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Abstract
Using Pyriproxyfen in controlling Aedes aegypti shows great potential considering its high competence in low dosages. As 
an endocrine disruptor, temperature can interfere with its efficiency, related to a decrease in larval emergence inhibition in 
hotter environments. However, previous studies have been performed at constant temperatures in the laboratory, which may 
not precisely reflect the environmental conditions in the field. The aim of this study was to assess the effect of the fluctuating 
temperatures in Pyriproxyfen efficiency on controlling Aedes aegypti larvae. We selected maximum and minimum tempera-
tures from the Brazilian Meteorological Institute database from September to April for cities grouped by five regions. Five 
fluctuating temperatures (17–26; 20–28.5; 23–32.5; 23–30.5; 19.5–31 °C) were applied to bioassays assessing Pyriproxyfen 
efficiency in preventing adult emergence in Aedes aegypti larvae in five concentrations. In the lowest temperatures, the most 
diluted Pyriproxyfen treatment (0.0025 mg/L) was efficient in preventing the emergence of almost thrice the larvae than in 
the hottest temperatures (61% and 21%, respectively, p value = 0.00015). The concentration that inhibits the emergence of 
50% of the population was lower than that preconized by the World Health Organization (0.01 mg/L) in all treatments, except 
for the hottest temperatures, for which we estimated 0.010 mg/L. We concluded that fluctuating temperatures in laboratory 
bioassays can provide a more realistic result to integrate the strategies in vector surveillance. For a country with continental 
proportions such as Brazil, considering regionalities is crucial to the rational use of insecticides.
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Introduction

Arboviruses transmitted through the bite of infected Aedes 
(Stegomyia) aegypti (Linnaeus 1762) are still a huge pub-
lic health concern, especially in tropical and subtropical 
regions. As a fast-growing mosquito-borne viral disease, 
dengue fever is one of the most frequent infections through-
out the tropics and has been considered endemic in Brazil 
since 1986, when serotype 1 was introduced in the country 
(Mayer et al. 2017; Luna et al. 2020). Colón-González et al. 

(2021) estimated that the incidence of dengue fever alone 
increased 30-fold in the last 50 years.

The dynamics of mosquito-borne illnesses are climatic 
driven, and recent work suggests that increasing global 
temperatures will allow the expansion of Aedes aegypti 
into temperate regions and dramatically increase Aedes-
borne virus transmission within the next century (Caldwell 
et al. 2021; Ryan et al. 2019, 2021). There are no medical 
treatments or specific medications for diseases transmitted 
by this mosquito, and the prevention through vaccination 
is accessible only for urban yellow fever (Rodhain 2022). 
Although there is a prospect of an effective and accessible 
dengue vaccine in the mid-term future, Ae. aegypti will 
continue to be a threat to public health due to the possi-
bility of transmission of other arboviruses such as CHKV 
(Chikungunya virus) and ZKV (Zika virus) (Wilder-Smith 
2022). Furthermore, Teixeira et al. (2021) described that 
Ae. aegypti mosquitoes can be simultaneously infected 
by both dengue and Zika virus. Therefore, the control 
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of mosquito populations through mechanical removal of 
potential breeding sites associated with the application of 
insecticides as a supplementary measure are still important 
tools to prevent epidemics.

The conventional programs to control the populations of 
mosquito vectors mostly depend on a combination of meas-
ures such as detection of the targeted mosquito population, 
surveys on disease incidences, prediction of their dispersal, 
and populational control, for anticipating future outbreaks 
(Nayak et al. 2023). Additionally, there is a growing rec-
ognition that the solutions to control such arbovirus trans-
mission surpass the health sector and rely on a diversity 
of structural actions, such as adequate sewage treatment, 
effective waste management programs, and water supply 
maintenance, along with community participation (Valle 
et al. 2019).

Given the many difficulties in guarantee the efficiency of 
an insecticide application, controlling the insect in its imma-
ture phases (egg, larva, and pupa) is more feasible, given that 
the development occurs in restricted and specific locations, 
unlike the adult phase, which can disperse throughout vari-
ous environments and can escape from an insecticide dose 
(Campos et al. 2020). However, the continuous and intensive 
application of a compound can lead to the development of 
resistant mosquito populations, considering that the larvi-
cide presents evolutive pressure in the environment for the 
individuals exposed. A sustainable and effective chemical 
control strategy must be based on detailed planning consid-
ering the mosquito populational distribution, the species sus-
ceptibility to compounds, and possible mechanisms involved 
in resistance selection, in order to decrease vector infestation 
and prevent epidemics (Roush 1989).

In Brazil, insecticide resistance in Ae. aegypti populations 
was detected for different compounds applied to temephos 
(organophosphate) and deltamethrin (pyrethroid) (Valle 
et al. 2019). The intense application of temephos between 
2003 and 2014 is worth noting, showing the relation between 
long time exposition and resistance development in Ae. 
aegypti mosquito populations (Rahman et al. 2021). Cur-
rently, temephos resistance is so widespread in Brazil that 
this compound is no longer considered as the first choice 
larvicide for use against Ae. aegypti, and it has been replaced 
by other, non-neurotoxic products (Valle et al. 2019).

To strategically avoid the development of resistance 
to insecticides, the Brazilian Ministry of Health (MoH) 
adopted a larvicide rotation approach, changing the com-
pound applied every 4 years (SVS 2012). Between 2014 
and 2018, MoH deliberated the application of Pyriproxyfen 
to control Ae. aegypti larvae. Pyriproxyfen is a non-neuro-
toxic compound, classified within the insect growth regula-
tor (IGR) class of insecticides. Pyriproxyfen is a juvenile 

hormone analog that acts inside the organism preventing the 
molting into the adult stage, causing death as a consequence 
of this endocrine disruption.

As a larvicide, Pyriproxyfen shows great efficiency in 
laboratory and semi-field settings demonstrating high emer-
gence inhibition for larvae exposed to low concentrations 
(Vythilingam et al. 2005; De resende and Gama 2006; Lau 
et al. 2015; Samuel et al. 2017; Marina et al. 2018; Campos 
et al. 2020; Hustedt et al. 2020; Fansiri et al. 2022; Asgar-
ian et al. 2023; Campos et al. 2023; Moura et al. 2023). 
However, environmental factors known to interfere with 
the developmental aspects of the larvae (e.g., temperature, 
organic matter loads, pH) can also affect the larvicide effi-
ciency, considering its mode of action as a non-neurotoxic 
compound (Carrington et al. 2013a, 2013b; Ohashi 2017; 
Durant and Donini 2018; Talaga et al. 2020; De nadai et al. 
2021; Huzortey et al. 2022). Considering the impacts of 
temperature, insect responses to fluctuating temperatures 
contrast with responses to constant temperature at multiple 
levels of organization, from physiology and stress toler-
ance to life history traits and fitness (Colinet et al. 2015). 
Previous research testing insecticide susceptibility in field 
populations of mosquitoes has demonstrated that there is 
seasonal variability in sensitivity, suggesting that envi-
ronmental interference is important to mosquito control 
programs (Hernandez et al. 2022). Considering this, few 
previous studies have addressed the impact of fluctuating 
temperature in response to insecticides (Salinas et al. 2021). 
Given that the mode of action of Pyriproxyfen is directly 
related to the development during immature stages, the 
fluctuating temperatures could interfere with its efficiency. 
On an indirect way, the temperatures directly influence 
the development rate of the larvae and so, consequently, 
reflect into the time of exposure. On the other hand, a direct 
effect could be related to detoxification through heat shock 
proteins expression to survive a Pyriproxyfen exposure 
(Ware-Gilmore et al. 2023). However, none of these possi-
ble effects has been tested yet, and given a climate changing 
world, it is crucial to understand all effects that different 
temperatures could pose to this important vector.

Given the continental proportions of Brazilian territory, 
with an area comprising 8.516.000 km2, fluctuations of tem-
perature follow distinct patterns in different regions. This, 
in turn, produces different temperature fluctuations in daily 
cycles, as a response to climatic factors (e.g., latitude, veg-
etation, and continentality). We hypothesized that different 
patterns of temperature fluctuation grouped by Brazilian 
regions produce differences in Pyriproxyfen susceptibility 
to Ae. aegypti. In this study, we report the differences in 
susceptibility of Ae. aegypti larvae exposed to Pyriproxyfen 
under simulated daily temperature ranges.
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Materials and methods

Regional temperatures

We tested the effect of temperature on Ae. aegypti suscepti-
bility to Pyriproxyfen combining five concentrations of the 
larvicide and two different temperatures, one designed for 
the day cycle and the other for the night cycle to simulate 
natural conditions of daily temperature regimes. The temper-
atures were based on registers from automatic meteorologi-
cal stations provided by the Brazilian Meteorological Insti-
tute database (INMET - National Institute of Meteorology 
2020). We selected the capital city of each state plus three 
cities through simple random sampling. Afterwards, we 
chose the records of maximum and minimum temperatures 
from 1988 and 2018 of all the cities. After the sampling, we 
selected the time horizon from September to March for the 
calculations, comprising the spring and summer months in 
Brazil. The location of the cities sampled for the calculations 
can be seen in Online Resource 1. We calculated the mean 
value of both maximum and minimum temperatures grouped 
by region. The mean maximum and minimum temperatures 
for each region were programmed for light and dark cycles 
of the experiments, respectively (Table 1).

The experiments were conducted inside incubator cham-
bers (Eletrolab®, Model EL212/4LED) with a light/dark 
cycle of 14/10 h.

Larval rearing

To investigate the efficiency of the compound under the 
fluctuating temperatures and prevent the interactions with 
the susceptibility status of local mosquito populations, we 
conducted the experiments with a susceptible reference 
strain of Ae. aegypti. We used a Rockefeller strain from a 
laboratory population established since 1996 (ASR – Ana-
lytical and Scientific Research Laboratory®) provided by 
eggs attached to porous paper. We stored the mosquito eggs 
inside plastic boxes at room temperature (26 °C ± 2) and a 
relative humidity of 70% (± 5). To stimulate egg hatching, 
we immersed 1 cm2 of the paper containing the eggs in 1 

L of tap water and 1 g of Saccharomyces cerevisiae (MP 
Biomedicals, France). After 24 h, we separated batches of 
20 I instar larvae to avoid effects of intraspecific competi-
tion (Steinwascher 2020). We placed the larvae into new 
plastic vessels containing 250 mL of tap water with 64 mg 
of S. cerevisiae added as a nutritional source (Souza et al. 
2019). The batches of larvae were maintained inside an 
incubator chamber (Eletrolab®, Model EL212/4LED) until 
they reached late III instar under the temperature regimes 
of the experimentation interest, considering the region to be 
simulated (photoperiod 14:10 light:dark, considering a high 
temperature for the light cycle and a low temperature for the 
dark cycle). We have chosen the light:dark cycle of 14:10 to 
simulate the higher sunlight exposition that is typical of the 
spring and summer in tropical areas (Costanzo et al. 2015). 
Every 2 days, we added a new nutritional source (64 mg 
of S. cerevisiae) until larvae reached III instar. The larvae 
were kept at the chosen temperature regimes from first to 
last instar, to avoid thermal stress which could interfere with 
the results.

Insecticide formulation

We utilized Sumilarv 0.5G® (CAS #95737–68-1), gently 
donated by the Epidemiological Surveillance of Araraquara 
(São Paulo, Brazil), for the experiments. Sumilarv 0.5G® 
is synthesized by Sumitomo Chemical (Tokyo, Japan) con-
taining 0.5% active ingredient (weight:weight) in a granular 
formulation. Sumilarv 0.5G® has a slow-release formulation 
due to its constitution with pumice and sand as main solutes 
(Sumitomo Chemical 2012).

Larval bioassay experiments

We prepared a stock solution with Sumilarv 0.5G® follow-
ing the methodology

described by Sihuincha et al. (2005) and Moura et al. 
(2021). The final concentrations derived from the stock 
solution were 0.0025, 0.005, 0.01, 0.02, and 0.04 mg/L, 
comprising lower and higher concentrations based on the 
WHO recommendation for Ae. aegypti control programs 
(0.01 mg/L) (WHO 2005, 2016).

For each concentration, we prepared five replicates con-
taining 250 mL into 500 mL beakers and 20 III instar larvae, 
based on the WHO protocol (WHO 2016). We provided 64 
mg of S. cerevisiae for each beaker. Simultaneously, five 
replicates of beakers with 250 mL of tap water and the same 
amount of yeast containing 20 larvae each were used as the 
control experiment. The control experiment beakers were 
kept under the same conditions of the experiments, under 
fluctuating temperatures accordingly with the Brazilian 
region. All beakers were covered with netting to prevent 

Table 1   Information about the temperatures used in the larval bioassay

Region Temperature (°C)

Minimum Maximum

Central-West 19.5 31
Northeast 23 30.5
North 23 32.5
Southeast 20 28.5
South 17 26
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emerged adults from escaping. We repeated the experiments 
five times on different days, using new stock solutions and 
new batches of larvae each day. We monitored the survival 
by counting and removing dead larvae and pupae daily until 
complete emergence of the adults in the control experiment 
beakers. During the daily monitoring, we changed the posi-
tion of the beakers inside the incubator chamber to reduce 
the likelihood of a position effect (Gutiérrez et al. 2020).

Data analysis

After the larval bioassay experiments, we treated the data 
concerning the number of individuals that did not reached 
adult stage as the main response variable. The number of 
dead larvae and pupae, registered daily for each replicate, 
was considered to calculate the percentage of emergence 
inhibition in each treatment. The experiments were con-
sidered valid when the larval mortality in control experi-
ments was below 10% (WHO 2016). We then calculated the 
descriptive statistics of the emergence inhibition for each 
thermal condition and the mean time of exposure, using the 
software Origin (Origin (Pro), Version 2022. 2017).

To test the normality of data, we applied the Shapiro-
Wilk test (considering α = 0.05). A two-way analysis of 
variance (ANOVA) was used to test whether Pyriproxyfen 
has reduced efficiency in warmer and more stable thermal 
variations using Statistica software (TIBCO 2023). In this 
analysis, we also tested whether longer times of exposure of 
larvae in Pyriproxyfen are significantly related to an increase 
in the larvicide efficiency. In addition, we used the Tukey 
post hoc test to proceed with multiple comparisons between 
the concentrations in each thermal simulation. All statisti-
cal tests were used considering a 95% confidence interval. 
The concentration that inhibits the emergence of 50% of 
the larvae population (EI50) for each thermally simulated 
region was estimated by fitting log-logistic models to the 
data. After a model fitting procedure based on the maximum 
likelihood method, the three-parameter log-logistic model 
was applied to emergence inhibition dose-response data. 
The EI50 was estimated for each thermal condition with the 
“estimate_EC50()” function from the package “ec50estima-
tor” with the R software (Alves 2022; R Core Team 2021).

Results

Development time variations of Aedes aegypti 
in different thermally simulated regions

In general, in lower temperature conditions, the larvae 
took longer to develop into an adult stage in the control 
experiments, and therefore the time of exposure in treat-
ments with Pyriproxyfen was also longer (Table 2). The 

colder condition, corresponding to the South region of 
Brazil, presented the longer time of exposure of 10.5 days 
on average. On the other hand, the thermal simulation for 
the Northeast region of Brazil presented the shortest dura-
tion for the experiments, with 5 days of larval exposure to 
Pyriproxyfen.

Pyriproxyfen regional efficiency

Among the combinations of temperature applied in the 
bioassays, we found that the efficiency of the larvicide 
increased significantly with the exposure time. We also 
found that there was a significant difference in Pyriproxy-
fen efficiency between the regions thermally simulated 
(Table 3).

For the South region that was simulated thermally, the 
larval sensitivity to Pyriproxyfen was high even in lower 
concentrations, for which we found an emergence inhibi-
tion of 60% of the population tested. In the experiments 
simulating the Southeast region, the emergence inhibition 
was significantly higher in a dose-dependent model, but 
there was no evidence that the emergence inhibition was 
different for exposure to 0.01 and 0.02 mg/L (p = 0.9013). 
In addition, the emergence inhibition in 0.01 and 0.02 mg/L 
was higher than 80% of the population of larvae exposed 
which represents an increase in efficiency of 37% from the 
emergence inhibition to a concentration two times lower. 
Regarding the simulation for the Central-West region of 
Brazil, the larval sensitivity was lower in all concentrations, 

Table 2   Quantification of larvae exposed and the duration of the bio-
assays in each experimental condition

Region simulated Number 
of larvae 
exposed

Experimental 
days (mean)

Standard 
deviation

Central-West (19.5–31 °C) 400 7 1.6
Northeast (23–30.5 °C) 400 5 0.95
North (23–32.5 °C) 300 8.2 0.8
Southeast (20–28.5 °C) 300 8 1.3
South (17–26 °C) 300 10.5 2.19

Table 3   Analysis of variance (two-way ANOVA) test results for both 
temperatures (regions) and duration of the experiment (α = 0.05)

Effect SS Degrees of 
freedom

MS F p value

Intercept 110.6 1 110.6 1807.25 0.000
Region 3.28 4 0.82 13.43 0.000
Duration of the 

experiment 
(days)

1.62 7 0.23 3.80 0.0005

Error 27.35 447 0.06
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except for the highest (0.04 mg/L). Given the simulation 
in the North region, the emergence inhibition of the larvae 
exposed to 0.02 mg/L is significantly higher than in 0.005 
mg/L (p = 0.012403). The same relation was observed in 
the Northeast thermal simulations, shown in Fig. 1.

Analyzing the multiple comparisons with Tukey’s post 
hoc test, we found that the conditions simulated for the 
South region exhibited the highest sensitivity to 0.0025 
mg/L of Pyriproxyfen than in other conditions (p < 0.01 
in all comparisons). On the other hand, larvae exposed in 
the Central-West thermal conditions showed significant 
reduced sensitivity to 0.0025 mg/L of the compound (21% 
of emergence inhibition, p < 0.01). We observed the same 
pattern for the 0.005 mg/L exposition, showing evidence 
of significantly higher emergence inhibition for the larvae 
in South thermal conditions than in the Central-West (p < 
0.01). For the concentration recommended by the WHO 
(2016), we observed that at least 50% of the population had 
its emergence inhibited by Pyriproxyfen exposition in all 
the conditions tested (Fig. 2). However, we found evidence 
that emergence inhibition in the Southeast conditions was 
significantly higher than Central-West and Northeast (p = 
0.001 and 0.04, respectively). In the two highest concentra-
tions (0.02 and 0.04 mg/L), all conditions showed emer-
gence inhibition rates equal or above 80% of the population 
of larvae, except for the Northeast region. In the highest 
concentration, there was evidence that the Northeast region 
exhibited a lower emergence inhibition proportion when 
compared with the South and Southeast conditions (p = 
0.0001 and 0.002, respectively). All probability values cal-
culated with Tukey’s post hoc test can be seen in the tables 
in Online Resource 2.

Pyriproxyfen concentrations that inhibit 
the emergence of 50% of the population in different 
thermally simulated regions

Among the five thermally simulated Brazilian regions, the 
EI50 did not surpass that recommended by the WHO (0.01 
mg/L) even in the hottest treatments (North and Northeast), 
which can be seen in Fig. 3. We found higher sensitivity in the 
individuals in the South conditions, where the EI50 was three 
times lower (x̅ = 0.004; σ = 0.14) than the concentration pre-
conized by the WHO (2016) followed by the Southeast treat-
ments, which was two times lower (x ̅= 0.005; σ = 0.013). For 
individuals exposed in Central-West temperatures, the EI50 
was 1.5 times lower than the concentration recommended by 
the WHO (x̅ = 0.007; σ = 0.015). The simulations for the tem-
perature conditions for the North and Northeast both showed 
EI50 close to the concentration preconized by the WHO (x̅ 
= 0.01; σ = 0.017 and x̅ = 0.008; σ = 0.0012, respectively).

Discussion

In the larval bioassay, juvenile hormone analogs, such as 
Pyriproxyfen, offer an excellent potential for controlling 
Ae. aegypti larvae by preventing their successful devel-
opment into viable adults (Fansiri et al. 2022). In addi-
tion, Pyriproxyfen is considered as a non-toxic pesticide 
to vertebrate animals, with no genotoxic or carcinogenic 
effects (Suman et al. 2014). Taking this into consideration, 
Pyriproxyfen is recommended to be used in drinking water 
at a concentration of 0.01 mg/L (WHO 2016). However, 
considering that Pyriproxyfen is an endocrine disruptor, 
environmental factors that affect the development of Ae. 
aegypti can interfere with the emergence inhibition.

Temperature is one of the factors that directly affects 
the responses to insect growth regulators, because it alters 
the life-history traits and the sensitivity of the target-
organisms to Pyriproxyfen (Alomar et al. 2021). Higher 
temperatures were associated with the decrease in emer-
gence inhibition in Ae. aegypti treated with Pyriproxyfen 
in laboratory conditions (Moura et al. 2021). However, 
experiments with constant temperatures fail to represent 
what happens in field conditions when compared with bio-
assays that apply different temperatures according to the 
photoperiod phase. Higher temperatures during the day-
light phase of the photoperiod and lower temperature in 
the dark phase are more likely to mimic what happens in 
natural conditions, with the natural temperature fluctuation 
between day and night. Temperature fluctuation between 
day and night can interfere with the regulation of heat 
shock proteins and, consequently, with the thermal toler-
ance which can influence the metabolic resistance involved 
with detoxification mechanisms and, consequently, with 
sensitivity to insecticides (Colinet et al. 2015).

Salinas, Feria-Arroyo and Vitek (2021) showed that 
Ae. aegypti susceptibility to deltamethrin and permethrin 
decreased significantly in higher thermal regimes (rang-
ing between 36 °C in the light phase and 24.6 °C in the 
dark phase) when compared to treatments with lower tem-
perature regimes. Despite the different mode of action, 
the results found by our study with Pyriproxyfen are very 
similar, whereby Ae. aegypti individuals showed lower 
sensitivity in scenarios with higher temperatures in the 
light and dark phases, such as those simulated for North 
and Northeast conditions.

It is important to highlight the relation between larval 
susceptibility with exposure time in the different thermal 
regimes. Given that all individuals were from the same 
strain and, therefore, had the same susceptibility status, 
it is worth mentioning that the longer the larval were 
exposed to Pyriproxyfen, the less opportunity they had 
to emerge successfully as adult mosquitoes. As observed 
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Fig 1   Proportion of emergence inhibition of Aedes aegypti to Pyriproxyfen in different thermal conditions for five Brazilian regions simulated in 
the laboratory. N.B.: Bars with the same letter are not significantly different from each other
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by Alomar et al. (2021), lower temperatures were corre-
lated to longer larval development in Ae. aegypti exposed 
to Pyriproxyfen. This corroborates with the results found 

in our study. Moreover, longer exposition to the larvi-
cide in the colder treatment (South thermal simulation) 
implies more chance of Pyriproxyfen intake. As a result, 

Fig 2   Multiple comparison results of different Pyriproxyfen concentrations in emergence inhibition of Aedes aegypti among thermal simulations 
of five Brazilian regions. N.B.: Asterisk denotes treatments that differ significantly from each other
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the concentration for IE50 in this condition (South—17 to 
26 °C) is lower than hotter treatments.

The application of lower concentrations of larvicide in 
the thermal scenarios where the susceptibility was higher 
can present a potential strategy to epidemiological surveil-
lance to reduce the threat to non-target species. Moreover, 
low concentrations of Pyriproxyfen can be associated with 
the application of other compounds with a different mode 
of action, such as spinosad. A recent study has shown that 
the association of apinosad (0.0125 mg/L) with Pyriprox-
yfen (0.00063 mg/L) resulted in a high efficiency of Ae. 
aegypti larval control (Santos et al. 2020). Santos et al. 
(2020) also reported that the effective concentrations did 
not impair reproductive parameters or increase Daphnia 
magna mortality.

As environmental parameters, such as fluctuating temper-
ature, are important for larvicide efficiency, so are the char-
acteristics of local mosquito populations. Sylvatic strains 
are under constant evolutive pressures that can be particu-
lar of a given environment and from a particular mosquito 
population that can present different susceptibility statuses 
to the compound. As far as we are aware, this is the first 
report of toxicological bioassays that demonstrated the influ-
ence of fluctuating temperatures in Pyriproxyfen efficiency 
to control Ae. aegypti larvae from a susceptible reference 
strain. This result can serve as a reference to compare with 
local populations response to both larvicide and fluctuat-
ing temperatures. Therefore, it is important that future stud-
ies investigate the wild mosquito populations responses to 
Pyriproxyfen under the local fluctuating temperatures.

Although there are no previous studies that tested the 
effects of temperature fluctuation on the emergence inhibi-
tion of Ae. aegypti treated with Pyriproxyfen, this com-
pound is known to present high efficiency in larval control 
in semi-field conditions with low concentrations (Gómez 
et al. 2011; Devillers 2020; Hustedt et al. 2020). Recently, 
Campos et al. (2020) demonstrated that 126 of 132 Ae. 
aegypti populations in different Brazilian regions are sus-
ceptible to Pyriproxyfen in low dosages. Only six popula-
tions from Northeast cities demonstrated moderate resist-
ance to the compound (Campos et al. 2020). Maintaining 
the efficiency of the compound in a sustainable way is cru-
cial to enhance Ae. aegypti control.

Although more studies are important to assess the 
regional and local population susceptibilities in response 
to the compound under fluctuating temperatures, a regional 
approach instead of a countrywide one must be taking into 
consideration to future vector control programs in Brazil. 
Given that the dynamics of vector-borne transmissions are 
multifactorial, understand the influence of temperature is 
crucial to improve our knowledge on preventing epidemics. 
Dutra et al. (2023) highlighted that there are still several 
gaps in our current knowledge that limit any attempt to 
forecast the effects of global change on vector competence 
and, as a result, vector-borne disease transmission. Thus, 
in a climate-changing world, taking into account the fluc-
tuating temperatures when assessing the susceptibility of 
mosquitoes of medical importance to other compounds is 
crucial to a more rational use of these resources against 
the vectors.

Fig. 3   Distribution of the 
Pyriproxyfen concentration 
that inhibits the emergence of 
50% of the population of Aedes 
aegypti larvae in each region 
simulated in the laboratory
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