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Abstract
In this survey paper, we present Čech and sheaf cohomologies—themes that were 
presented by Koszul at University of São Paulo (Faisceaux et cohomologie. Curso 
de extensão universitária da Faculdade de Filosofia, Ciências e Letras da Universi-
dade de São Paulo, Instituto de Matemática Pura e Aplicada do CNPq, 1957) dur-
ing his visit in the late 1950s. We exhibit expansions for categories of generalized 
sheaves (i.e, Grothendieck toposes), with examples of applications in other coho-
mology theories and other areas of Mathematics, besides providing motivations and 
historical notes. We conclude by explaining the challenges in establishing a coho-
mology theory for elementary toposes, presenting alternative approaches by consid-
ering constructions over quantales, that provide structures similar to sheaves, and 
indicating researches related to logic: constructive (intuitionistic and linear) logic 
for toposes, sheaves over quantales, and homological algebra.
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1  Introduction

Sheaf Theory explicitly began with the work of J. Leray in 1945 [47]. The nomen-
clature “sheaf” over a space X, in terms of closed subsets of a topological space 
X, first appeared in 1946, also in one of Leray’s works, according to [21]. He was 
interested in solving partial differential equations and build up a strong tool to pass 
local properties to global ones. Currently, the definition of a sheaf over X is given 
by a “coherent family” of structures indexed on the lattice of open subsets of X or 
as étale maps (= local homeomorphisms) into X. Both formulations emerged in the 
late 1940s and early 1950s in Cartan’s seminars and, in modern terms, they are inti-
mately related by an equivalence of categories.

Cartan proposed a concept of “coherent family” for ideals [13] before Leray’s 
study on sheaves. His idea is more related to the development of sheaf theory in 
Complex Analysis, where certain conditions that hold for a point remains valid for 
the neighborhood of the point—as convergence properties of power series. On the 
other hand, the presentation of sheaves as étales spaces—due to Lazard—is closer 
to Algebraic Topology: sections of étale maps compose the construction of a local 
section functor (explained in Sect.  3). The global section functor (introduced in 
Sect. 3.1) gives rise to cohomology groups with coefficients in a sheaf, which com-
putes the obstruction from local input to global input.

We will define sheaves, using open sets, as a special kind of functor. The lan-
guage of category theory will help us to deal with sheaf cohomology and allows its 
generalizations. However, the relation between sheaves and étales maps is important 
to obtain geometric intuition about the object’s capacity to pass local problems to 
global ones through cohomology with coefficients in a sheaf.

In the 1950s, sheaves on topological spaces and their cohomology were studied 
by the greatest mathematicians of the time. In addition to those previously men-
tioned, we list J.P. Serre, A. Grothendieck, O. Zariski, and R. Godement; the latter 
managed to establish a standard nomenclature in his book “Topologie algébrique et 
théorie des faisceaux” [20], one of the most important references about sheaf theory 
so far.

At the same time, some of them were at the institute known today as Instituto de 
Matemática e Estatística (IME-USP), at Universidade de São Paulo. The influence 
of the French school on the formation of Brazilian mathematicians initiated with 
the arrival of A. Weil (of Weil’s conjecture and founder of Bourbaki group) in 1945 
and reached O. Zariski, J. Dieudonné, J-L Koszul, A. Grothendieck, among others. 
We highlight that in 1956 J-L. Koszul lectured a course about sheaves and cohomol-
ogy at IME-USP, whose class notes were published in 1957 [43], and the A. Groth-
endieck’s course about topological vector spaces of 1953 was published five years 
later [23].

Turning to the matter of theory’s development, J-P. Serre was the one who 
first applied sheaf theory in Algebraic Geometry in [61], and later A. Groth-
endieck successfully replicated sheaf methods to spaces where the correspondent 
topology is not adequate. His notion of topos used a collection of morphisms in 
a small category satisfying certain rules—a Grothendieck topology—to extend 
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the notion of open covers in the definition of sheaves on topological spaces. This 
construction was essential to prove Weil’s conjectures, under étale cohomology 
(but it provided others, such as crystalline and flat cohomology), and to reformu-
late Algebraic Geometry. The Séminaire de Géométrie Algébrique du Bois Marie 
compose the enormous project that found proof for Weil’s conjectures. The pro-
ject started with Bourbaki Seminars about foundations of Algebraic Geometry, 
published in 1962 [28] and by 1974 it was finished with Deligne’s first proof of 
the third conjecture [15].

What Grothendieck named topos in [29], is nowadays known as a Grothendieck 
topos (a category of sheaves over a site, i.e. a pair (C, J) , with C a small category and 
J a Grothendieck topology); the general notion of topos, or elementary topos, is due 
to the work of W. Lawvere and M. Tierney in the early 1970s. They realized that a 
Grothendieck topos have categorical properties that make it close to the category 
Set of all sets and functions. For example, sheaves admit exponential objects that 
are analogs of the set AB of all function from B to A, and there is an object of truth-
values (subobject classifier) that, in the category Set, is the set {true, false} . Thus, 
by only assuming that a category has a subobject classifier and satisfies some condi-
tions (as cartesian closed to guarantee the existence of an exponential object) they 
reached the definition of (elementary) topos, such that any Grothendieck topos is a 
topos but the converse does not hold.

Soon the study of topos theory developed many fronts. For instance, the descrip-
tion of an internal language (Mitchell-Bénabou language) and its Kripke-Joyal 
semantic, variations of Cohen’s forcing techniques using toposes, and the establish-
ment of higher-order logic in terms of categories.

In this survey, we present sheaf cohomology and some of its possible extensions. 
Section  2 is devoted to preliminaries: we remind that homological algebra deals, 
mainly, with abelian categories (we will define this concept, but for now the reader 
can replace abelian categories by the category Ab, of all abelian groups, or R-Mod, 
of all modules over a given unitary ring R). Since most of the literature deals with 
specific abelian categories such as modules over rings, we provide preliminaries 
about cohomology for any abelian category. Besides that, we explain how to extract 
abelian categories from a not necessarily abelian category C , requesting that C has 
finite limits and satisfies some other regularity properties, which is the case for the 
category of sheaves over topological spaces and, more generally, a Grothendieck 
topos. In fact, we are particularly interested in categories C that we could call a “Set-
like” category, i.e, a category that keeps the basics properties and allows to perform 
constructions that we usually made in the category Set—of all sets and functions—
that play the same role of Set but could be more general than just Set. The essential 
part is: since we use sets to define another structure (topological spaces, groups, 
rings, manifolds), we can use a Set-like category C to construct other categories. In 
the particular case we will see, categories with abelian group structure.

In Sect. 3, we introduce the basics of sheaf theory, sheaf cohomology, and Čech 
cohomology, following the work of H. Cartan, J-L. Koszul and R. Godement.

In Sect. 4, we define Grothendieck toposes, exploring elementary toposes to fur-
nish the internal logical tool, and apply it to simplify arguments in Grothendieck 
topos cohomology.
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We do not show new results, but we do point out the main ideas behind proofs 
that are already known and choose a presentation that allows awareness of how 
Grothendieck topos cohomology extends sheaf cohomology. Some demonstrations 
are omitted because they require excessively technical machinery (such as spectral 
sequences) and so would be out of our purpose of making this text a gentle introduc-
tion to topos cohomology.

In Sect. 5, we clarify that the current topos cohomology has issues—the definition 
of flabby sheaves does not work properly and the category of abelian groups over 
toposes that are not Grothendieck does not have enough injectives—and a strong 
dependence on classical logic that hinders the “internalization” of these notions to 
the intrinsic intuitionistic (constructive) character of the toposes. We describe some 
attempts to address these problems, including extensions of topos cohomology over 
“sheaf-like” categories that are internally governed by an even more general logic: 
the linear logic.

2 � Preliminaries

Summarily, a cohomology theory associates a sequence of algebraic objects to a 
certain space. The objects can be abelian groups, the space can be any topological 
space, and we can associate one with the other using chain complexes. However, the 
reader a bit more familiar with Homological Algebra knows that, instead of abelian 
groups, we can work with modules over commutative rings, vector bundles over top-
ological spaces, or even abelian sheaves. This happens because these objects can be 
collected and organized in their respective categories, and these ones are examples 
of abelian categories. To summarize, when we work with cohomology we are work-
ing with functors into abelian categories.

In this section, we present the basics of abelian categories, state the main results 
of Homological Algebra in this general setting, and define the notion of abelian 
group object—which later will provide a technique to extract abelian categories 
from toposes.

We will assume that the reader is familiar with the basic notions of category 
theory: category, functor, natural transformation, (co)limits, subobjects, generators 
and equivalence of categories.

2.1 � Abelian categories

Let s and t be objects in a category C . Recall that: If for all object a in C there is a 
unique morphism s → a then s is a initial object; if there is an unique morphism 
a → t , then t is a terminal object. The uniqueness property satisfied by a initial 
(respectively, terminal) object ensures that it is unique up to (unique) isomorphism. 
In case an object is simultaneously initial and terminal, it is called a zero object. 
After these preliminaries, we will change notation: initial and terminal objects are 
denoted by 0 and 1, respectively.
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In categories with some zero object, we also have a notion of null morphism, i.e, 
a morphism f ∶ A → B that factors through any zero object (since they are pairwise 
isomorphic). The null morphism from A to B is unique and is denoted by 0A,B or just 
by 0.

Now we can define an important concept to construct cohomology in general abe-
lian categories.

Let f ∶ A → B be a morphims in a category C with zero object. A morphism 
k ∶ K → A is the kernel of f if f◦k = 0 and, for all morphism h ∶ C → A such that 
f◦h = 0 , there is a unique morphism h� ∶ C → K such that h = k◦h� . Or simply, if k 
is the equalizer of f and the null morphism 0. Diagramatically, 

K A B

C

k

0K,B

f

0A,B

h
h

0C,B

The cokernel of f is defined dually, i.e., by the interchanging of source and target 
of all arrows. Throughout the text, we will denote the morphism k, kernel of f, by 
ker(f), and the object K associated to it by Ker(f). Analogously, for the cokernel.

If the set of morphisms Hom(A, B) of a category C has the structure of an abelian 
group, and the composition of morphisms is bilinear, then C is an Ab-category (or 
preadditive). Here Ab is the category of abelian groups and we adopted the nomen-
clature of Ab-category to familiarize the reader with the idea of an enriched cat-
egory. In this case, C is enriched over Ab, so Hom(A, B) is an object in Ab, for every 
A, B objects in C.

Examples of Ab-categories are the categories Ab, of all abelian groups and its 
homomorphisms, and R-Mod, of all left modules over a ring R and homomorphisms. 
More intricate examples came from categories useful in homological algebra whose 
objects are complexes of abelian groups, complexes of modules over a ring and fil-
tered modules over a ring. Moreover, every triangulated category1 is an Ab-category.

A biproduct is a quintuple (P, pA, pB, sA, sB) such that:

We observe that in Ab-categories the existence of biproduct is equivalent to the 
existence of product and, also, the existence of coproduct.

When a category is an Ab-category that has biproducts and a zero object, then 
it is called an additive category. So, with the abelian groups structure in the set 

pA ∶ P → A, pB ∶ P → B, sA ∶ A → P and sB ∶ B → P satisfies the equations:

pA◦sA = idA, pB◦sB = idB, pA◦sB = 0, pB◦sA = 0 and

sA◦pA + sB◦pB = idP

1  This is an important category in the study of Homological Algebra, but much more sophisticated than 
the previously examples. We will not explain it in the survey.
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of morphisms, we obtain that the zero of Hom(A, B) coincides with the null mor-
phism 0A,B . See a demonstration of this in [10, Chap.  1.2]. This is an interest-
ing property since additive categories have to indirectly handle null morphisms, 
through kernels and cokernels.

An additive category C is an abelian category if it satisfies also the following 
conditions: 

AB1	 Every morphism has kernel and cokernel.
AB2	 Every monomorphism is a kernel and every epimorphism is a cokernel.

Except for filtered modules over a ring, and, in general, triangulated categories, 
all the given examples of Ab-categories are also abelian categories. Additionally, 
an important exemplar of an abelian category is the category of abelian sheaves 
(see Theorem 4.3).

Note that AB1 allow us to construct kernels of cokernels and vice versa. Fur-
thermore, for any morphism f in an abelian category, we have: 

Ker(f) A B Coker(f)

Coker(ker(f)) Ker(coker(f))

ker(f) f

coker(ker(f))

coker(f)

f̄

ker(coker(f))

It is not difficult to see there is a unique f̄ ∶ Coker(ker(f )) → Ker(coker(f )) 
which makes the above square commutative. An important observation here is 
that the AB2 axiom is equivalent to the condition of f̄  be an isomorphism. Defin-
ing Im(f ) = Ker(coker(f )) and Coim(f ) = Coker(ker(f )) , we can say that asking for 
f̄  be an isomorphism is the same as asking for the validity of the Fundamental 
Homomorphism Theorem, in an abstract form.

Given an abelian category C we can add ABn axioms. In this survey, the impor-
tant one is AB5. 

AB3	 Given a family {Ai}i∈I of objects in C , then the direct sum 
⨁
i∈I

Ai exists.

AB4	 The AB3 axiom holds and direct sum of family of monomorphisms also is a 
monomorphism.

AB5	 The AB3 axiom holds and if {Ai}i∈I is a direct family of subobjects of an 
object A in C , and B is any subobject of A, then (

∑
i∈I

Ai) ∩ B =
∑
i∈I

(Ai ∩ B) , where 

the capital-sigma denotes sup of Ai , and the intersection denotes inf of subobjects.

The AB5 will be central because of the following Grothendieck’s Theorem:
If an abelian category satisfies AB5 and has a generator then it has enough 

injectives [22, Theorem 1.10.1]
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We will use this Theorem to show that the abelian categories defined from Groth-
endieck toposes are good enough to develop a cohomology theory. Now, let’s return 
to our preliminaries.

Most part of the simplest notions and proofs that occur in “concrete” abelian cate-
gories (as Ab, or R-Mod) can be reproduced in general abelian categories by the sys-
tematic use of universal properties. However, more sophisticated results in Homo-
logical Algebra demand specific techniques to handle the fact that we do not know 
what kind of structure the objects have. For example, when we consider the category 
Ab, we know that the objects are abelian groups. However, if we have to deal with 
an arbitrary abelian category this information is not (directly) available. To manage 
this delicate scenario there are at least two ways of proving results regarding general 
abelian categories.

The simplest technique is apply the Freyd-Mitchell embedding Theorem - origi-
nally stated in [18, Theorem 7.34] and reformulated in modern terms in [67, Theo-
rem 1.6.1]—that guarantees we can fully embed small abelian categories into the 
category R-Mod, for some ring R. Roughly speaking, this means all morphisms that 
exist in R-Mod, such as kernels and cokernels (quocients), and all diagram chas-
ing that can be done in R-Mod, still holds for the correspondent small abelian cate-
gory. We recommend [64] for more results related to the Freyd-Mitchell embedding 
Theorem.

Nevertheless, there are non small abelian categories so we may use a stronger 
but more complex technique: construct the notion of pseudoelement, as nominated 
in [10] (or generalized element, as in [49]). This technique enable us to do “half of 
the job with elements”. More precisely, to check by this simulation of “elements” if 
some candidate arrow, previously build by combined applications of universal prop-
erties, indeed satisfies some desired property.

Once mentioned these two techniques, we state that the famous snake lemma 
holds in any abelian category [10, Section 1.10]. We will skip even state it here, but 
we highlight that, as a general ambient for Homological Algebra, abelian categories 
were built so that the Snake Lemma is valid. When Cartan’s and Eilenberg’s book 
“Homological Algebra” appeared in 1956 [16] the theory was exhibited for catego-
ries of modules over rings but was also know that it could be replicated for other 
structures, for instance, abelian sheaves. This motivated A. Grothendieck—and not 
only him—to define abelian categories and establish Homological Algebra for it in 
[22]. Nowadays, we have even more general categories where the Snake Lemma 
holds, for instance, the homological categories [12] (observe that the lemma hold 
for non-abelian groups, even so they do not form an additive category [10, Chap 
1.2]). However, abelian categories still are the most common scenario for the study 
of (co)homologies.

2.2 � Homological algebra

The reader familiar with Homological Algebra techniques for a particular abe-
lian category (as presented in [67], for example) can skip this subsection. How-
ever, if there is a curiosity to see how to construct cohomology in the abstract 
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setting of any abelian category, we exhibit the modifications that have to be done 
to define the basics concepts. Here we state without proof results that are needed 
in Sects. 3.1 and 4.3.

For any abelian category C we define a cochain complex by taking sequences 
{Cq}q∈ℤ of objects in C , and endow it with coboundary morphisms dq

C
∶ Cq → Cq+1 

such that dq+1◦dq = 0 , for all q ∈ ℤ . A cochain complex is denoted by C∙, and 
we establish morphisms of complexes h∙ ∶ C∙ → D∙ with a colection of morphism 
hq ∶ Cq → Dq such that hq+1◦dq

C
= d

q+1

D
◦hq , for all q ∈ ℤ. Observe that, with coor-

dinatewise composition and identities, this forms a category Ch(C) , called cate-
gory of cochain complex of C , and it is as abelian category whenever C is abelian 
[67, Theorem 1.2.3].

Since dq◦dq−1 = 0 , we have that 0 ⊆ Im(dq−1) ⊆ Ker(dq) ⊆ Cq . So it is possible 
to define the q-th cohomology object of C∙ by

where the image is Im(dq−1) = Ker(coker(dq−1)).
As the reader may suspect, a sequence of objects in an abelian category 

…
fq−1
�������������→ Aq

fq
�������→ Aq+1

fq+1
�������������→ … is exact if Ker(f q) = Im(f q−1) . So cohomology meas-

ures the failure of exactness in the cochain complex.
Let f ∙ ∶ C∙ → D∙ be a complex morphism. Since we are working with arbitrary 

abelian categories, define an induced morphism Hq(f ) ∶ Hq(C∙) → Hq(D∙) , q ∈ ℤ , 
is more complicated than usual, but lets describe the idea:

For each q ∈ ℤ , a morphism f q ∶ Cq → Dq restricts to

The above follows directly from diagram chases, by the universal properties of 
kernels and cokernels. The coboundary morphism also provides a morphism 
�q ∶ Im(d

q−1

C
) → Ker(d

q

C
) such that Coker(�q

C
) = Hq(C∙) . By the universal property 

of cokernel, there is a unique morphism Coker(�q

C
) → Ker(d

q

D
) as below: 

Im(dq−1
C ) Ker(dqC) Coker(αq

C)

Im(dq−1
D ) Ker(dqD) Coker(αq

D)

fq
I

αq
C

fq
K

αq
D

Completing the bottom part of this diagram with the cokernel of �q

D
 we obtain 

a unique morphism Hq(C∙) ≅ Coker(�
q

C
) → Coker(�

q

D
) ≅ Hq(D∙) . This induced 

morphism is Hq(f ) ∶ Hq(C∙) → Hq(D∙) . Clearly, the mapping f ↦ Hq(f ) deter-
mines a (covariant) functor Hq ∶ Ch(C) → C , for all q ∈ ℤ.

Given two complex morphisms f ∙, g∙ ∶ C∙ → D∙, they are called homotopic 
if, for each q ∈ ℤ , there is hq ∶ Cq → Dq−1 (called cochain homotopy) such that 
f q − gq = d

q−1

D
◦hq + hq+1◦d

q

C
 . Chain homotopies are important because they 

Hq(C∙) = Ker(dq)∕Im(dq−1) = Coker(Im(dq−1) → Ker(dq)).

f
q

K
∶ Ker(d

q

C
) → Ker(d

q

D
) and to f

q

I
∶ Im(d

q−1

C
) → Im(d

q−1

D
)
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relate two different morphisms through their induced maps in the cohomology 
objects. More precisely:

Proposition 2.1  If f ∙ is homotopic to g∙ , then Hq(f ∙) ≅ Hq(g∙) , for all q ∈ ℤ.

Now, we introduce exact functors. First, a (covariant) functor F ∶ C → C
� between 

abelian categories is additive if the map that sends morphisms f in C to morphisms 
F(f) in C′ is a homomorphism of groups.

Then, given an exact sequence 0 → A → B → C → 0 in C , we say F is 

1.	 exact if 0 → F(A) → F(B) → F(C) → 0 is an exact sequence;
2.	 left exact if 0 → F(A) → F(B) → F(C) is an exact sequence;
3.	 right exact if F(A) → F(B) → F(C) → 0 is an exact sequence.

Two important examples of left exact functors are HomC(−,A) (contravariant case) 
and HomC(A,−) (covariant case), for A a fixed object of C.

Now, remember that an object I in an abelian category is injective if for all mor-
phism � ∶ A → I and all monomorphism m ∶ A → B , there is at least one morphism 
� ∶ B → I such that � = �◦m (equivalently, I is injective if and only if the func-
tor Hom(−, I) is exact). A resolution A → I∙ of an object A is an exact sequence 
0 → A → I0 → I1 → ... ; this resolution is an injective resolution if Ii in injective for 
each i ≥ 0 . If an abelian category has enough injectives, then any of its objects A 
admits some injective resolution. Dually, we define projective objects and projective 
resolutions.

The concept of enough injectives is central in homological algebra because of the 
following theorem.

Theorem 2.2  Let  C and  C≃ abelian categories, with  C having enough injectives, 
and let  F ∶ C → C≃ be a (covariant) left exact additive functor. Then:

	 (i)	 There are additive functors  RqF ∶ C → C≃ for all  q ≥ 0;
	 (ii)	 There is an isomorphism  F ≅ R0F;
	 (iii)	 For each exact sequence  E ∶ 0 → A1 → A2 → A3 → 0 and each  q ≥ 0 , there 

is a morphism  �q
E
∶ RqFA3 → Rq+1FA1 that makes the following sequence 

exact

	 (iv)	 The morphisms �q
E
 are natural in E.

These RqF ∶ C → C≃ functors are unique up to natural isomorphisms, they are 
called q-th right derived functor of F and RqF(A) ≅ HqF(I∙) , where I∙ is a resolution 
of A.

It is worth to mention that the famous Ext(−,A) functor is the derived functor of 
HomC(−,A) . Since HomC(−,A) is exact iff A is injective, and Ext measures how far 

⋯ → RqFA1 → RqFA2 → RqFA3

�
q

E

���������→ Rq+1FA1 → …
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HomC(−,A) is from be an exact functor, we can say Ext measures the failure of A in 
being injective.

We introduce a last definition in this section: let F ∶ C → C≃ as in the above the-
orem. An object A of C is F-acyclic (or acyclic for F) if RqF(A) = 0 for all q > 0.

Remark: This definition also describes a way to measure the failure of a 
sequence to be exact, so we could define derived functors using acyclic objects 
instead of injective ones.

So far, we discussed that if C is an abelian category, then we can define coho-
mology objects of its correspondent cochain complex C∙ , and several constructions 
and results of Homological Algebra are available. However, what is a cohomology 
theory? That is, for different abelian categories (and even not abelian categories) 
what guarantees we are dealing with a cohomological structure? The answer is: the 
Eilenberg-Steenrod axioms.

The Eilenberg-Steenrod axioms state that a collection of functors form a (co)
homology theory if it satisfies a certain list of axioms, for fixed coefficients (we 
will see cohomologies where the coefficients are sheaves, but the reader can think, 
for instance, in the singular cohomology with coefficients in a fixed abelian group). 
Moreover, we may obtain other types of cohomology theories if we remove one of 
the axioms; in particular, the removal of the dimension axiom provides a “general-
ized (co)homology theory”, which is the case, of some K-theories. In other words, 
“cohomology” has a broad application. It is interesting observe that different coho-
mologies may coincide for suitable choices of spaces and coefficients (see Theo-
rem 3.4, and Sects. 3.3 and 4.5).

2.3 � Abelian group object

If C is a category with binary products and terminal object 1,   we can define the 
notion of group object in C as an object G in C equipped with morphisms 

e : 1 G i : G G m : G×G G

 in C , such the following diagrams commute 
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G×G×G G×G 1×G G×G G× 1

G× GGG

idG×m

m×idG m

e×idG

∼=
m

idG×e

∼=

m

G G×G G×G

1 G

!

i×idG

m

e

G G×G G×G

1 G

!

idG×i

m

e

The morphism △ = (idG, idG) ∶ G → G × G is the diagonal morphism. Note that 
these diagrams are expressing the group axioms. If we want to add an abelian condi-
tion and form an abelian group object, then we must include 

G×G G×G

G

τ

m
m

 commutative, where � = (�2,�1) ∶ G × G → G × G is the twist morphism.
So an abelian group object is a quadruple (G,  e,  i,  m),   where the diagrams 

above commute, and the category Ab(C) of abelian groups object in C is the cat-
egory defined over the base category where the objects are abelian groups objects 
in C and the morphisms are morphisms in C that commute with the corresponding 
morphisms e,  i, and m. In more details, if G = (G, e, i,m) and G� = (G�, e�, i�,m�) 
are abelian group objects in C , then an arrow h ∶ G → G� in C determines an arrow 
h ∶ G → G

� in Ab(C) iff h◦e = e� , h◦i = i�◦h and h◦m = m�◦(h × h).
Since this internal notion of group uses only products and commutative diagrams 

in the category C , it follows easily that the forgetful functor E ∶ Ab(C) → C creates 
limits.

Two notable examples of group objects are topological groups, when C is the cat-
egory of topological spaces, and Lie groups, when C is the category of smooth mani-
folds. The base category C will be a topos throughout this survey.

3 � Sheaves

Interested in fixed points results applied to the realm of partial differential equa-
tions, Jean Leray published in 1945, while a prisoner in the 2nd World War, the 
paper [47] that would originate sheaf theory. He published a more refined paper 
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about sheaf theory and spectral sequences in 1950 [48], with the original ideas 
preserved. Meanwhile, Henri Cartan starts the Séminaire at the École Normale 
Supérieure, and reformulates sheaf theory. Also in 1950, in the third year of this 
seminar, sheaves appear as what is now know as “étalé spaces”. Results using 
sheaf methods were increasingly showing up, but the terminology was not estab-
lished. It was Roger Godement who achieve a standard language for the theory 
(for example, presheaves are functors, sheaves are a special kind of presheaves; 
the notion of sheaf in Cartan’s seminars pass to be nominated an étalé space) with 
his book published in 1958 [20].

Less about the history and more about the philosophy of sheaf theory: since the 
beginning, there was some notion that allows pass local data to global data. In the 
work of Godement, the flabby sheaves were responsible to play this role, while 
Grothendieck worked more with injective sheaves. The idea is that the cohomol-
ogy groups obtained from resolutions of this specific kind of sheaves are trivial, 
so we do not have obstructions from local to global. The power of sheaf theory is 
to provide machinery to solve global problems by resolving them locally, which is 
especially interesting for Algebraic Geometry and Complex Analysis.

Let X be a topological space. We denote by O(X) the category associated to the 
poset of all open sets of X. A presheaf of sets is a (covariant) functor 
F ∶ O(X)op → Set , and a morphism of presheaves is a natural transformation. 
Given inclusions U ⊆ V  , we use s|V

U
 (or just s|U ) to denote the “restriction map” 

from F(V) to F(U).
If U ⊆ X is open and U =

⋃
i∈I

Ui is an open cover, a presheaf F is a sheaf (of 

sets) when we have the following diagram 

F (U)
i∈I

F (Ui)
(i,j)∈I×I

F (Ui ∩ Uj)e
p

q

is an equalizer in the category Set, where: 

1.	 e(t) = {t|Ui
|i ∈ I}, t ∈ F(U)

2.	 p((tk)k∈I) = (ti|Ui∩Uj
)(i,j)∈I×I q((tk)k∈I) = (tj�Ui∩Uj

)(i,j)∈I×I , (tk)k∈I ∈
∏
k∈I

F(Uk)

This definition is useful to understand categorical properties and provide a simple 
way to visualize its generalization when we substitute O(X) by an arbitrary cate-
gory. However, there is an equivalent and more concrete form to describe a sheaf. 
Instead of presenting an equalizer diagram, we say that the preasheaf F satisfies 
two conditions: 

1.	 (Gluing) If si ∈ F(Ui) is a compatible family, i.e., si|Ui∩Uj
= sj|Ui∩Uj

 for all i, j ∈ I , 

there is some s ∈ F(U) such that s|Ui = si, i ∈ I . We say s is the gluing of the 
compatible family.
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2.	 (Separability) Given s, s� ∈ F(U) such that s|Ui = s�|Ui
, for all i ∈ I , s = s�.

A morphism of sheaves is a morphism of presheaves, that is, a natural transforma-
tion between functors, and it is clear that this defines a category, denoted by Sh(X). 
Note that in the definition of sheaves we could replace Set by any category with all 
small products, for example, the category of abelian groups Ab, and in this case we 
change the nomenclature to abelian sheaves. We will return to this in Sect. 3.1.

If F is a presheaf, the stalk of F at the point x ∈ X is the direct limit 
Fx ∶= lim

����������→
U∈Ux

F(U) , where Ux = {U ∈ O(X) ∶ x ∈ U} is the poset of open neighbor-

hoods of x. A presheaf F satisfies the separability condition above if and only if the 
canonical morphisms F(U) →

∏
x∈U

Fx , U ∈ O(X) are monomorphisms. We will see 

in the next paragraphs that stalks are important to transform presheaves into sheaves.
Now we can say that sheaves capture global information from the gluing of local 

properties. For example, given an open subspace U of a topological space X, and an 
open cover U =

⋃
i∈I

Ui , there is a functor, C
ℝ
 , that takes opens U in X and sends to the 

set C
ℝ
(U) = {f ∶ U → ℝ | f  is a continuous function} . Since the restriction of a con-

tinuous function to a subset of its domain is still a continuous function, C
ℝ
 is a 

presheaf. Since fi(x) = fj(x),∀x ∈ Ui ∩ Uj, there is a unique function f such that 
f|Ui

= fi . Besides that, the continuity of the fi ’s implies the continuity of the gluing f, 
so f ∈ C

ℝ
(U) . Analogously, the presheaves of differential, smooth, or analytic func-

tions are sheaves [66].
This example may remind the reader of germs and stalks over points in a topo-

logical space with respect to étale bundles (local homeomorphisms) and this is not 
only a coincidence: for any continuous function p ∶ E → X we define 
�p(U) = {s ∶ U → E|s is continuous and p(s(x)) = x,∀x ∈ U} and is possible to 
prove that �p is a sheaf, called sheaf of sections of the continuous function p. Moreo-
ver, if F is sheaf over a topological space X, taking EF ∶=

∐
x∈X

Fx the disjoint union 

of stalks of F for each point x in X, and defining an adequate topology in EF , the 
(obvious) projection function pF ∶ EF → X determines a local homeomorphism: 
this leads to a natural isomorphism between F and � (pF) . So every sheaf over X is 
(naturally isomorphic to) the sheaf of sections of a local homeomorphism over X. 
Sheaf Theory inherits the nomenclature of constructions involving étale bundles 
because the two notions are strongly related through the category equivalence 
between the category of étale bundles over X and the category of sheaves over X, for 
each topological space X. The reader can find a detailed account on this subject in 
[50, Chap. II].

The spatial-functorial identification process described above is useful to pro-
vide the “best sheaf approximation of a given presheaf” as follows: any presheaf 
F ∶ O(X)op → Set , can be “sheafificated” into a(F) ∶= � (pF) ∶ O(X)op → Set above 
F, i.e. a(F) is a sheaf over X and there is a natural transformation �F ∶ F → a(F) 
that is initial among the natural transformations � ∶ F → S , where S is a sheaf over 
X; moreover, the stalk of a(F) at a point x ∈ X is isomorphic to the stalk Fx . For 
instance, given a set A, the “constant presheaf” with value A is the contravariant 
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functor FA(U ↪ V) = (A
idA
← A) ; its stalk at a point x ∈ X is isomorphic to A and its 

sheafification, a(FA) ∶ O(X)op → Set , is isomorphic to the sheaf of continuous func-
tion with value A (viewed as a discrete topological space): CA(U) = {f ∶ U → A | f  
is a continuous function} , U ∈ O(X).

Another relevant example of sheaf came from Commutative Algebra and it is 
central for the development of modern Algebraic Geometry: for each commutative 
unitary ring R, there is a canonical sheaf, OR , of rings defined over its prime spec-
trum space2, Spec(R), this sheaf is determined on a (canonical) basis of the (spec-
tral) topology of Spec(R) just taking adequate localizations of the ring R; the stalk 
of this sheaf at a proper prime ideal p ∈ Spec(R) is isomorphic to the local ring 
Rp = R[R ⧵ p]−1 . The pair (Spec(R),OR) is called the affine scheme associated to R; 
we will return to this example later, in Sect. 3.3.

3.1 � Sheaf cohomology

In this section, we present the subject “Sheaf Cohomology” in the usual way, omit-
ting proofs that can be easily found in the literature, as in [20, 25], but providing 
intuition about the associated ideas. Our aim here is to list some results of this the-
ory that will reappear in the next section with the appropriate modifications.

For the reader’s convenience, we start explaining why we can do sheaf cohomol-
ogy in Ab(Sh(X)), i.e., how abelian sheaves are equivalent to abelian groups objects 
of Sh(X)

Note that abelian presheaves O(X)op → Ab form the category of func-
tors AbO(X)op . Then, for every functor F that is an object in AbO(X)op , we have that 
F(U) is an abelian group for every U ∈ O(X) . So, for each U ∈ O(X) , there are 
mU ∶ (F × F)(U) ≅ F(U) × F(U) → F(U) , iU ∶ F(U) → F(U) , and eU ∶ 1 → F(U) 
such that they determine natural transformations and the diagrammatic rules of abe-
lian group object holds, i.e., F is an abelian group object of SetO(X)op . On the other 
hand, if G ∈ Ab(SetO(X)op ) , then G ∈ SetO(X)op and we have m, i,  and e as in the defi-
nition of an abelian group object. For every U ∈ O(X) we consider mU , iU , and eU 
such that the diagrammatic rules still hold, then, G(U) is an abelian group, i.e., G 
is a functor of O(X)op to Ab. These correspondences describe an equivalence of cat-
egories Ab(SetO(X)op ) ≃ AbO(X)op .

Observe that Ab(Set) ≃ Ab and consider E ∶ Ab(Set) → Set the forgetful func-
tor (E “forgets” the group operations); note that this functor preserves all lim-
its. Thus an abelian sheaf is a functor F ∶ O(X)op → Ab where the composition 
O(X)op → Ab → Sets is a sheaf of sets. Denote the category of abelian sheaves by 
ShAb(X) . Since we have inclusions Sh(X) → SetO(X)op and ShAb(X) → AbO(X)op , the 
equivalence Ab(SetO(X)op ) ≃ AbO(X)op induces an equivalence Ab(Sh(X)) ≃ ShAb(X) , 
since the subcategories of sheaves, over Set and over Ab, are closed under all small 
limits.

2  Spec(R) = {p ⊆ R ∶ p is a proper prime ideal of R} , and it is endowed with the so called “Zariski 
Topology”.
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Therefore, to apply cohomological techniques in Ab(Sh(X)) is equivalent to apply 
it in ShAb(X) . Many classical books of Sheaf Cohomology prove that ShAb(X) is an 
abelian category (see, for instance, [38, Theorem 2.5]). We, alternatively, can show 
that Ab(E) is an abelian category for any topos E so, in particular, Ab(Sh(X)) is abe-
lian. We will comment more on this in Sect. 4.3.

We will use right derived functors to define the cohomology group of sheaves, 
thus we need to ensure that ShAb(X) has enough injectives: see [38, Theorem 3.1] for 
a proof of this fact.

For every sheaf F in ShAb(X) and U open set of X, we have the abelian group of 
sections of F over U defined by � (U,F) = F(U) . Sections over X are called global 
sections, and � (X,−) ∶ ShAb(X) → Ab is a left exact functor3 that sends an abelian 
sheaf to its global section abelian group, know as global section functor.

Then the q-group cohomology group of X with coefficients in F is, by definition, 
the q-th right derived functor of � (X,F) . In other words, given an injective resolu-
tion F → I∙ , we have Hq(X,F) = Rq� (X, I∙).

A special type of sheaves are the flabby sheaves. As we will see, they are impor-
tant because, like injective objects, they allow the construction of acyclic resolu-
tions. By definition, if the restriction maps sU ∶ F(X) → F(U) is onto for every 
U ⊆ X open, the sheaf F  is flabby. Equivalently, F  is flabby if F(V) → F(U) is onto 
for any pair U ⊆ V  of open sets in X.

Proposition 3.1  Every injective sheaf is flabby.

Proof  To establish this result, we will need an auxiliary construction.
Consider a functor x∗ ∶ Set → Sh(X) , such that

where H is set, U an open set in X, and {*} unitary set. This is known as the 
skyscraper sheaf. In the abelian sheaf version, we have x∗ ∶ Ab → ShAb(X), 
H ↦ (x∗H)(U), with the difference H is now an abelian group and x∗H is a functor 
that sends open sets of X to H or in the trivial group.

For each x ∈ X , let Dx be an injective abelian group. We define an injective sheaf 
D ∶=

∏
x∈X

x∗Dx . It is not difficult to see that D(X) → D(U) is surjective, i.e, D is 

flabby.
Now suppose F is an injective sheaf. We will show that F is flabby. Since F is 

injective, for each x ∈ X , the stalk Fx is an injective abelian group. Consider the 
family of injective abelian groups D(F)x ∶= Fx, x ∈ X . Then D(F) ∶=

∏
x∈X

x∗D(F)x is 

an injective and flabby sheaf and, since F(U) →
∏
x∈U

Fx is a monomorphism, 

U ∈ O(X) , there is a mono i ∶ F → D(F) . Since F is an injective sheaf, we can select 
a morphism f ∶ D(F) → F such that f◦i = idF . Since all components of identity 

(x∗H)(U) =

{
H, x ∈ U

{∗}, x ∉ U

3  It preserves all small limits.



	 São Paulo Journal of Mathematical Sciences

1 3

morphism are surjective homomorphism, the same holds for the components of f. 
Besides that, by naturality of f, the following diagram commutes: 

D(X) D(U)

F (X) F (U)

sU,D

f(X) f(U)

sU,F

We already know f(U) and sU,D are surjectives, so f (U)◦sU,D is surjective. By 
commutative of the diagram, sU,F◦f (X) is surjective and so also is sU,F . This holds 
for every open set U of X, then F is a flabby sheaf. 	�  ◻

Now we show that flabby sheaves can build acyclic resolutions.

Proposition 3.2  If F is an flabby sheaf, then Hq(X,F) = 0, for all q > 0 . In other 
words, F is � (X,−)-acyclic.

Proof  Since F is flabby, we can construct 0 → F
f
�����→ G

g
�����→ Q → 0 an exact sequence, 

where G is injective because ShAb(X) has enough injectives. By the proposition 
above, G is flabby.

Using the left exactness of the global section functor, we immediately obtain the 
exact sequence

The flabby condition of F implies more:

is exact. This is not straightforward and uses Zorn’s Lemma to be proved [38, 
Theorem 3.5].

By Theorem 2.2, the derived functors induce a long exact sequence. We will ana-
lyze the following part of the sequence:

Where g0 = g . Note H1(X,G) = 0, because G is injective. Since the sequence above 
is exact, by the Isomorphism Theorem:

But g0 = g is a surjective morphism, so Ker(�) = Im(g0) ≅ � (X,Q). Then, 
H1(X,F) = 0.

0 → � (X,F)
�f

���������→ � (X,G)
�g

���������→ � (X,Q)

0 → � (X,F)
�f

���������→ � (X,G)
�g

���������→ � (X,Q) → 0

� (X,G)
�g0

������������→ � (X,Q)
�0
��������→ H1(X,F)

f1
�������→ H1(X,G)

H1(X,F) ≅
� (X,Q)

Ker(g0)
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To conclude the result, use an induction argument in q and the fact that if the first 
two objects in a short exact sequence are flabby, the third one is also flabby. 	�  ◻

Remark: All proofs we know of this proposition require Zorn Lemma, so a con-
structive proof may not be available yet (or maybe there is not a constructive proof).

Given the fact that every sheaf admits a flabby resolution, via Godement res-
olution, the Proposition above implies we can define cohomology groups with 
coefficient in F  using flabby sheaves instead of injective ones. The reason why 
this is possible is that we need a procedure that measures the “failure of its right 
exactness” to construct cohomology, and the proposition above guarantees such 
procedure for flabby sheaves [20].

3.2 � Čech cohomology

The nerve construction of an open covering first appeared in [3], before its debut 
in Sheaf Theory. Originally, the nerve associated an open covering of a topologi-
cal space to an abstract simplicial complex, in an algorithmic form. Currently, 
nerve constructions preserve the algorithmic form but they deal with more gen-
eral settings than topological spaces and simplicial complexes. We will use the 
Čech nerve to develop Čech Cohomology.

Godement improved in his book the brief discussion about Čech Cohomology 
made in Cartan’s seminars, and it is a fundamental reference on the subject until 
today. Additionally, we recommend Kozsul’s note classes [43] and, for references 
in English, there are algebraic geometry books as [35]. Here we introduce Čech 
Cohomology as a technique to calculate Sheaf Cohomology by taking open cov-
ers of a fixed topological space, construct a cochain complex from it, and finally 
compute the cohomology groups. We aim to use this section to compare it with 
Čech Cohomology for Grothendieck Toposes.

Fix F in ShAb(X) and consider U = (Ui)i∈I an open cover of X, where I is a set of 
indices. For each q ∈ ℕ , denote the Ui0,...,iq

= Ui0
∩ ... ∩ Uiq

 for i0, ..., iq ∈ I (this is 
the Čech nerve). The Čech cochain complex is

and its coboundary morphisms dq ∶ Cq(U,F) → Cq+1(U,F) are

where �k is used to indicate that we are removing ik , i.e., �(�k) = �
i0,...,îk ,...,iq+1

.
A straightforward verification shows that dq+1◦dq = 0 so, indeed, this is a 

cochain complex and we can define the q-th Čech cohomology group of F with 
respect to the covering U  by Ȟq

(U,F) = Ker(dq)∕Im(dq−1).

Cq(U,F) =
∏

i0,...,iq

F(Ui0,...,iq
),∀q ≥ 0,

(dq�) =

q+1∑

k=0

(−1)k�(�k)||Ui0,...,iq+1
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The result below gives us a first clue that Čech cohomology can be useful to cal-
culate cohomology of sheaves. See [35, Lemma III 4.4] for a proof.

Proposition 3.3  Let F be a sheaf in  ShAb(X) , and  U = (Ui)i∈I a covering of X . 
There is a canonical morphism  kq

U
∶ Ȟ

q
(U,F) → Hq(X,F) natural and functorial in 

F for each  q ∈ ℕ.

Next, we will briefly examine the behavior of the Čech cohomology groups 
under the dynamic of refinements of coverings. We will return to this point later, in 
Sect. 4.4.

Let V = (Vj)j∈J be another covering of X. Suppose that U is a refinement of V , 
i.e, for each i ∈ I , there is j ∈ J such that Ui ⊆ Vj . Choose any function c ∶ I → J 
such that Ui ⊆ Vc(i), i ∈ I ; then there is a induced morphism of cochain complexes 
mc ∶ C∙(V,F) → C∙(U,F) and a corresponding morphism of Čech cohomol-
ogy groups w.r.t. the coverings U and V , m̌c ∶ Ȟ

∙
(V,F) → Ȟ

∙
(U,F) . Moreover, if 

d ∶ I → J is another chosen function w.r.t. the refinement of V by U , then the induced 
morphisms of complexes mc,md are homotopic, thus, by Proposition 2.1, there is a 
unique induced morphism of cohomology groups m̌U,V ∶ Ȟ

∙
(V,F) → Ȟ

∙
(U,F).

Note that the class Ref(X) of all coverings of X is partially ordered under the 
refinement relation; this is a directed ordering relation.

The construction above is functorial in the following sense:

•	 m̌U,U = id ∶ Ȟ
∙
(U,F) → Ȟ

∙
(U,F);

•	 If W = (Wk)k∈K is a covering of X such that V is a refinement of W , then 
m̌U,W = m̌U,V◦m̌V,W ∶ Ȟ

∙
(W,F) → Ȟ

∙
(U,F).

The (absolute) Čech cohomology group is, by definition, the directed (co)limit4:

The main result concerning Čech cohomology is the following:

Theorem 3.4  The canonical morphisms  kq
U
∶ Ȟ

q
(U,F) → Hq(X,F), q ∈ ℕ, accord-

ing notation in Proposition  3.3, are compatible under refinement. Moreover, the 
induced morphism on colimit

is an isomorphism if  q ≤ 1 and a monomorphism if  q = 2.

Ȟ
∙
(X,F) ∶= lim

����������→
U∈Ref (X)

Ȟ
∙
(U,F).

kq ∶ Ȟ
q
(X,F) → Hq(X,F), q ∈ ℕ,

4  This (co)limit has to be taken with some set-theoretical care, we will not detail this point here.
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Far more interesting, under reasonable geometrical hypothesis on the topologi-
cal space X (for instance, if X is a Hausdorff paracompact space5), then the canon-
ical morphisms kq are isomorphisms for all q ≥ 0.

3.3 � Applications

Most of mathematicians will not be interested in abstract sheaf theory alone, but 
in its applications for specific sheaves. For example, if (X,OX) is a ringed space, 
i.e., X is a topological space and OX is a ring-valued sheaf, we can define a coher-
ent sheaf F on (X,OX) that will look like a vector bundle with the advantage of 
forming an abelian category. Thus, we can study coherent sheaf cohomology. In 
this context, we have an analog of Poincaré Duality of Algebraic Topology, and 
the Serre Duality, that relates cohomology groups at level n − q with Ext groups 
at level q, where n is the dimension of the particular scheme we are studying, by 
[35, Theorem III 7.6]). Coherent sheaf cohomology also provides a characteriza-
tion of Euler Characteristic by an alternating sum of the dimension of cohomol-
ogy groups of a scheme with coefficient in a coherent sheaf.

We observe that schemes are essential in modern Algebraic Geometry, and its 
definition arises from the affine (locally) ringed space (Spec(R),OR) . We use Zar-
iski Topology to construct the sheaf OR and furnish the spectrum Spec(R) of a 
commutative ring with a topological structure. The gluing of ringed spaces of 
the form (Spec(R),OR) results in the notion of schemes. We may use schemes to 
construct quasi-coherent sheaves, a generalizatin of coherent sheaves introduced 
by Serre in [61]. Quasi-coherent sheaves constitutes an interesting class of coef-
ficients for cohomologies in Algebraic Geometry: Čech and sheaf cohomology 
agree on a noetherian separated scheme with the Zariski topology, for any quasi-
coherent sheaf as coefficient.

Another application of sheaf-theoretical methods is the relation between Čech 
cohomology and De Rham cohomology which is obtained as follows: Given a 
topological space X, and a set A, the constant presheaf with values in A that we 
mentioned earlier can be transformed into a constant sheaf with values in A by a 
standard “sheafification” process. In particular, the set A can be the underlying 
set of an abelian group such as ℝ , the additive group of real numbers, and the 
topological space can be a compact manifold M of dimension m and class at least 
C
m+1 . In this case, there is an isomorphism Hq

dR
(M) ≅ Ȟq(M,ℝ) , for all q ≤ m , 

where Hq

dR
 denotes the de Rham cohomology groups [58, Appendix]. Similarly, 

Čech cohomology and singular cohomology coincide for any topological space X 
that is homotopically equivalent to a CW-complex, with the constant sheaf of an 
abelian group A as coefficient.

More recently, sheaf and Čech cohomologies have been used in quantum mechan-
ics because of the general idea of measuring the obstruction between local and 

5  This holds for any CW-complex or any topological manifold.
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global properties. For example, in [1], the Čech cohomology groups are defined for 
specifics topological spaces, with a corresponding open cover, and show they iden-
tify the obstructions that characterize logical forms of contextuality.

In the next section, we will generalize the categories of sheaves over some topo-
logical space defining the notion of Grothendieck topos and exhibit specific Groth-
endieck topos that appears in other areas of Mathematics.

4 � Toposes

4.1 � Grothedieck toposes

Cohomology groups often provide good invariants to classify objects: if two Rie-
mann surfaces (with some additional conditions) agree in each level of the cohomol-
ogy groups, then they are the same from a topological point of view. In the 1950s, 
this problem was well understood for algebraic curves over the field of complex 
numbers, but not much was known for algebraic curves over other fields. In 1954, 
Jean-Pierre Serre introduced sheaf theory in Algebraic Geometry with coherent 
sheaves [61], and one year later, in [62], he showed that with coherent sheaves in 
hand there are cases such that the cohomology groups of complex and non-complex 
algebraic varieties coincide, by using the Zariski topology.

However, in most cases, the Zariski topology does not have “enough” open sets. 
So, motivated to prove the Weil’s Conjectures, A. Grothendieck had the idea of 
stop trying to find open sets, in the usual sense, and defined an analogous version 
of inclusion of open sets using more general morphisms in small categories. This 
gave birth to Grothendieck topologies and to Grothendieck toposes, particularly, the 
étale topos of a scheme X—the category of all étale sheaves on a scheme X—and 
so to Étale Cohomology. A. Grothendieck, M. Artin, and J-L. Verdier proved three 
of the four Weil’s Conjectures, and the remaining one was proved by Deligne in 
1974 [15]. The main references to see the development of this program aiming the 
proof of Weil’s Conjectures passes through Bourbaki seminars [28], “Eléments de 
Geométrie Algébrique” [24, 26, 27, 30–34], and “Séminaire de Géométrie Algéb-
rique” (SGA). We highlight SGA4 [29], as the one dedicated to topos theory and 
étale cohomology.

Now, remember that a locale (L,≤) is a complete lattice such that

The poset of all open sets of a topological space X is a locale. Locales coincide with 
complete Heyting algebras6.

Note that in the definition of a sheaf over a topological space we did not use 
the points of the space, that is, only their locale structure was necessary. In fact, 

a ∧ (
⋁

i∈I

bi) =
⋁

i∈I

(a ∧ bi),∀a, bi ∈ L.

6  The class of all Heyting algebras provides the natural algebraic semantics for the intuitionistic proposi-
tional logic, that is the “constructive fragment” of the classical propositional logic.
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we can define sheaves for a presheaf F ∶ L
op

→ Set , where L is the category asso-
ciated to a locale L, since it is a poset. This is one simple case where the notion 
of sheaf is still available in a category different from O(X) . There are others? Yes, 
by introducing an abstract idea of open cover we can define sheaves for any small 
category C.

First, we will be a bit less general. Suppose C is a small category with finite 
limits (or just with pullbacks). A Grothendieck pretopology on C associates to 
each object U of C a set P(U) of families of morphisms {Ui → U}i∈I satisfying 
some simple rules. They are: 

1.	 The singleton family {U�
f
�����→ U} , formed by an isomorphism f ∶ U�

≅
→ U , is in 

P(U);
2.	 If {Ui

fi
������→ U}i∈I is in P(U) and {Vij

gij
���������→ Ui}j∈Ji is in P(Ui) for all i ∈ I  , then 

{Vij

fi◦gij
�����������������→ U}i∈I,j∈Ji is in P(U);

3.	 If {Ui → U}i∈I is in P(U), and V → U is any morphism in C , then the family of 
pullbacks {V ×U U → V} is in P(V).

The families in P(U) are called covering families of U.
Example: Note that the “concrete” notion of cover of topological spaces pro-

vides an example of Grotendieck pretopology: an object in O(X) is an open set U 
in X and the morphisms in O(X) are inclusions of open subsets of X, this category 
has all finite limits (given by finite intersection of open subsets). Thus is natural 
to define a Grothendieck pretopology P in O(X) by

This can be carried out analogously for any locale L.
We say that the presheaf F ∶ C

op
→ Set is a sheaf for the Grothendieck preto-

pology P if the following diagram is an equalizer in Set: 

F (U)
i∈I

F (Ui)
(i,j)∈I×I

F (Ui ×U Uj)

However, different pretopologies can provide the same class of sheaves. For 
instance, if 

⋃
i∈I Ui = U is an open cover of the open subset U ⊆ X , for any 

V ⊆ Uj , for some j ∈ I , we have V ∪
⋃

i∈I Ui = U. To remove this ambiguity from 
the above definition we use the notion of covering sieve.

Let C be an object in a small category C (the assumption of existence of the 
pullbacks over C can be dropped now), a sieve on C is a collection S of morphisms 
f with codomain C such that f◦g ∈ S, for all morphism g with dom(f ) = cod(g) . 
Given h ∶ D → C , define

The h∗(S) will assume the role of a pullback in the category, as we see bellow:

{Ui

fi
↪ U}i∈I ∈ P(U) ⟺ U =

⋃

i∈I

Ui.

h∗(S) = {g ∣ cod(g) = D, h◦g ∈ S}
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A Grothendieck Topology in C associates each object C of C to a collection 
J(C) of sieves on C such that: 

1.	 The maximal sieve on C, {f ∣ cod(f ) = C} , is in J(C);
2.	 If R and S are sieves on C, S is in J(C) and h∗(R) is in J(D) for all h ∶ D → C in 

S, then R is in J(C);
3.	 If S is in J(C), then h∗(S) is in J(D) for all h ∶ D → C.

The collection of sieves in J(C) are the covering sieves (or J-covers). The pair (C, J) 
formed by a small category C and a Grothendieck Topology J is called site. Each 
pretopology P on a category with pullbacks C determines a least Grothendieck 
topology JP on C : a covering sieve S ∈ JP(U) is a sieve on the object U that contains 
some family in P(U).

We can also define sheaves for the Grothendieck topology J, but more concepts 
would be introduced and we can be satisfied with what we have since both defini-
tions—for Grothendieck topologies and pretopologies—are equivalent [39]. In par-
ticular, if C is a small category with pullbacks, a presheaf F ∶ C

op
→ Set is a sheaf 

for the pretopology P iff it is a sheaf for the induced topology JP . Morphisms of 
sheaves are natural transformations, and so we obtain Sh(C, J), the category of 
sheaves over this site.

Finally, a Grothendieck Topos is a category that is equivalent to Sh(C, J) , for some 
site. Note Sh(X) = Sh(C, JP) is a Grothendieck topos where C = O(X) and JP is the 
Grothendieck topology generated by the pretopology P described in the example 
above (that pretopology is not a topology).

Grothendieck toposes also are characterized by purely categorical axioms, by 
Giraud’s Theorem [39, Theorem 0.45]. If a category has some specific properties, it 
is a Grothendieck topos. Conversely, every Grothendieck topos satisfies these same 
properties.

We provide below a list of properties we will need in Sect. 4.3 to sketch the proof 
that Ab(E) is AB5 and has generators:

Lemma 4.1  A Grothendieck topos  E satisfies the following conditions:

1.	 all colimits are universal (i.e, preserved by pullback);
2.	 has all small coproducts;
3.	 has a set of generators (i.e., exists a small family  {Gi}i∈I of objects in  E where 

given distinct morphisms  f , g ∶ X → Y in  E there are  i ∈ I and  h ∶ Gi → X such 
that  f◦h ≠ g◦h);

4.	 filtered colimits commute with finite limits.

In this list, only the last property is not part of Giraud’s Theorem, but we will use 
it and it follows, not immediately, from the fact the same holds for Set.
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4.2 � Elementary toposes

We add here a short section on a generalization of Grothendieck topos: the cate-
gorical concept of “elementary topos”, introduced by Lawvere and Tierney in the 
early 1970s. The relatively simple axioms that defines an elementary topos allows a 
description of an internal language and an internal (intuitionistic) logic: this machin-
ery is useful to perform “high level arguments”, for instance to provide a simple 
proof that the category of abelian group objects in an elementary topos is an abe-
lian category (Theorem 4.3). This “high-level” method was successfully explored in 
Algebraic Geometric [8], revealing its potential to other applications in Mathemat-
ics; first steps towards high-level Homological Algebra were given in [9].

An elementary topos is a (locally small) category that is cartesian closed, has a 
subobject classifier, and has all finite limits (or equivalently, has all finite products 
and equalizers, or has pullbacks and a terminal object).

A category is cartesian closed if it has binary products and it is possible to define 
an exponential object for every two objects as follows: given B and C objects, there 
is an exponential object CB endowed with an evaluation map ev ∶ CB × B → C such 
that for any other object A, endowed with an arrow f ∶ A × B → C , there is a unique 
morphism f̄ ∶ A → CB where ev◦(f̄ × idB) = f  . An important property that arises 
from this definition is the isomorphism �B

AC
∶ Hom(A × B,C)

≅
→ Hom(A,CB) , which 

are natural in A and C.
A subobject classifier of a locally small category that has all finite limits, and 

1 as terminal object consists of an object � of truth values and a truth morphism7 
t ∶ 1 → � such that given any object E, and any “subobject” r : U E there is 
a unique morphism χr : E Ω that makes the following diagram a pullback: 

U 1

E Ω

r

!

t

χr

This χr : E Ω is called characteristic morphism of r. It can look too 
abstract, but when the category is Set, we have � = {0, 1} and, for each subset U 
of a fixed set E, the morphism �U is the well known characteristic function. In fact, 
Set is an example of elementary topos [11, Example 5.2.1]. More generally, every 
Grothendieck topos is an elementary topos [11, Example 5.2.9].

Any elementary topos E enjoys some categorical properties that holds in the cat-
egory Set, e.g.: a morphism in E is an isomorphism iff it a monomorphism and an 
epimorphism; every epimorphism in E is a coequalizer; any morphism in E has a 
(unique up to unique isomorphism) factorization through the image—it is composi-
tion of a monomorphism with an epimorphism.

7  In fact, these data are unique up to unique isomorphisms.
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An important type of morphism between toposes f ∶ F → E is called geomet-
ric morphism. It consists of a pair of functors, f∗ ∶ F → E , the direct image, and 
f ∗ ∶ E → F  , the inverse image, such that: 

1.	 f ∗ is left adjoint of f∗;
2.	 f ∗ preserves finite limits, i.e, it is left exact.

The reader does not need to know the definition of adjoint pair of functors to 
understand the ideas covered in this survey and can think in adjointness as an 
abstraction of free constructions in Algebra; the sheafification process is an 
instance of adjointness; the “exponencial convertion”, described by the natural 
isomorphisms �B

AC
 above shows that the functor (−) × B is the left adjoint of the 

functor (−)B . We recommend [49] if there is an interest to better understand the 
proofs in which we explicitly use the adjoint property of geometric morphisms.

In general, each side of an adjoint pair of functors determines the other side, 
up to isomorphism, so it is clear that Set is the terminal Grothendieck topos, 
concerning the geometric morphisms. This motivates the definition of point in a 
topos E ; it is a geometric morphism f ∶ Set → E.

Another distinguished geometric morphism is i = (i∗, i
∗) ∶ Sh(C, J) → SetC

op , 
here the direct image part is just the (full) inclusion i∗ ∶ Sh(C, J) ↪ SetC

op and the 
inverse image part is the sheafification functor, i∗ ∶ SetC

op

→ Sh(C, J).
Every topos naturally encodes a “local set theory” [5]. Indeed, each topos 

has an internal language, known as Mitchell-Bénabou language, and a canoni-
cal interpretation—a procedure to give a meaning for the symbols introduced in 
the canonical language. In the next section, we will use these notions to proof 
Theorem 4.3.

Provide the complete definition of the internal language of a topos and its 
respective interpretation would spend about tree pages of this survey so we have 
restricted ourselves to only present a general idea. We hope this approach helps to 
understand the rigorous definitions given in [11, Chap 6].

Given a topos E , the Mitchell-Bénabou language L(E) consists of three parts:

For each object A in E , there is an associated sort sA (they are distinct from each 
other). The terms � of L(E) have a value sort s(�) and are inductively defined from 
the basic terms by applying certain natural constructors—the basic terms of sort sA 
are the constants of value sort sA that corresponds to a morphism 1 → A in E and 
an enumerable set of variables {xA

i
∶ i ∈ ℕ} of sort sA ; more complex terms, t ∶ sB , 

are inductively constructed from simpler terms t0 ∶ sA0
,⋯ , tn−1 ∶ sAn−1

 by a formal 
application of morphisms t = f (t0,⋯ , tn−1) , where f ∶ A0 ×⋯ × An−1 → B is an 
arrow in E . Formulas are inductively constructed from the basic (or atomic) formu-
las by applying (firs-order and higher-order) logical constructors—an atomic for-
mulas is defined “to abbreviate relations between terms”. As a simple example of 
(atomic) formula we have � =A � , where � and � are terms with same value sort sA.

∙ Sorts (or types) ∙ Terms ∙ Formulas
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For the canonical interpretation of the language L(E) in the topos E , the main 
idea is establish a realization for each term, and a truth table for each formula, 
as follows: Let � be a term of type sA with variables x1, ..., xn of types sX1

, ..., sXn
 , 

respectively. A realization of � is an arrow in E , written [�] ∶ X1 × ... × Xn → A.
Now, given a formula � with (free) variables x1, ..., xn of types sX1

, ..., sXn
 , a 

truth table of � is an arrow in E , [�] ∶ X1 × ... × Xn → � , where � is the subob-
ject classifier of E.

Next, we exemplify the abstract ideas presented above 

	 (i)	 Consider x a variable of type sA . Then its realization is established to be the 
identity morphism 

	 (ii)	 Previously, we mentioned that � =A � , where s(�) = s(�) = sA , is a formula. 
Continuing this, we establish that its truth table is the morphism 

 where the free variables in � and � have types among sX1
, ..., sXn

 and �A is 
the characteristic morphism of △A

def
= (idA, idA) ∶ A → A × A , the diagonal 

morphism.
In this setting, a formula � can be valid or not. We say � is valid if the canonical 
interpretation

is the truth table of � , where x1, ..., xn are free variables of types sX1
, ..., sXn

 . To 
denote that � is valid we use E ⊧ 𝜑.

As a simple example, we will show that E ⊧ x =A x , where x is a variable 
of type sA ; in other words, the formula x =A x is valid in E . By the discussion 
above, we know that the truth table of x =A x is A

([x],[x]))
����������������������������→ A × A

�A
���������→ � . Since 

[x] = idA ∶ A → A , the morphism ([x], [x]) is precisely the diagonal morphism △A . 
By definition, �A is the characteristic morphism of △A . Thus, the following diagram 
is a pullback 

A 1

A×A Ω

!

([x],[x]) t

δA

In particular, the diagram commutes, so A
!
����→ 1

t
����→ � , is the truth table of x =A x . 

Therefore, x =A x is valid in E.
We saw x =A x is valid for any topos, but the equality sign carries a lot of informa-

tion—it is a specific characteristic morphism—and, at first, any property regarding 

[x]
def
= idA ∶ A → A

X1 × ... × Xn

([�],[�]))
�����������������������������→ A × A

�A
���������→ �

X1 × .... × Xn

!
����→ 1

t
����→ �
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=A should work explicitly with characteristic morphism and other tools presented 
by the internal language. However, when we work with toposes is usual to omit the 
internal language machinery and pretend that objects are sets, monomorphisms are 
injective functions, epimorphisms are surjective functions, isomorphisms are bijec-
tive functions, and so on. Basically, we pretend that a topos is the topos Set, which is 
possible due to the Soundness Theorem [51, Chap 15]. This advantage has a cost: we 
only can replicate a construction in Set to an arbitrary topos if we restrain ourselves 
to “constructive aspects” presented in intuitionistic logic, because, in general, the 
law of excluded middle ( i.e., � ∨ ¬� ) does not hold for all toposes. For the same 
reason, we avoid using the axiom of choice, a “non-constructive” set-theoretical 
axiom. We will apply this procedure in the next section (see Theorem 4.3).

4.3 � Grothedieck topos cohomology

Now, we replicate the formerly cohomology constructions (Sect. 3.1). We hope it is 
clear that the (Grothendieck) Topos Cohomology exhibited is an extension of Sheaf 
Cohomology; however, new techniques are necessary to prove the toposes versions 
of the results introduced in the previous section8. We begin with a useful but simple 
concept:

A parallel pair of morphisms f , g ∶ A → B is reflexive if exists a common section 
s ∶ B → A of f and g, that is, f◦s = idB = g◦s . In particular, a reflexive coequalizer 
is a coequalizer of a reflexive pair.

Lemma 4.2 

1.	 For any elementary topos E , the forgetful functor E ∶ Ab(E) → E creates limits 
and reflexives coequalizers  [39, Section 6];

2.	 For abelian categories, the AB5 condition is equivalent to the category having 
all small colimits and all filtered colimits being universal  [22].

We use the above lemma to sketch the proofs of the main results in this 
subsection.

Theorem 4.3  The category Ab(E) is abelian for any elementary topos E.

Proof  Show that Ab(E) is Ab-category follows by straightforward calculations. To 
see it is an additive category we will use the internal language of E . Thus we need 
to prove that the following objects exist in Ab(E) : terminal and initial objects, binary 
products, and binary coproducts; moreover finitary products and finitary coproducts 
must coincide in Ab(E).

8  On the other hand, if a Grothendieck topos has “enough points”, then its cohomology coincides with 
some spatial sheaf cohomology, see [55].
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We already know that terminal objects and binary products exists in Ab(E) 
because E has finite limits and, by Lemma 4.2.1, the forgetful functor creates finite 
limits, so Ab(E) has finite limits.

We will use the internal logic of the topos to continue the proof. Suppose E = Set, 
then Ab(E) ≃ Ab. It is know that Ab is an additive category and the demonstration 
of this fact only uses constructive arguments. By the discussion in 4.2, Ab(E) is an 
additive category for any topos E , and not only E = Set . Usually, this argumentation 
is enough, but let’s elaborate a bit more.

Consider X an object of a topos E equipped with morphisms mX ∶ X × X → X, 
iX ∶ X × X and eX ∶ 1 × X satisfying the following formulas of abelian groups

This formulas may be described by diagrams, so X is equivalent to an object in 
Ab(E) (see Sect.  2.3 to remind the notation). In particular, the terminal object in 
Set—a singleton—corresponds to the terminal object in Ab(Set) ≃ Ab—the trivial 
group denoted by 1—thus, for each object A of Ab(Set), there is a unique morphism 
f ∶ A → 1 . In other words:

That is, the terminal object can be described by a formula. In the same way, the fact 
that there is a unique morphism 1 → A , for all A object in Ab, also can be described 
by a formula. Therefore, we have a constructive proof that 1 is a zero object for 
Ab(Set). The Soundness Theorem mentioned in the previous section guarantees 
we can replace Set by any topos E , so 1 is a zero object in Ab(E) . Similarly, if we 
take the product of two objects in Set, we may obtain a product in Ab(Set). Since in 
Ab(Set) the product has an (internal) abelian group structure and all finitary prod-
ucts are finitary coproducts in Ab (direct sum and direct product coincide for finite 
indices), we conclude the binary product is a coproduct in Ab(Set) (in fact, they are 
biproducts, an equational notion described in Section 2.1) and, again, this proof is 
constructive thus is still valid in Ab(E) . Summing up, Ab(E) is an additive category 
for any elementary topos E see [51, Chap 16.6] for the description of the coproduct 
diagram using formulas.

It is not difficult to see that any morphism f ∶ A → B in Ab(E) has a kernel; since 
the forgetful functor creates limits (Lemma 4.2.1), ker(f) is the equalizer equal(0, f).

Now, let f be an epimorphism in Ab(E) , then it is also an epi in F  . But any epi in 
E is a coequalizer, then f = coeq(g, h) for some g, h ∈ E . Since f ∈ Ab(E) , f can be 
rewritten as f = coeq(g�, h�) for some g�, h� ∈ Ab(E) . Thus

∀x ∶ X, y ∶ X, z ∶ X (mX(mX(x, y), z) = mX(x, (mX(y, z))

∀x ∶ X, 0 ∶ 1 (mX(eX × idX)(0, x)) = mX(idX × eX(x, 0)))

∀x ∶ X (mX(iX × idX(△(x))) = eX(!(x)))

∀x ∶ X, y ∶ X (mX(x, y) = mX(y, x))

∀A ∶ Ab (f ∶ A → 1) ∧ (g ∶ A → 1) ⟹ f = g

f = coeq(g�, h�) = coeq(0, h� − g�) = coker(h� − g�)
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To conclude Ab(E) is an abelian category we have to construct a cokernel of an arbi-
trary morphism f ∶ A → B in Ab(E) and show that any monomorphism in Ab(E) is a 
kernel in Ab(E).

We take a coequalizer in E of the pair m◦(f × idB) and p2 , where m ∶ B × B → B 
is the morphism m introduced at the definition of group object, p2 ∶ A × B → B is 
the projection in the second coordinate, and f ∶ A → B is a morphism in Ab(E).

Let q = coeq(m◦(f × idB), p2) . First, note that A×B B
m◦(f×idB)

p2

 is a reflexive pair 

with section s = (0, idB) ∶ B → A × B . Considering parts of the diagram of coequal-
izer, and of the cartesian product of morphisms, we have: 

B A× B B ×B B C

A B

s

p1

f×idB

p2

m

p1

q

f

idB

With a lot of diagram calculations and the coequalizer universal property, is pos-
sible to show that q, a coequalizer in Ab(E) , is the cokernel of f,  for any f in Ab(E).

Finally, let f be a monomorphism in Ab(E) . Denote coker(f ) = q , then q◦f = 0 . 
Since q◦ker(q) = 0 , by the universal property of ker(q), there exists a unique 
t ∈ Ab(E) such that f = ker(q)◦t and this t is a mono, because f is a mono. Until 
now, all the information were obtained from very general categorical arguments. 
However, E is an elementary topos and we can simulate in E the proof, made in Set 
with elements, that establishes that t is “surjective” (i.e. an epimorphism) in E thus, 
as we already mentioned before, it follows that t it is an isomorphism in the topos 
E . Since t ∈ Ab(E) , t is an isomorphism in Ab(E) . Summing up, we have shown that 
any mono in Ab(E) is a kernel, indeed, it is the kernel of its own cokernel. 	�  ◻

Remark: It is possible to prove the above Theorem without the internal language 
machinery, but the paper [65] shows it requires 10 pages of diagram calculations to 
fulfill the verification. We know that a proper introduction to the internal language 
of toposes requires more than 10 pages, yet it is more convenient and efficient in the 
long haul.

By the Grothendieck Theorem 2.1, if an abelian category satisfies AB5 and has a 
generator then it has enough injectives. Thus, to state Ab(E) has enough injectives, 
we only need to prove this two conditions.

Theorem 4.4  If  E is a Grothendieck topos, then  Ab(E) is AB5 category and has a 
generator.

Proof  Let’s see that Ab(E) satisfies AB5. By Lemma 4.2.2, we need to prove that 
Ab(E) has all small colimits with all filtered colimits being universal. The first 
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part—Ab(E) has all small colimits—can be proven in several ways, none of them is 
simple: a possible form is presented in the proof of [39, Theorem 8.11.iii]; another 
argument follows from the construction of the associated sheaf functor (or sheafifi-
cation functor), which is left adjoint to the inclusion functor i ∶ Sh(C, J) → SetC

op 
and preserves colimits. We choose not to present the associated sheaf functor here, 
but we indicate [50, Chap III.5] for a complete explanation.

In a Grothendieck topos, filtered colimits and finite limits commutes. Since E cre-
ates finite limits, it creates filtered colimits and pullbacks. Besides that, all colimits 
are universal in a topos, that is, they are preserved by pullbacks. Thus filtered colim-
its are universal in Ab(E). See 4.1 to remember Grothendieck toposes’s properties.

Now we prove that Ab(E) has a set of generators.
By Giraud Theorem, E has a set of generators {Gi}i∈I . Let f , g ∶ X → Y  in Ab(E) 

so f and g are morphisms in E . If f ≠ g , since {Gi}i∈I is a generator of E , there is 
hi ∶ Gi → E(X), for some i ∈ I , such that

Consider the coproduct universal morphism h ∶
∐

i∈I Gi → E(X) and the canonical 
morphism �i ∶ Gi →

∐
i∈I Gi . We have hi = h◦�i so

Then E(g)◦h ≠ E(f )◦h.
Use the fact that the forgetful functor has a left adjoint functor, Z ∶ E → Ab(E) ; 

this is a generalization of the “free abelian group” construction from the topos Set to 
any Grothendieck topos9. Apply it in h, so Z(h) ∶ Z(

∐
i∈I Gi) → X, is the associated 

morphism in Ab(E) . The adjointness of Z and E guarantees that f◦Z(h) ≠ g◦Z(h) , 
thus Z(

∐
i∈I Gi) is generator of Ab(E). 	�  ◻

Therefore, by the Grothendieck Theorem:

Theorem 4.5  If  E is a Grothendieck topos, then the abelian category  Ab(E) has 
enough injectives.

By Theorem 2.2, we need a left exact additive functor, which we will again call 
global section functor. First, note there is a unique (up to isomorphism) geometric 
morphism � ∶ E → Set , and is enough to argue its inverse image � ∗ ∶ Set → E is 
unique (up to natural isomorphisms): by definition of geometric morhism � ∗ send 
terminal objects to terminal objects, and preserver colimits. Besides that, every set 
is a disjoint union of singletons (terminal objects in Set), so � ∗ must be given by 
S ↦

∐
s∈S 1, where 1 is the terminal object in E.

Next, we take the direct image functor of �  , which must be 
�∗ = HomE(1,−) ∶ E → Set . Finally, we define the global section functor as

E(f )◦hi ≠ E(g)◦hi

E(g)◦h◦�i = E(g)◦hi ≠ E(f )◦hi = E(f )◦h◦�i

9  Because these toposes have the internal “set of all natural numbers”.
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Since �Ab is induced by the direct image of �  then, by Lemma 4.2.(1), �Ab preserves 
limits, thus it is left exact.

Is not difficult to prove that the direct image of any geometric morphism pre-
serves injectives. We will show this here to introduce a usual and simple manipula-
tion with direct and inverse images using adjoint properties:

Let f ∶ F → E geometric morphism, and I injective object in Ab(F) . Consider 
the following diagram in Ab(E)

X Y

f∗(I)

m

h

 The adjoint property of geometric morphisms allow us to transpose this diagram 
and obtain the following diagram in Ab(F)

f∗(X) f∗(Y )

I

f∗(m)

h̃

 Note that f ∗(m) is a monomorphism in F  and thus in Ab(F) , since f ∗ preserves 
finite limits.

Next, we use the injectiviness of I to complete the diagram with g ∶ f ∗(Y) → I 
that makes it commutative in Ab(F) . Then we transpose, by adjoint property, one 
last time, and find a commutative diagram in Ab(E) that guarantees that f∗(I) is an 
injective object in Ab(E)

X Y

f∗(I)

We define the q-th cohomology group of E with coefficientes in F, object in 
Ab(E) as the q-th right derived functor of �Ab(F) . In other words,

We can define cohomology for objects different from the terminal: Let B be 
an object of E , since HomE(B,−) is a left exact functor we can consider right 
derived functor for it, denoted by Hq(E,B;F) . The problem is how to describe 
Hq(E,B;F) in terms of Hq(E,F) . The idea is that the funtor B∗ ∶ E → E ↓ B , which 
sends an object A in E into p2 ∶ A × B → B in E ↓ B , induces an exact functor 

�Ab ∶= HomE(1,−) ∶ Ab(E) → Ab(Set),

Hq(E,F) = Rq(�Ab)(F)
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B∗
Ab

∶ Ab(E) → Ab(E ↓ B) that preserves injectives, and is possible to establish an 
isomorphism Hq(E,B;F) ≅ Hq(E ↓ B,B∗

Ab
(F)) . See [39, page 262].

Grothendieck toposes admit a notion of flabby object: We say that F in Ab(E) is 
flabby if Hq(E,B;F) = 0 , for all q > 0 and all B object in E.

Proposition 4.6  Every injective object in  Ab(E) is a flabby object in  Ab(E).

Proof  More generally, for any injective object F in an abelian category we have an 
injective resolution 0 → F

idF
�����������→ F → 0 → 0 → ... of F. Applying the left exact func-

tor �  and taking its right derived functors:

Translating to our scenario, F is an injective object in Ab(E) with the 
above injective resolution. For each object B in E , we construct a left 
exact functor B∗

Ab
∶ Ab(E) → Ab(E ↓ B) , as previously mentioned. Then 

Hq(E ↓ B,B∗
Ab
(F)) ≅ Rq(B∗

Ab
(F)) = 0 . Therefore, F is flabby. 	�  ◻

The following lemma is useful to prove the analogous version of Proposition 
3.2. We exhibit the proof provided in [39] because it uses manipulations with 
geometric morphisms that show up every time we are working with Grothendieck 
Toposes.

Lemma 4.7  Let  f ∶ F → E be a geometric morphism, with  E = Sh(C, J) , F an object 
in  Ab(F) , and  l ∶ C → Sh(C, J) the canonical functor ( U ↦ i∗(Hom(−,U))).Then  
Rqf∗(F) is the J -sheaf associated to the presheaf  U ↦ Hq(F, f ∗l(U);F).

Proof  We split the proof of this lemma in two parts. First, we consider J as minimal 
topology, and after that J will be an arbitrary Grothendieck Topology.

The Grothendieck topology J be minimal means J(C) = {maximal sieve in C} , 
where C is an object in C . The minimal topology implies that E = SetC

op

. Since f 
is a geometric morphism, f ∗ preservers finite limits and is left adjoint of f∗ . So f∗ 
preserves small limits, f∗(−)(U) is a left exact functor, and we can obtain the right 
derived functor f∗(−)(U) . Besides that, by group cohomology definition and adjoint 
property of geometric morphism:

So the lemma holds for J minimal.
Suppose J is an arbitrary Grothendieck Topology in C , let i = (i∗, i

∗) ∶ E → SetC
op 

be the inclusion geometric morphism, and define g = i◦f ∶ F → SetC
op . The 

adjoint properties guarantees that i∗g∗ = (i∗i∗)f∗ ≅ f∗ . Since i∗ is an exact functor, 
i∗Rqg∗ ≅ Rq(i∗g∗) ≅ Rq(f∗) . By the facts that l ∶ C → Sh(C, J) is the canonical func-
tor and i∗ is the associated sheaf functor [50, Chap III.5], we have

0 = Rq� (F) ≅ Hq(� (F∙))

R0f∗(−)(U) ≅ f∗(−)(U) ≅ HomE(Hom(−,U), f∗(−))

≅ HomF(f
∗(Hom(−,U)),−)

≅ H0(F, f ∗(Hom(−,U)),−) ∶ Ab(F) → Ab(Sets)
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Finally, we apply this in the calculations for J minimal and conclude the desired 
result. 	�  ◻

Proposition 4.8  If F is a flabby sheaf, then  Rqf∗(F) = 0, for all  q > 0 . In other 
words, F is  f∗ -acyclic.

Proof  We have Rqf∗(F) is the J-sheaf associated to U ↦ Hq(F, f ∗l(U);F) , by 
the above Lemma. Since F is flabby, Hq(F, f ∗l(U);F) = 0 for all q > 0 . Thus, 
Rqf∗(F) = 0, for all q > 0 . 	� ◻

We also have a (Godement) resolution in this context [39, page 265], and since 
the notion of flabby sheaf implies an acyclicity, we could use it to define cohomol-
ogy groups using flabby sheaves instead of injective ones–see the discussion at 
the end of Sect. 3.1. This approach is particularly interesting for cohomology in a 
topos because injectives resolutions depend on the axiom of choice to works prop-
erly while general toposes rely—internally—on intuitionistic logic. However, we 
observe that this definition of flabby does not coincide with the flabby definition 
for sheaves over topological spaces when Sh(C, J) = Sh(X) . Therefore, how we con-
structively generalize the flabby definition in Sh(X) to Sh(C, J) ? We do not know a 
definite answer to that but we will explain more about it in the last section.

4.4 � Čech cohomology revisited

As expected, Čech Cohomoloy in the Grothendieck Topos case is more complicated. 
We will proceed more carefully now, and use some lemmas without proofs to not 
exceed in technicalities.

We fix E = Sh(C, J) , consider P = SetC
op it correspondent presheaves category, 

and i ∶ E → P the canonical inclusion.
Suppose that C has pullbacks. For sheaves over topological spaces, when con-

structing the Čech Cohomology, we considered Ui0,...,iq
 as a intersection of finite sub-

families of open sets that cover an open U. Now we need to find an analogous of 
this. Let U = (Ui

fi
→ U)i∈I be a family of morphisms in C , define10 

Ui0,...,iq
∶= Ui0

×U ... ×U Uiq
 (this is the Čech nerve). Applying morphisms 

Ui0,...,iq

�k
��������→ U

i0,...,îk ,...iq
 that “forgets ik ”, we have a diagram in P as follows: 

. . .
i0,i1,i2

hUi0,i1,i2
i0,i1

hUi0,i1
hU

g∗(Hom(−,U)) = f ∗i∗(Hom(−,U)) = f ∗l(U)

10  In other words, we select a specific pullback for each subfamily.
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where hU ≅ Hom(−,U) is a representable functor. Remind that the forgetful func-
tor E ∶ Ab(P) → P has a left adjoint Z ∶ P → Ab(P) , called free functor. Since left 
adjoint functors preserve colimits, we have a canonical isomorphism 
Z(
∐
j∈J

hVj
) ≅

∐
j∈J

Z(hVj
).

Apply the free functor in the diagram above to obtain a diagram in Ab(P) : 

i0,i1,i2

Z(hUi0,i1,i2
)

i0,i1

Z(hUi0,i1
) Z(hU)

Defining a boundary morphism (dq�) =
q+1∑
k=0

(−1)k�(�k)∣Ui0,...,iq+1
 , and using the 

above diagram, we construct a chain complex, denoted by N∙(U) , where

Since, by [39, Lemma 8.22], the sequence ⋯ → N2(U) → N1(U) → N0(U) is exact in 
Ab(P) , we can use this chain complex to define the Čech cochain complex.

Given a presheaf F in Ab(P) , the Čech cochain complex is

with coboundary morphisms dq = −◦dq . Since 
(−◦dq+1)◦(−◦dq) = −◦(dq◦dq+1) = −◦0 = 0 , we define the q-th Čech cohomology 
group of U with coefficients in F by Hq(U,A) = Ker(dq)∕Im(dq−1).

Now, we want to define Čech Cohomology of an object in the category instead 
of its coverings.

Considering V = (Vj

gj
→ U|j ∈ J) another family of morphisms in E that refines 

the family U = (Ui

fi
→ U|i ∈ I) , we select a refinement map r ∶ V → U  , that is, a 

pair formed by a function r ∶ J → I and a family of factorizations 

Vj Ur(j)

U

rj

gj
fr(j)

: j ∈ J

In the following, we will abuse the notation and use rj to denote the value in 
the index set ( rj = r(j) ∈ I ) and also the arrow in C ( rj ∶ Vj → Ur(j) ). This will not 
cause confusion.

If R is the sieve of U generated by the family U  (i.e., for any morphism � in R, 
� = fi◦hi , for some i ∈ I and some hi ), then the inclusion map U → R determines a 
refinement map.

Proposition 4.9  Given  r, s ∶ V → U refinement maps,  r∙ and  s∙ are chain 
homotopic.

Nq(U) ∶=
∐

i0,i1,...,iq

Z(hUi0,i1,...,iq
)

Cq(U,F) = HomAb(P)(Nq(U),F),
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Proof  We have to find a sequence of morphisms Nq(V) → Nq+1(U) that makes r∙ and 
s∙ chain homotopics.

Consider � = (j0, ..., jq) where j0, ..., jq ∈ J . For each l ∈ {0, 1, ..., q} we define a 
morphism over U as follows:

This morphism induces a “group homomorphism”:

We can perform two kind of actions:
(i) Consider the alternating sum of homomorphisms t� ∶=

∑q

l=0
(−1)l+1�l

�
◦Z(tl

�
) , 

for this fixed � , where

is the canonical homomorphism.
(ii) “Put together” the homomorphisms Z(tl

�
) , for a fixed l:

that we denote simply by tl
q
∶ Nq(V) → Nq+1(U)

These two actions can be applied in any order we choose, without changing the 
resulting homomorphism, that we will denote by

Since r and s are refinement maps we can extract indices i0, ..., iq ∈ I from 
j0, ..., jq ∈ J , thus we obtain an homomorphism

The (non commutative) diagram we must have in mind is: 

. . .
j0,j1,j2

Z(hVj0,j1,j2
)

j0,j1

Z(hVj0,j1
) . . .

. . .
i0,i1,i2

Z(hUi0,i1,i2
)

i0,i1

Z(hUi0,i1
) . . .

dV
3 dV

2

r2−s2 r1−s1
t(1)

dV
1

dU
3 dU

2 dU
1

We will exhibit the homotopy chain construction for the case q = 2:

tl
�
= (rj0 , ..., rjl , sjl , ..., sjq) ∶ V� → U(rj0

,...,rjl
,sjl

,...,sjq )

Z(tl
�
) ∶ Z(hV�

) → Z(hU(rj0
,...,rjl

,sjl
,...,sjq

)
).

�l
�
∶ Z(hU(rj0

,...,rjl
,sjl

,...,sjq
)
) →

∐

i0,i1,...,iq,iq+1

Z(hUi0,i1,...,iq ,iq+1
)

tl
q
∶

∐

j0,j1,...,jq

Z(hVj0,j1,...,jq
) →

∐

i0,i1,...,iq,iq+1

Z(hUi0,i1,...,iq ,iq+1
)

t(q) ∶ Nq(V) → Nq+1(U)

(rq − sq) ∶
∐

j0,j1,...,jq

Z(hVj0,j1,...,jq
) →

∐

i0,i1,...,iq

Z(hUi0,i1,...,iq
).
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Let � = (j0, j1), t
0
�
= (rj0 , sj0 , sj1 ), t

1
�
= (rj0 , rj1 , sj1 ) , and denote

Let � = (j0, j1, j2) and �� ∶ Z(hV�
) →

∐
j0,j1,j2

Z(hVj0,j1,j2

) . For an object C in C , we take 

�C
�
∈ Z(hV�

(C)) and obtain

Apart from that, dV
2
(��(��)) = �j0,j1 − �j0,j2 + �j1,j2 . Applying t(1) in the last equation:

On the other hand:

Therefore,

So the chain homotopy is proved for q = 2 . For the general case, we consider 
� = (j0, ..., jq) then, by similar calculations, we obtain:

	�  ◻

The following result provides an isomorphism between cohomology groups of 
a family of morphism U  and cohomology groups of a sieve R generated by U .

Proposition 4.10  Let  U = (Ui → U|i ∈ I) be a family of morphisms and R the 
sieve generated by  U . Then the inclusion  i ∶ U → R induces an isomorphism  
Hq(U,F) ≅ Hq(R,F) , for any presheaf F in  Ab(P).

Proof  Since R is generated by U, there is a refinement map h ∶ R → U . On the 
other hand, we also have that the inclusion i ∶ U → R is a refinement map. By the 

t� =

1∑

l=0

(−1)l+1�l
�
◦Z(tl

�
) = −�0

�
◦Z(t0

�
) + �1

�
◦Z(t1

�
) ∶= −(rj0 , sj0 , sj1 ) + (rj0 , rj1 , sj1 ).

(r2 − s2)◦�� (��) = �ri0 ,ri1 ,ri2
− �si0 ,si1 ,si2

.

t(1)◦dV
2
(��(��)) = t(1)(�j0,j1 − �j0,j2 + �j1,j2 ) =

+ (−�rj0 ,sj0 ,sj1
+ �rj0 ,rj1 ,sj1

)

− (−�rj0 ,sj0 ,sj2
+ �rj0 ,rj2 ,sj2

)

+ (−�rj1 ,sj1 ,sj2
+ �rj1 ,rj2 ,sj2

)

dU
3
◦t(2)(��(��)) = dU

3
(−�rj0 ,sj0 ,sj1 ,sj2

+ �rj0 ,rj1 ,sj1 ,sj2
− �rj0 ,rj1 ,rj2 ,sj2

)

= −(�sj0 ,sj1 ,sj2
− �rj0 ,sj1 ,sj2

+ �rj0 ,sj0 ,sj2
− �rj0 ,sj0 ,sj1

)

+ (�rj1 ,sj1 ,sj2
− �rj0 ,sj1 ,sj2

+ �rj0 ,rj1 ,sj2
− �rj0 ,rj1 ,sj1

)

− (�rj1 ,rj2 ,sj2
− �rj0 ,rj2 ,sj2

+ �rj0 ,rj1 ,sj2
− �rj0 ,rj1 ,rj2

)

dU
3
◦t(2)(��(��)) + t(1)◦dV

2
(��(��)) = �ri0 ,ri1 ,ri2

− �si0 ,si1 ,si2
= (r2 − s2)◦��(��).

(rq − sq)(�� (��)) = dU
q+1

◦t(q)(��(��)) + t(q−1)◦dV
q
(��(��))
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previously proposition, this refinement is unique up to homotopy, thus h◦i and i◦h 
are cochain homotopic to the corresponding identity refinements. So, by Proposi-
tion 2.1, i induces a map in the cohomology group that is invertible. In other words, 
Hq(U,F) ≅ Hq(R,F) , canonically. 	�  ◻

If C has pullbacks we can define Čech cohomology groups of an object U of C 
with coefficient in an abelian presheaf F in C as the filtered colimit below

Previously, we defined Čech Cohomology for a family of morphisms with the same 
codomain instead of considering sieves, but both cases are related: we can switch 
cover sieves with the family that generates it, by the above Proposition. We intro-
duce this definition to obtain an analogous version of Theorem 3.4 for Grothendieck 
topos.

Theorem 4.11  Let U be an object in  C and F a sheaf in  Ab(E) . There is a homo-
morphism  kq ∶ Ȟ

q
(U,F) → Hq(E, l(U);F) ,  q ∈ ℕ , where  l ∶ C → Sh(C, J) is the 

canonical functor. Moreover,  kq is a isomorphism if  q = 0 or  1 , and it is a mono-
morphism if  q = 2.

To have an isomorphism in other cases we need to impose conditions on subsets 
of the set of objects in C as follows:

Proposition 4.12  Let  E = Sh(C, J) , F sheaf in  Ab(E) . If there is a subset K of the 
set of objects in  C such that:

	 (i)	 Ȟ
q
(V ,F) = 0,∀q > 0 , for each  V ∈ K;

	 (ii)	 For each object U in  C , there is a J -cover  {Vj

gj
→ U|j ∈ J} with  Vj ∈ K,∀j ∈ J 

;
	 (iii)	 Every pullback of the form  V ×U W  is in K , whenever V and W are in K .

Then the homomorphism  kq ∶ Ȟ
q
(U;F) → Hq(E, l(U);F) is an isomorphism for any 

object U in  C and for all  q ∈ ℕ

The proofs for both results above use spectral sequences and can be found at [39, 
Chap 8].

In particular, this last result can be applied to show the coincidence between sheaf 
and Čech cohomology in two cases, each one mentioned in  3.2 and  3.3. Respec-
tively, they are: 

	 (i)	 (C, J) as the site canonically associated to a paracompact Hausdorff space X 
and the coefficient F as any sheaf of abelian groups in Sh(C, J);

	 (ii)	 (C, J) as the site canonically associated to a scheme (X,OX) and the coefficient 
sheaf F as any quasi-coherent OX-module.

Ȟ
q
(U,F) ∶= lim

����������→
R∈J(U)

Hq(R,F)
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4.5 � Applications

We already mentioned that Grothendieck topos cohomology was constructed to 
prove Weil’s conjectures. However, for this propose, Étale Cohomology is enough: 
there is no need to work with an arbitrary site (C, J). If C is the slice category of 
schemes over a scheme X, where the objects are étale morphisms Spec(R)

f
�����→ X , 

and, by abuse of notation, the morphism f
�
������→ g are morphisms of schemes 

Spec(R)
�
������→ Spec(R�) such that g◦� = f .

Étale cohomology has good properties, e.g, can be related to singular cohomol-
ogy, and has a Künneth formula, and Poincaré Duality with an adequate formula-
tion. Furthermore, it has applications in number theory, K-theory, and representation 
theory of finite groups, besides its original use in algebraic geometry for fields dif-
ferent of ℂ and ℝ.

For other sites, we obtain other cohomologies such as crystalline, Deligne, and 
flat cohomologies. They also are instances of the Grothendieck topos cohomology 
we presented.

There are other kinds of applications of Grothendieck topos cohomology. If C is a 
small category, and F is an abelian presheaf in Ab(SetCop

) , we can define a cochain 
complex Cq(C,F) =

∏
c0←...←cq

F(cq) with an appropriate coboundary 

dq ∶ Cq(C,F) → Cq+1(C,F) , to obtain Hq(C,F) = Ker(dq)∕Im(dq−1) as the cohomol-
ogy groups of the category C with coefficients in F. Then, we have an isomorphism 
H∙(C,F) ≅ H∙(SetC

op

,F) . For a proof of this and an explicit description of the 
coboundary maps, consult [54, Chap.II.6].

A simple example of this isomorphism manifests when the presheaf is SetG , 
where G is group seen as a category with a single object. In such case, the objects in 
Ab(SetG) are right modules over the group ring ℤG . Thus, the cohomology groups 
of G obtained from group cohomology are isomorphic to the sheaf cohomology 
groups of SetCop . This is better know in the form H∙(BG,M) ≅ H∙(G,M) , where BG 
is the classifying space of G and M is a G-module. Consult [2, Chap. II] to see the 
usual approach. Furthermore, given a topological group G, there is a natural and 
useful variation of the formerly mentioned group cohomology but defined on the 
abelian category AG of all discrete G-modules for a continuous G-action—in par-
ticular, this is the case studied in profinite cohomology, that encompasses Galois 
Cohomology. If EG is the category of all sets (i.e., discrete spaces) endowed with a 
continuous G-action and G-equivariant maps, then: EG is a Grothendieck topos, the 
expected equivalence Ab(EG) ≃ AG holds, and the cohomology of the topos EG coin-
cides with the above described continuous cohomology of G.

Hence, Grothendieck topos cohomology also is related to non-sheaf cohomology, 
and not only with cohomology for specific sites. We will provide further applica-
tions in the next section.
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5 � Remarks and new frontiers

Topos are excellent environments for internalizing mathematical objects, and we can 
write formulas for a language (type theory) as arrows hitting the subobject classi-
fier. For example, each formula �(x) with a free variable x of type X is associated 
with the subobject of X that classically corresponds to “ {x ∈ X ∣ �(x)} ”. In this way, 
we can interpret a high-order type theory in a topos via the so-called semantics of 
Kripke-Joyal. Results on elementary topos include that they are finitely co-complete, 
represent the idea of “parts of an object” and that its internal logic is intuitionistic 
and, in particular, the parts of an object define an internal Heyting algebra. Thus, a 
topos is an environment for higher-order intuitionistic mathematics — evidently, not 
all topos are equivalent, so there is a diversity of environments.

Daily mathematics makes use of set theories to represent higher-order aspects of 
mathematical theories: this can be understood as the use of the higher-order internal 
logic of the topos Set. Since the 1970s, mathematical applications of higher-order 
intuitionistic internal logic approaches have been applied to topos: 

(i)	 An internal approach to the Serre-Swan duality was described in [57], through 
a simple theorem (essentially) of Linear Algebra, the Kaplansky’s Theorem11;

(ii)	 In model constructions of synthetic differential geometry, via Grothendieck topos 
[56, 51]. For instance, in [56], there is an internal version of De Rham Theorem 
(a deep connection between De Rham cohomology and singular homology);

(iii)	 To represent results of quantum mechanics as results of classical mechanics 
internal to a topos [17];

(iv)	 In algebraic geometry. Although the origin of Grothendieck toposes came from 
specific needs of algebraic geometry, more systematic explorations of the inter-
nal language of topos in this setting are very recent: e.g., [8] contains a diction-
ary between the external and the internal point of view (objects in a topos are, 
internally, just sets; monomorphism are injections; sheaves of rings are rings), 
works with the big and small Zariski topos associated to a scheme and the inter-
nal language provided by these toposes to exhibit simpler definitions and proofs;

(v)	 A proposal of a constructive (internal) version of the main homological tools is 
explored in [9].

Attempts to develop constructive approaches to homological algebra, without the 
aid of axiom of choice, are different from “cohomology in topos”, although they 
can be related. In the latter case, we usually are interested in a Grothendieck topos, 
and constructing cohomology groups with coefficient in Ab(Sh(C, J)), for some 
site (C, J) . That is exactly what we exposed in the previous section, using P. John-
stone’s book “Topos Theory” [39], as the main reference. However, similar to the 
extension of sheaf cohomology to Grothendieck topos cohomology, how could we 
extend Grothendieck topos cohomology to (elementary) topos cohomology? The 

11  Every module on a local ring that is projective and finitely generated is a free module.
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first problem is that for an elementary topos E we can not guarantee that Ab(E) has 
enough injectives, so it is not clear how to define the right derived functors. There 
is a form to construct them using noetherian abelian categories [68], but we do not 
know any systematic study to identify when Ab(E) is noetherian abelian.

Still on the topic of “topos cohomology” we could try to switch Ab(E) by the ele-
mentary topos E itself. In this direction, we have the work of I. Blechschmidt [9] that 
is closely related to develop a constructive version of homological algebra: he rein-
troduces the concepts of injective object and flabby sheaf as objects in an elementary 
topos (internal “sets”, not internal “abelian groups”) and replaces injective resolu-
tions with flabby resolutions to avoid the use of the axiom of choice. However, in the 
final section of his paper, he draws attention to the open problem of how to embed 
an arbitrary sheaf of modules into a flabby sheaf with intuitionistic logic arguments. 
We understand that this way of proceeding (defining objects inside a topos) was suc-
cessfully adopted before in another context, by A. Grothendieck, when he defined 
the fundamental group on a topos and originated the “Grothendieck’s Galois The-
ory” [25]. Later, A. Joyal and M. Tierney extended the theory in [42]. The results of 
A. Joyal and M. Tierney’s article are consistently cited in nowadays works, which 
indicates that studies in the same direction for homological algebra would provide 
significant discoveries.

Pertinent to this discussion, we can cite A. Blass’s paper which shows that coho-
mology detects the failure of the axiom of choice [7]. He demonstrates that the 
axiom of choice is equivalent to H1(X,G) = 0 , for all discrete set X, and all group 
G. Also, the triviality of H1(X,G) , for all G, is equivalent to the projectivity of X. 
This strengthens the relation between logic and geometry that we have been point-
ing through toposes. Note Blass’s results indicate a justification for the fact that, in 
general, Ab(E) does not have enough projectives: because of toposes’ intuitionistic 
logic.

We believe that the subject of “topos cohomology” is far from maturity. One of 
the main references into the subject, SGA4, only addresses the case Ab(Sh(C, J)) . 
Another evidence in favour of this perception is that P. Johnstone, one of the most 
prominent topos theorists of our days, had not published yet the third volume of 
“Sketches of an Elephant: A Topos Theory Compendium” that would contain the 
subject of homotopy and cohomology in toposes (besides chapters about toposes as 
mathematical universes) and the first two volumes were released in 2002 [40, 41].

Regarding constructive methods for homological algebra, there also are investi-
gations not involving toposes. For example, in [59], S. Posur provides constructive 
methods in the context of abelian categories using generalized morphisms (we high-
light it is not the same definition given by S. MacLane in [49]). He proves the Snake 
Lemma, establishes what are generalized cochain complex and generalized homo-
logical groups, and presents a notion of the homological group concretely, in other 
words, he explicitly shows the connecting morphism and not only states it exists by 
universal properties. Furthermore, he applies the theoretical definitions to create an 
algorithm capable of computing spectral sequences for a particular abelian category 
and uses it to calculate cohomology groups of specific equivariant sheaves.

In a recent work [63], M. Schulman defends that linear logic may clarify some 
constructive methods better than intuitionistic logic. We highlight Schulman’s state 
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that it provides constructive definitions (and proofs) of concepts elaborated in clas-
sical logic. Then a “linear approach” could also be useful for the problems we men-
tioned concerning constructive cohomology. Furthermore, generalized metric spaces 
(or quasi-pseudo-metric space, or Lawvere metric space [45]) can be redefined using 
linear logic [63].

Linear logic is a weakening of intuitionistic logic: it is a “sub-structural” logic, 
i.e., the usual demonstrability rules do not apply in general and only restricted ver-
sions of the contraction and weakening rules are available. In linear logic, the intui-
tionistic conjunction splits into two binary constructors that, in turn, correspond to 
two binary operators on a convenient lattice (see Theorems 3.3 and 3.4 in [70]): 
∧ , the binary infimum of the lattice, which does not necessarily distributes over all 
existing sups; and&, a binary operation that distribute over arbitrary supreme, but it 
does not have to be idempotent or commutative.

The study of linear logic was initially developed by Jean-Yves Girard [19] in the 
context of polymorphic � calculus, but its nature matches—through splits—some-
what irreconcilable elements, and their many interpretations have profound mean-
ing. Pure intuitionistic contexts cannot validate the excluded middle law ( � ∨ ¬� ), 
a distinctive axiom of classical logic. Linear logic has two candidates for disjunc-
tion ∨ , one for which it is impossible to prove the excluded middle, and another for 
which the evidence is trivial.

The presence of “duplication” of operators is natural, as these represent useful 
fragments of the usual logical operations. The interesting result is related to the 
famous correspondence of Curry-Howard: in the same way that intuitionistic logic 
is related with type theory and � calculation simply typed (the implication can be 
interpreted as the type of functions, conjunction with product and disjunction with 
co-product) giving rise to “proof-relevance”, linear logic introduces, via non-idem-
potency or non-commutativity, the relationship of linear implication to processes 
that are “resource-relevant”.

Categorical semantics for various forms of linear logics have long been explored 
(e.g. [60, 37]). Roughly speaking, we can say that closed monoidal categories have 
(some form of) internal linear logic.

Something very different occurs when we focus on possible conjunctistic or 
higher-order aspects [44, 5] that are internal to a special type of category governed 
by some form of linear logic.

A natural, and relatively simple, way to expand the notion of (categories of) 
sheaves with internal logic that is no longer intuitionistic is through appropriate 
adaptations of the sheaf notion defined over a complete Heyting algebra (H,≤,∧,⊤) 
to other algebras that are also complete lattices.

These set-theoretical aspects of the sheaves on “good” complete lattices can also 
be approached in an alternative, but often “equivalent”, way through the notion of 
expansion of the universe of all sets V by an algebra A which is a complete lattice, 
denoted by V (A) ; in the traditional case where A is a Boolean algebra or a Heyting 
algebra this is presented in [6].

The complete lattices that have natural relationship with linear logics are 
the quantales (see [70]). A quantale (Q,≤,⊗,⊤) is a structure where: (Q,≤) is a 
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complete lattice where ⊤ is the top element, (Q,⊗) is a semigroup and the distribu-
tive laws are valid: a⊗ (

⋁
i∈I bi) =

⋁
i∈I a⊗ bi , (

⋁
i∈I bi)⊗ a =

⋁
i∈I bi ⊗ a.

There are some early explorations of the strategy of considering “generalized 
sheaves”, with applications in Mathematics. In [14], is established a notion of cate-
gory of sheaves over a quantale (Q,≤,⊗,⊤) , which is right-sided ( a⊗⊤ = a, a ∈ Q ) 
and idempotent ( a⊗ a = a, a ∈ Q ), and is explored the above mentioned Kaplan-
sky’s Theorem, but now reformulated in the internal linear logic of this category 
of sheaves. In [36], H. Heymans describes a particular class of “involutive” quanta-
les, whose corresponding categories of sheaves are Grothendieck toposes.12 In [53], 
categories of sheaves are considered over quantales (Q,≤,⊗,⊤) satisfying another 
balance: they are commutative and semicartesian (or two-sided13). It is important 
to emphasize that the two-sided, commutative, and idempotent quantales coincides 
with the complete Heyting algebras.

In [53], given a commutative semicartesian quantale (Q,≤,⊙, 1) , we can con-
struct what is called a Q-set, in the same spirit of the construction of sheaves over 
complete Heyting algebras. These Q-set will not provide a sheaf, but will preserve 
a significant part of a sheaf structure, which had motivated the authors to called it a 
“Sheaf-Like category”, besides that, pseudo-metric spaces are examples of a Q-set 
(when Q = ([0,∞],≥,+, 0) ), and also of an enriched category over Q. This approach 
seems to expand the development of model theory of Continuous Logic, useful in 
Functional Analysis.

In [46], M. Schulman and T. Leinster use semicartesian monoidal categories V 
to define magnitude homology of V-categories (enriched categories over V). In par-
ticular, if V is the extended non-negative real numbers [0,∞] that admits a natural 
structure of a commutative semicartesian quantale ([0,∞],≥,+, 0) , then the corre-
spondent V-category is a generalized metric space. Magnitude homology describes a 
general notion of “size”. Depending on the case, it coincides with the cardinality of 
a set, or the Euler Characteristic of topological space, or of an associate algebra. For 
the metric space context, magnitude machinery provide interesting geometric prop-
erties as area [69], volume [4], and Minkowski dimension [52].

This conjuncture motivates the authors of this survey to wonder about internal 
cohomological aspects concerning other kinds of categories that are “topos-like” but 
possibly governed by other logics. In particular: (i) if developments in continuous 
model theory—for instance with applications to the theory of Banach algebras—
could have internal cohomological aspects better represented in the linear logic 
style; (ii) when exploring metric spaces as enriched categories over a quantale, con-
sider possible connections between magnitude (co)homology with an adapted sheaf-
like cohomology by some appropriate version of sheaves over quantales.
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