrences in the Malawian territory and must correspond the contemporaneous intrusions. The carbonatitic samples from Mozambique chosen for this study can be classified into two distinct groups: (i) samples of Xiluvo, Muambe and Evate, with calcite as the main carbonate and fine to medium-course textural varieties; (ii) samples of Muande Fema and Rio Mufa, have medium-fine to medium-course grained, with predominance or significant presence of dolomite. Xenomorphic carbonates are the most important mineral phases of all the studied samples.

2. GEOLOGICAL ENVIRONMENT

3. LITHOGEOCHEMISTRY

This geochemical study of the carbonatitic magmatism from Mozambique is very preliminary, since only the samples chosen for this work were analysed for major and minor elements. They studies are essentially calcium-iron carbonatites. Incompatible elements are characterized in the appropriate diagrams by strong anomalies of Th, Y, Yb and by high content of P and Sr (Figure 2A). The REE spectra (Figure 2B) show LREE enrichment in all studied samples. Moreover, a few geochemical anomalies are registered, such as Cu and Co in the Rio Mufa, as well as V, Ni and Co in the Muande bodies.

4. Sr-Nd ISOTOPIC GEOCHEMISTRY

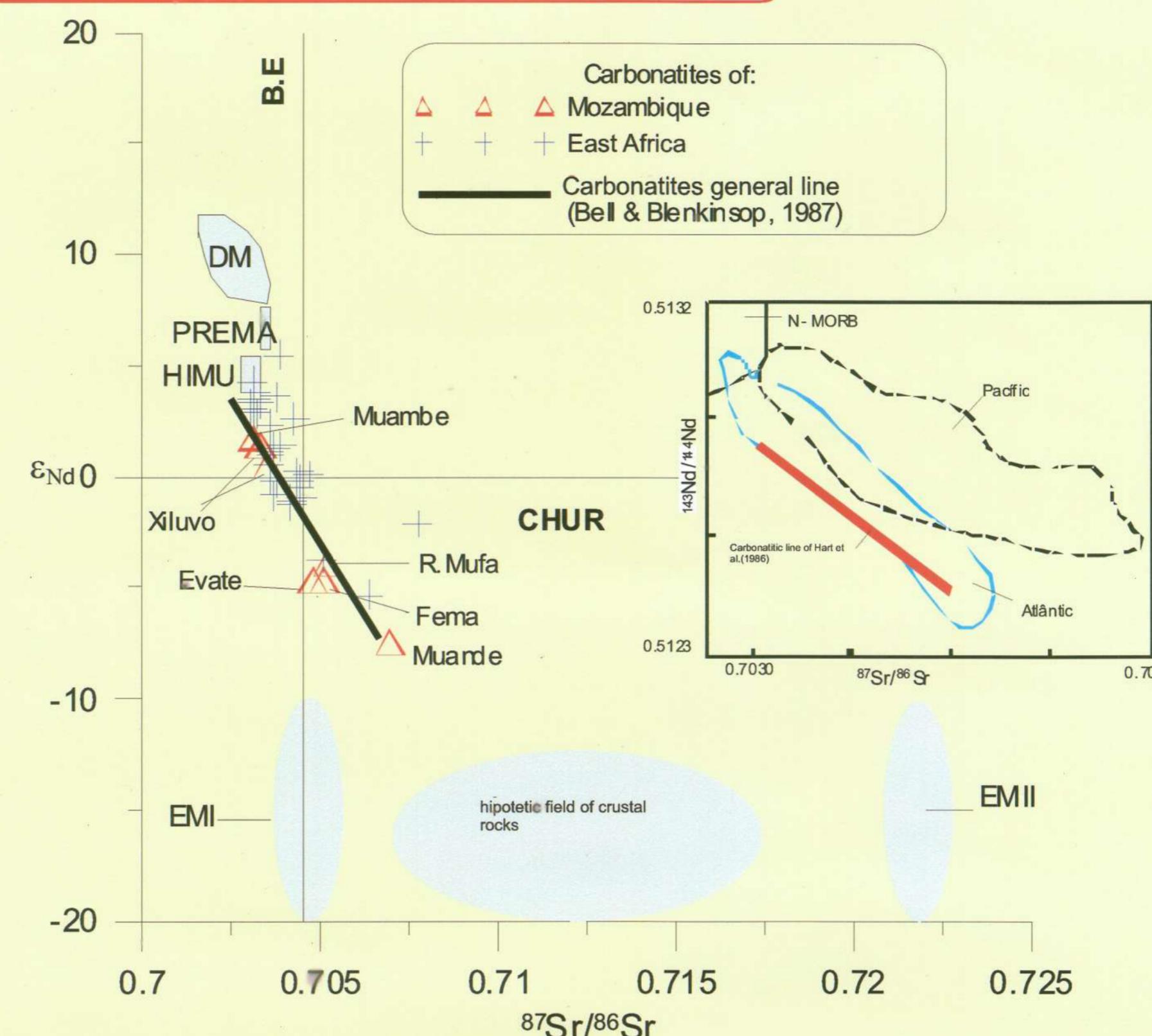


Fig.3. Isotopic Diagram of ϵ_{Nd} vs. $^{87}\text{Sr}/^{86}\text{Sr}$ showing the main reservoirs of Ziegler & Hart (1986) and the projection of the reservoirs of carbonatites of Mozambique and other regions of Eastern Africa (Uganda, Kenya, Tanzania, Zambia) including Namibia. DM, depleted mantle; PREMA, PRE-enriched Mantle composition; HIMU, mantle with high U/Pb; EMII, enriched mantle; CHUR, Chondritic Uniform Reservoir; B.E., Bulk Earth. Inserting shows line of carbonatites and data from some oceanic basalts (adapted from Bell & Blenkinsop, 1987).

indicates sources with a complex magmatic history, formed either by a mixture of different components of asthenospheric and lithospheric mantle, or by assimilation of crustal material by the original magmas. This is similar to the conclusions given by Bell & Blenkinsop (1987) for a series of East African carbonatites with ages of 0 Ma.

Table 1-Sr and Nd isotopic data of some carbonatites from Mozambique.

Localidade	Rb (ppm)	Sr (ppm)	Sm (ppm)	Nd (ppm)	$^{87}\text{Sr}/^{86}\text{Sr}$	$^{143}\text{Nd}/^{144}\text{Nd}$	$\epsilon_{\text{Nd}(0)}$	Error (Sr)	Error (Nd)
Xiluvo									
4/05	0.29	1184	116	788	0.703314	0.512708	1.37	0.000045	0.000008
5/05	1.13	7081	189	1183	0.703503	0.512666	0.55	0.000033	0.000008
Muambe									
010/06	2.97	468	22.7	132	0.703062	0.512729	1.77	0.000037	0.000009
Muande									
1FR	0.13	557	22.8	99.5	0.706940	0.512256	-7.46	0.000085	0.000010
Fema									
3FR	1.03	5089	52.1	241	0.705092	0.512398	-4.68	0.000039	0.000010
R. Mufa									
6FR	1.29	8124	69.1	316	0.705190	0.512435	-3.96	0.000045	0.000010
Evate									
12FR	0.21	4015	41.5	230	0.704766	0.512399	-4.66	0.000030	0.000017

A Lower Cretaceous K-Ar age of 117 Ma was obtained on amphibole from the Rio Mufa carbonatite, indicating contemporaneity with similar occurrences of carbonatites and other alkaline bodies of the Chilwa Province (see Wooley, 2001). Regarding Sr 87/86 initial ratios, the values presented in this study roughly between 0.703 and 0.706 (Table 1) are not dissimilar to those compiled by Kalt et al (1997) carbonatites of the East African Rift.

5. REFERENCES

- BELL, K. & BLENKINSOP, J. (1987). Nd and Sr isotopic compositions of East African carbonatites: implications for mantle heterogeneity. *Geology*, 15:99-102.
- CHAUQUE, F.R. (2009). Estudo geocronológico, litogeocímico e de geoquímica isotópica de alguns carbonatitos e rochas alcalinas de Moçambique. Ms dissertation, Instituto de Geociências, Universidade de São Paulo
- KALT, A., HEGNER, E. & SATIR, M. (1997). Nd, Sr, and Pb evidence for lithospheric mantle sources of East African Rift carbonatites. *Tectonophysics*, 278:31-45.
- WOOLLEY, A.R. & KEMPE, D.R.C. (1989). Carbonatites: nomenclature, average chemical compositions and element distribution. In: Bell, K.(ed) carbonatites: genesis and evolution. Unwin Hyman, London, 1-14.