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Abstract

The large-scale dipolar structure in the arrival directions of ultra-high-energy cosmic rays with energies
above EeV observed by the Pierre Auger Collaboration is a well-established anisotropy measurement.
This anisotropy is understood to be of extragalactic origin, as the maximum of the dipolar component is
located  away from the Galactic Center. Cosmic rays interact with background radiation and
magnetized regions on their path from their sources to Earth. These interactions, which depend on the
cosmic-ray energy, charge and mass composition, give rise to different horizons and deflections that are
expected to lead to different anisotropies in the arrival directions of cosmic rays at Earth. The Auger
Collaboration has determined that the mass composition of cosmic rays at ultra-high energies is mixed,
becoming increasingly heavier as a function of energy. Thus, different dipole amplitudes are expected to
be measured at a given energy when separating the data into composition-distinct subsets of lighter and
heavier elements.

In this contribution, we investigate the composition signature on the large-scale anisotropy taking
advantage of composition estimators obtained from the data gathered with the surface detector. A way of
probing for composition signatures in anisotropy patterns is then to divide the data into subsets of
``lighter'' and ``heavier'' elements per energy bin. In a simulation library, we evaluate the possibility of
measuring a separation in total dipole amplitude between two such populations of the measured dataset
under a source-agnostic model. We present the results using two different composition estimators, one
based on air-shower universality and one inferred with deep learning.
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The large-scale dipolar structure in the arrival directions of ultra-high-energy cosmic rays with
energies above 8 EeV observed by the Pierre Auger Collaboration is a well-established anisotropy
measurement. This anisotropy is understood to be of extragalactic origin, as the maximum of
the dipolar component is located ∼115◦ away from the Galactic Center. Cosmic rays interact
with background radiation and magnetized regions on their path from their sources to Earth.
These interactions, which depend on the cosmic-ray energy, charge and mass composition, give
rise to different horizons and deflections that are expected to lead to different anisotropies in the
arrival directions of cosmic rays at Earth. The Auger Collaboration has determined that the mass
composition of cosmic rays at ultra-high energies is mixed, becoming increasingly heavier as a
function of energy. Thus, different dipole amplitudes are expected to be measured at a given
energy when separating the data into composition-distinct subsets of lighter and heavier elements.
In this contribution, we investigate the composition signature on the large-scale anisotropy taking
advantage of composition estimators obtained from the data gathered with the surface detector.
A way of probing for composition signatures in anisotropy patterns is then to divide the data into
subsets of “lighter” and “heavier” elements per energy bin. In a simulation library, we evaluate
the possibility of measuring a separation in total dipole amplitude between two such populations
of the measured dataset under a source-agnostic model. We present the results using two different
composition estimators, one based on air-shower universality and one inferred with deep learning.
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1. Introduction

The observation of the modulation in right ascension in the arrival directions of ultra-high-
energy cosmic rays (UHECRs) with energies above 8 EeV [1], enabled by the high-quality data from
the Pierre Auger Observatory [2], is a milestone in cosmic ray physics. Its significance with the
complete Phase 1 data set is 6.8 [3] and its direction, ∼115◦ from the Galactic center, is indicative
of an extragalactic origin for cosmic rays above this energy threshold.

Additionally, an approximately linear increase of the dipole amplitude with energy has been
detected [4]. This trend is expected to be a consequence of cosmic rays interactions with background
radiation and magnetized regions on their path from their sources to Earth. First, cosmic rays suffer
energy losses when interacting with background radiation, leading to a decrease of the horizon of
cosmic-ray sources and an increase of the dipole amplitude due to the growing relative contribution
of nearby sources, whose distribution is more inhomogeneous. Second, the increase of the UHECR
magnetic mean rigidity, from ≈4 EV to ≈8 EV between 10 EeV and 100 EeV, also results in a
growth of the dipole amplitude with energy. These effects result in varying horizons and deflections
depending on the composition and energy of the cosmic rays, which in turn produce different
dipolar amplitudes1. In this work, we study the possibility of detecting a difference on the dipolar
amplitudes for distinct composition-selected subsets.

The results from the Pierre Auger Observatory from the measurements of the depth of the
shower maximum with the fluorescence detector indicate that the composition of UHECRs is
mixed and that it becomes heavier with increasing energy [6, 7]. In this work, we take advantage
of composition estimators derived on an event-by-event basis using the surface detector of the
Pierre Auger Observatory. In a Universality-based approach, the depth of the shower maximum,
Univ
max , and the number of muons, Univ

 , are reconstructed using a model grounded in air-shower
universality [8]. These observables are then used to infer a proxy of the logarithm of the atomic
mass, ln Univ, through a parameterization obtained from simulations [9], based on the EPOS-LHC
hadronic interaction model [10], with the estimate being primarily driven by Univ

max . Another mass
estimator we consider is the depth of the shower maximum, DNN

max , reconstructed using deep neural
networks (DNN) [11]. While these estimators are not direct measurements, as the depth of the
shower maximum is with the fluorescence detector, they have a factor≈10much larger statistics with
respect to the data set from the fluorescence detector. The resolutions in max are ≈40 g cm−2 and
25 g cm−2, for Universality-based and DNN-based reconstructions, respectively. For comparison,
the resolution of FD

max measured with the fluorescence detector is ≈15 g cm−2 [12].

The size of the data set assumed in this work corresponds to that of Phase 1 of the Pierre Auger
Observatory, as in [3], but only includes events with zenith angle smaller than 60◦ (rather than
80◦ as in [3]), given that the mass estimators considered here can only be reconstructed below this
zenith threshold. The corresponding total exposure is 92,000 km2 sr yr.

1In the alternative scenario that there is a dominant source at the highest energies, diffusion in the extragalactic
magnetic field leads to a dipole that increases with rigidity, and thus also a total dipole increasing with energy for the
measured composition.
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2. Model for a rigidity-dependent dipole

For energies above 4 EeV, the amplitude of the dipole  is observed to increase with energy.
As show in Fig. 1, this behavior can be described with a power law,  () = 10 ×




10 EeV
 , with

the following parameters: 10 = 0.049± 0.009 and  = 0.97 ± 0.21 [3]. Building on this result, for
this work, we model the dependence of the dipole amplitude  with charge  and energy  , i.e.
rigidity /, as [13]

 ( , ) = 


/EeV



(1)

where  and  are parameters that are derived using a simulation library, reproducing the
measured dipole amplitude,  (). This behavior could arise either from models with a locally
dominant source whose events diffuse through extragalactic magnetic fields, or from models where
numerous inhomogeneously distributed sources contribute to the flux. We consider an upper limit of
max = 1, corresponding to the scenario in which many sources contribute to the dipolar anisotropy.
Moreover, to avoid making assumptions on the specific sources, we assume that the dipole direction
is the same for all nuclei.
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Figure 1: Evolution of the dipole amplitude with energy, for the energy bins: (4-8, 8-16, 16-32, ≥ 32) EeV
[3].

The simulation library we use accounts for the detector response of both mass estimators,
ln Univ and DNN

max . The simulated energy spectrum follows the one detected with the Auger
Observatory. The composition model used in this work, shown in Fig. 2, reproduces the mass
composition fractions obtained in [14], where a fit of the FD

max distributions is done, considering
the EPOS-LHC hadronic interaction model, for a combination of four elemental groups: proton,
helium, nitrogen and iron. In this work, the energy-dependent fraction of each nuclear species
is described by a Gaussian curve, fitted to the composition fractions obtained from data. The
peak energy of each Gaussian is set proportionally to the atomic mass number  of each species,
relative to the energy peak determined for protons2. This approach allows the extrapolation of the

2There is a second maximum for nitrogen at an energy of log(/eV) ≈ 17.7, which is not relevant in this analysis.
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Figure 2: Results of the fractional mass composition of the UHECR derived from FD
max distributions using

EPOS-LHC predictions for proton (red), helium (orange), nitrogen (green), and iron (blue), from [14]. The
continuous lines are the model predictions assuming Gaussian functions with the energy of the position of the
maximum ordered proportionally to . The gray bands are included to indicate the energy bins considered
in this work: (8-16, 16-32, ≥ 32) EeV.

composition predictions to higher energies than those available with the statistics of the data set
from the fluorescence detector.

Using this model, the best fit to data is  = 0.0018 and  = 2.1, as shown in the top panel of
Fig. 3 [13]. We also display in the bottom panel of Fig. 3, the total dipole amplitude along with the
contributions from each component, computed according to Eq. (1) using the best fit parameters.
We did not fit the (4−8) EeV bin given that the dipole amplitude in that energy bin is not significant,
with an isotropic probability of 14% [3].

3. Discovery potential

The “lighter” and “heavier” subsets are defined by maximizing the dipole amplitude difference
between the two populations, for each energy bin given that the mass composition changes with
energy. This difference is computed with the standardized mean difference (SMD),

SMD =
|light − heavy |√
2
light + 2

heavy

(2)

withlight,heavy the statistical uncertainty of the dipolar amplitudes of each population, light, heavy,
computed as  =


2/ , with  the total number of events for each population in the corresponding

energy bin.
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Figure 3: Top panel: map of the 2/ndf values obtained for the possible values of the parameters  and
. The best fit to data is obtained for  = 0.0018 and  = 2.1, with a 2/ndf = 2.12. Bottom panel: total
dipole amplitude (black) and dipole amplitude predicted for each component following Eq. (1), for proton
(red), helium (orange), nitrogen (green), and iron (blue). The gray bars are used to indicate the total dipole
amplitude in the energy bins: (8-16, 16-32, ≥ 32) EeV. The dipole amplitudes obtained in data are shown
with brown circles.

The “light” and “heavy” populations are defined for each energy bin based on the tails of
the distribution of each mass estimator, with a subset of intermediate events excluded from either
category. For the mass estimator based on air-shower universality, the “light” population is defined
as all the events with ln Univ below the ln Univ

light threshold, while the “heavy” population consists
of the events with ln Univ > ln Univ

heavy. Similarly, for the mass estimator derived with deep

5
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learning, we define the classification threshold based on 19,DNN
max , which represents the reconstructed

depth of the shower maximum at 1019 eV corrected for energy dependence as 19,DNN
max = DNN

max −
58 g cm−2 log(/1019 eV). Accordingly, the “light” and “heavy” populations are those events with
19,DNN
max above 19,DNN

max,light and below 19,DNN
max,heavy, respectively.

Given that the composition fractions for the different elements vary with energy, the thresholds
are defined separately for each energy bin. Thus, what is considered to be “light” or “heavy” is
relative to the mass composition distribution within that energy bin, with thresholds optimized
to maximize the dipole amplitude difference. For example, in the hypothetical case where there
were an energy bin containing only nitrogen and iron, the “light” population would correspond to
nitrogen, and the “heavy” population to iron.

The optimal thresholds that maximize the dipole amplitude difference between the “light” and
“heavy” populations for the two mass estimators considered, for the energy bins of (8-16, 16-32,
≥ 32) EeV, are summarized in Table 1. The fraction of events— relative to the total number of events
in each energy bin, tot — that belong to each population are also reported. The optimal thresholds
for ln Univ increase with energy, as expected from the composition model assumed, based on the
results on the mass composition fractions. Analogously, the optimal thresholds 19,DNN

max,th decrease
with energy. As a reminder, ln Univ serves as a proxy for the physical ln , which is why ln Univ

can adopt negative values.
In Fig. 4 we show the expected dipole amplitudes as a function of energy for the “light” and

“heavy” populations, defined using the thresholds presented in Table 1. A clear separation is
observed for both mass estimators. The SMD values obtained for the Universality and DNN-based
mass estimators, for each energy bin, are included in Table 1. From the SMD values we conclude
that, for the same total number of events, the DNN-based mass estimator, which has a better max
resolution than the Universality-based one, is expected to lead to less mixing between the different
mass elements and allows for a larger dipole difference between “light” and “heavy” populations.

One should note that, this model is source-agnostic given that the same dipole direction was
assumed for both populations. Allowing for different directions could further enhance the vector
separation between them.

Obtaining these cuts for the “light” and “heavy” populations using simulations that follow
the Auger mass composition and spectrum allows us to apply them in data without an additional
penalization to the significance of the results. Such penalization would be necessary if the cut
parameters were instead optimized directly on the data.

It is important to note that when applying this analysis to data, spurious modulations in the
mass estimators are expected due to the influence of atmospheric variations and the geomagnetic
field on air-shower development. These modulations should be corrected, similar to the corrections
applied to the event energy for weather and geomagnetic effects.

4. Conclusions and outlook

We investigated the rigidity dependence of the dipole amplitude for the three energy bins above
8 EeV by dividing the events into composition-distinct subsets –“light” and “heavy”– based on a
composition model that reproduces measurements with the Auger Observatory and extrapolates
them to higher energies. Using simulations, we assessed the feasibility of detecting a separation
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Figure 4: Expected dipole amplitude as a function of energy for the “light” (red) and “heavy” (blue)
populations using mass estimators reconstructed with air-shower universality (Univ, empty circles) and deep
learning (DNN, filled triangles). The black circles are the dipole amplitudes from data and the red (blue)
dashed lines are the predicted amplitudes for proton (iron) with the model assumed in this work.

Universality DNN
 tot Population ln Univ

th fraction SMD 19,DNN
max,th fraction SMD

[EeV] [%] [g cm−2] [%]

[8-16] 28612
“light” −0.6 19.5

2.7
793 21.9

3.3
“heavy” 2.0 50.0 741 36.8

[16-32] 8024
“light” −0.2 13.4

3.4
790 14.6

4.3
“heavy” 2.2 57.0 740 48.4

>32 2136
“light” 0.0 8.7

2.3
781 9.1

3.2
“heavy” 3.4 46.3 722 47.7

Table 1: Optimal thresholds, ln Univ
th and 19,DNN

max,th , and fractions of events for the “light” and “heavy” pop-
ulations, for each energy bin, using mass estimators reconstructed with Universality and DNN, respectively.
The total number of events, tot, considered in this work, for each energy bin and the SMD values obtained
are also included.

in the total dipole amplitude between these two populations in each energy bin, employing two
different mass estimators derived from the surface detector data. The results indicate a positive
prospect for such a detection. When applying this model to data, it is necessary to correct for
spurious modulations in max caused by weather and geomagnetic effects, similar to the energy
corrections performed in standard large-scale anisotropy analyses. The implementation of this
analysis on data is currently in progress.
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