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Abstract. Let f = I — k be a compact vector field of class C* on a real
Hilbert space H. In the spirit of Bolzano’s Theorem on the existence
of zeros in a bounded real interval, as well as the extensions due to
Cauchy (in R?) and Kronecker (in R¥), we prove an existence result for
the zeros of f in the open unit ball B of H. Similarly to the classical
finite dimensional results, the existence of zeros is deduced exclusively
from the restriction f|s of f to the boundary S of B. As an extension of
this, but not as a consequence, we obtain as well an Intermediate Value
Theorem whose statement needs the topological degree. Such a result
implies the following easily comprehensible, nontrivial, generalization of
the classical Intermediate Value Theorem: If a half-line with extreme
q ¢ §(S) intersects transversally the function f|s for only one point of S,
then any value of the connected component of H\f(S) containing q is
assumed by f in B. In particular, such a component is bounded.
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1. Introduction

Let H be a real Hilbert space. Denote by B the open unit ball of H and by B
its closure, also called the unit disk of H. The boundary 0B of B is the unit
sphere of Hl, hereafter denoted by S.

Let f: H — H be a compact vector field; namely, a map of the type
I —Fk, where I is the identity of H and k is a compact map, meaning that k& is
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continuous and sends bounded sets into relatively compact sets. This implies
that f(S) is a bounded closed subset of H.

In this paper, among other results, we obtain the following statement
(Theorem 6.9), which extends, to the infinite dimensional setting, the classical
one-dimensional Intermediate Value Theorem:

Assume that § is of class Ct, and let A C H be a half-line with extreme
q ¢ (S). If the intersection f(S) N A is transverse and is the image under f
of an odd number of points of S, then the connected component of H\f(S)
containing q is a bounded open subset of §(B).

As we shall see, such an easily comprehensible statement is a conse-
quence of our main result (Theorem 6.5), whose formulation requires a notion
of degree for special maps between finite or infinite dimensional manifolds in-
troduced in [6], hereafter called bf-degree to distinguish it from other classical
degrees, such as the Brouwer degree, Br-degree, and the Leray—Schauder de-
gree, LS-degree (see [5,7,8,25] for additional details).

We shall denote by t the radial retraction of H\{0} onto the unit sphere
S. That is, v is the smooth map p — p/||p||. By the boundary map (of f) we
mean the restriction fls: S — H of f to the boundary S of B. If 0 ¢ f(S),
an important map makes sense: the boundary self-map §°: S — S of {, given
by the composition t o f|g of the boundary map f|s with the radial retraction
t.

Observe that, if H is finite dimensional and 0 ¢ f(S), then the Brouwer
degree, degp, (%), of the boundary self-map {7 is well defined; this being
a special case of the degree for maps between oriented, finite dimensional,
compact, connected, real manifolds (see, for example, [15,19]). For a self-
map, such as {2, one assumes that the orientations of domain and codomain
are the same.

We recall that, when dimH = 2, the integer degp, (f7) is called the
winding number (around the origin) of the closed curve f|ls: S — H. For this
reason, even when the (finite) dimension of H is higher than 2 (and 0 ¢ (S)),
it is folklore to say that degp,.(j°) is the winding number (around the origin)
of the map fls.

Actually, still in the case when dim H < oo and 0 ¢ §(S), degp,.(f°) may
be considered as a modern reformulation of the index of the boundary map
fls introduced by L. Kronecker in [17], hereafter denoted by I(f|s). Such an
integer, when different from zero, ensures the existence of at least one zero of
the map f in B (see, for example, [20]; see also [12] for details and interesting
historical notes).

Our main topological tool is the bf-degree, denoted here deg, f() to dis-
tinguish it from the Brouwer degree degp,.(+). Since, in the finite dimensional
case, the absolute values of these two degrees coincide, |deg, f(f8)| may be
regarded as an extension of |I(f|s)| to the case dimH = oo.

Given any ¢ & (S), we prove that, if |deg,;((f — ¢)?)| # 0, then the
connected component of H\f(S) containing ¢ is open and included in the
bounded set f(B). Such a result (Theorem 6.5) is our infinite dimensional
version of the Intermediate Value Theorem.
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As we shall see, an easily understandable hypothesis implying the con-
dition |degy,;((f — 9)?)| # 0 is the following: There exists a half-line with
extreme q whose intersection with §(S) is transverse and its preimage under
fls consists of an odd number of points.

A final example will show that the converse implication is not true.

It is worth pointing out that many authors addressed the problem of
defining an integer-valued degree for Fredholm maps; see, e.g., [4,21,25] for
a comprehensive discussion. Among them we cite Fitzpatrick, Pejsachowicz
and Rabier, who defined in [13] a notion of degree for C? Fredholm maps
between real Banach manifolds, based on a concept of orientation for this
class of maps; such a degree has been extended to the C! case in [22]. This
notion of orientation is different from the one that we follow here, introduced
by the first and third author in [6]. We think that a result analogous to
Theorem 6.5 holds true in this context; however we are not able to prove it
because of some technical difficulties.

2. Preliminaries

Here we expose some notation and preliminaries that we will need later.

Recall that a continuous map between metrizable spaces is said to be
proper if the pre-image of any compact set is a compact set. It is easy to
check that proper maps are closed, in the sense that the image of any closed
set is a closed set.

Let, hereafter, H and K be two real Hilbert spaces. By L(H, K) we will
denote the Banach space of the bounded linear operators from H into K,
endowed with the usual operator norm. For simplicity, the notation £(H)
stands for £(H, H). By Iso(H, K) we shall mean the open subset of £(H,K)
of the invertible operators, and we will write GL(H) instead of Iso(H, H).

We recall that an operator L € L(H, K) is said to be Fredholm (see e.g.
[24]) if both its kernel, Ker L, and its cokernel, coKer L = K/L(H), are finite
dimensional. In this case its index is the integer

ind L = dim(Ker L) — dim(coKer L).

Obviously, if L € L(H, K) is invertible, then it is Fredholm of index 0. More-
over, any operator in £(R*,R?®) is Fredholm with index k — s.

By ®(H, K) we denote the subset of L(H, K) of the Fredholm operators.
Given n € Z, ®,,(H,K) stands for {L € ®(H,K) : ind L = n}. In particular,
®(H) and ®,,(H) designate ®(H, H) and ®,,(H, H), respectively.

Proposition 2.1. Here are some important properties of the Fredholm opera-
tors:

1. if L € ®(H,K), then the image of L is closed in K;

2. the composition of Fredholm operators is Fredholm and its index is the
sum of the indices of the composite operators;

3. if L € ®(H,K), then L is proper on any bounded and closed subset of
H;

4. for any n € Z, the set ®,,(H,K) is open in L(H,K);
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5. if L € ®,(H,K) and K € L(H,K) is compact, then L + K € ®,(H,K).

An useful consequence of Property 2 is the following:

o If L € &, (H,K) and s € N, then the restriction of L to an s-codimensional
closed subspace of H is Fredholm of index n — s.

Let f: W — K be a C' map defined on an open subset of H. Recall
that f is said to be Fredholm of index n € Z if, for all p € W, the Fréchet
differential df, of f at p belongs to ®,,(H, K). In the sequel we will say that
fis a ®,-map.

Hereafter, for short, by a manifold we shall mean a smooth bound-
aryless differentiable (finite or infinite dimensional, locally closed) manifold
embedded in a real Hilbert space. Therefore, in what follows, any manifold
has an induced Riemannian structure. Notice that the sphere S is a one-
codimensional manifold of H.

If M is a manifold embedded in a Hilbert space H and p € M, the
tangent space of M at p, denoted by T, M, will be identified with a closed
subspace of H. In fact, one may regard any tangent vector p € 1, M as the
derivative 7/(0) € H of a C* curve v: (—1,1) — M such that (0) = p.

As for maps between Hilbert spaces, a C! map f: M — N between two
manifolds is Fredholm of index n (see [23]) if so is the differential df,: T, M —
TN, for any p € M. Such a map will be called a ®,,-map (between mani-
folds).

Given a map f: M — N, one usually calls, respectively, points and
values the elements in the domain M and the codomain N of f.

If f: M — N is C!, an element p € M is said to be a regular point
if the differential df,: Ty M — Ty, N is surjective, otherwise p is a critical
point. An element p € N is a critical value if its pre-image f~!(g) contains
at least one critical point, otherwise p is a regular value.

The celebrated Sard’s Lemma (see e.g. [15]) implies that, if M and N
have the same finite dimension and f is C!, then the set of regular values
is dense in N. Moreover (see also [23]), by a finite dimensional reduction
argument, one can show that the same assertion holds true even when f is a
proper ®y-map acting between infinite dimensional manifolds.

3. Algebraic and topological orientations

This section is devoted to a summary regarding the notion of algebraic ori-
entation for linear Fredholm operators of index 0 between Hilbert spaces, as
well as to the concept of topological orientation for nonlinear Fredholm maps
of index 0 between manifolds. The reader can see [6,7].

3.1. Special linear operators and algebraic orientation

By F(H, K), or simply by F(H) when K = H, we denote the (not necessarily
closed) vector subspace of L(H, K) of the operators with finite dimensional
image.
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Unless otherwise stated, with the symbol I we mean the identity oper-
ator acting on any vector space.

If L € L(H) has the property that I — L € F(H), we shall say that L is a
det-admissible operator. The symbol A(H) will stand for the affine subspace
I — F(H) of L(H) of the det-admissible operators. Obviously, if H is finite
dimensional, then A(H) = L(H).

Since the identity on H is Fredholm of index 0, from Property 5 of
Proposition 2.1 one gets that A(H) is a subset of ®q(H).

In [16], the determinant of an operator L € A(H) is defined as det L :=
det L|x, where L|x is the restriction of L (as domain and as codomain) to
any finite dimensional subspace X of H containing the image of I — L, with
the understanding that det L|x = 1 if X = {0}.

Here are some fundamental properties of the determinant.

Remark 3.1. Let L, Ly, Ly € A(H) be given. Then,

e det L # 0 if and only if L is invertible;
e R € Iso(H,K) implies RLR™! € A(K) and det(RLR™') = det L;
o [y € A(H) and det(LyL,) = det Ly det L.

See, for example, [9] for a discussion about other properties.
The easy proof of the following remark is left to the reader.

Remark 3.2. Let X @ Y be a splitting of H with dim X < oco. Suppose that,
according to this splitting, L € L(H) can be represented in a block matrix

form as
(L1 Lo
L= < 0 Iss ) ’

where Iy is the identity operator on Y. Then L € A(H) and det L = det Ly;.

Given L € ®y(H,K), in [6], an operator K € F(H,K) was called a
corrector of L if L 4+ K € Iso(H, K). Since the word “corrector” is mislead-
ing (an invertible operator need not to be corrected), we will use the more
appropriate word companion.

Any L € Iso(H, K) has a natural companion: the trivial element of the
space L(H, K). This fact was of fundamental importance for two concepts of
orientation introduced in [6] and, consequently, for the construction of the
bf-degree.

Given any L € ®o(H, K), let C(L) denote the subset of the vector space
F(H,K) of the companions of L. Whatever is L, invertible or non-invertible,
this set is nonempty and, according to the following definition, it admits a
partition in exactly two equivalence classes (see [6] for details).

Definition 3.3 (FEquivalence relation of companions). Two companions Kj
and Ky of an operator L € ®g(H,K) are equivalent (more precisely, L-
equivalent) if the determinant of the det-admissible operator (L + K) (L +
K1) is positive. This is an equivalence relation on C(L) with two equivalence
classes.

The following concept, introduced in [6], is based on Definition 3.3.
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Definition 3.4 (Algebraic orientation of a ®g-operator). An algebraic orien-
tation of an operator L € ®q(H, K), for short called alg-orientation, is one of
the two equivalence classes of C(L), denoted by C4 (L) and called the class of
positive companions of the alg-oriented operator L. The two orientations of
an operator L € ®q(H, K) will be called opposite (one to the other).

Some special algebraic orientations are in order. Definition 3.6 deals
with the finite dimensional case.

Definition 3.5 (Natural alg-orientation of an isomorphism). Any invertible
operator L: H — K admits the natural alg-orientation: the one given by
regarding the trivial operator of £(H, K) as a positive companion of L.

Definition 3.6 (Associated alg-orientation of a linear operator). Let H and
K have the same finite dimension. Assume that they are oriented up to an
inversion of both the orientations (or, equivalently, assume that HxK is ori-
ented). Then any L € £(H,K) admits the alg-orientation which is associated
to the orientations of H and K: the one given by considering as a positive
companion of L any K € C(L) such that L + K is orientation preserving.

Recall that, if dimH < oo and L € L(H), by sign L one simply means
the sign of det L. More generally, if H and K have the same finite dimension
and are oriented, then the (classical) sign of L is defined as follows (see, for
example, [19]):

0 if L is not invertible,
sign L = ¢ +1if L is orientation preserving,
—1if L is orientation reversing.

Going beyond the finite dimensional context, we introduce the following
concept of sign of an alg-oriented operator, called here bf-sign in order to
distinguish it from the above classical notion.

Definition 3.7 (bf-sign of an alg-oriented operator). Let L € ®¢(H,K) be
alg-oriented. Its bf-sign is the integer

0 if L is not invertible,
sign,y L = { +1if L is invertible and naturally alg-oriented,
—1if L is invertible and not naturally alg-oriented.

The easy proof of the following remark is left to the reader.

Remark 3.8. Assume that H and K have the same finite dimension and are
oriented, then, given L € L(H,K), one has sign L = sign,; L, provided that
L has the associated alg-orientation.

3.2. Topological orientation
We now extend the concept of orientation to nonlinear maps (see [6,7] for
more details).

The basic fact is that the alg-orientation of an operator L € ®q(H, K)
induces an alg-orientation to the operators in a neighborhood of L. In fact,
since Iso(H, K) and ®q(H,K) are open in £(H,K), any companion of L re-
mains a companion of all L sufficiently close to L.
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Definition 3.9 (Top-oriented maps of Pg-operators in the flat case). Let X
be a topological space and I': X — ®4(H, K) a continuous map. A function
w that to any = € X assigns an alg-orientation w(x) of I'(x) is called a
topological orientation of T' (top-orientation for short) provided it is locally
constant in the following sense: if € X and K € w(&), then K € w(z) for
all x in a neighborhood of . The map I is called top-orientable if it admits
a top-orientation, and top-oriented if a top-orientation has been chosen. A
subset A of ®g(H,K) is top-orientable or top-oriented if so is the inclusion
map A — &y (H, K).

Definition 3.10 (Pull-back of an orientation in the flat case). Let X and Y
be topological spaces. If 0: X — Y and I': Y — ®y(H, K) are continuous
maps, then any orientation w of I' induces an orientation w* of the composite
map I' oo by putting w*(z) = w(I'(o(z))) for all z € X. We will say that the
orientation w* is the pull-back of w or, informally, that the orientation w™* is
induced on I' oo by w.

From Definition 3.10 one gets that ®q(H,K) is locally top-orientable
and, if A C ®4(H,K) is top-orientable, then so is any subset of A, as it
is any continuous map I': X — A. In particular, any constant map from a
topological space into ®q(H, K) is top-orientable.

If H and K have the same finite dimension, then ®q(H, K), which in this
case coincides with £(H, K), is top-orientable. In fact, assuming that H and
K are oriented, one can assign, according to Definition 3.6, the associated
alg-orientation to any operator of £(H, K). One can check that this turns out
to be a top-orientation.

However, ®(H, K) could be not top-orientable in the infinite dimen-
sional context. In fact, a surprising result of N. Kuiper (see [10,18]) asserts
that, if H is infinite dimensional and separable, then the linear group GL(H)
is contractible. Actually, in the context of Banach spaces, in [7, Theorem
3.15] it is shown that, given a Banach space F, if GL(F) is connected, then
the open subset ®q(F) of L(F) is as well connected but not top-orientable.

Hereafter, by ®(H,K) we shall mean the set of the alg-oriented ®-
operators acting from H to K. Namely,

Dy(H,K) = {(L,a) : L € ®(H,K), o is an alg-orientation of L}.

Remark 3.11. (A two-fold covering space in the flat case) Definition 3.9 im-
plies that the set ®¢(H, K) can be endowed with the topology which makes
the natural projection

P: do(H,K) — do(H,K)

a 2-fold covering space (see [7] for details). Therefore, given a continuous map
I': X — &o(H, K) defined on a topological space, the second component w of
a lift

x € X (D(z),w(z)) € Po(H,K)
of I is a top-orientation of I'; and the function

[:=(T,w): X — &(H,K)
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may be regarded, abusing of the notation introduced in Definition 3.9, as a
top-oriented map of ®g-operators.

The covering space P: &o(H,K) — ®o(H,K) is useful for dealing with
the top-orientability, as well as with the top-orientation, of continuous maps
into ®o(H, K); this is the case, for example, of the differential df: X —
Dy(H, K) of a ®g-map f: X — K defined on an open subset of H.

Since, by definition, a simply connected topological space is assumed
to be path connected, from Remark 3.11 and the theory of covering spaces,
one gets that, if X is simply connected and locally path connected, then
I': X - &9(H,K) admits exactly two top-orientations. Moreover, if & € X
and « is any of the two alg-orientations of T'(#), then there exists one and
only one top-orientation w of I' such that w(#) = a.

Particular attention should be paid to the special convex subset LS(H)
of L(H) consisting of the compact linear perturbations of the identity, that we
shall call Leray—Schauder subset of L(H). Notice that Property 5 of Propo-
sition 2.1 implies that LS(H) is contained in ®q(H). Therefore, since it is
simply connected and locally path connected, the following definition makes
sense.

Definition 3.12 (Standard top-orientation of the Leray-Schauder subset of
L(H)). The unique top-orientation w of LS(H) such that w(I) is the natural
alg-orientation of the identity (see Definition 3.5) will be called standard.

We now recall the concept of top-orientation for maps between mani-
folds. To this end, we need an analogous 2-fold covering space for the more
general case in which the Hilbert spaces H and K are replaced by two mani-
folds M and N. For this purpose we define two sets: the base space

O (M,N)={(p.¢.L) :pe M,q e N,L € o(T,M, T,N)};
and the total space
dT(M,N) = {(p,a,L,) : (p,q,L) € &{ (M, N), a is an alg-orientation of L}.

We need to define the topologies on these two sets in order to make the
natural projection P*: (p,q, L,a) — (p,q, L) a covering space.

The topology on the base space ®f (M, N) is defined as follows. Let
¢: U — H and ¢: V — K be two charts of M and N, respectively. Then,
there exists a  bijective correspondence between the subset
®F (U, V) of & (M, N) and the topological space ¢ (o(U), (V) = p(U)x
P(V) x Po(H,K). In fact, one can check that the map
T: 95 (U, V) — &F (p(U),¥(V)), defined by

(p.q, L) — (@(p),¥(q), dog L (dgy) ),

is a bijection. Thus, in @g (U, V) we consider the topology which makes 7 a
homeomorphism; obtaining, in this way, a neighborhood basis of any element
(p,q, L) € ®f(U,V). Since ¢ and @ are arbitrary, we get a topology on
O (M, N).



An infinite dimensional version Page 9 of 25 70

Similarly, we define the topology on the total space i)a' (M, N). Let
@: U — Hand ¢: V — K be two charts as above, and consider the bijection

I: &5 (U, V) = & (o(U), % (V)),
deﬁned by (pv qa Lv 0[) = (Sﬁ(p)ﬂ/f(Q)» d'l/)q L (dsop)ilv d'l/Jq « (d¢P)71)7 Where
dpg o (dipp) ™t = {dipg K (dpp) ' 1 K € a}.

Since & (@(U), (V) = o(U) x (V) x &o(H, K) is a topological space, the
topology on Cf)g (M, N) can be defined with exactly the same argument used
for ®f (M, N'), and this implies the following result.

Proposition 3.13. (The two-fold covering space in the non-flat case) The
above topologies on ®F (M, N) and ®f (M, N) make the natural projection

P of (M, N) = &f (M, N),  (p,q,L,a) — (p,q, L)
a two-fold covering space.

Because of Proposition 3.13, the following notion of topological orien-
tation of a map into ®F (M, ') makes sense.

Definition 3.14 (Top-oriented maps of ®g-operators in the non-flat case).
Let X be a topological space and I't: X — CIDS' (M, N) a continuous map. A
top-orientation of I'" is the second component w of a lift

= (" w): X = o (M,N)
of I't'. The map I'T is called top-orientable if it admits a top-orientation, and

top-oriented if a top-orientation has been chosen. A subset AT of & (M, N)
is top-orientable or top-oriented if so is the inclusion map A+ — &F (M, N).

The following orientability criterion can be deduced from the theory of
covering spaces. Recall that a simply connected space is assumed to be path
connected.

Proposition 3.15. (Orientability for maps of ®j-operators in the non-flat case)

LetTT: X — @3‘ (M, N) be a continuous map defined on a topological space.
If X is simply connected and locally path connected, then " admits exactly
two top-orientations. Moreover, if the restriction I'|g of T'C to a path con-
nected subset £ of X has a top-orientation @, then there exists a unique
top-orientation & of I'T whose restriction to £ coincides with .

Let us now introduce the notion of orientation for nonlinear Fredholm
maps between Hilbert spaces. The following important definition is propaedeu-
tic to the more important concept of orientation for nonlinear Fredholm maps
between manifolds, that we will introduce in Definition 3.18 below.

Definition 3.16 (Top-orientation of ®o-maps in the flat case). Let W be
an open subset of H and f: W — K a ®p-map. A top-orientation of f is a
top-orientation of the differential df : W — &4 (H, K), according to Definition
3.9 or, equivalently, according to Remark 3.11. The map f is said to be top-
orientable if it admits a top-orientation, and top-oriented if a top-orientation
has been chosen.
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A special and important case of a ®p-map defined on an open subset
W of His a C' compact vector field. Namely, a C' map f: W — H with the
property that k£ := I — | is a compact map; that is, a map sending bounded
sets into relatively compact sets (see, e.g., [11, Sect. 8]). It is known that,
for any p € W, the differential df, belongs to the convex subset LS(H) of
Oy (H) consisting of the compact linear perturbation of the identity operator
I. Therefore, the following definition makes sense.

Definition 3.17 (Standard top-orientation of a C' compact vector field).
Given an open subset W of H and a C' compact vector field f on W, the
standard top-orientation of f is the one induced on df: W — LS(H) by the
standard top-orientation of LS(H), according to Definitions 3.10 and 3.12.

An operator L € ®y(H,K) can also be regarded as a C! map from
W = H into K. Therefore, for L we have two different notions of orientation:
the alg-orientation (see Definition 3.4) and the top-orientation (see Definition
3.16). Since dL: H — K is the constant map dL, = L for all p € H, we shall
tacitly assume that the two possible orientations, if given, coincide. More
precisely: if C1 (L) is the class of positive companions for L, then it is as well
for dL,, for all p € H.

Definition 3.18 (Top-oriented ®o-maps between manifolds). A top-orientation
of a ®p-map f: M — N between two manifolds is a top-orientation of the
continuous map

dft: M — @7 (M, N), p— (p, f(p). dfy),

according to Definition 3.14. The map f is top-orientable if it admits a top-
orientation, and top-oriented if a top-orientation has been assigned.

The next result is a direct consequence of Definition 3.18 and Proposi-
tion 3.15. Recall that a simply connected space is assumed to be path con-
nected and observe that any manifold is locally path connected.

Proposition 3.19. (Orientability criterion for ®j-maps between manifolds)
Let f: M — N be a ®g-map between two manifolds. If M is simply con-
nected, then f admits exactly two top-orientations.

A simple example of a not top-orientable ®y-map is given by a constant
map f from the 2-dimensional real projective space P? into R? (see [7]).
This is due to the fact that even dimensional real projective spaces are non-
orientable. Incidentally, we observe that, although f is constant, this is not
the case for the continuous map

dft: P* — o (P2, R?), p— (p, f(p).dfy)-

Definition 3.20 (Three special top-orientations for ®g-maps between mani-
folds).

(Natural) A special top-orientation of a ®p-map between manifolds is
the natural one, which makes sense whenever f: M — N is a diffeomorphism
(or, more generally, a local diffeomorphism): given any p € M, according to
Definition 3.5, one assigns the natural alg-orientation to the differential df,.
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(Associated) Given a C! map f: M — N between two finite dimen-
sional oriented manifolds of the same dimension, one can assign to f the
top-orientation which is associated to the orientations of M and N: to any
differential df,, one assigns the alg-orientation which is associated to the ori-
entations of T, M and Ty, according to Definition 3.6.

(Canonical) If f is a self-map of a connected, orientable, finite dimen-
sional manifold M, one can assign to f the canonical top-orientation: the
one which is associated to any orientation of M, provided that it is the same
as domain and as codomain of f.

Now we define the concept of ®y-homotopy between two manifolds, as
well as the notion of its top-orientation.

Definition 3.21 (Homotopy of ®g-maps between manifolds). Given two man-
ifolds M and N, a homotopy H: Mx[0,1] — N is a ®y-homotopy if it is
continuously differentiable with respect to the first variable, and such that,
given any parameter t € [0,1], the partial map Hy := H(,t): M — N is
Fredholm of index 0. Any two partial maps of a ®p-homotopy are said to be
®y-homotopic.

Denoting by o1 H: (p,t) — d(H:), the partial differential of H with
respect to the first variable, a top-orientation of H is, according to Defini-
tion 3.14, a top-orientation of the map

(O1H)": Mx[0,1] = @5 (M, N),  (p,t) = (p, H(p, 1), d(Hy)p)-

A ®y-homotopy H is said to be top-orientable if it admits a top-orientation,
and top-oriented if a top-orientation has been chosen.

Let w be a top-orientation of a ®g-homotopy H from M to N. Then,
given any parameter ¢t € [0, 1], w; := w(+,t) is a top-orientation of the partial
map H;, called the partial top-orientation of H at t. Conversely, one has the
following consequence of the theory of covering spaces (see [6,7]).

Proposition 3.22. (Transport of the top-orientations for ®g-maps) Assume
that a partial map Hy: M — N of a Pg-homotopy H has a top-orientation c.
Then, there exists one and only one top-orientation w of H whose partial top-
orientation wy coincides with o. In particular, if two maps from M to N are
Dy-homotopic, then they are both top-orientable or both not top-orientable.

From Proposition 3.22 we deduce that any self-map of a manifold M
which is ®p-homotopic to the identity is top-orientable. Indeed, being a dif-
feomorphism, the identity admits the natural top-orientation (see Defini-
tion 3.20). This agrees with a well known fact: if a finite dimensional manifold
is non-orientable, then it is not contractible.

Proposition 3.22 could be extended to a wider class than the ®3-homo-
topies: ®o-families of maps between manifolds, just by replacing the parame-
ter space [0, 1] with a simply connected and locally path connected topological
space.
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4. Topological degree

Here we summarize the main concepts related to the degree introduced in
[6] for maps between real Banach manifolds, hereafter called bf-degree to
distinguish it from other classical degrees, such as the Brouwer degree, Br-
degree, and the Leray—Schauder degree, LS-degree (see [5,7,8] for additional
details).

By an axiomatic approach, as in the work of Amann—Weiss [3] regard-
ing the uniqueness of the Leray—Schauder degree, in [8] it is shown that the
bf-degree is the only possible integer valued function satisfying three funda-
mental properties called Normalization, Additivity and Homotopy Invariance
(see below for precise statements).

To be more specific, we need to define the domain of the bf-degree
function. Given a top-oriented ®g-map f: M — N between two manifolds,
an open (possibly empty) subset U of M, and a target value ¢ € N, the triple
(f,U, q) is said to be bf-admissible for the bf-degree if U N f~1(q) is compact.
From the axiomatic point of view, the bf-degree is an integer valued function,
degy s, defined on the class of all the bf-admissible triples, that satisfies the
following three fundamental properties:

e (Normalization) If f: M — N is a naturally top-oriented diffeomor-
phism onto an open subset of N, then
degbf(f7Maq):17 quf(M)
e (Additivity) Let (f,U,q) be a bf-admissible triple. If Uy and Us are two
disjoint open subsets of U such that U N f~(q) C Uy U Uy, then

degy(f, U, q) = degy(flu,, Ur, q) + degy s (flu,, Uz, q).

e (Homotopy Invariance) Assume that H: Mx[0,1] — N is a top-oriented
®o-homotopy and o: [0,1] — N is a continuous path. If the set
{(p.t) € Mx[0,1] : H(p,t) = o(t) }
is compact, then degy,(H(-,t), M, o(t)) does not depend on ¢ € [0, 1].

Remark 4.1. Notice that the above Homotopy Invariance Property applies
whenever H is a proper map.

Other useful properties of the bf-degree can be deduced from the three
fundamental ones (see [8] for details). One of them is the
o (Localization) If (f,U,q) is a bf-admissible triple, then so is (f|u,U,q)
and

degy ¢ (f, U, q) = degy¢(flv, U, q).

Another one is the

o (Excision) If (f,U,q) is bf-admissible and V is an open subset of U
such that f~1(q) NU C V, then

deg,;(f,U,q) = deg,;(f, V. q).
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A significant one is the

e (Existence) If (f,U,q) is bf-admissible and degy;(f,U, q) # 0, then the
equation f(p) = q admits at least one solution in U.

In some sense, the integer deg,;(f,U,q) is an algebraic count of the
solutions in U of the equation f(p) = ¢q. More precisely, as a consequence of
the fundamental properties, one gets the

e (Computation Formula) If (f,U,q) is bf-admissible and q is a regular
value for f in U, then the set U N f~1(q) is finite and

degy (f,U,q) = > signy;df,, (4.1)

peUNf=1(q)

with the convention that the sum is zero if U N f~1(q) is empty.
An important subclass of the bf-admissible triples is given by the ele-
ments (f, U, q) with the following additional properties:

e f is proper on the closure U of U (in M);
e ¢ belongs to the open subset A\ f(OU) of N.

Observe that, if (f, U, q) satisfies the above two properties, then f~1(q)N
U is a compact set which does not intersect OU. Hereafter such a triple will
be called strictly bf-admissible.

The following straightforward consequence of the Homotopy Invariance
Property holds for the strictly bf-admissible triples.

e (Continuous Dependence) Let f: M — N be a top-oriented ®p-map
and U an open subset of M. If f is proper on the closure of U, then
the function degy;(f,U,-): N\f(OU) — Z is continuous (hence, locally
constant).

A simple example of a bf-admissible triple which is not strictly bf-
admissible is given by (exp, R, ¢), where ¢ € R is arbitrary and the function
exp is assumed to be canonically top-oriented (see Definition 3.20); in fact,
the integer valued function deg,,(exp, R, -) is discontinuous at 0 € R.

Suppose that a strictly bf-admissible triple (f, M, q) satisfies the follow-
ing additional property:

e the codomain N of f is connected.

Then, the above Continuous Dependence Property implies that deg,, f( M, q)
does not depend on the target ¢ € N. Therefore, as for the Brouwer degree
of a self-map of a compact, connected, orientable manifold, we will adopt a
short notation.

Definition 4.2. Let f: M — N be a top-oriented ®p-map. The symbol
degy,;(f) stands for deg,,(f, M, q), with ¢ € N arbitrary, provided that f
is proper and N is connected.

Notice that, in the above notation, the open set M in which the degree
is considered is not mentioned. In fact, this is unnecessary since, in this case,
M is the whole domain of the map f, and the domain of a function is included
in its formal definition as a triple: domain, codomain and graph.
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As a simple example of degree for strictly bf-admissible triples consider
a complex polynomial P of (algebraic) degree n > 0 and regard it as a self-
map of R?. Then P is a proper map and the Computation Formula (4.1)
shows that deg,;(P) = n, provided that P is canonically top-oriented (see
Definition 3.20).

Another important class of bf-admissible triples is given by the Leray—
Schauder C*-triples. Namely, triples (f,U, q), in which U is a bounded open
subset of H, the map f: U — H is a compact vector field, ¢ ¢ f(OU), the re-
striction f|i; is C* and has the standard top-orientation (see Definition 3.17).
As pointed out in [7], with such a top-orientation, degy,;(f,U, ¢) is the same
as degLS(f7 Ua Q)

We close this section with the following result regarding ®p-maps in
the finite dimensional context. Recall the notions, given in Definition 3.20, of
associated and canonical top-orientations.

Proposition 4.3. (bf-degree versus Br-degree for maps between oriented man-
ifolds of the same dimension) Let f: M — N be a C' map between two
oriented manifolds of the same finite dimension. If f is proper on the closure
of an open subset U of M, then, given any ¢ € N\ f(0U), one has

degbf(f7 Ua Q) = degBr(f? Ua Q)7

provided that the top-orientation of f is associated to the orientations of M
and N'. In particular, if f is a C' self-map of a connected, orientable mani-
fold, and f is canonically top-oriented and proper, then degy,,(f) = degp,.(f).

Proof. Taking into account Sard’s Lemma, it is a consequence of the definition
of the Brouwer degree (see e.g. [19]), Remark 3.8, and the Computation
Formula (4.1) of the bf-degree. O

5. Compact and finitely perturbed vector fields

Let H, B, S and t: H\{0} — S be as before. From now onward we shall
assume that the dimension of H is at least 3, so that the unit sphere S is
simply connected.

Hereafter f = I — k denotes a compact vector field on H. Since f is
a compact perturbation of the identity, which is proper on bounded closed
subsets of H, f inherits the same property. Therefore, the image under f of
a bounded and closed set is as well bounded and closed. In particular, so is
f(S).

Recall that the boundary map (of §) is the restriction fls: S — H of §
to S. Moreover, if 0 ¢ f(S), it makes sense to define the boundary self-map
f9:S — S as the composition t o fls.

By g: H — H we shall denote a finitely perturbed vector field. Namely,
a compact vector field with the additional property that the image of the
perturbing map h = I — g is contained in a finite dimensional subspace of
H. Thus, if H is finite dimensional, any continuous self-map of H is a finitely
perturbed vector field. If dim H = oo, A must send bounded sets into bounded
sets, since otherwise g would not be a compact vector field.
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5.1. Compact vector fields

The following crucial result asserts that the boundary self-map §7, whenever
it is defined, is a proper map.

Lemma 5.1. If 0 ¢ §(S), then the boundary self-map §° is proper.

Proof. Observe that the composition of proper maps is a proper map. Nev-
ertheless, f? = to fls is not the composition of two proper maps: f|s is proper,
but t is not, being defined on its natural domain H\{0}, needed to ensure
the composition of v with any boundary map f|s such that 0 ¢ §(S).
However, taking into account that, given f, one has tofls = t[4s)ofls, the
assertion will follow if we prove that the restriction t|4(s) of ¢ to f(S) is a proper
map. To check this, recall that §(S) is bounded and closed. Consequently, it is
contained in a subset of H\{0} of the type A = [a,b]S, with 0 < a < b < oco.
Hence, since f(S) is closed, it is enough to show that v is proper on A; and this
is true since, given a compact subset C' of S, one has (t|4)'(C) = [a,b]C,
which is a compact set. O

Assume that the compact vector field f = I —k is C'. Then the differen-
tial df, at any point p € H is given by df,(p) = p—dk,(p), with p € T, H = H.
Recalling that the Fréchet differential at a point of a compact map is a com-
pact linear operator, we get that df, = I — dk, is a compact linear pertur-
bation of the identity and, consequently, a ®g-operator (see Property 5 of
Proposition 2.1). This shows that f is a Fredholm map of index 0. There-
fore, since S is a submanifold of H of codimension 1, from Property 2 of
Proposition 2.1, we get the following assertion regarding the boundary map

fls-
Remark 5.2. If § is of class C!, then f|s is a Fredholm map of index —1.

Observe that the differential dv, at any ¢ € H\{0} of the radial retrac-
tion

v H\{0} =S, ¢+~ q/|lql

is quJ_7 where II . is the orthogonal projection of H onto the tangent

space Ty()S = gt of S at t(q). Thus, dv, is a Fredholm linear operator of
index 1 and its kernel is the 1-dimensional subspace Rq of H. Therefore, one
gets the following property of the radial retraction.

Remark 5.3. The radial retraction t: H\{0} — S is a Fredholm map of
index 1.

Now we get an important property of the boundary self-map of f.
Lemma 5.4. If § is C' and 0 ¢ §(S), then 2 is Fredholm of index 0.

Proof. The assertion follows from Property 2 of Proposition 2.1, since 7 is
the composition of two Fredholm maps: the boundary map fl|s, whose index
is —1 (see Remark 5.2), and the radial retraction t, whose index is 1 (see
Remark 5.3). O
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Let f be C! and such that 0 ¢ §(S). From Lemma 5.1 and Lemma 5.4
one gets that, if f is top-oriented, then the integer deg, (59) is well defined
(recall Definition 4.2). However, since {¢ admits exactly two opposite top-
orientations (see Proposition 3.19), the absolute value of the bf-degree of
9 makes sense no matter what top-orientation we choose. The following
statement is therefore valid.

Remark 5.5. Let f be C! and such that 0 ¢ §(S). Then, \degbf(faﬂ is well
defined.

5.2. Finitely perturbed vector fields

Let g be a finitely perturbed vector field on H and let X be a finite dimensional
subspace of H containing the image of h = I — g. Denoting Y = X, consider
the splitting H = X @ Y. Taking into account of Remark 3.2, we obtain the
following result.

Lemma 5.6. Assume that g = I — h is of class C*. With the decomposition
H = X®Y, the differential dg, of g al a given point p € H can be represented
i a block matrixz form as follows:

dgplx —dhyly
d =
O (o Ily |’

where each of the entries is the restriction of a linear operator to a convenient
subspace of H. Consequently, detdg, = det dg,|x.

Proof. The differential dg,: T,H — Ty, H of g at p is the operator of L(H)
given by (dg,)p = p — (dhp)p. Thus, putting p = & + ¢, with ¢ € T,X = X
and y € T,Y =Y, one gets
(dgp)p = (dgp) + (dgp)y = (dgp|x)d + § — (dhyply)7-
Thus, the claimed matrix representation of dg, follows from the fact that
(dgplx)t =2 — (dhplx)t € X, yeY and (dhyly)y€X.
Finally, Remark 3.2 yields the equality det dg, = det dg,|x. O

Hereafter the unit sphere E := XNS of X will be called equatorial sphere
of S. Given p € E, denote, as usual, by T,,S or p* the tangent space of S at
p, and by T,E the tangent space of E at p. The next remark presents three
facts that will be useful in the sequel. Leaving the easy proof to the reader,
we only stress that it is crucial in the third property the fact that p € X.

Remark 5.7. Given p € E, the following properties hold:

1. the map g sends X into itself;
2. the radial retraction v sends X\ {0} onto E;
3. ,S=XnphHyeY=T,EaY.

Properties 1 and 2 in Remark 5.7 justify the following definition.

Definition 5.8. If g is C* and 0 ¢ g(S), then the restriction g°|g (as domain
and as codomain) of the boundary self-map g? to the equatorial sphere E
will be called the equatorial self-map (of g).
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Notice that, if g is C* and 0 ¢ g(S), then g?|g is Fredholm of index 0,
since its domain and codomain have the same finite dimension.

Lemma 5.9. If g is C! and 0 ¢ g(S), then a point of E is reqular for the
boundary self-map g?: S — S if and only if so is for the equatorial self-map
).

Proof. Given p € E, put ¢ = g?(p), and observe that, according to Re-
mark 5.7, ¢ € E. It is sufficient to prove that the differentials

d(e?),: T,S = T,S and d(¢°g),: T,E — T,E

are both injective or both non-injective. In fact, the two linear operators,
being Fredholm of index 0, are injective if and only if they are surjective
(and when this holds, by definition, p is a regular point).

Observe that, if & € T,E, then d(g?),4 is the same as d(g°|g)pd. In
addition, since ¢ € X, as in Remark 5.7, we have the splitting

T,S=T,EaY.

Therefore, denoting u = g(p), taking into account of Lemma 5.6 and putting
p € T,S in the form p = & + ¢, with € T,E and y € Y, we may write, in a
block matrix form,

) & d(g%[g)p —drudhyly &
d(ga)pp = dv,dg, <y> — ( . P e P i)

where h = I — g. Because of the triangular form of the above square ma-
trix, it is immediate to conclude that d(g?), is injective if and only if so is

d(gahE)p- O

Lemma 5.10. Assume g of class C' and 0 ¢ g(S). Then, given q € E, one
has (§°)"(q) = (8°|e)~*(q). Thus, q is a reqular value for g° if and only if
50 is for the equatorial self-map g°|.

Proof. According to the splitting H = X @ Y, let v = 2 + y € H\{0} and
observe that v(u) = x/|u|l + y/|lu|]. Therefore t(u) € E (if and) only if
u € X\{0}, which implies t—*(g) C X. Consequently, the equality (g?)~'(q) =
(8%|2) "' (q) holds since, given any v € H, one has g(v) € X (if and) only if
v € X. The last assertion of the statement now follows from Lemma 5.9. O

We conclude this section with an approximation result that will be useful
in the proof of Theorem 6.3.

Lemma 5.11 (Uniform approximation by finitely perturbed vector fields).
Let § be a compact vector field of class C™ defined on H. Given € > 0, f can
be uniformly e-approzimated on B by a finitely perturbed vector field of the
same class as f.

Proof. Given ¢ > 0 and denoting f = I — k, let F C k(B) be a finite -
net of the relatively compact set k(B). Consider the orthogonal projection
IIx onto the space X spanned by F. Since IIx is C'°°, the finitely perturbed
vector field g = I — IIx o k is of class C™. Moreover, one has ||g(p) — f(p)|| =
|lk(p) — Tk (k(p))|| < € for all p € B (recall that IIx(k(p)) is the point of X

closest to k(p)). O
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6. Existence of zeros and Intermediate Value Theorem

Let H, X, Y = X+, B, Sand E = XN'S be as in the previous sections.
Hereafter, we shall assume that the dimension of X is at least 2, so that
the equatorial sphere E is connected. Recall that the dimension of H is at
least 3.

In the finite dimensional case, a classical result on the existence of zeros
for a boundary map fls: S — H is due to L. Kronecker (see [12,17]). This
result is based on the definition of an integer, the Kronecker index of f|s, here
denoted by I(f|s), whose definition depends only on the restriction of f to the
sphere S.

A modern redefinition of the Kronecker index of f|s based on differential
forms is given in [12], and the integer obtained in this way turns out to
coincide with the Brouwer degree, degp,. (§7), of the boundary self-map f°.

Theorem 6.1 (Kronecker’s theorem on the existence of zeros). Let f: H — H
be a C' map on a finite dimensional real Hilbert space. Assume 0 ¢ §(S),
where S is the unit sphere of H. If the Kronecker index I(fls) of the boundary
map fls is different from zero, then § vanishes somewhere in the open ball
B. Therefore, due to the equality I1(f|s) = degp, (%), the same holds if the
Brouwer degree of {0 is nonzero.

Lemma 6.2 below is a preliminary infinite dimensional version of the
Kronecker’s result. Recall that, if a compact vector field f is C! and 0 ¢ §(S),
then |degbf(f8)| is well defined (see Remark 5.5).

Lemma 6.2 (Existence of zeros for finitely perturbed vector fields). Let g be
a C1 finitely perturbed vector field on a real Hilbert space H. Assume 0 ¢ g(S).
If | degbf(ga)| # 0, then g vanishes somewhere in B.

Proof. Let X be any finite dimensional subspace of H containing the image of
the perturbing map I — g, and let E = XNS be the corresponding equatorial
sphere.

Taking into account that E is the unit sphere of X and that g°|g is
the same as (g|x)?, according to Theorem 6.1 it is sufficient to prove that
degBr(gahE) 7é 0.

Since g?|g is a self-map of an orientable, finite dimensional, connected
manifold, we may assume that it is canonically top-oriented (see Defini-
tion 3.20). Therefore, from Proposition 4.3, it follows that degp, (g%|r) =
degbf(gahE). Hence, it is enough to show that

‘degbf(ga‘E)‘ = \degbf(gaﬂ-
Actually, we will prove that, with a suitable top-orientation of g?, we get
degy (6°]x) = deg, (7). (6.1)
Given any p € E, put ¢ = g(p). Recalling Property 3 in Remark 5.7, we have
T,S=T,E®Y and T,S=T,E®Y.



An infinite dimensional version Page 19 of 25 70

Notice that a linear operator K € L(T,E,T,E) is a companion of d(g?|g), if
and only if, according with the above splittings, the corresponding operator

> KO0
k=(40)
is a companion of d(g?),.

One can check that K and K3 are equivalent companions of d(g?|g),, if
and only if the corresponding operators K; and K5 are equivalent companions
of d(ga)zr

Thus, calling w the canonical top-orientation of the equatorial self-map
9%|g, we get an alg-orientation @(p) of any differential d(g°),, p € E, by
choosing as a positive companion any K such that K is a positive companion
of d(g%]z)p-

Since w(p) depends continuously on p € E, one can check that the
same property is inherited by the map p — @(p), p € E. Applying Propo-
sition 3.15, we get a unique top-orientation of g? whose restriction to E
coincides with w.

Take now a regular value ¢ € E for both g?|g and g? (see Lemma 5.10)
and consider any p € (g?)7(¢) = (¢°|g)"'(¢). Since p is a regular point
for both the maps g? and g?|g, the null operators 0 € L(T,E,T,E) and
0 € L(T,S,T,S) are companions of the differentials d(g°|g), and d(g?),,
respectively. Because of the relation between the orientations w and @, they
are both positive or negative companions of the above differentials, which,
consequently, have the same bf-signs (see Definition 3.7). Finally, equality
(6.1) holds because of the Computation Formula (4.1) of the bf-degree. O

The following result shows that the thesis of Lemma 6.2 still holds for
every compact vector field.

Theorem 6.3 (Existence of zeros via bf-degree). Let f be a C* compact vector
field on H and assume 0 ¢ (S). If | degbf(f3)| # 0, then f vanishes somewhere
in B.

Proof. Lemma 5.11 ensures the existence of a sequence {g,,} of C* finitely
perturbed vector fields converging uniformly to f in the closed disk B. As
f9 is a closed map and 0 ¢ f(S), there exists a ball centered at 0 having
empty intersection with f(S). Therefore, without loss of generality, we may
assume that 0 ¢ g,(S) for every n. Hence, every g2 is well defined. We
may also suppose that any g? is ®y-homotopic to f via the proper map
Hp: Sx[0,1] — S defined by H.,(p,t) = (tg. + (1 — )§)?(p).

Choose any of the two possible top-orientations of f7; so that, because of
Proposition 3.22, we get a top-orientation of any H,,. Thus, by the Homotopy
Invariance Property of the bf-degree, we obtain

deg,;(g7) = deg,;(j7) #0, VneN.

Applying Lemma 6.2, we get a sequence {p,} in B such that g, (p,) = 0 for
any n. Thus, one has ||f(p,)|| = |[f(pn) — 9n(Pn)|| — 0 as n — 4oo. This
implies that the image of the sequence {f(p,)} is contained in a compact
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subset of H. Consequently, since f is proper on B, the sequence {p, } is as well
contained in a compact set. Therefore, we may assume that {p,} converges
to a point p € B, which, necessarily, is such that f(p) = 0. Finally, p € B
since, by assumption, 0 ¢ §(S). O

Contrary to the one-dimensional case, Theorem 6.5 below, which is our
most general version of the Intermediate Value Theorem, cannot be solely
deduced from a result on the existence of zeros. To overcome the difficulty,
we need, in addition, the following consequence of the Homotopy Invariance
Property of the bf-degree.

Lemma 6.4. Given a C' compact vector field | on H, let C be a connected
component of H\f(S). Then, the map u € C — |deg,;((f — u)?)| is constant.

Proof. According to Remark 5.5, given any u € C, the integer | degbf((f—u)a)|
is well defined. We need to prove that, if zg and 2z; are in C, then

| degy((F = 20)7)] = | degy, ((F — 21)7)]. (6.2)
Observe that C is open, since so is H\f(S). Therefore, the connected set C is
actually path connected and, consequently, there exists a C! path v: [0,1] —
C joining zp with z;. Consider the ®p-homotopy H: Sx[0,1] — S defined
by (p,t) — (f —v(t))?(p), choose any of the two possible top-orientations of
the partial map Ho = (f — 7(0))? and call it a. From Proposition 3.22 we
get that there exists one and only one top-orientation w of H whose partial
top-orientation wy coincides with . Thus, degy;((f — ~(t))?) is defined for
any t € [0,1] and, taking into account that H is proper, from Remark 4.1 one
gets

degyp ((F — 20)?) = degy; ((f — 21)7),
which implies formula (6.2). O
We are now ready to prove our main result.

Theorem 6.5 (Intermediate Value Theorem via bf-degree). Let f be a compact
vector field of class C* on a real Hilbert space H. Given q ¢ §(S), assume that
|degy, s ((F—q)?)| # 0. Then, the connected component of H\§(S) containing q
is a bounded open subset of f(B).

Proof. Denote by C the connected component of H\§(S) containing ¢. Since
H\§(S) is open, so is the component C. Thus, recalling that a compact vector
field maps bounded sets into bounded sets, it remains to prove that C is
contained in f(B); which means that f— u vanishes somewhere in B, whatever
is u € C. According to Theorem 6.3, it is sufficient to prove that | deg,;((f —
u)?)| # 0 for all u € C, and this follows from Lemma 6.4 and the assumption

| degy ¢ ((F — q)?)| # 0. O

Let f be a compact vector field of class C! on H, and p € S a given point
such that f(p) # 0. As pointed out before, dry(, is a Fredholm linear operator
of index 1 (see Remark 5.3) and its kernel is the 1-dimensional subspace Rf(p)
of HL. If, in addition, 0 ¢ §(S), the point p is regular for {7 if and only if the
restriction of df, to the tangent space T),S = pt of S at p is injective and
f(p) & df,(pt). Therefore we have the following assertion.
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Remark 6.6. Let f be a C* compact vector field such that 0 ¢ f(S). A point
p €S is regular for {7 if and only if df,(p) + Rf(p) = H.

The notion of transversality is well known in literature (see e.g., [14,15]).
Here we recall the definition in the special case we are interested in.

Definition 6.7. Let f: H — H be a compact vector field of class C! on a real
Hilbert space, and A a half-line with extreme ¢ ¢ f(S) and tangent vector
v € S such that ¢ + v € A. We say that the boundary map f|s intersects
transversally A for p € S if §(p) € A and df,(p) + Rv = H. If this holds for
any p € S such that f(p) € A, we will say that f|s intersects transversally A
or, by abuse of terminology, that the set §(S) intersects transversally A.

Notice that, when f(S) intersects transversally A at a value f(p), one
has the transverse intersection of two C! manifolds: the image f(U) of a
convenient neighborhood U of p in S with the open half-line A. In fact, the
transversality condition df,(pt) + Rv = H of Definition 6.7 implies that
df,(p*) has codimension 1 in Hj therefore, since df, is Fredholm of index
0, d(fls), must be injective, and this implies that the restriction of § to a
convenient neighborhood U of p in S is a C! diffeomorphism onto the C*
manifold f(U) of codimension 1 in H. Observe also that the tangent space of

f(U) at §(p) is dfp(p").

Lemma 6.8 (bf-degree via a half-line). Let § be a C' compact vector field on
H. Assume 0 ¢ {(S). If the intersection of {(S) with a half-line A with extreme
0 is transverse and its preimage under f|s is made up of an odd number of
points, then \degbf(fa)\ #0.

Proof. Consider the singleton {¢} = SN A and observe that the set (§7)~'(q)
is the same as {p € S: f(p) € A}. According to Remark 6.6, this set contains
only regular points of 7. Therefore, given any of the two possible orientations
of {2, to evaluate deg, f (§9) we may apply the Computation Formula (4.1) with
q as a regular value for §. In this formula, any point of (f2)~!(¢) contributes
with —1 or 1. Consequently, since the cardinality of (§°)7'(q) is odd, the
algebraic count of these points cannot be zero. O

The next result is our easily understandable version of the Intermediate
Value Theorem. It is a consequence of our main result, Theorem 6.5, but it
is not equivalent, as shown in Example 6.10 below.

Theorem 6.9 (Intermediate Value Theorem via a half-line). Let f be a com-
pact vector field of class C* on H. Given q ¢ §(S), let A, be a half-line with
extreme q. If the intersection of §(S) with Ay is transverse and its preim-
age under fls is made up of an odd number of points, then the connected
component of H\f(S) containing q is a bounded open subset of f(B).

Proof. Let A = Ay—q be the half-line, with extreme 0, parallel to A;. Observe
that (f — ¢)(S) intersects transversally A at the same points as §(S) meets A,.
Thus, applying Lemma 6.8 to the map f — ¢, we get |deg;,,((f — 9)?)| # 0,
and the assertion follows from Theorem 6.5. O
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The example below shows that, given any real Hilbert space H and any
n € Z, there exists a top-oriented compact vector field f, on H such that
deg, f(fg) = n. Hence, if n # 0, as a consequence of Theorem 6.5, any value
in the connected component of H\f, (S) containing 0 € H is assumed by f,, in
the open unit ball B of H. In particular, such a component is bounded, since
so is f,(B). As we shall see, Theorem 6.9 does not apply if the integer n is
even. See also [1] for a similar example and the related discussion.

Ezample 6.10. Let S' denote the unit circle of the complex plane C. Given
any n € Z, consider the self-map o, of S* defined by z ~ z™. It is well known,
and easy to check, that the winding number (or, equivalently, the Brouwer
degree) of this self-map is n.

If n < 0, the function o, admits an extension to the whole complex
plane C given by z — zI"| where, as usual, Z denotes the conjugate of z.
Therefore, given any n, we define the extension (,: C — C of o, by

2 ifn > 0,

Gn(2) = {z'" if n < 0.

Choose a 2-dimensional subspace X of H and identify it with the complex
plane C by means of an isometric linear isomorphism, so that, for any n, the
map (, may be regarded as a self-map of X sending the unit circle E of X
into itself (actually, onto itself, if n # 0). Recall the assumption dimH > 2
and put Y = X+, so that H = X @ Y, with Y non-trivial.

Let ¢: H — H be any compact map of class C! with the following
properties:

e Y(z) =0 for all z € X;

e for any x € X the differential di, sends Y into X.

Then, the self-map f,, of H, defined by

fn(JH'Z/)=Cn($)+y—¢(l‘+y), zeX, yey,

is a compact vector field (actually, a finitely perturbed vector field if the
second property is replaced by ¢ (H) C X). Let us prove that, if we assume
0 ¢ §n(S), as it is verified in the special case ¢)(H) C X, then deg,; (52) = n.

Observe that the restriction f,|g of f, to the equator E = St is a self-
map of S'. Therefore, it coincides with the equatorial self-map §2 g, which is
the same as the function o,,: S* — S! defined above, whose winding number
is n.

Notice that, if n = 0, the connected component of H\fy(S) is unbounded.
In fact, the pinched equatorial plane C\{1} is contained in such a component.

Assume n # 0. With an analogous argument to that used in the proof
of Lemma 6.2, one gets that, with one of the two possible top-orientations of
9 we have deg, f(fg) = n. Therefore, from Theorem 6.5 we get the following
assertion:
Any value in the connected component of H\f,(S) containing the origin is
assumed by f, in B. Consequently, such a component is bounded.

Given an even integer n # 0, let f, and o, = f,|g be as in the Exam-
ple 6.10. Let us show that Theorem 6.9 does not apply in this case. Consider
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a half-line A, with extreme 0, lying in the equatorial plane X. This half-line
meets transversally the equator E = S! at only one value of o,,, correspond-
ing to an even number of points of S'. By means of the intersection theory
(see, for example, [2]), one gets that the intersection of f,(S) with any other
half-line with extreme 0, if it is transverse, must be the image of an even num-
ber of points of S. Therefore, the hypothesis of Theorem 6.9 is not satisfied
whatever is the half line starting from the origin of H.
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