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Abstract 

The exact probability distribution for the number of runs of fixed length in n successive 

Bernoulli trials of a {O, 1 }00-valued exchangeable process is derived. The distribution of the 

longest run is also obtained and a few problems for further investigation are posed. 

Key words: Number of runs of fixed length, longest run; Bernoulli trials, exchangeable pro­

cesses, De Finetti 's Representation Theorem. 

1 Introduction 

The Distribution Theory of Runs is an old field of investigation in probability (according to 

Mood (1940), it seems it dates back to the end of the 1g1h century with the work of Karl 

Pearson (1897)) and still draws a lot of attention in academy. 

Much of the interest in the Theory of Runs may be attributed to its potential applications 

in a broad spectrum of activities, not to mention its purely mathematical issues. Early, Wald 
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and Wolfowitz (1940) derived not only the distribution of the total number of runs in random 

sequences of elements of two kinds but also its asymptotic behavior in connection with the prob­

lem of (hypothesis) testing the equality of two continuous distribution functions. Mood (1940) 

developed the formulae for the number of runs of fixed length from binomial and multinomial 

populations. Later on, Burr and Cane (1961) studied the longest run of consecutive observations 

having a specified attribute. Feller (1968) stated the "Poissonity" of the limiting distribution 

of the number of success runs in a sequence of Bernoulli variables via generating function. In 

the eighties, Philippou and Makri (1986) and Hirano (1986) independently obtained the exact 

distribution for the number of success runs of given length and for the longest success run in 

n independent Bernoulli trials. Godbole {1990{a), 1990(b)) derived an alternative expression 

to the one established by Philippou and Makri (1986) and Hirano (1986) and determined its 

asymptotic form in a different fashion from Feller's {1968). In the last decade, the Theory of 

Runs continued to make great advances: in Godbole (1991) runs were examined in connection 

with the development of models for the occurrence of genetic patterns in ADN sequences; Fu 

and Koutras {1994) and Lou (1996) focused the Distribution Theory of Runs based on a finite 

Markov Chain imbedding technique. More recently, Aki and Hirano (1999) investigated waiting . 

time problems for runs in Markov bivariate trials and Vaggelatou (2003) derived the distribution 

of the length of the longest run in a multi-state Markov chain. Erylmaz (2005) obtained the 

distribution of the length of the longest hydrologic risk period applying runs to hidrology. 

Certainly, the authors do not intend the aforementioned references to cover the least of the 

bibliography of runs; in fact, just to emphasize its importance. For a detailed account of the 

historical development of the Theory of Runs, see Balakrishnan and Koutras (2002). 

In this work, we develop expressions for the number of runs of fixed length and for the 

longest run in successive Bernoulli trials of a {0, 1}00-valued exchangeable process. To the best 

of the author's knowledge, these results have not been presented in the literature. 

For the reader's guidance, section 2 is devoted to the derivation of the main result, namely 

the distribution of the number of runs of fixed length, illustrated then with a few examples. We 

end that section up with the distribution of the longest run. In section 3, we make our final 

comments and point some directions for future inquires. 
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2 Main Result 

In the sequel, usual probability distributions in the Theory of Runs are obtained for sequences 

of exchangeable Bernoulli variables. Such derivation is based on the celebrated De Finetti 's 

Representation Theorem and on some combinatory analysis. 

Let (Xn)n~l be a {O, 1 }00-valued exchangeable process and JP' its probability measure. As 

usual, the event {Xn = l}, n ~ 1, will be named a success (more precisely, a success in then-th 
n 

stage of the process) and its complement a failure. Also, for each n EN, let Sn= I:(1 - X;) 
i=l 

be the number of failures in the first n steps of the process. By a run of length k, k ~ l, we 

mean a sequence of k consecutive successes followed by a failure. In this way, we are interested 

in the probability distribution of the quantity 

n-k 

N~k) = L xixi+1 ... xi+k- 1 (1 - xi+k), n > k (2.1) 
i=l 

that is, the number of runs of length kin the first n stages of the process (Xn)n~l· We should 

mention that the definition of a run considered here is a little different from that proposed by 

Feller (1968). 

Now we state our ma.in result . 

Theorem 2.1 Let (Xn)n~l be an exchangeable process taking values on {O, 1}00
• Let N~k) be 

as defined in (2.1). Then, if P denotes the probability measure of the process, 

t = 0, ... , [k~iJ, whereµ is De Finetti's measure associated with the process and [x] is the 

{usual} notation for the largest integer less th.an or equal to x . 

Proof: We adopt the usual convention (:) = 0, whenever a < b. 
n-k 

For n EN fixed, let An,t = {(x1, .. . ,xn) E {O, l}n: ::[; :z:; •• -Xi+k-1(1- X;+k) = t}. 
i=l 

We then have, 
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A.a (Xn)n;~1 is exchangeable, De Finetti's Representation Theorem holds (De Finetti (1937), 

Heath and Sudderth (1976)) and (2.2) may be rewritten as 

11 f: :r:; n- f; x; . fl E :r:; n- f; x; 
IJJ(NJk) = t) = L 9;=1 (1 - 0) ;., dµ(0) = Jo L 0i=l (1 - 0) t=1 dµ(0), 

An,t O O An,t · 

where the last equality follows from Tonelli's Theorem. Setting 

it follows that 

n 

An,t,j ={(xi,, . . ,xn) E An,t: L(l -xi)= j}, j = 0, 1, .. . ,n, 
i=l 

/1 n 
P(N~k)=t)= Jn LIAn,tJI 9n-j(l-0)idµ(0), 

0 j==O 

where IAI represents the cardinality of the set A. 

(2.3) 

Thus, in order to obtain the probability distribution of N~k) in (2.3), we only need to 

evaluate IAn,t,jl, j = 1, ... , n. Clearly, IAn,t,ol = O. By definition, a n-uple in An,t,j has exactly 

j coordinates equal to O and n - j equal to 1. We consider then, for each x E {O, l}n with j 
X X 0: 

coordinates equal to O, j = 1, ... , n, the quantities Yi~, ... , Y,+1 a.e follows: Yi~ is the number of 

l's ·preceeding the first Oin.then-uple (that is, Y?1
··--•"'") = min{i E {1, .. . ,n}: x, = 0}-,.1), Y/ 

is the number of l's between the (i - 1)-th and the i-th O's in the n-uple, 2 $ - i $ j ( or 
k k 

y;<"'h·•,zn) = min{k E {l, . .. ,n}: E(l-x1) = i}-min{k E {1, ... ,n}: E(l-x1) = i-l}-1) 
~l ~l % X 

and Y;+i is the number of l's after the (last) j-th O in the n-uple (Y;+i = n - min{k E 
k X "' 

{1, ... , n} : E (1 - xi) = j} ). Clearly, Yt + · · · + Y;+i = n - j, if x possesses j O's. Thus, a w ~ 
point:= (xi, ... , xn) E {O, l}n belongs to An,tJ if, and only if, there are exactly t of the j 

% % 
first quantities Yi.~, ... , Y;~ greater than k - 1 and j - t of them smaller than k. In this way, 

the problem of determining IA..,t.; I is equivalent to the combinatory problem of calculating the 

number of nonnegative integer solutions of Yi + · · • + Y;+1 = n - j with t of the variables 

Yi, ... , Y; being at least k and n - t of them being strictly smaller than k. 

Defining B, = {Y; ~ k }, i = 1, ... , j + 1, notice that 

It follows that 

An,tJ = LJ [(rl;e1B;) n (f"\¢1.Bf)]. 
!C{l, .. . ,j}: 

IIl=t 

IAn,t,jl= L. l(rl;e1B;)n(n.¢1BDI= G)l<n!=1Bi)n(n[=t+1Bf)I (2.4) 
Ic{l, ... ,3}: 

lll=t 
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As 

we obtain that 

From the above equality, we have 

Therefore, 

I 1 ,.J I '"' i 1-t n- t+i j-t ( . ) ( ( ')k) 
. (n;=1B;) n (, 'i=t+1Bf) = ~(-1) i j · (2.5) 

From (2.3), (2.4) and (2.5), we obtain the result. 

■ 
Theorem 2.1 gives the exact distribution of the number of runs of length k for exchange­

able Bernoulli variables, extending in a sense God bole's result in [9] for the i.i.d. case. The 

extension arises ultimately from the conditional uniformity of any finite exchangeable sequence 

of Bernoulli trials (not only of i.i.d. ones) given the sum of its components {or the number of 

successes/failures in the sequence), a minimal sufficient statistic for this whole family of distri­

butions (as a matter of fact, this is equivalent to finite exchangeability in the 0-1 case). The 

combinatorial argument is therefore quite similar to that of Godbole (1990a}, except for the 

setting based on nonnegative integer solutions of a equation (in place of God bole's presentation 

using urn schemes). Also, the argument holds for the usual definition of a run (Feller (1968)). 

The distribution of N!_k) in Theorem 2.1 depends explicitly on De Finetti 's measure of the 

process and, for this reason, may be not appealing at first glance. Nevertheless, it holds for a 

large class of stochastic processes, without mentioning the exact distributions in the Theory of 

Runs do not seem sympathetic in general. 

In this work, we have tackled neither the weak convergence of NAk) nor the derivation of 

exact probability distributions for runs in broader classes of exchangeable processes (the latter 
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problem hinted by the existence of De Finetti 's type theorems for more general models). Next, 

we illustrate Theorem 2.1 with three examples. 

Example 2.1.1 Let (Xn)n?:l be a sequence of i.i.d. Bernoulli random variables with parameter 

00 , O < 00 < 1. In this case, µ( { 00}) = 1, that is, De Finetti 's measure of the process is 

degenerate at 00 , and the integral in Theorem 2.1 reduces to an expression similar to that 

obtained by Godbole {1990a}, 

P(N~k) = t) = t{l -0o)io;-j (!) ~(-l)i(j ~ t) (n - (t_:+ i)k)· 
3==0 i=O J 

Example 2.1.2 {P6lya 's urn scheme} Let (Xn)n<!l be a stochastic process with probability 

measure l? defined by, '<In EN, 'v (x1, ... , Xn) E {O, l}n, 
n n 

r(! + E Xi)r(~ + n- E Xi)r(~) 
P(X X ) i""l i=l = 

1=X1, ... , n=Xn = r(!)r(~)r(~+n) 

= P6lya((x1, ... , Xn)/((a, b), c)), 
I 

where r(-) is the gamma function and a, b, c natural numbers. (Xn)n?;l describes the evolution 

of a P6lya0Eggenberger urn model (P6lya and Eggenberger (1923}} initially with a white balls 

and b black balls in the um, or, with initial configuration (a, b) and with c balls being added to · 

the urn at each stage (Xn denotes then the indicator of a white ball being drawn in the n-th 

step). 

It is easily seen that (Xn)n?;l is exchangeable with De Finetti 's measure given by a Beta 

density with parameters ! and ~ (Johnson and Kotz (1977)). Thus, (Xn)n?:l satisfies the 

conditions of Theorem 2.1 and, in this case, N~k) has the following distribution 

J?(N~k) = t) = 

= 11 {:t(l - O)ion-i (!) f (-l);(j-: t) (n - (t_+ i)k)} ri~! 0!-1(1 - 0)~-1d8 
O j==O i=O I J r(c)r(cl 

= E ({) E (-l);(i ~ t) (n- (t_+ i)k) r~~! { /1 o!+n-;-1(1- 0)~+;-1d0 }· 
;=0 i=o J r<,Jr(,,) lo 

Therefore, 
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Example 2.1.3 (P6lya-Eggenbergerurn model with unknown initial composition). Let (Xn)n~l 

be a stochastic process the probability measure of which, P, is given by, V n E N, V (x1, ... , xn) E 

00 

lP'(X1 =xi, ... ,Xn = Xn) = 2>1-P6lya((x1, ... ,xn)l((a1,b1), 1)), 
l=l 

00 

where {((a1, b1),p1)}1EN, with (a1, bi) E N2, Pl~ 0, V l EN, and :E Pl= l, is a probability mea-
l=l 

sure on (N2 , 'P(N2)). In this example, (Xn)n~l describes the evolution of a variant version of 

P6lya-Eggenberger urn model, that is to say, with c = 1 and random (unknown, under the subjec­

tivistic view of probability) initial composition. The probability measure {((a1, b1),p1)}1EN should 

be considered (still under the Bayesian standpoint) as a numerical transcription of personal 

uncertainty about the initial composition of the urn (Esteves, Wechsler, Iglesias and Pereira 

(2009}}. (Xn)n;c:1 is of course exchangeable and possesses De Finetti 's measure given by a 

mixture of Beta densities (more precisely, the Beta distribution with parameters a1 and bi is 

weighted by Pl, l = 1, 2, ... ). The distribution of the number of runs of length k inn successive 

stages of a P6lya-Eggenberger urn model with unknown initial composition is then 

JP(N!kl = t) = f Pl I'(a1 + b1) t (j) I'(a1 + n - j)I'(b1 + j) I:(-lt (j ~ t) (" - (t_+ i}k). 
l=l I'(a1)r(b1) j=0 t r(a1 + b1 + n) i=0 i J 

We finish this section presenting the distribution of the longest run in n successive stages of 

a {0, 1}00-valued exchangeable process resultant from Theorem 2.1. 

Theorem 2.2 Let (Xn)n~l be an exchangeable process taking values on {0, 1}00
• Let Rn be the 

longest run in the first n steps of the process. Then, 

P(R,.. = r) = 11t(l- e)1on-j t(-1); ({) [(n- <:+ l)i)- (n ;ri)]dµ(O), 

r = 0, ... , n - l.(R,.. = 0 represents no occurrence of runs). 

Proof: It is easy to check that 

Thus, 

Rn .$ r if and only if NAr+l) = 0. 

IP(R,.. = r) = P(R,.. .$ r) - lP(R,.. .$ r - 1) 

= l?{NAr+l) = 0) - P{NAr) = 0) . 
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Theorem 2.1 a.nd straightforward calculations yield 

■ 

3 Conclusions 

The exact distribution of the number of runs of fixed length in successive Bernoulli trials of 

a {O, 1}00-valued exchangeable process is obtained from De Finetti's Representation Theorem. 

In addition, the formula for the longest run is also deduced. It should be emphasized that the 

asymptotic forms of such distributions have not been investigated (including other definitions 

of run), being possibly the subject of a future work. Other run statistics, as the time of the 

occurrence of the last run of fixed length, for instance, have not been dealt with either. It is also 

open to speculation whether De Finetti's type Theorems for other parametric models may lead 

to the probability distributions of run statistics in broader classes of exchangeable processes. 
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