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1. Introduction

W —operators are discrete set operators that are both translation invariant and
locally defined within a finite window W. Due to their great utility in binary
image analysis, they have been intensively studied. One of the most successful
approaches to W —operators is Mathematical Morphology [7, 5, 3].

Mathematical Morphology on subsets can be understood as a formal lan-
guage, that is built from two families of simple operators (dilation and erosion)
and four operations on set operators (union, intersection, complement and com-
position). The phrases of the language are called morphological operators and
their semantics are set operators.

A particularly interesting property of W—operators is that they have a
sup-decompositions, that is, they can be decomposed in terms of a family of
sup-generating operators (i.e., the uniquely intersection of erosions and com-
plemented dilations), that are parameterized by the operator basis [1] (i.e., a
family of maximal intervals). Moreover, the operator basis represents uniquely
the operator.

A central problem in Binary Image Analysis is the design of W—operators.
A successful technique for designing W —operators consists in the estimation of
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the optimal operator basis, according to some statistical error measure, from
collections of input-output image pairs [2].

The sup-decomposition parameterized by the basis has some nice properties
as unique characterization of W —operators and simple structure to formalize
prior knowledge about families of operators considered in the optimal design.
However, it has a serious drawback: its parallel structure usually is not efficient
for computation in conventional sequential machines.

A general approach to conciliate the good and the bad properties of the
sup-decomposition is to estimate the optimal operator basis and transform it
into an equivalent morphological operator with a more sequential structure.

In this paper, we formalize the problem of transforming the sup-decompo-
sitions into purely sequential decompositions (when they exist). The theory
proposed consists in the formulation and solution of discrete equations in lat-
tice spaces, whose space of solutions have a strong combinatory nature. The
techniques were developed for general W —operators, specialized for increasing
W —operators and applied on operators built by alternating compositions of
dilations and erosions.

The results presented here extend to general W-operators some results given
by Jones [6] for increasing translation invariant operator and introduce some
new bounds for the particular case of increasing W —operators.

Following this introduction, Section 2 recalls some basic properties of collec-
tions of maximal intervals. Section 3 gives some new properties for collections
of W—operators. Section 4 introduces and gives bounds for the dilation fac-
torization equation. Section 5 specializes the results of Section 4 for the family
of increasing W—operators and introduces new bounds for the structuring el-
ement of the dilation. Section 6 shows how to imply the results of Section §
to compute the structuring elements of morphological operators built by al-
ternating compositions of dilations and erosions from their basis. Finally, in
Section 7, we discuss the results presented and give some future steps of this
research.

2. Lattice of Collection of Maximal Intervals

Let E be a non empty set and let W be a finite subset of E. Let P(W)
denote the powerset of W. Elements of P(W) will be denoted by capital letters
A,B,C, ... Let C be the usual inclusion relation on sets. The pair (P(W),C)
is a Complete Boolean Lattice [4]. The intersection and union of X and Y in
P(E) are, respectively, XNY and XUY. The complementary set of X € P(W)
with respect to W, denoted X§; or, simply, X, when no confusion is possible,
is X ={zeW:z¢ X}

The following proposition is an immediate consequence of the usual inclusion
relation on sets.

Proposition 1 Let A,B € P(E). IfAC B and A # B, then |4] < |B|.

Let P(P(W)) be the collection of all subcollections of P(W). Elements of
P(P(W)) will be denoted by capital script letters A, B,C, ... If C is the usual
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inclusion relation on sets, then the pair (P(P(W)), C) is a Complete Boolean
Lattice,

Let A,B € P(W) such that A C B. An interval of extremities A and B
is the subset [A, B] of P(W) given by [A,B] = {X e P(W): AC X C B}.
The sets A and B are called, respectively, the left and right eztremities of the
interval (A4, B]. Collections of intervals contained in P(W) will be denoted by
capital bold face letters as Aw,Bw,Cw, ..., or, simply, A,B,C, ..., when no
confusion is possible.

An interval [A, B] in a collection of intervals X is called mazimal if and only
if (iff) there does not exist an interval [4’, B'] in X, distinct of [A, B}, such that
[4,B) C (4, B.

The collection of all maximal intervals of X is denoted Maz(X). Of course,
if all the intervals in X are maximal, then X = Maz(X).

Let X be a subcollection of P(W). The collection of all maximal intervals
contained in A" is denoted M(X), that is,

M(X) = Maz({[4, B] C P(W) : [4, B] C X}).

We denote by UX the collection of all elements of P(W) that are elements
of intervals in X, that is,

UX={XeP(W): X €[4,B], [4,B] € X}.

Let Iy denote the set {M(X) : X C P(W)}. We will define the partial
order < on the elements of Iy by setting, for all X,Y € Iy,

X<Y & V[4BleX, JA,BeY:[AB)Cl4,B).

The poset (IIw, <) constitutes a Complete Boolean Lattice [3]. The supre-
mum and infimum operations in the lattice (IIy, <) are given, respectively, by
for any X,Y € Iy,

X UY = M((UX) U (UY)) and
XY = M((UX) N (UY)).

Let W', W € P(E) such that W’ 3 W. We define the set Iy C Ty
as HW:/W = {X ey :z2eWe=ze X,VX € [A,B],V[A,B] €Xorzx ¢
X,VX € [A, B],V[A, B] € X}.

Proposition 2 Let W/,W € P(E) such that W' O W. The mapping W(-),
from (Iw, S) to (HW'/Wv <), defined by
W(Xw) ={[A",B'|CP(W'): A =Aand B = BUWS, |4, B] € Xw}
constitutes a lattice isomorphism between the lattices (Ilw, <) and (I jw, <).
The inverse of the mapping W(-) is the mapping W™2(-), from Iy qw toIlw,
defined by
W' (Xw) = {[A,B]CP(W): A= A' and B= B'NW, [4',B'] € Xy}

As a consequence of Proposition 2, if W C W’ we can change the represen-
tation of a collection of maximal intervals Xy € Hw to Xy € Hyx w €,
and vice-versa.

Let E be a non empty set, that is an Abelian group with respect to a binary
operation denoted by +. The zero element of (E, +) is denoted by o.
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The transpose of a subset X € P(E) is the subset X*, given by X* = {z €
E:-ze X}

For any X € P(E) and y € E, X,, denotes the translation of X by y, that
is, X\y={z€E:z-y€X}.

For any X € Ily and y € E, X, € Iy, denotes the translation of all
intervals of X by y, that is, X, = {[4;, B,] € Ilw, : [4, B] € X}.

Let X,Y € P(E). The Minkowski addition and subtraction of X and Y are,
respectively, the subsets X @Y and X ©Y givenby X @Y = U{X, : y € Y}
and XoY=n{X_,:yeY}.

Two important properties of Minkowski addition are commutativity (i.e.,
XoY =YaX)[5,p. 81)and associativity (ie., (X@Y)0Z = Y®(X02)) [5,
p. 82, Eq. 4.29].

The next result is another property of the Minkowski addition and it is a
immediate consequence of its definition and the fact that, for any 4, B € P(E)
and h € E, (AU B)* = A U Bt and (45)! = (A%)-a.

Proposition 3 If X,Y € P(E), then (X @Y) = X' @Y.

Let X,Y € P(E). Wesay Y is an invsriant of X iff X = (X ©Y) @Y.
Zhuang and Haralick [9, Proposition 5] stated the following result.

Proposition 4 Let X,Y,Z € P(E). If Z=X @Y, then X and Y arc both
invariants of Z.

Proposition 5 Let X,Y € P(E). IfY is an invariant of X, then, for any
te E, Y; is also an invariant of X.

Let Xw € Iy and C € P(E). The Minkowski addition and subtraction of
Xw by C are, respectively, the collection of maximal intervals Xw®C € llwgc
and Xw © C € Nygc: given by Xw & C = U{(Xa)wec : h € C} and
Xw ol =N{{X_s)wact : h€ C}.

Technically, the collection Xw @ C € Dwgc can be built in the following
way. For each h € C, translate the intervals in X by h, in order to get the
collection (X;)w, € HNw,. Since W, C W @ C, for any h € C, change the
representation of (Xn)w, € Iw, to (Xa)wec € Nwgc. Finally, take the
supremum of the collection (X»)wec, for all b € C. The collection X & C is
built in a similar way.

3. Lattice of W-operators

A mapping from P(E) to P(E) is called an operator. The operators will be
denoted by lower case Greek letters a, 8,7, ... The set of all operators will be
denoted by ¥. The set ¥ inherits the Complete Boolean Lattice structure of
(P(E), C) by setting, for any 1,42 € ¥,
<Y & %i(X)C¥a(X) (X eP(E).
The supremum and infimum of two operators t; and 2 of ¥ verify, respec-
tively, (Y1 V$2)(X) = 1(X) U t3(X) and (1 A ¢2)(X) = 91 (X) Nefa(X), for
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any X € P(E). The operator v € ¥ defined by »(X) = X*¢, for any X € P(E),
is called negation operator. The complementary operator of an operator ¥ € ¥,
denoted v, verifies ¥(¥(X)) = (¥(X))®, for any X € P(E).

The dual operator of the operator v, denoted by v*, is ¢* = yyw.

Let C € P(E). The dilation and erosion by C are the operators §¢ and e
given by, for any X € P(E), éc(X) =X @ C and ec(X) = X ©C.

The following proposition is a property of dilations [5, p. 82, Eq. 4.25].

Proposition 6 If X,C € P(E), then, for any h € E, §c(Xp) = b¢,(X) =
(0c(X))a.

As a consequence of Proposition 6, we have the following result.

Corollary 7 Let X,Y,C € P(E). If 6c(X) = Y, then, for any h € E,
dc, (X-p) =Y.

Proof:
c(X)=Y & (SecX)h=Y,
& 90, (C)=Y
(by Proposition 6)
& (don(X)-n=Y
& do (X)) =Y
(by Proposition 6).
»

An operator ) is called translation invariant (t.i.) iff, for any =z € E and
X € P(E), ¥(X;) = ¥(X)s.

Let W be a finite subset of E. An operator ¢ is called locally defined within
W iff, for any z € E and X € P(E), z € ¥(X) & z € (X NW,).

An operator 9 is called W—operator iff it is both t.i. and locally defined
within W. The set of all W—operators will be denoted by ¥y . The pair
(¥w, <) constitutes a sublattice of the lattice (¥, <) [3].

The kernel of an operator ¢ € Py is the set Kw (1) given by Kw(¥) =
{X e P(W):0e¢(X)}.

Barrera and Salas (3] stated the following lattice isomorphism between the
complete lattices (Ilw, <) and (¥w, <).

Theorem 8 The mapping M(Kw (-)) from (¥w,<) to (Ilw,<) constitutes a

lattice isomorphism between the lattices (¥w, <) and (Iw,<). The inverse of

the mapping M(/Cws-)) is the mapping K3} (U()), where K33} () is defined by
Ky (X)X)={zeE: (X -z)nW € X}.

For any operator ¢ € ¥w, the basis of ¢ is the collection By (1) of all
maximal intervals contained in Kw (1), that is, By () = M(Kw(¥)).

An important consequence of Theorem 8 is that the basis of a W —operator
¢ characterizes it uniquely.

Given ¢ € ¥y and h € E, the operator v, is locally defined within W_j.
The following proposition [3] shows how to build the basis of ¥ from the basis
of ¢.
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Proposition 9 If ¢ € Oy and h € E, then Bw_, (¥») = (Bw(¥))-n-

Given ¢ € ¥w and C € P(E), the operators écyy and oy are locally
defined, respectively, within W @ C* and W @ C. The following proposition [3]
shows how to build the basis of éct and et from the basis of 4.

Proposition 10 If ¢ € llw and C € P(E), then
Bwoc (5c¥) = Bw (%) ® Ct and Bwec(ecy) = Bw(¥) 6 C*.

The next result is a consequence of Theorem 8 and Proposition 10.

Proposition 11 If X,Y € llw and C € P(E), then
XuY)sC=XeC)u(Y®Cl).

Proof: By the lattice isomorphism between (IIw, <) and (¥w, <), there exist
1, % € Yy such that B (¢,) = X, Bw (¢2) = Y and XUY = Bw (1 V ¢)-
Thus, by Proposition 10, we have that (X UY) & C = Bwec(dcr (¥ V ).
Since 8¢ (Y1 Vl,bz) = (81 )V (0 2) [5, p. 82, Eq. 4.27], then, by Theorem 8,
Bwec(écr (Y1 V ¥2)) = Bwec(écr¥1) U Bwec(dci¢a). Since, by Proposi-
tion 10, Bwgc(dct 1) = Bw (1) ®C and Bwac(dcry2) = Bw (¥2)@C, then
Bwoc(dc:¥1) U Bwac(dcriz) = Bw () ® C)U(Bw(¥z) ®C). Therefore,

XuY)yeC=XeC)u(YaCl). [ ]
An operator ¥ is called increasingiff VX,Y € P(E), if X C Y, then 4(X) C
(Y).

Since dilation and erosion are increasing operators, the next result holds.

Proposition 12 Let X, Y € Iy and C € P(E). f X <Y, then
XaC<YaCandXoC<YoC.

Proof: By the lattice isomorphism between (IIw, <) and (¥w, <), there exist
¥h,¥2 € Tw such that Bw(¥h) = X, Bw(ys) = Y and ¢y < ;. Then,
dct41 < 8¢3fa, since ¢t is increasing. Thus, by Theorem 8, Bwgc(Scr¥1) <
Bweoc(dct =) and, by Proposition 10, By (¥1)®C < Bw (¥2)®C. Therefore,
X @ C <Y @C. Similarly, one can prove that XeC <YeoeC. ]

The next result is a consequence of Corollary 7, Theorem 8 and Proposi-
tions 9 and 10.

Proposition 13 Let Xw € IIw, C € P(E) and Ywr € Iy». If Xw O C* =
Yw:, then, for any h € P(E), (Xn)w, ® (Cr)t = Ywr.

Proof: By Theorem 8, there exist ¢ € ¥w and ¢/ € Yw- such that By (¥) =
Xw and Bu(¢') = Ywr. Since Xw ® Ct = Yw, by Proposition 10,
dcty = ¢'. Hence, for any h € E, by Corollary 7, dc,¥—n = ¢/. By
Proposition 10, Bw:(¢') = Bw, (¥-») ® (Ca)*. Thus, by Proposition 9,
By (@) = (Bw()r @ (Cp.)‘. Therefore, (Xi)w, @ (Ch) =Yw. |
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4. The Dilation Factorization Equation

Problem: Given a collection of marimal intervals Yu- € Iy and a set
C € P(E), find all collections of mazimal intervals Xw € Iw such that

XwoCi=Yy. (1)

By Theorem 8, there exist ¢ € ¥w and ¢' € ¥y such that Bw (¢) = Xw
and By (y') = Yw-. So, by Proposition 10, we have that Xw & C* =
Bwgc: (dctp). Thus, given a set C € P(E), the above problem can be equiv-
alently viewed as the problem of finding all W—operators 1 € ¥y such that
dctp = 1)/ Moreover, since the operators §ot) and 4 are locally defined within,
respectively, W @ C* and W', the windows W and W' satisfy W & C* = W".

4.1. AN UPPER BOUND FOR W

The next result states an upper bound for the window W in the Equation (1)
and is a direct consequence of the adjunction relation given in [5, p. 84, Eq.
4.41].

Proposition 14 Let W,C,W' ¢ P(E). W& C! = W', then W C W' © Ct.

Given a set C € P(E) and a collection of maximal intervals Yy, by Propo-
sitions 14 and 2, the collections Xw € IIw that satisfy the Equation (1) can
be changed its representation to Xygct € yrge:. So, we can consider that
wW=WeocC.

4.2. AN UPPER BOUND FOR Xw

In this section, we state an upper bound for X . For that, we need first some
preliminary results.

Proposition 15 IfC € P(E), thenoc Ct @ C.

The next result is an immediate consequence of Proposition 15 and the
definition and associative property of the Minkowski addition.

Proposition 16 If W,C € P(E), then W C (W a C!) @ C.

As a consequence of Proposition 2 and Proposition 16, we can change the
representation of any collection of maximal intervals Xy € Iy to Xw» €
I, where W' = (W Ct) @ C.

The following theorem states an upper bound for all Xw € Hw that satisfy
Equation (1).

Theorem 17 Let Yw: € llw: and C € P(E). For any Xw € Hw such that
Xw$C" =le, then XWn SYWI eC‘, where W" = (W@C‘)@C.
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Proof: Since Xw ® Ct = Yw, then (Xw ® C*)©C* = Ywr ©C*. Let ¢ be
the W—operator such that Xw = Bw(¢). Note that, by Proposition 2 and
Proposition 16, the collection Xw can change its representation to Xwr =
Bwn(4). By Proposition 10, (Xw @ Ct) © C* = Bww(ecécy). Since ecdc
is a closing and closing is extensive [5, p. 91, Eq. 4.66], then ¢ < (ecéc ).
Hence, by lattice isomorphism between (IIw«~,<) and (Twr, <), By (y) <
Bw+{ecdcy) and, therefore, Xwr < XwecChe Ct=Ywr 0C* o

4.3. LowER BOUNDS FOR Xw

Now, we will state the lower bounds for Xw. For that, we need the following
result.

Proposition 18 Let Yw- € O+, Xw € Iy and C € P(E). If Xw & C* =
Yw:, then, for each interval [A', B') € Yw, there ezist [P,Q],[X,Y] € Xw
and a,b € Ct such that P, = A' C Ly and (W.)§ URa C B' = (Wh)3 U Y3,
where RCQ and L D X.

Proof: Since Y = Xw @ Ct = U{(Xs)wec: : b € C*}, then Yy~ is the
supremum of the collections (Xa)w,, for each h € C*, where the representation
of the intervals in (X3)w, is changed to (Xs)wect- So, each interval [A',Ble
Yw- is built by the supremum of the translations of the intervals in Xw.
Thus, there exists an interval in Xw such that its translation contributes to
generate the left extremity of the interval [A', B']. In the same way, there exists
another interval in Xw such that its translation contributes to generate the
right extremity of the interval [4’, B’].

Hence, for any interval [4’, B'] € Yw, there exist [P, Q],[X,Y] € Xy and
points a,b € C* such that [P,R], C [4',Bl, RC Qand P, = A"; [L,Y], C
[4',B'], L 2 X and (W)$,, UY; = B'. Since [P, R, C [A", B'), then (W.)$y: U
R, C B'. Since [L,Y]s C [4', B'], then A’ C L. n

Given an interval [A’, B’} C P(W’) and a set C € P(E), we define the
collections of intervals L4 "B C and R 1€, contained in P(P(W)), where
W =Weoctash?®C = (4 _,BnW]): BC B, ze€Cad
R[;'-B" MO = {{4,BL, W] : A, C A, z € C*). We define the set HiA 1O
as HiAF1C = ({[P,Q1, (R, ST} : [P, Q] € Lly "7, [R, 5] e RE 1O}

Let I = {1,2,3,---,n} be a set of indices. Let Yw» = {[A},B]] : i € I]}
be a oollection'of maximal Entt'zrva.ls in My m’ld C € P(E). We define the set
S:’W' Ko a H[‘:’I-B'l]'c X H[‘:’:-leic Woees X H[v""-vB'-]»C

Given a collection of maximal intervals Y € Ily~ and a subset C € P(E),
let us define the set of collection of intervals O""C, where W = W' © Ct, by

0X7'C = {Zw € Ty : Zw = L{SY, i € I}, (Sky,S%,---,S%) e S €}

The next result states the lower bounds for Xw in Equation (1).

Theorem 19 Let C € P(E) and Yw» € Iy+. For oll Xy € Oy such that
Xw ® Ct = Y, there ezists Zw € O3 *C such that Zw < Xw.
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Proof: Let Yw: = {[A},B;] : i € I}. By Proposition 18, for each in-
terval [A], B]] € Yy, there exist the points a;,b; € C* and the intervals
[Pl" Qi]’[‘xi’ Yi] € Xw such that (PI')G-' = A: c (Li)bi and (Wn-‘)gv' U (Ri)ﬂi C
B = (W, )3, U(Y:)ui, with R; C Q; and L; 2 X;. Let Sk, = {[P,, R}, [Ls, i]}.
Let Zw be the collection of intervals in Ilw such that Zw = U{S}, : i € I}.
Xw. So, Zw < S}y <U{SW 11 €1} < Xy

In order to prove that Zy € 6;{,“" 'C, we have to show that S}, € ’H[“A,Q’Bﬂ'c.

For that, we must show that [P, R;] € Lia*PC and [L,, ;] € RIAHBAC

Since (P)a, = Aj, (Wa,)55» U (Ri)o, € B) and a; € C¥, then, P; = (4!)_,, and
W, URi C (B)-a;. Hence, [P, R} € £, In a similar way, one can

prove that [L;, Y] € ,R’[;;,B;],c_ [ ]

As a consequence of Theorem 19, all lower bounds for Xy in Equation (1)

are in O"°C.

4.4. FINDING SOLUTIONS OF EQUATION (1)

This section presents the algorithm for solving the Equation (1).

Algorithm SEARCH (C, Yw):

Input: A set C € P(E) and a collection of intervals Yy € Hy.
Output: The collections Xw € Iy, where W = W' © Ct, such that
XwoC =Yw.

begin
W'« WeoC)eC,
for each Zw € O do
for each Xyw such that Zy» <Xwr <YwroC!do
if Xw & C* = Y- then
output Xw;
end.

5. Increasing Operators Simplification

In this section, we recall some known properties of increasing operators. In
addition, we show how the search space of the solutions of Equation (1) can be
reduced when we restrict the problem to the increasing W —operators.

We denote by Qw the set of all increasing W —operators.

Let us define the set Zw C Iw as the set of all collections of maximal in-
tervals that are the basis of increasing W —operators, that is, Ty = {Bw(y) €
IIw:¢ € ﬂw}.

A very interesting property of basis of increasing W—operators is given in
the following proposition.
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Proposition 20 Let  be a W—operator. Then, ¢ is on increasing operator
iff for any interval [A, B] € Bw(¥), B=W.

Thus, by Proposition 20, the right extremity of any interval in every col-
lection of maximal intervals in Ty is the window W. For simplicity, where
there is no risk of confusion, we denote the intervals [4, W] of X € Zw by [A].
Furthermore, the partial order < on the elements of Iy can be gimplified in
the following way.

For all X, Y € Tw,

d X<Y & V[X]eX JY]eY:[X]c[r]
& ViX]eX, 3Y]eY: Y2 X.

Now, consider the problem, presented in Section 4, restricted to the increas-
ing W—operators, that is, given a collection Y. € Zw+ and aset C € P(E),
find all collections of maximal intervals Xw € Tw such that Xw &C* = Y.

5.1. LOWER BOUND SIMPLIFICATION

We can get a new lower bound for Xw € Iw that is solution of the prob-
lem. For that, we need the following result, that is a particular case of the
Proposition 18, when the right extremity of the intervals in Yw~ and Xw are,
respectively, the windows W’ and W.

Proposition 21 Let Yy € Iwr, Xw € Iw and C € P(E). If Ywr =
Xw @ Ct, then, for each interval [A"] € Yw~, there exist an interval [P] € Xw
and a point h € C* such that P, = A'.

Given an interval [A'] C P(W') and a subset C € P(E), we define the sets
£I41° and Hig1€ as L€ = {[AL,,W]: 2 € C*}and Wiy = (IR W]}
[P,W] € £*°}).

Let I = {1,2,3,---,n} be a set of indices. Let Yw» = {[A]] : i € I]} be
a collection of maximal intervals in Zy» and C € P(E). We define the set
.7-':{,"“0 = 7-1[,‘:,‘]'0 X-eo X .H[;;,,],c-

Given a collection of maximal intervals Yy~ € Iy~ and a subset C € P(E),
let us define the set of collection of intervals &V, where W = W' © Ct, by
84 C = (Zw € Ty : Zw = U{Fly, i € I}, (Fiy,Fly,--- . F}) € '€}

Note that, by definition of the set O in Section 4.3, if the right ex-
tremity of the intervals in Yy and Zw are, respectively, the windows W’ and
W, then 6;“" ' is reduced to the set Q:,“" ‘C. Thus, we can easily see that,
@;“" © c 9}',"" C

The following result states the lower bounds for Xw in Equation (1) for
increasing operators and it is a particular case of Theorem 19.

Theorem 22 Let C € P(E) and Yw+ € Iw-. For oll Xw € Iw such that
Xw @ C* = Y, there exists Zy € 3" such that Zw < Xw ond Zw ©
Ct=Yw.
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Proof: Let Yw» = {[A]] : i € I}. By Proposition 21, for each interval
[Ai] € Yy, there exist a; € C* and [P;] € Xw such that (P;),, = A]. Let

w = {[Bi]}, for i € I. Let Zw be the collection of intervals in Zy such that
Zw =U{Fy :i € I}.

The proof that Zy € &, and Zw < Xw can be done in a similar way
that we did in Theorem 19.

Now, we prove that Zy & C* = Yy». We divide this proof in two parts. In
the first one, we prove that Zw © C* < Yy~ and, in the second one, we show
that Yy < Zw @ C*.

Since Zw < Xw, then, by Proposition 12, we can easily see that Zw ©C* <
XwedCl=Yy.

Observe that Yw» = {[Al] : i € I} = {[(AD-ap, W' ]a :i € I} <
(4D a0 WL : ¢ € C*) 2 i € I} < U({[(A)-as W} © €Y : § € I,
since each a; € C*. So, Y+ < U{F}, @& C* : i € I}, since Fiy = {[(4))_q,]}-
Thus, by Proposition 11, Yy < U{F}, :i € I} & C* = Zw & C. |

As a consequence of Theorem 22, all lower bounds for Xw in Equation (1)

are in @', In fact, each Zw € $57'' such that Zw & Ct = Yy is a
lower bound for X .

Algorithm SEARCH_INGREASING (C, Yw+):

. Input: A set C € P(E) and a collection of intervals Yw» € Tw:.
Output: The collections Xy € Zw, where W = W’ © Ct, such that
XwdCt =Yy

begin
W'« WeoC)eC,
for each Zw € &, do
iwa$C‘ = Yw- then
for each X such that Zy» < Xyrw < Yw ©C*
output Xw;
end.

5.2. FEASIBLE SETS C FOR THE EQuUATION (1)

In the Problem defined in Section 4, a subset C € P(E) and Yw» € [y are
fixed. However, there exist subsets C' € P(E) for which Equation (1) has no
solution.

Given Yw: € Zwr, the subsets C in P(E) such that Equation (1) has at
least one solution are called feasible sets.

In this section, we study some properties of Equation (1) in order to give a
necessary condition for the existence of feasible sets. Observe that, by Propo-
sition 13, if a subset C' € P(E) is feasible, then, so is Cy, for any h € E.

Let us state an equivalence relation on a generic collection of maximal in-
tervals X € Ty. Let [A) and [A'] be two generic elements of X. We will say
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that [A] and [A'] are equivalent under translation iff the left extremity of one
can be built by a translation of the other, that is, [A] = [A] iff there exists
he Esuchthat A=A,

As the equivalence under translation is an equivalence relation (i.e., reflex-

ve, symmetric and transitive), the set of their equivalence classes (i.e., the sets
composed exactly of all the equivalent elements in X) constitute a partition of
X.

Let Z € Tw. We will denote by C(Z) the set of all equivalence classes
(under translation) on Z. We will denote by E(Z) a set composed by exactly
one element of each equivalence class in C(Z), that is, E(Z) is a set such that
|E(Z)} = |C(Z)] and for each X € C(Z) there exists [A] € E(Z) such that
[4] € X.

Let [A] € X € Iw. We say that a left extremity A is minimal in X iff
|A| < |B|, for any interval {B] € X. Clearly, if |4| = | B, then the extremities
of [A] and [B] are minimal.

Let Z € Tw. Let us denote by Min(Z) the set of all intervals in E(Z) such
that its left extremity is minimal in E(Z), that is, Min(Z) = {[4] € E(Z) :
A i3 minimal in E(Z)}.

Given a collection of maximal intervals Z € Zw, for each set A € P(E), let
us define the set S% € P(E) as S5 ={h€ E:[A_s) € Z}.

The next result gives a necessary condition for feasible sets.

Theorem 23 Let Yy € Zw: and C € P(E). If C is a feasible set, then, for
any [A] € Min(Yw), there ezists a € E such that C, C Sy™' and C is an
invariant of Sy’

Proof: Since C is feasible, there exists Xw € Zw such that Xw & C* =
Yw:. Given an interval [A’] in Min(Yw), let us denote I* and I;*' the
intervals of Xw and Yw-, respectively, such that the translation of theu' left
extremity is equal to A’, that is, I = {[X,W] € Xw :3h € E,X), = A’} =
(A ) 1A )+ [A, ]} and I¥ = {[X",W'] € Yw : 3h € E, X} =
A,} = {[A-—m] [A—'g]7 [A-y...]} Note that’ S}‘w = {31:321 4 )zn} and
SY* = {y1,y2, *,ym}. Thus, IV = {[A",] : z € SX¥} and I} =
{[A’_,] :y € Sy™'}. Now, we will prove that Sy’ = SX¥ @ C.

Since A’ is minimal in E(Yw~), then A4’ is al.so minimal in Yw:.

On one hand, SX* @ C C SE*'. In fact, let [4",) € IX* and ¢ € Ct.
We will prove that [A’_,.,.,_.,W’] € Yw-. Suppose that [A_,,,_c, W' € Yw.
Thus, there exists an interval [X',W’] € Yy~ such that X' C A’ ., and
X' # A_,+c So, by Proposition 1, |X'| < |4’ ,,.|. But, it contradicts the
fact that A’ is minimal in Yw. Thus, [A’ _, ., W’] € Yw-. Hence, there exist
y € Sy*' such that [AL.4c) = [AL,), that is, —z+¢ = —y. Thus, z+(-¢c) =y
and ,thereforeSf,"’ eCCc S},“", since ¢ € C*.

On the other hand, S5*’' C SX¥ @ C. To prove this, we will show that,
given an interval [A’ ] € Yw~, then there exist z € Sy and ¢ € C* such that
—y = —z + ¢. By Proposition 21, there exist an interval [P] € Xw and a point
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¢ € C* such that P, = A'_,. Thus, [P] = [AL,_,] and, consequently, [P] € I5¥.
Thus, there exists z € SX* such that [P] [A;]. Thus, =y = -z +¢.
Therefore, y = z + (~c), and, since y € SA,"", z € SX¥ and ¢ € C?, then
S¥w ¢ szw ®C.

Since S,* = S3™ @ C, then by Proposition 4, C is an invariant of S*'.
It remains to show that there exists a € E such that C, C S%™'.

Letae SXw. By Corollary 7 and the definition of dilation, we have Syw =
(SX* )0 ® Co. Since a € SX¥, then o € (SX¥)_,, and, by deﬁmtxon and
the commutatmty property of the Minkowski addition, C, C C, ®(SX%)-, =
(SX%)a@C,=SI¥. n

Given a collection of maximal intervals Yw» € Tw~, as a consequence of
Proposition 13, if C is feasible, then so is Cj, for any h € E. By Theorem 23,
ifCis feasxble, then, for any [A'] € Min(Yw), a translation of C, say C,, is
a subset of S, o' . Since C, is also feasible, then the feasible sets can be found
by searching C C S}’ such that C is an invariant of S¥*'.

Now, given a collection of maximal intervals Yw+ € Iy, we present an
algorithm that outputs pairs (C, Xw) € P(E)x Iw such that Xw &C* = Yy.

Algorithm SEARCH_INCREASING_ALL (Yw):

Input: A collection of intervals Y- € Hy..
Output: The pairs (C, Xw) € P(E) x Tw, with W = W' o C*,
such that Xy © C* = Yy
begin
let [A'] € Min(Yw~) such that |SY*'| is minimum.
for each C C S5*' such that C is an invariant of SY*’
begin
let {X;,X3,:-+,X,} be the output of
SEARCH_INCREASING (C, Yw+);
fori=1,2,---,ndo
output the pair (C, X;);
end
end.

6. Compositions of Erosions and Dilations

In this section, given the basis of a W—operator ¢, that is an alternating
composition of erosions and dilations, we describe how to find a representation
of 1 using the algorithm presented in Section 5.2. .

We denote by Tw the set of all W—operators that is an alternating compo-
sition of erosions and dilations. Note that the set of all alternating sequential
filters [8], locally defined within a window W, is a subset of Tw.
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Given ¢ € T, the operators 1) and yv are locally defined within w.
Consequently, ¥* = vy is also locally defined within W. In addition, if
v € My is increasing, then so is ¢* [5, p. 46].

Let I = {1,2,3,---,n} be a set of indices. Given the basis of an increasing
W —operator 9, the next result shows how to build the basis of ¢* from the
basis of ¢. This proposition is a particular case of the result stated in [3].

Proposition 24 If is an increasing W —operator with basis By (1) = {[Ad] :
i € I}, then the basis of its dual operator ¢* is
Bw(y*) = N{[{a}]) : a € Af,i € I}.

The following result show that the dual operator of an erosion is a dilation,
and vice-versa [5, p. 84, Eq. 4.41].

Proposition 25 If C € P(E), then 6 =ec+ and e = b¢r.

The next result is an immediate consequence of the definition of dual oper-
ator and Proposition 25.

Corollary 26 If C € P(E) and ¢ € Ilw, then (ecr¥))* = dcy*.
The following result is a consequence of Proposition 10 and Corollary 26.

Corollary 27 Let ¢! € lw:, C € P(E) and ¢ € Nlw. Then, ' = ety iff
Bw: ((¢')") =Bw(y*) ® C*.

Proof: Since ¢’ = g+, then, by Corollary 26, (¥')* = dcy*. Therefore, by
Proposition 10, Bw((¥')*) = Bw (¥") ® C*. [ ]

If 4 is an operator in Ty, then a representation of 1 may start by a dilation
or an erosion, that is, ¢ may be rewritten by dc, 1 or ec,t2. Recursively, ¢,
may be rewritten by dc, Y3 or £, ¥4, Y2 may be rewritten by dg,s or ecyte,
and so on.

Given the basis of an operator ¥ € Tw that starts by a dilation, then,
by Proposition 10, we can find a representation of ¥ applying the procedure
SEARCH_INCREASING_ALL for Bw(¥). If (C, X) is an output of the procedure
SEARCH_INCREASING_ALL (Bw(v)), then ¢ can be rewritten by ¢y = éct,
where 1; is the increasing W —operator such that the basis of ¢ is X.

Given the basis of an operator ¢ € Tw that starts by an erosion, then, by
Coroliary 27, we can find a representation of 1 taking the dual of the basis of ¢
and applying the procedure SEARCH_INCREASING_ALL for By (¢*). If (C,X)
is an output of SEARCH_INCREASING_ALL (Bw (1*)), then ¢ can be rewritten
by ¥ = ect9y, where ¢ is the increasing W ~operator such that the basis of
¥i is X°.

Thus, given the basis of an operator ¥ € Tw, we will construct the tree that
represents the space of all possible representations of ¥, using the algorithm
SEARCH_INCREASING.-ALL, presented in Section 5.2, and the properties given
in Propositions 10 and 24 and Corollary 27
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The representation tree is the tree such that the root is the basis of 9. A
node is a collection of maximal intervals Yw € Zw. If Yw = {{{0}]}, then
Yw has no descendants. If Yw = {[{a}]}, a # o, then the descendant of Y
is {[{0}]} and the edge that joins Yw and its descendant is labeled 0(a}- In any
other case, compute Yy, and apply the procedure SEARCH_INCREASING_ALL
for Yw and Y. If (C,X) is an output of SEARCH_INCREASING_ALL (Yyw),
then X is a descendant of Yw and the edge that joins Yy to X is labeled oc.
If (C, X) is an output of the procedure SEARCH_INCREASING.ALL (Y} ), then
X" is a descendant of Yw and the edge that joins Yy to X* is labeled ec.

Note that, given the basis of an operator ® € Tw, the labels of the edges
on the path from the root to a node Yw = {[{0}]} forms a representation of

V.

7. Conclusion

In this paper, we have studied the problem of transforming the sup-decomposi-
tion of W—operators, parameterized by their basis, into more efficient sequen-
tial decompositions (when they exist).

The solution of this problem depends essentially on the solution of the di-
lation factorization equation, that is a hard combinatorial problem. We have
generalized this equation for the family of W—operators and given bounds for
its space of solutions.

Moreover, we have gotten new bounds for the space of solutions of the dila-
tion factorization equation constrained to the family of increasing W —operators
and showed how to apply it to build sequential decompositions from the basis
of alternating compositions of dilations and erosions.

The next steps of this research are the implementation of the technique
proposed and the study of more restrict bounds for the family of alternating
sequential filters.
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