PERTURBATION OF PARABOLIC EQUATIONS WITH TIME-DEPENDENT LINEAR
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ABSTRACT. In this work we consider parabolic equations of the form
(ue)t + Ac(t)ue = Fe(t,ue),

where ¢ is a parameter in [0,e0) and {A.(t), t € R} is a family of uniformly sectorial operators. As e — 01, we
assume that the equation converges to
Ut + Ao(t)u = Fo(t, u)

The time-dependence found on the linear operators Ac(¢) implies that linear process is the central object to
obtain solutions via variation of constants formula. Under suitable conditions on the family A.(t) and on
its convergence to Ag(t) when € — 0T, we obtain a Trotter-Kato type Approximation Theorem for the linear
process U (¢, 7) associated to A¢(t), estimating its convergence to the linear process Ug (¢, 7) associated to Ag(¢).
Through the variation of constants formula and assuming that F. converges to Fp, we analyze how this linear
process convergence is transferred to the solution of the semilinear equation. We illustrate the ideas in two

examples. First a reaction-diffusion equation in a bounded smooth domain Q C R3
(ue)t — div(ac(t,x)Vue) + ue = fe(t,ue), =€ Qt >,

where a. converges to a function ag, fe converges to fo. We apply the abstract theory in this example, obtaining
convergence of the linear process and solution. As a consequence, we also obtain upper-semicontinuity of the
family of pullback attractors associated to each problem. The second example is a nonautonomous strongly

damped wave equation
ute + (~a(t)Ap)u+2(—a()Ap)Tur = f(tu), = €Qt>T,

where Ap is the Laplacian operator with Dirichlet boundary conditions in a domain €2 and we analyze conver-

gence of solution as we perturb the fractional powers of the associated linear operator.
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1. INTRODUCTION

In the present paper we study singularly nonautonomous semilinear parabolic problems of the form

(U’E)t + Af(t)UE = FE<t7u€)a t > T,

u(1)=u" €Y <= X,
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2 M. BELLUZI

where ¢ € [0,¢9) is a parameter, X is a Banach space, A.(t) : D(A:(t)) C X — X is a family of sectorial
operators (with a certain uniformity in ¢ that we shall specify latter), ¥ is a Banach Space continuously
embedded in X, which we denote by Y < X, and F. : R X Y — X is a nonlinearity.

The term singularly nonautonomous expresses the fact that this family A, () is time-dependent, as a counter-
part to the semilinear problems where A, (t) = A., which we refer as nonsingular. This terminology, adopted for
instance in [6] [10], is not unanimous and, in the case we are considering here, does not refer to any discontinuity
or blow-up in time, which can mean in other contexts. We shall adopt it in order to easily distinguish between
the case studied to the well established case where there is no time-dependence on the linear operators.

As e — 0T, Problem approaches to what we refer as limiting problem

(Uo)f, -+ Ao(t)uO = Fo(t,Uo), t> T,
ug(t) =u" €Y,

whose solution is denoted by ug(t) = uo(t, 7,u”) and referred as limiting solution.

For each ¢ € [0,£0) and under suitable conditions on the family {A.(¢),t € R} and on the nonlinearity Fr,
Problems are well-posed. We are interested in investigating the behavior of the solution w.(t) of as
€ — 07, comparing it to the limiting solution wug(t) and providing a rate of convergence for those solutions in
terms of €. In order to obtain this convergence, we must first study the associated linear problem.

This type of analysis has already been done when the linear operators in do not depend on time, that is,
A:(t) = AL, e €]0,20). In this case, each operator — A, generates a linear semigroup, {T_ 4_(t) € L(X),t > 0},
that plays an essential role in solving the semilinear problem. Under suitable assumptions on F, the nonsingular
problem

(ug)e + Acue = Fo(tyue), t> 7, u(r)=u" €Y, e€][0,e), (1.2)
is locally solved by

ue(t) =T 4. (¢t —7)u” + / T_4a_(t—s)Fe(s,uc(s))ds (1.3)

and we refer to the above expression as variation of constants formula.

In papers such as [2 B] [4, 8 [1T] 12 4] a general routine was conceived and applied in order to guarantee
convergence of solutions of Problems as € — 0. This routine is based in a detailed study of the behavior
of the linear part. Precisely, the routine consists in first studying the convergence of the linear operator A1 to
Ag'. This information is then used to obtain the convergence of the resolvent operator (A4 A.) ™! to (A4 Ag) !
in some sector and from the resolvent convergence one obtains convergence of the linear semigroup 7_ 4, (+) to
T_4,(+). By using the variation of constants formula , one can also prove the convergence of the solutions
to the limiting solution as a consequence of the linear semigroup convergence.

If the equation u§ + A.u® = F.(uf) is autonomous (F. does not depend on time), one can continue the
analysis and derive the upper semi-continuity of the family of global attractors {A.}.cjp,1j and even lower
semi-continuity under suitable structural hypothesis on the limiting attractor Ag. This is done for instance in
3.

A careful analysis of those papers allows us to conclude that a huge effort goes in the direction of ensuring
that the linear semigroup T_ 4_(-) converges to T_4,(-) in an appropriate sense. From this type of Trotter-Kato
Approximation Theorem, the convergence of the other elements being studied follows.

The situation changes when we consider singularly nonautonomous problem, since the linear semigroup is
not the central element in obtaining the solution of the semilinear problem, as we discuss next. However, we
are still able to elaborate for the singularly nonautonomous case (Problems ) a routine similar to the one
mentioned in the articles above to treat the matter of convergence for the problems. An approach like this one
for the singular nonautonomous case does not exist in the literature so far, and with the results we present in
this paper, we shall be able to study perturbation of singularly nonautonomous problem, incorporating several
different examples that appears in the literature.

The only matter that we shall not address in this paper is the lower semi-continuity of the pullback attractor
associated to Problems , whenever we are able to prove that they exist. We do not pursuit this result due



to the fact that there might not exist an elliptic associated problem for the limiting equation
(uo)t + Ao(t)(uo) = Fo(t, uo)

and we usually can not derive information on the structure of the pullback attractor unless we require some
simplifying assumptions on Ag(t) and Fy(t,-) with respect to the time-dependence. Since this is not the purpose
of this article, we do not look for a result on lower semi-continuity of the family of pullback attractors. Nev-
ertheless, upper-semicontinuity of attractors will be obtained as a consequence of the convergences established
for the solutions.

The main difference between the case where A.(t) = A, to the singularly nonautonomous comes from the
fact that instead of a linear semigroup associated to —A. that provides solutions for the semilinear problem

through the variation of constant formula (1.3)), we will have a two parameter family of linear operators
{U.(t,7) € LX), t >, TER}

that will be essential in describing the solution for the semilinear problem. The existence of such family
associated to {A.(t),t € R} was established almost simultaneously by Sobolevskii [19] and Tanabe [20], 21} 22].
This family U.(t,7) has properties similar to the ones presented by the linear semigroup in the autonomous
case. In particular, there is an equivalent variation of constant formula that provides solutions for given
by

t

ue(t) = Ue(t, 7)ul —l—/ Uc(t, s)Fe(s,uc(s))ds. (1.4)

T

Taking this into account, the outline we adopt to treat perturbation of singularly nonautonomous parabolic
problems consists in the following steps:

(i) First we prove that, for each fixed time ¢ € R, the linear operator A.(¢)~*

converges in an appropriate
sense to the linear operator Ag(t)~!. We also establish the rate of such convergence in terms of specific
characteristics of the problem.

(ii) We use the previous information to obtain the resolvent convergence of (A + A.(t))~! to (A + Ag()) ™!
in a sector common to all the resolvent sets of all linear operators.

(iii) Through a well-known formulation for analytic semigroups in terms of its resolvent, we transfer the
resolvent convergence to the linear semigroup generated by —A.(t), for a fixed t € R, that is, we obtain
the convergence (with rate) of T_4_¢)(+) to T 4,1 (")

(iv) Using the formulations of the linear process U.(t,7) in terms of A.(t) and T_4_¢(-) (developed in [19]
which we discuss in the sequel), we obtain the convergence (with rate) of U, (¢, 7) to Uy (¢, 7). This result
is presented Theorem [2.3

(v) Using the variation of constants formula (L.4), we obtain in Theorem [2.5] the convergence (with rate) of
the solution u.(-) to the solution ug(+).

To attend the program proposed, this paper is structured in the following manner: In Section [2] we present
the assumptions required for the family of linear operators {A.(¢),t € R} and for the nonlinearities F. that
allow us to prove the results on convergence. We also enunciate in this section the main abstract results on
convergence: Theorem 2.3 on the convergence of the linear process and Theorem on the convergence of the
solutions of as ¢ — 0. Their proofs are postponed to Section [3| and they depend on following steps|(i)|to
mentioned above. We then apply those results in two different examples. First, in Section |4} we consider a

family of reaction-diffusion equations in a fixed bounded smooth domain € C R?

(ue)y — div(as(t,x)Vue) + ue = fo(t,ue), z€Q, t>T,

Onue =0, x € 0N.
Assuming that a. converges to ap and f. converges to fy, we derive in this section all the abstract conditions
required in Theorems and that ensures convergence of the solution u, to ug, as € — 07. Moreover, under

an additional dissipation assumption on the nonlinearities f., we prove that each problem is globally well-posed,
defines a nonlinear dissipative process with pullback attractor {A.(t) C Y, t € R} and we prove this family
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of pullback attractors is upper-continuous in € = 0. Finally, in Section b} we apply the abstract theory to a

nonautonomous strongly damped wave equation and its fractional approximations in the sense of [7].

Before we proceed to the goals proposed, we mention two points that are important to take into account.
The first one concerns the linear operators A.(t). For this paper, we shall consider a situation where the domain
D(A.(t)) = D remains fixed in ¢ and the phase space X where the linear operator is defined remains fixed in
t and e. This assumption holds for several problems, as we shall see in applications. The situation where the
domain of the linear operator is time-dependent and the phase space changes with ¢ or time shall be addressed
in future works.

The second point that we want to highlight is the motivation behind considering singularly nonautonomous

problems. In general, an evolution system in a Banach space X can be represented by an equation
up = f(t,u), t>r, u(t)=u" €Y, (1.5)

where Y — X and f : U4/ C RxY — X. However, the function f can be highly nonlinear, which makes it
difficult to study the problem. To simplify it, we can approximate the above equation around a state ug by
a linear (or semilinear) evolution equation, and then use the several tools mentioned above (and others in the
existent literature) to treat semilinear problems.

This approximation is obtained by considering the Taylor polynomial of f around the state uy (assuming
that f has the necessary regularity), that is,

F(t w0+ 2) = £t u0) + 2L (1 o)z + g, 2),

0
u
where g(t, z) = o(||z|ly’) when ||z]ly — 0 and 2 (t ug) € L(Y, X) is the Frechet Derivative of f with respect to
(t) =

the second variable. If we denote z(t) = u(t) — ug and —A(¢ (t ug), Problem ) becomes

2zt + A(t)z = f(ta uO) + g(t, Z)v t>, Z(T) =0,

which is singularly nonautonomous and is in the same format as Problem (|1.1)). Therefore, singularly nonau-
tonomous evolution equations seems to be a good tool to model several real life phenomena and compels the
efforts in the direction of describing its dynamics.

2. FUNCTIONAL SETTING AND MAIN RESULTS

In the sequel we provide conditions on the family of linear operators {A.(t), t € R} that ensure existence
of the linear process {U.(t,7) € L(X), t > 7, 7 € R} as well as convergence of U.(t, ) to Uy(t,7) as e — 0.
Once we have convergence of the linear parts established, we provide conditions for the nonlinearities F. that

guarantee convergence of the solutions of (1.1)) as e — 0.

2.1. A type of Trotter-Kato Approximation Theorem for the Linear processes U.(t,7). Consider the
abstract singlularly nonautonomous semilinear problem (1.1)) and assume that, for each € € [0,¢q), {A:(¢), t €
R} is a family of linear operators in X satisfying:

(P.1) The operator A.(t) : D(A:(t)) € X — X is a closed densely defined linear operator, the domain
D. = D(A.(t)) is fixed in time (but it can change with €) and there are constants C' > 0 and ¢ € (5, 7)
(independent of € € [0,¢¢) and ¢t € R) such that

Y, U{0} C p(—A:(t)), forallee[0,e) and t € R,

where X, = {A € C; |arg A\| < ¢} and

I+ A1) Y ox) < for all A € X, U {0}. (2.1)

_C
A +1°

We say in this case that the family A.(t) is uniformly sectorial.
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(P.2) The operators A.(t) have the following regularizing property: its resolvent has its image on the Banach
space Y — X and there exists 8 € (0, 1] such that

AL+ Ac(t) ooy < for all A\ € ¥, U {0}, (2.2)

Al +17
and

[+ A () M2y < for all A € &, U {0}. (2.3)

_C
AP 417
(P.3) There are constants C' > 0 and 0 < § < 1 (independent of € € [0,£¢)) such that, for any ¢,7,s € R,

H[As(t) - AE(T)]AE(S)_1||L(X) < C|t — T|6.

We say that the function R 3 t — A.(t)A.(s)~! € L(X) is 6—uniformly Hélder continuous.

Conditions and state that each operator A.(t), € € [0,e0) and ¢ € R, is sectorial and we can
guarantee the existence of a common sector in the spectrum of them all as well as uniform estimate in this
sector. Those properties can be seen as a uniform parabolicity for the family of linear operators. Moreover, to
say that the resolvent of A(t) has its image in Y means that D(A(t)) C Y, since (A + A(t)) "1 : X — D(A(2)).

Condition states that the Holder exponent for the maps t — A.(t)A-(s)™! € L(X) can be chosen
uniformly among all families and, as a consequence of this property,

|Ac(®)A(7) " 2(x) £ C,  for all (t,7) in a compact set and € € [0,&0).
In this case, the graph norms defined by the operators A.(¢t) and A.(7) in Dy,

Iy = I[A=(@) - [lx  and |- [pea.ry = [|4=(7) - |1 x,

respectively, are equivalent. We shall refer to both norms as | - || x1.

From conditions |(P.1)| to will be able to derive uniform estimates in € for the semigroups and linear
process associated to the family {A.(¢), t € R}. Nevertheless, in order to obtain properties of convergence as
we make € — 07, we shall require further conditions on the linear operators that connect the different problems

being studied. Those conditions are stated next:

(P.4) There exists a continuous function ¢ : [0,£9) — RT with £(0) = 0 such that

JSup 1A= () Ac(7) " = Ao(t) Ao ()l 2(x) < €(e)-

(P.5) There exists a continuous function 7 : [0,£0) — R with n(0) = 0 such that

iu]g [A() ™" = Ao(t) Hlzx,vy < mle).
€

For a fixed € € [0,e9) and 7 € R, each operator A.(7) is sectorial with ¥, U {0} in the resolvent of —A.(7).
Henceforth, —A.(7) generates an analytic semigroup which we denote by T_4_(-)(-) (see [I8, Theorem 1.5.2])
given by

T—AE(T) (t) = ZLM /F 6”()‘ + AE(T))ildAv (2.4)

where I' is the contour of X, and it is oriented with increasing imaginary part. This linear semigroup solves
the linear and homogeneous differential equation

(ue)t + Ac(T)ue =0, t >0, wu:(0) = ul,

by considering ue(t,u") = T_ 4_()(t)u’.
However, the family {T_4_ -(t) € £(X), t > 0} is not enough to describe the evolution of the system
associated to (1.I). We must obtain a two parameter family {U.(¢,7) € L(X),t > 7} of linear operators
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associated to Ac(t) that plays in the singularly nonautonomous case a similar role as the semigroup in the

nonsingular case, that is, we should expect U (¢, T) to recover the solution of the homogeneous equation
(ue)t + Ac(B)ue =0, t > 715 u(r) =", (2.5)

by considering uc(t) = U (¢, 7)u”. In other words, we expect that 0;U.(t,7) = —A.(t)U(t, 7). As a matter of
fact, we search for the existence of a family of linear operators {U.(¢,7) € L£L(X), ¢t > 7} with the following

properties:

Definition 2.1. Let X be a Banach space. A family {U.(t,7) € L(X),t > 7} of bounded linear operators is a
linear process associated to A.(t) : D, C X — X if

(1) U.(t,t) =1 and Uc(t,8)Uc(s,7) = Uc(t, 7), for all 7 < s < t.

(2) (t,7,z) — U:(t,7)x is continuous for t > 7 and for all x € X.

(3) There exist C,T > 0 such that ||U(t,7)|zx) < C, forall0 <t —7 <T.

(4) U.(t,7) : X = D, and (1,00) 2t — U.(t,7)x € X is differentiable for each x € X .

(5) The derivative O U, (t,T) is a bounded linear operator in X,

U (t,7) = —A(t)UL (2, 7)
and, for T > 0, there exists C = C(T) > 0 such that
[0 U-(t, )l ex)y SCt—7)"", for0O<t—7<T.

Conditions toensure the existence of this family, as proved in [19, Theorem 1]. We briefly mention
the ideas behind the construction of such family, since it depends on two auxiliary families of linear operators
we(t,7) € L(X) and @.(t,7) € L(X) that will be necessary in the sequel.

Suppose that U.(¢,7) € L(X) is a family satisfying the homogeneous differential equation given in , that
is, O U (t,7) = —A(t)Uc(t, 7). Also, assume that there exists another family ®.(¢,7) € £(X) such that U(t, 7)
is obtained trough the integral equation

t

Un(t,7) = Tt —7) + / T a(o)(t — 5) (s, 7)ds. (2.6)

Differentiating in ¢, adding A (¢t)U<(¢, 7) on both sides and taking into account that 0, U (¢t,7) = —A:(t)Uc (¢, 7),
we deduce

0= (t,7) = [Ac(7) = Ac()]T_a (1 (t —T) — / [Ac(s) — Ac()]T_a_(s)(t — 8)Pc(s,T)ds.

T

If we set
pe(t,7) = [Ac(T) = Ac(OT_a.(r(t = 7), (2.7)
then ®.(t,7) would have to satisfy

O (t, 1) = e (t, ) Jr/ we(t, 8)P:(s,7)ds (2.8)

and it would be a fixed point of the map S.(¥)(t) = ¢:(¢,7) + f: we(t, s)¥(s)ds.

If we had a family ®.(¢, 7) satisfying , then we could proceed in the reverse way to obtain U.(¢, 7). This
is the technique employed to construct the linear process in the parabolic case [I9] 20] and the description of
U:(t,7) relies on this auxiliary family ®.(¢,7). The next proposition is proved in [I8] Section 5.6] and [19]. It

ensures existence of ®.(¢,7) and U.(¢,7) under the conditions required previously.

Proposition 2.2. For a fized ¢ € [0,e0), assume that {A.(t), t € R} satisfies |(P.1), [(P.2)| and [(P.3). Let
§ € (0,1] be the constant of Holder continuity and {¢-(t,7) € L(X),t > 7} the family given by [2.7)), then:

(1) {(t,7) e R¥t > 7} 2 (t,7) = ¢(t,7) € L(X) is continuous in the uniform topology and

lloe(t, T)lc(x) < C(t — 7)6_1, for allt > 7,7 € R.



7

(2) There ezists a unique family {®.(t,7) € L(X),t > 7} that satisfies (2.8)) and this family is continuous
in terms of the parameters (t,7), that is, {(t,7) € R%t > 7} > (t,7) = ®.(t,7) € L(X) is continuous
and for each T > 0, there exists C = C(T) > 0 such that

[P (t, T)lcx) < Ct—7)0°"t, forall0<t—7<T.

Furthermore, the family of linear operators {U.(t,7) € L(X),t > T} given by

t
Un(t,7) = Ton ot —7) + / T a o)t — 5).(s,7)ds

T

is a linear process associated to {A(t), t € R} and satisfies the conditions in Definition [2.1]}

The fact that U.(¢, ) given by satisfies all the conditions in Definition can be found in the work of
Sobolevskii in [I9] or in the works of Tanabe [20, 21} 22]. Those four families of linear operators, T_4_¢;)(t —7),
U(t,7), ¢-(t,7) and ®.(t,7), are essential to describe the dynamics of the system associated to (1.1). We are
then able to enunciate one of the main results on this paper, the Toter-Kato type result on the convergence of
the linear process as ¢ — 0T, whose proof is postponed to Section

Theorem 2.3. Assume that conditions|(P.1) to|(P.5) hold, and let § € (0,1] be the constant in the resolvent
estimate (2.3). For any 6 € (0, 1), there exist constants K,C > 0, independent of € € [0,¢q), such that

|U-(t,7) = Us(t,T) || c(x) < C(t — )~ PeXE0(0,¢),
|U(t, 7) — Uo(t,T)HL(X’y) <C(t- T)_1+ﬁ(1_9)€K(t_T)f(9,E),

+
for all T € R and t > 7, where £(0,¢) = max{[n(e)]’, [£()]?}. In particular, £(0,€) =% 0.

2.2. Rate of convergence for the solution of the semilinear problem. In order to obtain existence
of global solution and convergence of them as ¢ — 07, we need to require some properties on the family of
nonlinearities F. : R x Y — X. Assume that

(NL.1) Each F. = F.(t,u) is Holder continuous in ¢, globally Lipschitz in v and bounded. Moreover, the

constants L > 0 of Lipschitz and M > 0 of boundedness for F. can be chosen uniformly in €, that is

|F-(t,u)||x < M, forall (t,u) e RxY, e €[0,e0),
|- (t,u) — F.(t,v)||x < L)lu—v|y, forallee€|0,e), teR, u,vey.

(NL.2) There exists a continuous function v : [0,e¢) — RT with v(0) = 0 such that

sup sup || Fe(t, u) — Fo(t,u)l[x < ~(e).
teER ueY

Remark 2.4. Conditions required m are very restrictive and usually not found in practice. However, in
many situations (like the application considered in Section we are able to prove that dynamics of the Problems
eventually enters a bounded subset of Y, uniformly in . If that is the case, we can proceed with a cut-
off for the nonlinearities outside this bounded set so that the new family F. obtained after the cut-off satisfies
the assumptions required in . The parabolic problems with this new nonlinearity will differ out-side the
bounded set, but remains the same inside it, where all the solutions eventually go. Therefore, by restricting our

attention to this uniform bounded absorbing set, we can assume that F. have those desired properties inside it.

It follows from [I9] Theorem 7] that Problem (|1.1)) is locally well-posed, that is, there exists

¢
ue [, 7+ T(e,7,u7)) = Y given by u(t) = U (¢, 7)u” —|—/ U(t,s)F-(s,uc(s))ds,

solution of (L.1)), where T'(e,7,u”™) > 0 is the maximal interval of definition of u.(t), and it depends on the
initial condition and on £. We denote the solution by u. (¢, 7,u") if we wish to emphasize the initial condition.
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In Section |3} Lemma we shall prove that the boundedness required for F., implies that |u.(¢)|y
remains bounded for ¢ in any interval of the form [7,7 + T]. Therefore, the solution is globally defined in time

and originates a nonlinear process {S:(¢,7) : Y =Y, t > 7, 7 € R} given by
Ss(tv T)UT = us(tv T, UT)'

We now present the result on convergence of the solution as ¢ — 07. Its proof is postponed to Section

Theorem 2.5. Assume that conditions|(P.1) to|(P.5)| hold, as well as|(NL.1) and [(NL.2), Let 8 € (0,1] be
the constant in the resolvent estimate (2.3)). For any 6 € (0,1), there exists constants C, K > 0, independent of
e,t, T such that, for any € € [0,e0), t > 7, T ER and u™ € Y, we have

lus(t, 7, u") = uo(t, 7, u") |y < Ot —7)"HPEDRKED 14 |luT[ly] p(8, 2),

where

p(6,¢) = max{[n(e)]’, [£(e)])%,(e)}-
In particular, the convergence of the solution is uniform for t in any interval of the form [t + m,7 + M],
O<m< M, andu™ € BCY, B bounded.

As an immediate consequence of the previous theorem, we have the following result.

Corollary 2.6. Assume conditions |(P.1) to [(P.5), [(NL.1)| and |[(NL.2) hold. Let Sc(t,7) : Y — Y be the
nonlinear process obtained from the solution of (L.1). For any compact set I C (0,00) and any bounded set
B CY, we have

sup sup. sup [[S(t +7.7)u” — So(t + .7 [ly 0.
tel T7€R u™€eB

3. ESTIMATES AND RATES OF CONVERGENCE

This section is dedicated to obtain estimates and rate of convergence for a series of linear operators, culmi-
nating with the proof of the Trotter-Kato type Approximation result for the linear process U.(¢,7) to Up(t, 7)
and the convergence of the solution for the semilinear problem. We shall assume during this entire section that
Conditions [(P.1)] to [(P.5)] and [[NL.1)| to [[NL.2)| hold.

3.1. Resolvent convergence in £(X) and L£(X,Y). We first estimate convergence of the resolvent of A.(t)
to the resolvent of Ag(t) in terms of . As an immediate consequence of [(P.1)[and |(P.2)} we obtain existence of
a constant C' > 0 (uniform in ¢ € R and € € [0,¢¢)) such that, for any A € £, U {0}, ¢ € [0,&0) and t € R,

[A-(E)A + A () Hlex) £ C and [|A(E)(A + A1) 2oy < C. (3.1)
Since Y <« X, there exists a constant C' > 0 such that, for each u € Y,
fullx < Cllully —and  [[I]lzeyv,x) < C. (3.2)
Consequently,
1A:() ™ u = Ao(t) "Hullx < ClA(t) " u = Ao(t)Hully < Cn(e)|Jullx
and

1A=(t) " u — Ao (8) " ully < m(e)llullx < Cnle)lully-
Hence, we have the following estimates
[A:()7 = Ao(t) Hleex) < Cnle)  and  [JA() ™" — Ao(t) Hlevy < Cnle) (3.3)

From the resolvent equality and simple algebra we can prove that the following equalities hold, for all
AeX,U{0}and t € R,

A+ A1) = (A4 Ao(t) 1= Ac()(A + A (1) THA() ™ = Ao () Ao () (A + Ao (1) (3.4)
A ()N + A ()71 = Ao()(A+ Ao(1) TH= =M+ Ac(1) T A(B)[A= ()7 = Ao (1) Ao () (A + Ao (1)) 1. (3.5)



Expression ({3.4]) implicates that resolvent convergence inside the sector £,U{0} follows from the convergence
of A.(t)7! — Ag(t)~1, as € — 0T, requested in as stated in next proposition.

Proposition 3.1. There exists a constant C > 0, independent of € € [0,e9) or t € R, such that, for all
AeX,U{0} andt R,

IO+ A=) = (A + Ao®) M eexr) < Cle)-
Proof. From the uniform estimate obtained in (3.1]) for A.(¢)(A + A.(¢))™! in £(X) and £(Y) and Equality
(13.4), we deduce
IO+ A-() ™ = A+ Ao() "l vy
<A+ A(O) e 1A = Ao(®) ™ llex,v) [ Ao () (A + Ao (8) "l
< Cn(e).

Another estimate on the resolvent in terms of € that will be useful in the sequel is presented next.

Lemma 3.2. There exists a constant C > 0, independent of € € (0,e¢] and t € R, such that, ,
[Ac(®)A + Ac(£)) ™" = Ao () (A + Ao(6)) Hlexy < CAIn(e),  for any A € B, U {0}
Proof. Tt follows directly from the estimates (3.1]) for A.(t)(A + A-(¢))~! in £(X) and L(Y), from (3.2) and
from (3.5) that
A=) A+ Ac(1) ™ = Ao ()N + Ao (1)l 2(x)

< AN+ A1) M2 A=) 7 = Ao () ey [ Ao ()X + Ao () Hl2ex)

< M2 x) 1A+ Ac () 7l 2o 1A= ()7 = Ao() ™l vy Ao (B) (A + Ao () "l 2(x)

< ClAln(e).

O

Lastly on the linear operator and its resolvent, we provide an estimate for a situation where we vary both ¢

and time ¢ € R simultaneously.

Lemma 3.3. Let ¢ € (0,1] be the Holder continuity constant in|(P.3). For any 6 € [0,1], there exists a constant
C > 0 such that, for allt,7 € R and ¢ € [0, &),

14:(£)Ae(7) ™" = Ao (£) Ao(7) " llecxy < Clt = 7P~V [e(e)). (3.6)
Proof. From we deduce
| A () A (7) ™" = Ao(t) Ao (1) "l £(x) = I[A(7) — A ()] A= (7)™ = [Ao(7) — Ao()]Ao(T) "l x)

<Clt—7°. (3.7)
Now, interpolating (3.7) and the estimate in|(P.4)| with an exponent 6 € [0, 1], we obtain (3.6). O

3.2. Convergence and estimates for the semigroups. Since each operator A.(7) is sectorial (with an
uniform sector and uniform resolvent estimates in terms of £ and 7), classical theory on semigroups implies that
—A_(7) generates an analytic semigroup, which we denote by T_4_¢;)(-).

If T is the contour of ¥, C p(—A.(7)), that is, ' = {re™* : r > 0} U {re'? : r > 0} and it is oriented with
increasing imaginary part, then we have the following expressions

Tsio(®) = g [ MO+ A Han 55)
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AT () = 57 [ MDA+ () (3.9)

that can be found in [I8] Section 2.5]. A direct application of estimates (2.1)) and (3.1]) in Expressions (3.8)) and
(3-9) implies, for any 7 € R and € € [0, &),
||T7AE(7—) (t)HE(X) <(C, forallt>D0, (3.10)
[Ac(T)T-a. ()|l cx) < Ct™', forall t > 0. (3.11)

Uniformity of those estimates with respect to ¢ and 7 follows from |(P.1)[ and |(P.2)l We can also obtain an
estimate for this semigroup in £(X,Y), as stated next.

Lemma 3.4. Let 8 € (0,1] be the constant in|(P.2), There exists a constant C' > 0 independent of € € [0, )
and T € R, such that, for allt > 0,

1T-a.(ryOllexy) < CctP~1,

Proof. Using estimate ([2.3)), we obtain

1 e C
T t < = At A+ A -1 A\l < C/ r[cos |t d
7. Ollec) < 5= [ IO+ ) ol < € [ el —zar
o 1
B—1 [cos plu _ B—1
< Ct /0 e t6+quU—C(<p,,B)t ,
where constant C' depends on the angle ¢ and on 3, but it is independent of €, 7 and ¢. O

We establish next a convergence of the linear semigroups relative to €.

Lemma 3.5. Let § € (0,1] be the constant in [(P.2) For any 6 € [0,1], there exists a constant C' > 0
independent of € € [0,e9) and T € R, such that, for all t > 0,

IT-a. (1) (&) = T- g (Dl x) < Ct°[n(e)]’, (3.12)
T a. () (8) = T—ag(e) ()l vy < CEHHPED (). (3.13)
Proof. 1t follows from that
IT-a.(r) () = T4 (D)l 2cx) < C (3.14)
Consider the curve I' parametrized as I' = I'y VI'; where
I :={AeC: A=re"; r€0,00)}, To:={AeC: A=re"; rec0,00)},

and I'; stands for the reverse path. Using the symmetry of curves I'y and I's and estimate (3.3)), we obtain

1 _ -
IT-a.(r)(#) = T- a9y (Dl ) < ;/P [+ A(7) ™ = (A + Ao(7) 20 [

< Cr](g)/ erleoselt gy
0
< C(p)t™Mn(e) (3.15)

Interpolating (3.14) and (3.15) with exponents 6 and 1 — 6, for § € [0,1], we obtain (3.12)). In order to
estimate (3.13)), we first note from Lemma [3.4] that

T 4.7 () = T agr) ) e(x,v) < O (3.16)
Using [(P.5)| and the integral formulation for the semigroup (2.4), we obtain
1 _ _
1T-a.(r)(#) = T-ag(ry Dl c(x,v) < ;/F A+ A(7) 7 = A+ Ao(7) Ml exv dA]
1
< Oyt 'n(e) (3.17)

Interpolating (3.16) and (3.17) with exponents 1 — 6 and 6, 0 € [0, 1], we obtain the desired estimate (3.13]).
O
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We deduce in the sequel the last estimate on semigroup in terms of € necessary to our future analysis.
Lemma 3.6. For any 0 € [0,1], there exists C' > 0 such that, for all e € [0,&9), T € R and t > 0,
JA(T)T— . () (t) = Ao ()T ay(r) (D)l ) < Ct ()]’
Proof. Note that from , we obtain

[A(T) T a1y (8) = Ao(T) Ty (r) (D) ) < O (3.18)

On the other hand, using the integral formulation for the semigroup and Lemma we deduce
[Ae(T)T-a. (1) (8) — Ao (T)T— 4oy (D)l () < C/ [ A(T) (A + Ac(7) ™ = Ao(T) A+ Ao(7)) ™ £(x)|dA

< Cn(e) / erleonelty g < ()2 (c). (3.19)
0
Interpolating (3.18)) and (3.19) with exponents 1 — 6 and 6, we obtain the desired estimate. a

3.3. Convergence and estimates for the families ¢.(t,7) and ®.(¢,7). In order to achieve our final goal
of obtaining rate of convergence for the linear process associated to the family {A.(t), ¢t € R}, we first need to

establish rate of convergences for the auxiliary families ¢ (¢,7) and ®.(¢,7). Recall that
Pe(t,7) = [Ae(T) = A (DT 4. (1) (t = 7),
and it follows directly from and that
e (t,T)lexy < Ct —7)°7Y,  forany t > 7.

The rate of convergence required for the resolvent operators in Properties |(P.4)| and |(P.5)| are transfered to
the families @, (¢, 7) as follows.

Lemma 3.7. Let 0 € [0,1] and § be the constant of Holder continuity in|(P.8) There exists a constant C > 0
such that, for any e € [0,&9), t > 7 and 7 € R, we have
||$05(t, T) - (po(t, T)”L(X) < C(t - 7_)—1+6(1—9)£(9’ 5)7

where

(8, ) = max{[n(e)]’, [£(e)]°}. (3.20)

In particular, £(60,¢) =%0.

Proof. Using the previous estimates and Expression (2.7) for the family . (¢, 7), we obtain
[ (t, 7) = o (t, T)ll2(x
< [[[Ae(7) — Ac(1)]A e( ) THA(T)T- A (t = 7) = [Ao(7) = Ao ()] Ao (7)™ Ao(T) T ag () (t = )l ()
< [[A:(7) = Ac(O)] A (7) " 20 |Ae ()T aL () (E = T) = Ao(T) T ag () (¢ = T) | ()
F ([ A (D) A7) = Ao() Ao (T) M 20 140 (1) T g () (8 = T)ll £(x)
<C(t -7 e)]’ + Ct — 7))’
<Ot —7) 10000, e),
since —14+6(1—-0) < —-14+6—-0<0. O
As far as estimates for the family ®.(¢,7), we have the following result.

Lemma 3.8. Let § € (0,1] be the constant of Holder continuity in|(P.3) There exist constants C, K > 0 such
that, for any e € [0,&9), T ER and t > T,

19 (t, Tl cx) < Ot — )P eR ),
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Proof. From previous estimates, we obtain
e < oett: e + [ oett )l 10205 7 ccxrds

<Ot — 1) /c ) ®e (s, 7|2y ds.
It follows from Gronwall’s inequality [15, p.190] that, for any ¢ > 7,

[®(t, T)llc(x) < %(t )

where K > (2CT(8))5. 0

We obtain in the sequel a rate of convergence for the family ®. as € converges to zero. Unlike previous
results, our auxiliary 6 that appears in the estimate needs to be in the open interval (0, 1) instead of [0,1] in

order to ensure convergence of integrals that feature in the estimates.

Lemma 3.9. Let 6 € (0,1) and § be the constant of Hélder continuity in|(P.3) There exists C = C(0,6) > 0
and K = K(0) > 0 such that, for any € € [0,g9), T € R and t > 7, we have

@ (L, 7) — @o(t, 7)|| (x) < Ot — 1) =D KETp(g ), (3.21)
where £(0,¢) is given in (3.20).

Proof. Using the estimates obtained earlier, we deduce

t
[Pt 7) = Po(t, 7)lle(x) < Mlpe(t,7) = w0t T)ll2(x) +/ lpe(t, 8) = @o(t, )l cx) [Pe(s, 7) | 2(x) ds

t
lleo(t, s)llcox)l|Pe(s, ) — Po(s, 7)l| £ (x)ds

T

t
<C(t- 7_)—1+5(1—0)£(97€) +/ C(t — s)_1+6(1_9)€(9,6)(8 _ T)é—lds

/ C(t = 5) 1@ (5, 7) — Do(s, 7| ey ds
<Ot —7)7H00=90( &) + C(t — 7)°=DFT=1B(5(1 — ), 6)0(0, £)

+ [ €= 91t~ 2ol

where B(-,-) is the Beta function. Taking () = ||®-(¢,7) — ®o(t, 7)||£(x), We restate the above inequality as

Y(t) < C [(t—r)—1+5<1—9> + (8 — 7)o 1} 00, ¢ +c/ 5)° L) (s)ds.
Applying the generalized version of Gronwall’s inequality [I5] p.190],
’gﬁ(t) < 0(67 9) |:(t . T)—1+6(1—9) + (t _ 7_)(5(1—9)+6—1:| £(97€)6K(1‘,—7—)7

for K > (CT(6))%. Moreover, if §(1 — )+ — 1> 0, then the growth provided by the term (¢t — 7)°0=9+9=1 can
be incorporated to the exponential term e®(t=7)  correcting the constant if necessary. If §(1—6)+6—1<0,
then (t — 7)0(1=0+0-1 < (¢ — 7)3(1=0=1 for ¢ — 7 near zero. In both cases, Inequality (3.21]) follows from the above
estimate. (]

3.4. Convergence and estimates for the linear process U.(t, 7). Before we prove Theorem we obtain

an estimate for the linear process that will be necessary.

Lemma 3.10. Let 8 € (0,1] be the constant in|(P.2). There exists C, K > 0 such that, for any e € [0,e0),
TeERandt > T,

U=(t, )l ox) < CeX0E,
NU:(t, 7)|l 2ex,v) < Ot — 7-)5—16K(f—7)_
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Proof. From previous estimates and the expression for the linear process in (2.6]), we obtain
t
10 T)llex) S N1T-ac (= 7)lleex +/ 1T 4. (5) (t = 9) |l x) 19 (s, 7) | 2y ds

t
<C +/ C(s— 1) LeKETgs < O + %(t — )K=
< Cmax{1, (t — 7)°}eX0E=7) < Celt=7),

where we incorporated (t —7)° into the growth presented by e*~7) making adjustments in the constant C, if

necessary. Similarly, we have

t
|U-(t, )l cxvy < Ct— 1)1 +/ Ot —s)7 (s — 1)0Lef (=T

e LD B

<C(t-r)! [1 +(t— T)éeK(t—T)}

< C(t _ 7_)[3—16K(t—*r)7

<Ct—7) 1+

also adjusting the constant C| if necessary. O

We are now able to prove Theorem [2.3]

Proof of Theorem We first obtain the estimate in £(X) using Expression (2.6 for the linear process
and the estimates established previously.

|Ue(t,7) = Uo(t, 7)ll £ex)

t
SIT-acn @ =7) =T am (€ = 7)lleex) + / 1T 4. 5)(t = $)l ) 1[@=(5,7) = Ro(s, )]l x)ds

t
4 [T a0 = 9) = Tt = ) o @05, o ds
t t
O(s — 1) 1A= K=m (g, £)ds + / Ot —s)"n(e))?(s — 7)° Lef = ds
C
5(1—10)
< C0,8)(t — 1) %eKE=p(0, ).

< Ct— ) e’ + /

T

<Ct—7)""nE)’ + K00, 6)(t — 7)°D + Cln(e))?(t — 7)° O B(1 — 6, 5)eX )

Proceeding similarly to the estimate in £(X,Y"), we deduce
[Ue(t,7) = Uo(t, 7)ll2(x)

t
SIToacn(t=7) =T agn (t = Tllexy) + / [T a.s)(t = 8)lccx)I[Pe(s, 7) — Po(s, )]l £ (x)ds
t
[T a = 9) = Taggot = )llecx @65, o ds
t
< Ot — 1)~ HPA=0]p(e))? +/ Ot — 5)P (s — 1) 1A= K= (g c)ds

t
" / C(t — 5) PO (e)] (s — 1) 1K=
< C(t—7) PO n(e))? + CeX 00, e)(t — )PP =O1B(B,5(1 - 6))
+ Clne))l(t — 1) FPA=D=1B(3(1 — 0), §)ef =7
< C(0,0)(t — 1) 1HPA=OKE=T)p(g ¢,
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3.5. Convergence and estimates of the solution of the semilinear problem. As mentioned at Section
Problem (|1.1)) is locally well-posed, that is, there exists

¢
ue(t,m,u”) = U (t, T)u” —|—/ Ue(t, s)Fe(s,uc(s))ds,

that solves the problem for ¢t € [r,7 + T'(e, 7,u”)). We actually have global well-posedness (T'(g,7,u") = 00) as
a consequence of the following result.

Lemma 3.11. Let 5 € (0,1] be the constant in the resolvent estimate (2.3)). There exist constants C, K > 0
such that, for any 7 € R and T > 0 for which u(-,7,u™) is defined in (1,7 + T], we have

luc(t, 7, um)ly < C(t—7)P XD+ |uT||ly],  forallt e (7,7 +T].
In particular, the ||us(t)||y does not blow-up in any finite time interval and it is globally defined.

Proof. This result follows from the expression for the solution u. and the estimates obtained previously.
t
[[ue (@, 7, u)ly < Ut 1)l v llu”llx +/ 1Ue(t, )l cx,v) 1Fe (s, ue(s, 7, u7))) || x ds
T

t
<Ot — 7))y +/ Ot — s)P el s

CM
<C(t— T)BileK(FT) lu™|ly + 5 (t— T)ﬁeK(th)

<Ot =)D+ [y ].

Therefore, the solution is bounded in any bounded interval [r + m,7 + T, for 0 < m < T, being globally
defined. O

We now prove Theorem that provides a rate at which the solutions converge.
Proof of Theorem In the sequel we will denote the solution wu. (¢, 7,u") by u.(t). Let M > 0,L > 0 be

the boundedness and Lipschitz constant for F', respectively, and p(6,¢) = max{[n(¢)]?, [£(¢)]?,v(¢)}. Using the
expression for the solution and rates of convergence established earlier, we obtain

[ue(t) = uo(D)lly < U:(t,7) = Uo(t, )| cex el x +/ 1U(t, ) = Uo(t; )|l cx ) [ Fols, wo(s)) || x ds
+/ 10Ut 8) | 2xxy [1F= (s, ue(s)) = Fe(s,uo(s))l[x + [ F=(s, uo(s)) — Fols, uo(s)) | x] ds

< Ot — 1) HPA=0KE=T)p( )|ju” Hy+/ Ot — s) 1HPU=0K=5)p(9 &) Mds

/ C(t — )P X0 [Luc(s) — uo(s)lly +7(e)]ds
CiM(t_
B(1—0)

+geK<fT>(t—7)ﬁfy(s)+0L/T( 5P 1K= u,(5) — uo(s) ||y ds

< Ot =) DR 7|y +1] p(0, €) +CL/ (t = 5)7 1R lug(s) — uo(s)llyds,

T

<Ot — 1) HPA=DKE=T)p(g &) ||u7|ly + 7)PA=0)K(t=5)p(p ¢)

where we incorporated the terms (¢ — 7) with a positive exponent to the exponential growth given by e (t=7)

—K(t—T1)

making adjustments in the constant C, if necessary. Multiplying both sides by e and considering

U(t) = e KE=T)||lu (t) — ug(t)||y, we obtain

U(t) < C(t— T)‘Hﬁ(l_g)[HuTHy +1]p(0,e) + CL /t(t - S)B_lkll(s)ds.

T
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We now apply Gronwall’s inequality [I5, p.190] to conclude that

O .

w(t) < (t =) |y + 1]p(8, )™,

~ B -p)
where K > (2CLF(ﬁ))f%. Therefore,

WM@—wﬁWYéﬁdzm@—T)”mlwhﬂw+ﬂmadé“Kmf)

and
ue(t) = uo(t)]ly = 0,

uniformly for ¢ in compact subsets of (7,00), any 7 € R and u” in bounded sets of Y.

4. APPLICATION TO REACTION-DIFFUSION EQUATIONS WITH VARYING DIFFUSION COEFFICIENTS

As a first application of the abstract theory developed in the previous sections, we consider a family in

¢ € [0, 1] of singularly nonautonomous reaction-diffusion equation in a bounded smooth domain  C R3
(ue)r — div(ac(t, 2)Vue) + ue = fo(t, ue), xeQt>rT,
Opue = 0, x € 09, (4.1)
ue(1,2) = u” ().

An autonomous version (where a. and f. do not depend on ) was completely studied in [3] and the authors
obtained rate of convergence of solutions and attractors in terms of €. The nonautonomous counterpart (4.1])
was introduced in [6], where the authors studied global well-posedness and existence of pullback attractor, but
for a single equations rather than a family of equations parametrized in € € [0, 1].

We shall apply the abstract theory developed in Section [2] in order to obtain a rate at which solutions of
([4.1) converge as € — 0F. We assume the following conditions for the problem:

(A.1) The functions a. : R x  — RT are continuously differentiable with respect to the second variable, and
as(+,-) has its image in a closed interval [m, M] C (0,00). We also assume that the gradient function
(in ) of a(t,x) is bounded, that is, V,a.(t,z) € [L°°(2)]3.

(A.2) Both functions a.(-,-) and V,ac(-,-) are uniformly 6—Hélder continuous in the first variable that is,
there exists ¢ € (0, 1] and a constant C' > 0 such that

|l15(t,1') - (IE(S,ZC)| < C|t - 5|6a |Vﬂf0’5(tvx) - vxa&(sv‘r” < C|t - 5|6a

for alle € [0,1], t,s € R and = € Q.
(A.3) For each € € [0,1], f- € C}(R x R,R) and satisfies a polynomial growth condition of order p, that is,
there exists C' and 1 < p < 3 such that

[fe(t,©) = fo(t, ) < ClE =Pl (L+ [P~ + [w|*71),
[f(, )] < C(1+ []).
(A.4) We define the quantities

a2 = aoll 5= sup lac(t.-) = aot. )l 1~(en.
teR
IViae — Vzao|oo = sup [Vzac(t, ) = Veao(t, )lLee 2
te

||f6 - fOHOO *= sup ||f6(t7 ) - fO(t7 ')||L°°(Q)7
teR

and we assume that each one of them varies continuously on ¢ € [0,1]. In particular,they approach to
zero as € — 07,
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The upper bound requested for p in[(A.3)|will become clear after we specify the phase space in which we pose
the problem. Under conditions above, we write Problem (4.1)) in its abstract form as follows: the linear part of
the equation (which is time-dependent) is given by the operator A.(t) : D(A.(t)) C L?() — L?*(Q) where

D =D(A:(t)) = {u € H*(Q) : 9,u =0 in 89} =: H3,
Ac(t)u = —div(a.(t,x)Vu) + u, for u € D.

This family of linear operators has well-known properties that we gather in the sequel. They follow from
classical spectral theory (see [0l [16] [18]) and from the properties required upon a. in [(A.1)[ and [(A.2)l To

simplify notation, we shall omit the domain € in the space norms, that is, || - [[z2 = || - ||2(0)-

Proposition 4.1. This family {A:(t), t € R}.cpo,1] has the following properties:

(1) D(A.(t)) does not depend on t or e. Moreover, for any fixed ¢ € [0,1] and t € R, the graph norm
|A(t) - ||L2 is equivalent to H?(Q)—norm when restricted to D, that is, for any u € D,

Cillullmz < [[Ac()ullz < Collull g2,

and constants Cy,Cy are uniform for e € [0,1] and t € R.
(2) A.(t) is self-adjoint and has compact resolvent.
(8) Its spectrum consists entirely of isolated eigenvalues, all of them positive and real, with the first being 1:

o(Ac(t)) = Aei(t); 1 €N and 1= Ay (t) < Aea(t) < oo < Aen(t) < .}

(4) For any 5 < <m, 8, = {A € C;|argA| < ¢} C p(—Ac(t)) and

_ C
[+ Ac() ™l 2y < NF1 VA e X, {0},
_ C
I+ Ac(0) ) < N1 VA e ¥, U{0},
_ C
||()\I+A5(t)) 1||£(L2,H1) < m, V)\EE¢U{O}7

where C' does not depend on € ort (only on ¢).

We restate Problem (4.1]) as an abstract semilinear evolution problem:

(uE)t + Aﬁ(t)ui = FE(tuUE)a t > T,

4.2
u. (1) =u" € HY(Q), (4.2)

where F. is a nonlinearity given by
F.(t,uc)(x) = fo(t, uc(t, x)).
Since

HY(Q) — L"(Q), for all 2 <r < 6,
then the growth condition required for f. implies that F': R x H'(Q) — L%*(Q), as long as 1 < p < 3.
With the notation of Section 2, L2(£2) will play the role of Banach space X and H!(Q) the Banach space Y.
Moreover, one can easily check that from we derive, for any € € [0,1] and ¢t € R,
|Fu(tu) = Felt,o)llze < Cllu = ollgs [1+ =+ ol
[F:(tw)]l e < C {1+ [lullfn] -

In order to apply the theory developed in Section [2] we first need to verify that |(P.1)| tq(P.5)| hold for (4.2)).
From Proposition properties and already follow. Property is proved in next lemma.
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Lemma 4.2. Assume|(A.1) and|(A.2) hold and let § € (0,1] be the uniform Hélder exponent for t — a.(t,-)
and t — Vza:(t,-). Then, there exists a constant C > 0, independent of € € [0,1] or 7 € R, such that, for any
€1,e9 € [0,1], the function

Rt Al (1A, (1) € L(LA(Q))
1s Holder continuous with exponent §, that is,

[Ae, (t) — Ac, ()] Ae, (T)_1||£(L2) <Clt- s|57 for all 7,s,t € R.

Proof. For any u € D, we have A, (t)u — A, (s)u = —div ([ae, (¢, x) — ae, (s, 2)]Vu) and

e (00 = Aes ()l = [ Jdiv(fae (t.2) = ey 5,2V u(e)* da
= [ 1Valfaes(t.0) = e (s, 0)) V) + foe 1. 2) (5,2 (o) d

2
S Clt _ 8‘26/ { IVJECLQ (tax) B vwa&l(s’x”} |V’U,($)|2d$
Q

It — s|°
2
+C|t—s|26/ |a€1(t,x)—a€1(s7m)\ |Au(m)\2dx
Q It — s]°

< Ot = s {IVullis + | AullZ} < Clt = s/*||ullZ.

Taking the square root on both sides and replacing u by A., (7)™ tw, then we have for any w € L*(Q)

1[4z, (1) = Az, ()] Ay (1) " Mwllzz < Clt = sI° | Aey (1) w2 < Ot — s)°||w]| 2.
(]

It remains to check the properties responsible to make the connections among the problems as e varies in

[0,1]. Those are conditions |[(P.4)[ and |[(P.5)| from Section [2 We start verifying and we begin by proving

an auxiliary result.
Lemma 4.3. Let e1,e5 € [0,1] and t,7 € R. Then
1A=, (t) = Ao(D]Aey (7) "Iz ze) < Clllac, = aolloe + [Vate, = Vaaollc)-
Proof. Take u = A, (1) 'w € D, where w is any element in L?({2). We have
I[Ae, () — Ao(8)]ul| 22 < /Q |div|(ac, (t, ) — ao(t, x))Vu)|*dx
< C/Q[|VI(a€1(t7m) —ao(t,z))]?|Vul* + |ae, (t, 2) — ao(t, ©)|?|Aul*]dz
< Cllae, = aoll3 + Vaae, — Vaaolls)l|ullz:-

Therefore,

I[Ae, (t) = Ao(1)] Az, (1) " wl 2 < C(llac, — aolloo + [[Vate, — Vaaolloo) Az, (7) " w2
< C(llac, = aolloo + [Vaae, — Viaol|oo)llwl| 2.

With the previous lemma, we are now able to prove that holds for this problem.
Lemma 4.4. Let t,7 € R, € € [0,1]. There exists C > 0 independent of t,7,e such that

1A= () A (1) ™" = Ao(t) Ao(7) "Ml 22y < Clla — aolloo + [Vaae = Voalloo)-
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Proof. Let w € L?(2) and consider u = A.(7)"tw, v = Ao(7) 'w. It follows from the boundedness of a. and

its convergence to ag that

| A (t)u — Ag(t)v]|2s SC/Q\div[aE(t,x)Vu] —div[ao(t,x)Vv]|2dx+C/Q|u—v|2dx
< C’/Q\div[(aa(t,x)—ao(t,m))Vu]+div[ao(t,x)(Vu—Vv)}|2dx+0/ﬂ|u—v|2dx
< [ {IVeaclt.) = Vaao(t. ) PITUP +act.0) - ao(t. )| AP
+|Vra0(t,x)|2\V(u7v)|2+|a0(t,x)\2\A(u7v)|2}dx+C’/Q|ufv|2d:z:

< Vs = Vaanlle [ 19uPdz ) + Cllo. - aoli [ 1802) + Clu = ol
< C(|lac = aoll% + [ Vaae = VaaolZ)[ullFe + Cllu — o[
From the choice of u,v and from Lemma, we obtain
[ A (8)Ae (7)™ w — Ag(t) Ao () " twl|72
< Clllac = a0l + Vot = Vaaol2) A (1) wllFz + ClA(T) " w — Ao (1)~ w7
< Ollac — aoll3 + [Veas = VaaolZ)[wlFz + Cll[Ao(r) — Ac(t)] Ao (7)™ wlf3

<20(||a: - aOHZo + [[Vzae — VmaOHgo)”leQLI?'

O
Therefore, Lemma |4.4] states that holds for
§(e) = Clllac, — aolloo + [|[Vaae — Vaaollso)-
Inspired in [3], we will use a variational formulation in order to obtain resolvent convergence
_ _ o
1A = A e,y == 0,
that is, in order to prove that holds.
Lemma 4.5. Given g € X = L*(Q), a fized t € R and ¢ € [0, 1], there exists a unique u. € H3; solution of
—div(ac(t,z)Vue) +ue =g, x €,
(ac(t, 2)Vue) e =9 (4.3)

Opue =0, 0.

Moreover,

(1) there exists C' > 0, independent of ¢ € [0,1], g € L*(Q) and t € R, such that

[uellm < Cligl L2

(2) There is also a constant C > 0, independent of ¢ € [0,1], g € L*(Q) and t € R, such that
[ue —uollar < Cllac — aollsollgllz>-

Proof. Existence of u. that solves (4.3]) follows from the fact that 0 € p(A.(t)), for all t € R and € € [0,1]. To
prove the first statement, we consider the weak formulation of (4.3)):

/ag(t,x)VuEVgo—i—/ua(p:/g(p, for ¢ € H'(Q).
Q Q Q

By taking ¢ = u,., using Young’s inequality and the fact that a.(-,-) C [m, M], we obtain, for any v > 0,

aclt, ) Vue + [ e = [ gue,
A Jr=
w [+ [ < [l < [ {51 foel ),



m/g[wg]u (1— ”22) /Q[uE]Q < %/QW'Q'

Choosing v small such that 1 — ”—22 > 0 we obtain
luellFn < Clgllz, (4.4)

where C = ——L—— which does not depend on ¢ or t.
2v2 min{m,1— %~

For the second statement we proceed similarly. Rather than taking u. as a test function, we choose u. — uy,
obtaining

/Q 0.0,0) Ve (Vs = Vo) + [ e e = o) = /Q g (ue — uo)

Q

/Q a0ty 2) Vo (Ve — Vo) + /

Q

UO(UE_UO):/QQ(UE_UO)~

Equality on the right side implies

/Qas(t,ac)VuE (Vue — Vug) +/

Ue (ue — up) = / ap(t, ) Vug (Vue — Vug) + / ug (ue — up) ,
Q Q Q

/Q ac(t, z)Vue (Vue — Vug) + /

Q
We now subtract [, ac(t, 2)Vug (Vue: — Vug) on both sides, which results

(ue —up)® = / ao(t, 2)Vug (Vus — Vug) .
Q

/ ac(t,x) (Vue — Vu0)2 +/ (ue — uo)2 = / [ap(t,x) — as(t,2)|Vug (Vue — Vuy)
Q Q Q
< [lae — aolloo | Vol 22 [[Vue — Vug |2

It % = min{m, 1}, we obtain from the above inequality and using (4.4)),

o =l = [ [ (Ve = ¥+ [ = o]

< Cllae = aollsol| Vuol| 2] Vue — Vug|| 12
1 1
< §CQH% — agl|2, I VuollZ2 + IVue = V|72

1 1
< 5Cllac — aol%llgl3s + 5 llue — wollfr
Therefore, ||u. — ug||3: < Cllac — aol|%]9]3 2 a
As an immediate consequence of the previous result, we have the following corollary.

Corollary 4.6. The operators A.(t)~! : L?(Q) — H'(Q) are uniformly bounded for t € R and ¢ € [0,1] and
they converge to Ag(t)~! in the uniform topology. More precisely, for all e € [0,1] and t € R,
| Ac®) M eez2,mm) < C, (4.5)
1A= = Ao() ™ 22,y < Cllas — aolls, (4.6)
where C' does not depend on € or t.
Inequality (4.6) is the statement required in|(P.5)} with rate of convergence n(e) given by n(e) := Cllac —ag||oo-
Since to |(P.5)| are satisfied, we conclude that each family of linear operators {A.(t), t € R} generates a

linear process {U.(t,7) : L%(2) — L3(Q), t > 7, 7 € R} and from Theorem we obtain that there exist
C, K > 0 such that, for any € € [0,1], t > 7 and 7 € R,

|U-(t,7) — Uo(t,7) | c(r2) < C(t — 1) %X0E=0(9,e),
|U-(t,7) = Uo(t, 7| e(re.my < C(t — 1) "3 250 p(8, ¢),
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where £(0,¢) = [||ac, — aolloo + | Vaae — Vaao||so)? and 6 € (0,1) is arbitrary, with C' depending on the choice
of 6.

4.1. Local well-posedness, global well-posedness and convergence of the solutions. The results on
local and global well-posedness that we present in the sequel can be found in [6, Section 6]. Conditions required
for a.(+,-) and f(-,-) ensure that problem (4.2]) admits local solution u, : [r,7 + T(e, 7,u7)) — H(Q) given by

ue(t,m,u”) = U (t, 7)u” —|—/ U.(t, 8)F-(s,uc(s))ds,

such that u.(t) € D = X!, for all t € (1,7 + T(e,7,u")), and U.(+,-) : L*(Q) — L3*() is the linear process
associated to {A4.(t), t € R}.

To obtain global well-posedness, we assume that f. satisfies a dissipativeness condition:

fe(t, 5)] <1,
S

(D) lim SUP| 4|00 [Supee[o,l]

for all ¢ € R. The value 1 comes from the fact that first eigenvalue of A.(t) is Ac1(t) = 1. In next lemma, we
restate this dissipativeness condition in a manner suitable to applications. Its proof follows directly from the

definition of Limsup.

Lemma 4.7. Suppose that condz’tion holds, then there exists wq > 0 such that, for each w € (0,w1), there
s a constant N > 0 such that

f(t,s)s < (1—w)s* + N, forallscR, teR, £€[0,1]. (4.7)
Moreover, N, w and wy are independent of €.

The dissipativeness assumption allows us to obtain global well-posedness, as well as existence of an absorbing
bounded set in H'(2), uniform in ¢ € [0, 1].

Theorem 4.8. [6, Theorem 6.13] Assume that[(A.1) to[(A-]) and[(D) hold. Let N,w be the constants in (&.7)
obtained from the dissipativeness condition , There ezists a constant E > 0 independent of € € [0,1] and of

T € R, such that, for any bounded set B C H'(Q) we can find T = T(B) > 0, for which

lue(t, 7, u™) || < E,  for anyu” € B, € € [0,1],
as long as t — 1 > T. In particular, the solution of (4.2)) is globally defined and associated to it there is a
nonlinear process S (t,7) in H(Q) given by

t
Sc(t,T)u” = uc(t, m,u") = U (t, 7)u” —|—/ U:(t,s)F:(s,us(s))ds, for allt > T.

Once we proved that the dynamics of all the problems enter a common bounded set By1[0, E] (the closed
ball in H!(Q) centered in 0 and with radius F), we can proceed with a cut-off for the nonlinearities F., as
mentioned in Remark If that is the case, at least close to By1[0, E], Condition [(NL.1) holds. As far as

Condition [(NL.2)| we have
|Fo(t,u) — Fo(t,u)||7z = /Q |fo(t,u(x)) = folt,u(@))Pde < || fo = foll 2,19

Therefore,

1
sup sup [ Fe(t,u) — Fo(t, u)llrz < |[fe = follso|$2]? :
teR ucH?!

and Condition [(NL.2) also holds. We then conclude from Theorem [2.5| that the solutions converge as € goes to

zero, with a rate:

v(e),

e (t,7,u7) = wo (b, 7,07 |y < Ct = 7) 7272 L Ty ] p(6, ),

where p(e’g) = max{[”asl - aOHOO + ”Vmas - vzao‘loo]ev ”fs - fOHoo|Q‘%}7 NS (Oa 1) is arbitrary and C,K >0
are constants independent of € € [0,1], 7T € R, ¢ > 7 or u” € Y, but dependent on the choice of 6.
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4.2. Existence of pullback attractor and its upper-semicontinuity. The existence of pullback attractor
was also obtained in [6, Theorem 6.14] for a single problem, rather than a family of problems. However, in the
proof of this theorem, the authors were able to find a compact absorbing set in H'(Q) depending only on the
constants w, N obtained in Lemma [£.7] and the growth p for the nonlinearity. Since they are all uniform for
e € [0,1], we can state the next theorem as a consequence of the result in [6, Theorem 6.14].

Theorem 4.9. Assume that[(4.1) to[(A.4)| and[(D) hold. Let N,w be the constants in ([{L.7)) obtained from the
dissipativeness condition @ Then the nonlinear process Se(t,7) = uc(t,7,-) in HY(Q) has a pullback attractor
{A(t), t € R} in HY(Q)). Moreover, there exists a compact set K C H(Q) such that

[Uae[o,l] Ute]R-As(t)] C K. (4.8)

From Corollary we obtain continuity of the family {S.(-,-)}ce[o,1] and from (4.8)), we conclude that

[Uee[o,u UserAe (t)}

is relatively compact. Those are the conditions in [9] Theorem 3.6] necessary to ensure upper-semicontinuity of
the family {A.(t),t € R}.cj0,1) at € = 0.

Corollary 4.10. Under conditions of Theorem the family of pullback attractos {A(t),t € R}.cjo1 48

upper-semicontinuous at € = 0.

5. APPLICATION TO A NONAUTONOMOUS STRONGLY DAMPED WAVE EQUATIONS AND ITS FRACTIONAL
APPROXIMATIONS

As a second application, we consider the nonautonomous strongly damped wave equation subjected to Dirich-
let boundary conditions

uie + (—a(t)Ap)u + 2(—a(t)Ap)2uy = f(t,u), e, t>,
u(t,z) =0, e i, t>T, (5.1)
u(r,x) =u (x), u(r,x) =v"(x), reQ, TER,

where 2 C R™, n > 3, is a bounded smooth domain, Ap is the Laplacian operator with Dirichlet boundary
condition and f : R x R — R a nonlinearity. We shall assume the following additional condition:

(B) The function a : R — R™ is positive and has its image in a bounded interval of the form [ag, a1] C (0, c0).
We also assume that it is Holder continuous with an exponent § € (0, 1], that is, there exists a constant
C > 0 such that

la(t) —a(s)| < CJt —s|°, forallt,seR.
Let E = L?(2) and denote by A(t) : D(A(t)) C E — E the operator
A(t)u = —a(t)Apu, for ue D(A(t)) = D(Ap) = H?*(Q)N Hy(Q), (5.2)

where D(Ap) stands for the domain of the Laplacian with Dirichlet boundary conditions. As expected, the
multiplication by a real-function a(t) does not change the domain of the Laplacian.

Therefore, this linear operator A(t) has a time-independent domain and from the well-known properties of
the Laplacian operator [I8] and the fact that a(t) > ag, for all ¢ € R, we deduce that A(t) is a positive operator,
self-adjoint, sectorial and —A(t) generates a compact analytic Co— semigroup in E.

Consequently, fractional powers of A(¢) in the sense of Amman [I] are well-defined. We shall denote by A(¢)*
the power of the linear operator A(t). One can easily deduce from the expressions for fractional power of linear
operators that

A = (—a(®)Ap)® = [a(®)]“(—Ap)*, forallte R and a € (0,1],



22 M. BELLUZI

and the domain of A(t)* is the same as the domain of (—Ap)®, that is,
D(A()*) =D((—A)*), forallteR.
We then define a scale of Banach spaces given by the fractional powers (—Ap)*, a € (0,1],
E® = (—Ap)* eqquiped with the norm || - ||ga = ||(=Ap)® - || 2.

In particular, B0 = E = L*(Q), Ez = H}(Q) and E' = H2(Q) N H}(Q) (see [13]Theorem 3.6). From the
boundedness of a(-), there exists 0 < m < M such that [a(t)]* € [m, M] for all t € R and « € (0, 1]. Therefore,

mllullpe < [ A(E) ullL2 < Mjul|ge

and the graph norm associated to the linear operator A(t)* is equivalent to the norm in E%. With the above
set up and taking u; = v, Problem (j5.1) can be written in the following abstract form

AW [jj :F<t, [ZD,M; “;] _ [:jj

where A(t) : D(A(t)) C Ez x E — E2 x E is the linear operator defined in D(A(t)) = D = E' x E? and given
by

u

v

P(e[]) = L

We have the following result proved in [7, Lemma 8.1] concerning spectral properties of A(¢) and the calculus

€ E* x E, (5.3)

U
dt |v

0 —I
A(t) 2A(t)z

A(t) (5.4)

Alt)u + 2A(t)§@] ’

and F is the nonlinearity given by

of its fractional powers.

Proposition 5.1. If A(t) and A(t) are as in (5.2) and in (5.4)), respectively, then the following properties hold:
(1) A(t) is a positive operator with fractional powers denoted by A(t)*, « € (0,1].
(2) There exists C >0 and ¢ € (§,m) (independent of ) such that, for any a € (0,1] and t € R,

Zp U0} C p(=A(1)%),

and the following estimates hold

C

A(H)E -1 1 < —F
IA+AON) ot my = T

for all X € £, U {0}.

Therefore, each A(t)* is sectorial in B2 x E and —A(t)* generates an analytic semigroup in L(E? x E).
(8) Given any « € (0,1], we have the following explicitly expression for the fractional powers of A(t):

@ —lta _a —l—a
A = (1- a)fﬁ) —aA(t) . and (1)~ = 1+ a)A(g aA(t) . (5.5)
aA(t) = (14+ a)A(t)?z —aA(t) =2 (I1—-—a)A(t)" 2
We shall consider fractional versions of Problem (5.3)), given by
Al Ly (Yl 2y (%)) s w0 g, (5.6)
dt Va Vo _Ua_ Vo (T) v”

where a € (0,1], A(t)* is the fractional power of A(t) and

[, ] 0
F. (¢t |“ = .
L) = Lt

By analyzing Expression (|5.5)) for the linear operator A(t)®, we see that o = 1 recovers the original expression
for A(t), so we might expect that as we make o« — 17, the fractional problem (5.6) approaches (5.3 in a certain
sense. We shall verify that this is the case, that is, we prove in the sequel that conditions to |(P.5)| hold
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for this family (in «) of problems. Therefore, if U, (¢, 7) is the linear process associated to {A(¢)*,t € R}, then
we obtain its convergence to the linear process U(t, ) associated to {A(t),¢ € R}.

A slightly different singularly nonautonomous wave equation and its fractional perturbations were also con-
sidered in [I7]. However, the lack of results on the linear process convergence prevented the authors to proceed
with the analysis beyond spectrum convergence of the fractional operators. They were not able to obtain
convergence of the associated linear processes or of the solutions, as we shall do in the sequel.

Using the notation developed in Section [2, we will consider Y = X = E? x E. Conditions and
follows directly from Proposition For condition we shall need the following technical lemma.

Lemma 5.2. Let a(-) be the function satisfying[(B)} For eachw > 0, the functions [a(-)] and [a(-)]™* are also
Hélder continuous with Hélder exponent §, that is, for allt,s € R,

la(t)]* = la()]“| < Calt = s and [la(t)]™ ~ la(s)] ™| < Calt - s|°.

Proof. Let ¢ : RT — R* be given by ¢(s) = s¥. From the mean value theorem and the fact that a(t) € [ao, a1],
for all ¢ € R, we obtain, for some 6 between a(s) and a(t), in particular 6 € [ag, a1], that

la(®)) — [a(s))*] = [¢(a(t)) — ¢(a(s))| < [¢'(O)llalt) — a(s)| < 6~ a(t) — al(s)| < Cuft — s°,

for all ¢,s € R. Moreover,

IN

Clla(s)]” = [a(t)]] < Colt —s|°, forall t,s € R.

Condition |(P.3)| can now be verified.

Lemma 5.3. Assume that[(B) holds and let A(t) be the linear operator in (5.4). If A(t)* denotes the fractional
powers of A(t), then R 5t — A(t)*A(T)~ € L(Ez x E) is §—Holder continuous, uniformly in o € (0,1] and
7 € R. In other words, there exists C' > 0 such that

A — A(s)*]JA(T) ™| ) <Clt—sl°, forallt,s,7 €R and a € (0,1].

L(E3XE
Proof. Applying expression ([5.5)) for the fractional powers, we deduce that

911 911

(A®* - AT =g o

)

where

o1 = a? ([a(t)] T —[a(9)] 7" ) [a(r)] =" + (1 = 0?) ([a(®)]F — [a(s)]?) [a(r)] 7",
012 = a(l - a)(~Ap)"F {(1a(®)]? ~ [a()]F) [a(n)] 77" + ([a(s)] 7" = [a(®)*T" ) [a(r)] 7" },
21 = —a(l +a)(=Ap)* { ([a(®)F ~ [a(9)]?) [a(n)] =" + ([a()]+* — [a()]*F") la(r)) 7},
022 = a? ([a(t)]*F* = [a(s) ) [a(r)] 7.

We must obtain Hoélder continuity of each entry in its appropriate space, that is, ©1; in E(E%L O12 in
L(E,E?), Oy in L(E?,E) and Oy in L(E). All of them are similar and follows from Lemma We
illustrate how to proceed with ©;.

.
N—
=
—~
3
=
w0
+
—~
Q
+
—_
~—
—~
Q
|
—_
~—
—~
IS
—~
~
=

[N)
|
=
—~
Va)
=
[N)

1 a a, lzo at1 atl —o
10211l 3y < 1021 (~20) Hllemy < a1+ ) (o) — [o(s)]Elay ™ + lfals)) F — [a(t))*+ ag? )
S 021|t — Slé.
The other entries follow analogously. O

In a similar way, from the Expressions (5.5 for the fractional powers, we can deduce property for the
family of linear operators {A(t)®, t € R}qc(0,]-
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Lemma 5.4. Assume that[(B) holds and let A(t) be the linear operator in (5.4) and A(t) its fractional powers.
There exists a continuous function & : (0,1] — R with £(1) = 0 such that

sup [ A1) = AOMD) 1y <€) (5.7)

Proof. Applying expressions (5.5)) for the fractional powers, we deduce

A@BPA() ™ = ABAT) ™ = [ﬁ; ﬁ;ﬂ ,

where
Ly = (1 - a)fa®]f [o(r)]* + (0 - DIa®] T fa(r)% + ([a(r)F O] — [a(r)]?)
I =1 —a)afa(t)] 2 [a(r)]
fa = a(t+a)-20)t (a0 {la@% - %

Faz = [a(®)]#a(7)] 77 ((1+ aH)a®)? = a?la(r)]) — [a(®)Fa(r)] ™" (2la®]? - a(r)]?).

Note that each entry goes to zero continuously as @ — 1~. The presence of (—Ap)~2 in I'1p or (—Ap)?

in I'y; do not represent any problem in the estimates. Actually, since I'15 is estimated in L(E, E %) and I's; in
L(Ez,E) we have

[T 12|l

and those powers of the Laplacian disappear when we estimate those terms. Therefore, there exists a continuous
function ¢ : (0,1] — R™ with £(1) = 0 such that (5.7)) holds. O

I(=Ap)2L2lles) and (P2l 3 5 = ITi2(=AD) "l

L(E,E?) E?.E

Even though we are able to prove that |(P.4)| holds, we cannot obtain an explicit formulation for £ in (5.7)),
since it depends on the expression of a(-). Lastly, Condition |(P.5)| holds following the same proof of [7, Theorem
3.1].

Lemma 5.5. [7, Theorem 3.1] Let A(t) be the linear operator in (5.4)) and A(¢)%, a € (0,1] its fractional. There
exists a constant C' > 0, independent of a and t € R, such that

IA® = = AB <C(-a)

L(E} xE)

Since conditions |(P.1)| to [(P.5)[ hold, we have the following result, which is a restatement of Theorem [2.3

Theorem 5.6. Let {U(t,7) € L(E2 x E), t > 7} be the linear process associated to {A(t), t € R} and
{Ua(t,7) € L(E2 x E), t > 7} the linear process associated to {A(t)*, t € R}, a € (0,1]. For any 6 € (0,1),
there exists constants K,C > 0, independent of a € (0,1], 7 € R and t > 7, such that

|Ua(t,7) — U(t’T)”L(E%xE) <Ot —7)"%K0000, a),

where £(0, ) = max{(1 — ), [¢(a)]}.

Under assumptions on boundedness and Lipschitz continuity for the family of nonlinearities f, : R x R — R,
a € (0,1], as well as some convergence assumption of f, to f as a — 17, we derive conditions and
for F, : E2 x E — B2 X E, as we did in Section [4f Then we could obtain convergence of the solutions
Uq (t, 7, [u”,v7]) of Problem to the solution u(t, 7, [u”,v"]) of Problem in Bz x E,asa — 1~ as a
consequence of Theorem
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