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1. Introduction 

W -operators are discrete set operators that are both translation invariant and 
locally defined within a finite window W. Due to their great utility in binary 
image analysis, they have been intensively studied. One of the most BUccessful 
approaches to W ~operators is Mathematical Morphology [7, 5, 3]. 

Mathematical Morphology on subsets can be understood as a formal lan­
guage, that is built from two families of simple operators ( dilation and erosion) 
and four operations on set operators (union, intersection, complement and com­
position). The phrases of the language are called morphological operators and 
their semantics are set operators. 

A particularly interesting property of W -operators is that they have a 
sup-decompositions, that is, they can be decomposed in terms of a family of 
sup-generating operators (i.e., the uniquely intersection of erosions and com­
plemented dilations), that are parameterized by the operator hams [1] (i.e., a 
family of maximal intervals). Moreover, the operator basis represents uniquely 
the operator. 

A central problem in Binary Image Analysis is the design of W -operators. 
A BUcces.mtl technique for designing W -operators consists in the estimation of 
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the optimal operator basis, according to some statistical error measure, from 

collections of input-output image pairs [2]. 
The sup-decomposition parameterized by the basis has some nice properties 

as unique characterization of W -operators and simple structure to formame 
prior knowledge about families of operators considered in the optimal design. 

However, it has a serious drawback: its parallel structure usually is not efficient 

for computation in conventional sequential machines. 
A general approach to conciliate the good and the bad properties of the 

sup-decomposition is to estimate the optimal operator basis and transform it 

into an equivalent morphological operator with a more sequential structure. 

In this paper, we formalize the problem of transforming the sup-decompo­

sitions into purely sequential decompositions (when they exist). The theory 

proposed consists in the formulation and solution of discrete equations in lat­

tice spaces, whose space of solutions have a. strong combina.tory nature. The 

techniques were developed for general W -operators, specialized for increasing 

W -operators and applied on operators built by alternating compositions of 

dilations and erosions. 
The results presented here extend to general W-operators some results given 

by Jones [6] for increasing translation invariant operator and introduce some 

new bounds for the particular case of increasing W -operators. 
Following this introduction, Section 2 recalls some basic properties of collec­

tions of maviroal intervals. Section 3 gives some new properties for collections 

of W -operators. Section 4 introduces and gives bounds for the dilation fac­

torization equation. Section 5 specializes the results of Section 4 for the family 

of increasing W -operators and introduces new bounds for the structuring el­

ement of the dilation. Section 6 shows how to imply the results of Section 5 
to compute the structuring elements of morphological operators built by al­

ternating compositions of dilations and erosions from their basis. Finally, in 

Section 7, we discuss the results presented and give soroe future steps of this 

research. 

2. Lattice of Collection of Maximal Intervals 

Let E be a non empty set and let W be a finite subset of E. Let 'P(W) 
denote the powerset ofW. Elements of P(W) will be denoted by capital letters 

A, B, C, ... Let ~ be the usual inclusion relation on sets. The pair (P(W), ~} 
is a Complete Boolean Lattice [4). The intersection and union of X and Y in 

'P(E) are, respectively, XnY and XuY. The complementary set of Xe 'P(W) 
with respect to W, denoted Xfv or, simply, xe, when no confusion is possible, 

is Xfv = {z E W: z ¢ X}. 
The following proposition is an immediate consequence of the usual inclusion 

relation on sets. 

Proposition 1 Let A,B E 'P(E). If A~ Band A~ B, then IAI < IBI. 

Let 'P{'P(W)) be the collection of all subcollections of 'P(W). Elements of 

'P('P(W)) will be denoted by capital script letters .A,B,C, ... H ~ is the usual 
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inclusion relation on sets, then the pair ('P('P(W)}, ~) is a Complete Boolean 
Lattice. 

Let A,B e 'P(W) such that A ~ B. An interval of extremities A and B 
is the subset [A,B] of 'P(W) given by [A,B] ={Xe 'P(W): Ac;;; X c;;; B}. 
The sets A and B are called, respectively, the left and right extremities of the 
interval IA, BJ. Collections of intervals contained in 'P(W) will be denoted by 
capital bold face letters as Aw,Bw,Cw, ... , or, simply, A,B,C, ... , when no 
confusion is possible. 

An inten,al IA, BJ in a collection of intervals X is called maximal if and only 
if (iff) there does not exist an interval IA', B'J in X, distinct of [A, BJ, such that 
[A, BJ c;;; [A', B1. 

The collection of all maximal intervals of X is denoted M ax(X). Of course, 
if all the intervals in X are maximal, then X = Max(X). 

Let X be a subcollection of 'P(W). The collection of all maximal intervals 
contained in Xis denoted M(X), that is, 

M(X) = Max({IA,B] c;;; P(W): [A,B] ~ X}). 
We denote by UX the collection of all elements of 'P(W) that are elements 

of intervals in X, that is, 
ux ={Xe 'P(W): Xe [A,B], [A,B] EX}. 

Let Ilw denote the set {M(X) : X c;;; 'P(W)}. We will define the partial 
order$ on the elements of IIw by setting, for all X, YE Ilw, 

X $ Y # \f[A,B} EX, 3[A',B1 E Y: [A,B} c;;; [A',B'). 
The poset (Ilw,$) constitutes a Complete Boolean Lattice [3}. The supre­

mum and infimum operations in the lattice (II w, $) are given, respectively, by 
for any X, YE Ilw, 

XU Y = M((UX) U (UY)) and 
X n y = M((UX) n (UY)). 

Let W', WE 'P(E) such that W' 2 W. We define the set Ilw11w c;;; Ilw, 
as Ilw, /w = {X e Ilw, : z e we * z E X, \fX e [A, BJ, \f[A, B] e X or z ;_ 
X,\fX e [A,B],\f[A,B} e X}. 

Proposition 2 Let W', We P(E) such that W' 2 W. The mapping W(·), 
from (Ilw,~) to (Ilw11w,$), defined by 

W(Xw) = {[A',B'] c;;; 'P(W'): A'= A and B' = BU We, (A,B] E Xw} 
conatitutea a lattice iaomorphiam between the lattice! (Ilw, :5) and (Ilw• 1w, $). 
The invene of the mapping W(·) ia the mapping w-1(-), from IIw11w to Ilw, 
defined by 
w-1 (Xw,) = {[A,B] c;;; P(W): A= A' andB = B'nW, (A',B'] e Xw•}. 

As a consequence of Proposition 2, if W c;;; W' we can change the represen­
tation of a collection of maYiroal intervals Xw E IIw to Xw, E Ilw, /W ~ Ilw•, 
and vice-versa. 

Let E be a non empty set, that is an Abelian group with respect to a binary 
operation denoted by +. The zero element of (E, +) is denoted by o. 
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The tmn.,po.,e of a subset Xe 1'(E) is the subset X', given by X' = {x e 

E:-xE X}. 
For any Xe 'P{E) and 11 e E, x, denotes the translation of X by 1/, that 

is, X, = {z E E: z - 1J E X}. . 
For any X e Ilw and 1J e E, x, E Ilw. denotes the translation of all 

intervals of X by 1J, that is, X, = {[Ay,B,) e IIw. : [A,B] EX}. 
Let X, Y e 1'(E). The MinkOW.9ki addition and ,ubtraction of X and Y are, 

respectively, the subsets X EBY and Xe Y given by X EBY= U{X,: 1/ E Y} 

and X eY = n{X-,: 1/ E Y}. 
Two important properties of Minkowsld addition are rommutativity (i.e., 

XEBY = YeX) [5, p. 81) and associativity (i.e., (XeY)eZ = Ye(XeZ)) (5, 

p. 82, Eq. 4.29J. 
The next result is another property of the Minkowski addition and it is a 

immediat.e coru,equence of its definition and the £act that, for any A, B E 'P(E) 

and h e E, (AU B)' = A' U B' and (A11)' = (A')-11. 

Proposition 3 If X, Y E 1'(E), then (X EBY)' = X' EBY'. 

Let X, Y e 1'(E). We say Y is an invariant of X iff X = (Xe Y) EB Y. 
Zhuang and Haralick [9, Proposition 5) stated the following result. 

Proposition 4 Let X,Y,Z E 'P(E). If Z = X EBY, then X and Yore both 
invariant., of Z. 

Proposition 5 Let X, Y E 'P(E). If Y ia an invariant of X, then, for an11 
t E E, Ye ia also on invariant of X. 

Let Xw E IIw and CE 1'(E). The Minkow.,ki addition and aubtraction of 

Xw by Care, respectively, the collection of maximal intervals XwEBC e Ilwec 
and Xw e C E Ilwecc given by Xw EB C = LI{ (X11)wec : h E C} and 

Xw e C = n{{X-11)wecc : he C}. 
Technically, the collection Xw EB C E Ilwec can be built in the following 

way. For each h E C, translate the intervals in X by h, in order to get the 

collection (Xh}w,. e Ilw,.. Since Wh ~ WEB C, for any h e C, cbang-e the 
representation of (X11)w,. E Ilw,. to (X11}wec E Ilwec- Finally, take the 
supremum of the collection (Xh)wec, for all he C. The collection Xe C is 
built in a similar way. 

3. Lattice or W-operatora 

A mapping from 'P(E) to 'P(E) is called an operotor. The operators will be 
denoted by lower case Greek letters a,/J,-y, ... The set of all operators will be 
denoted by ~. The set q, inherits the Complete Boolean Lattice structure of 
(P(E),~) by setting, for any ,/,1,"'2 E q,, 

r/1i $ "'2 <=> "11(X) ~ t/,,(X) (Xe 1'(E)). 
The aupremum and infimum of two operators ,t,i and "'2 of q, verify, respec­

tively, ( t/J1 V f/,,)(X) = t/11 (X) U "'2 (X) and ( V,1 A f/,,)(X) = r/1i (X) n f/,,{X}, for 
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any XE P(E). The operator v E i' defined by .v(X) = xc, for any Xe P(E), 
is called negation operator. The complementary operator of an operator 1/J E ~. 
denoted 111/J, verifies v(,p(X)) = (,p(X))C, for any XE P(E). 

The dual operator of the operator tJJ, denoted by tJJ*, is ¢• = 111/Jv. 
Let CE P(E). The dilation and erosion by Care the operators 6c and t:c 

given by, for any X E P(E), 6c(X) =Xe C and t:c(X) =Xe C. 
The following proposition is a property of dilations [5, p. 82, Eq. 4.25]. 

Proposition 6 If X, C E P(E), then, for any h e E, 6c(Xh) = 6c,. (X) = 
(6c(X))h-

As a consequence of Proposition 6, we have the following result. 

Corollary 1 Let X, Y, C E P(E). If 6c(X) = Y, then, for any h E E, 
6c,.(X-h) = Y. 

Proof: 
6c(X) = Y ¢> (6c(X))h = Yh 

¢> 60,.(C) = yh 
(by Proposition 6) 

¢> (60,.(X))-h = y 
¢> 60,. (X-h) = Y 

(by Proposition 6). 

• 
An operator ¢ is called tranalation invariant ( t.i.) iff, for any z E E and 

X E P(E), t/J(X,.) = ,JJ(X),.. 
Let W be a finite subset of E. An operator t/J is called locally defined within 

W iff, for any z E E and X E 'P(E), z E tp(X) ¢> z E tJJ(X n W,.). 
An operator tp is called W-operator iff it is both t.i. and locally defined 

within W. The set of all W-operators will be denoted by i'w. The pair 
(ip w, S) constitutes a sublattice of the lattice (ii, S) [3]. 

The kernel of an operator t/1 E iPw is the set ICw('I/J) given by ICw('I/J) = 
{XE P(W) : o E ,t,{X)}. 

Barrera and Salas [3] stated the following lattice isomorphism between the 
complete lattices (Ilw, S) and (lPw, :$;). 

Theorem 8 The mapping M(ICw(-)) from (lPw, S) to (Ilw, S) constitute., a 
lattice isomorphism between the lattice., (ipw, :5) and (Ilw, :$;). The inver,e of 
the mapping M(JCwt» is the mapping JC;..1(U(·)), where JCiv1(·) 11 defined by !Cw (X)(X) = {.:i: e E: (X - .:i:) n W e X}. 

For any operator 'I/J e itw, the ba!is of ,t, is the collection Bw('I/J) of all 
maximal intervals contained in /Cw(t/J), that is, Bw(t/>) = M(/Cw(t/J)). 

An important consequence of Theorem 8 is that the basis of a W -operator 
tj, characterizes it uniquely. 

Given 1/1 E itw and h E E, the operator t/J1a is locally defined within W-h· 
The following proposition [3] shows how to build the basis of ,t,,. from the basis 
of¢. 
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Proposition 9 //t/J E IIw and h EE, then Bw_.,(t/J,.) = (Bw(,f,))_,.. 

Given t/J E iiw and C E 'P(E), the operators 6ct/J and ect/J are locally 
defined, respectively, within WEB <Jf and WEB C. The following proposition [3] 
shows how to build the basis of 6ct/J and ect/J from the basis of t/J. 

Proposition 10 If ,p E Ilw and C E 1'(E), then 

Bwec• (6ct/J) = Bw(t/1) EB <Jf and Bweo(ec¢) = Bw(1/1) e C'. 

The next result is a consequence of Theorem 8 and Proposition 10. 

Proposition 11 1/X, Ye Ilw and Ce 1'(E), then 
(XUY) EBC = (XEBC) LI (Y eC). 

Proof: By the lattice isomorphism between (Ilw, :S) and (iiw, :S), there exist 
'Pl, t/J,. E 'tw such that Bw(t/11) = X, Bw(t/J,.) = Y and XUY = Bw('Pl V t/J,.). 
Thus, by Proposition 10, we have that (XU Y) EB C = Bwec(6eo(t/J1 V tf,,J)). 
Since 6c-("'1 Vtf,,J) = (6eot/11)V(6c•"'2) [5, p. 82, F.q. 4.27], then, by Theorem 8, 
Bwec(6eo (t/li v 1/12)) = Bweo(6eot/11) u Bwec(6C't/J,.). Since, by Proposi­
tion 10, Bweo(6C't/11) = Bw(t/J1)EBC and Bweo(6C'1/i-J) = Bw(t/12)E9C, then 
Bweo(6C'1/11) U Bweo(6c,1/i-J) = (Bw(,f,1)EBC)U(Bw(1/12)EBC). Therefore, 
~U~E9C=~EBC}U~EB~ ■ 

An operator t/J is called increasing ifl'VX, YE 1'(E), if X ~ Y, then ,t,(X) !'.;; 
,t,(Y). 

Since dilation and erosion are increasing operators, the next result holds. 

Proposition 12 Let X, YE Ilw and C e 1'(E). If X :SY, then 
XEBC :S YEBC andXeC :S Ye C. 

Proof: By the lattice isomorphism between (Ilw, :S) and (iJlw, :S), there exist 

1/J1,"'2 e iJlw such that Bw(t/J1) = X, Bw(t/12) = Y and t/J1 :S 1/12. Then, 
60'"11 :S 6c,1/i-J, since 6C' is increasing. Thus, by Theorem 8, Bwec(6C'1/J1) :S 
Bweo(6C'1/i-J) and, by Proposition 10, Bw("'1)E9C :S Bw(1/12)E9C. Therefore, 
X EB C :S Y EB C. Similarly, one can prove that X e C :S Ye C. ■ 

The next result is a consequence of Corollary 7, Theorem 8 and Proposi­
tiona 9 and 10. 

Proposition 13 Let Xw E Ilw, C E 'P(E) and Y w• E IIw,. If Xw EB C' = 
Yw,, then, /or an11 h E 'P(E), (X1a)w., EB (C,a)t = Yw,. 

Proof: By Theorem 8, there exist t/J e ~wand t/J' E iJlw, such that Bw(l/1) = 
Xw and Bw,(t/J') = Yw,. Since Xw E9 C' = Yw•, by Proposition 10, 
6ct/J = t/J'. Hence, for any h E E, by Corollary 7, 60,.t/J-1a = t/J'. By 
Proposition 10, Bw,(t/J') = Bw.,(t/J-1a) E9 (C1a)t. Thus, by Proposition 9, 
Bw,(t/J') = (Bw(1/1))1a EB (CA)t. Therefore, (X1a)w., EB (C1a)t = Yw,. ■ 
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Problem: Given a collection of maximal intervals Y w• E II w• and a set 
CE 'P(E), find all collections of maximal interoals Xw E llw such that 

(1) 

By Theorem 8, there exist ,p E 'l'w and '1/J' E \Jlw, such that Bw('I/J) = Xw 
and Bw,(t/1') = Yw,. So, by Proposition 10, we have that Xw EB c;t = 
Bwect (5ctJ,). Thus, given a set C E 'P(E), the above problem can be equiv­
alently viewed as the problem of finding all W-operators t/J E IPw such that 
6ct/J = t/J'. Moreover, since the operators 6ct/J and t/J' are locally defined within, 
respectively, WEB ct and W', the windows Wand W' satisfy WEB C' = W'. 

4.1. AN UPPER BOUND FOR W 

The next result states an upper bound for the window Win the Equation (1) 
and is a direct consequence of the adjunction relation given in [5, p. 84, Eq. 
4.41}. 

Proposition 14 Let w, C, W' E 'P(E). If W EB ct = W', then W f W' e ct. 

Given a set C E 'P(E) and a collection of maximal intervals Y w•, by Propo­
sitions 14 and 2, the collections Xw E Ilw that satisfy the Equation (1) can 
be changed its representation to Xw•ac• E Ilw•ac•. So, we can consider that 
W=W'ect. 

4.2. AN UPPER BOUND FOR Xw 

In this section, we state an upper bound for Xw. For that, we need first some 
preliminary results. 

Proposition 15 If C E 'P(E), then o E c;t EB C. 

The next result is an immediate consequence of Proposition 15 and the 
definition and associative property of the Minkowski addition. 

Proposition 16 JJW,C e 'P(E), then W f (W met) EBC. 

As a consequence of Proposition 2 and Proposition 16, we can change the 
representation of any collection of maximal intervals Xw E Ilw to Xw 11 E 
Ilw", where W" =(WEB ct) EB C. 

The following theorem states an upper bound for all Xw E Ilw that satisfy 
Equation (1). 

Theorem 17 Let Y w• E Ilw, and C e 'P(E). For any Xw e Ilw 6Uch that 
Xw EB ct = Y w•, then Xw11 ~ Y w• e ct, where W" = (W EB ct) EB C. 



8 RONALDO F. HASHIMOTO ET AL. 

Proof: Since Xw EB ct = Y w•, then (Xw EB a&) e ct = Y w• e c&. Let t/J be 
the W-operator such that Xw = Bw(,J,). Note that, by Proposition 2 and 
Proposition 16, the collection Xw can change its representation to Xw" = 
Bw .. (,J,). By Proposition 10, (Xw EB a&) 9 a& = Bw11 (ec60,J,). Since ec/Jc 
is a cl08ing and cl~ is extensive [5, p. 91, Eq. 4.66], then ,{J $ (ec/Jc)t/J. 
Hence, by lattice isomorphism between (Ilw11,$) and ('f!w11 ,$), Bw11 (,/J)::; 
Bw11(ec6c,J,) and, therefore, Xw" $ (Xw EB ct) 9 a&= Yw, 9 ct. ■ 

0

4.3. LOWER BOUNDS FOR Xw 

Now, we will state the lower bounds for Xw. For that, we need the following 

result. 

Proposition 18 Let Yw• E IIw,, Xw E IIw and Ce 'P(E). If Xw ea&= 
Y w•, then, for each intffllol [A', B'] E Y w•, there uist [P, Q], [X, Y] E Xw 
and a, b E ct auch that P. = A' £ L• and (W .. )w, UR. £ B' = (W11)w, U Yt, 
whereR(.;Q andL2X. 

Proof: Since Yw• = Xw e ct= u{(XA)wec• : he ct}, then Yw• is the 
supremum of the collections (XA) w., for each h E (JI, where the representation 
of the intervals in (X,.)w,. is changed to (X,.)w$0•. So, each interval [A', B1 E 

Yw• is built by the supremum of the translations of the intervals in Xw. 
Thus, there exists an interval in Xw such that its translation contributes to 
generate the left extremity of the interval (A', B']. In the same way, there exists 
another interval in Xw such that its translation contributes to generate the 
right extremity of the interval [A', B']. 

Hence, for any interval [A', B'] E Y w•, there exist [P, Q], [X, Y] E Xw and 

points a,b e ct such that [P,R]. ~ [A',B1, R ~ Q and P. = A'; [L,YJ• ~ 
[A',B1, L 2 X and (W,)w, UY•= B'. Since [P,R]. ~ [A',B'], then (W .. )w, U 

R. ~ B'. Since (L,YJ• ~ [A',B1, then A'~ L11. ■ 

Given an interval [A',B'] ~ 'P(W') and a set C e 'P(E), we define the 

collections of intervals .c~• ,B'J,c and 'R.~• ,B'J,c, contained in 'P('P(W)), where 

w = W' e ct as _c[A',B'),C = {[A' B n W] : B C B' z E ct} and ' w __ , - __ , 

'R.~
1 

.B'],C = {IA, B'_., n W) : A~. ~ A, 2: E ct}. We define the set 11.l:' ,B'J,O 

as n~',B'],C = {{[P,Q],[R,S]}: (P,Q) e .cl:',B'J,c,[R,S] E ~',B'].C}. 
Let I = {1, 2, 3, · • ·, n} be a set of indices. Let Y w• = {IA~, B;) : i e I]} 

be a collection of muima1 intervals in Ilw, and C e 'P(E). We define the set 

Sv..,,,o - '2.J(A~.S:.),C X '2./[.A;.~J.C X X '2./(A!.,E.],O 
w - nw nw ... n.w 

Given a collection of maximal intervals Y w• E II w• and a subset C e 'P(E), 

let us define the set of collection of intervals 9~"'' ,c, where W = W' e ct, by 

0~"''•0 = {Zw E Ilw: Zw = U{S~, i EI}, (S~,si,••·,Sw) es~wr,,C} 
The next result states the lower bounds for Xw in Equation (1). 

Theorem 19 Let CE 'P(E) and Yw, E IIw,. For all Xw e Ilw auch that 

Xw EB ct = Y w•, there e:mta Zw E 9~' •0 auch that Zw ::; Xw. 
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Proof: Let Yw, = {[A,,BH : i E /}. By Proposition 18, for each in­
terval (A~,B:J E Yw•, there exist the points a,,b, E C' and the intervals 
[.11, Q;], [X;, Y.] E Xw such that (Pi),., = ~ ~ (Lih, and (W,., )w, U (.R;),., ~ 
B: = (Wbt)w,U(Y.) • ., with .R; f Q; and L, 2 Xi. Let Siv = {[P;,.R;], [L,, Y.]}. 
Let Zw be the collection of intervals in Ilw such t~t Zw = U{Siv : i E /}. 
Since [P,,.R;] £ [~;, Q,] an~ [L;, 1'] £ [X;, Y.], then Sw 5 {[P;, Q;], [X;, Y.]} 5 
Xw. So, Zw 5 Sw 5 U{Sw: i EI} 5 Xw. 

In order to prove that Zw E e~w••0
, we have to show that Siv e 1l\fdiJ,c_ 

For that, we must show that [.11,.R;] e cl::.sa.c and (L;,Y.] e 'R.~:,s;J,c_ 
Since (P;)a, = ~. (W a; )w, U (.Ri)IJj ~ B; and a; E ct, then, P, = (AD-a, and 
Ww, UR;~ (BD-a;• Hence, [P;,.Ri] e ..cl::,S:J,c_ In a similar way, one can -•, 
prove that [L,,Y.] e 'R.l:;,sjJ,c_ ■ 

As a consequence of Theorem 19, all lower bounds for Xw in Equation (1) 
a.re in e~w• ,c. 

4.4. FINDING SOLUTIONS OF EQUATION {l) 

This section presents the algorithm for solving the Equation (1). 

Algorithm SEARCH ( C, y w• ): 

Input: A set C E 'P(E) and a collection of intervals Y w• E Ilw,. 
Output: The collections Xw E IIw, where W = W' ect, such that 

Xw ect;::: Yw,. 

begin 
W" +- (Wect) eC; 
for each Zw E e~w• ,c do 

for each Xw such that Zw11 5 Xw 11 5 Y w• e C' do 
if Xw EB ct= Yw, then 

output Xw; 
end. 

5. Increasing Operators Simplification 

In this section, we recall some known properties of increasing operators. In 
addition, we show how the search space of the solutions of Equation (1) can be 
reduced when we restrict the problem to the increasing W -operators. 

We denote by Ow the set of all increasing W -operators. 
Let us define the set Iw ~ Ilw as the set of all collections of maximal in­

tervals that are the basis of increasing W -operators, that is, I w ;::: {Bw ( tJ,) E 
Ilw: t/1 E Ow}. 

A very interesting property of basis of increasing W -operators is given in 
the following proposition. 
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Proposition 20 Let t/J be a W-operator. Then, t/J i.f an increasing opero.tor 

iff for an11 intenJal [A,B] e Bw(tf,), B = W. 

Thus, by Proposition 20, the right extremity of any interval in every col­

lection of maximal intervals in Iw is the window W. For simplicity, where 

there is no risk of confusion, we denote the intervals [A, W] oi Xe Iw by [A]. 
Furthermore, the partial order :S on the elements of Iw can be simplified in 

the following way. 
For all X, YE Iw, 

X :S Y ~ V[X] e X, 3[Y] E Y : [XJ £ (Y]. 
~ V[X]eX, 3[Y]eY:Y2X. 

Now, consider the problem, presented in Section 4, restricted to the increas­

ing W-operators, that is, given a collection Y w• E Iw, and a set C E 'P(E), 

find all collections of maximal intervals Xw e I w such that Xw e C' = Y w•. 

5.1. LOWER BOUND SIMPLIFICATION 

We can get a new lower bound for Xw e Iw that is solution of the prob­

lem. For that, we need the following result, that is a particular case of the 

Proposition 18, when the right extremity of the intervals in Y w, and Xw are, 

respectively, the windows W' and W. 

Proposition 21 Let Yw, e Iw,, Xw e Iw ond C E P(E). If Yw• = 
Xw e C', then, for each intenlal [A1 e Y w•, there emf an intenlal [P] e Xw 
and a point h e C' auch that P,. = A'. 

Given an interval [A1 £ P(W') and a subset C E P(E), we define the sets 

cl:'J,c and 11.l:'J,c as cl:'l,C = {[A~,.,, W] : z E C'} and 11.l:'l,C = { {[P, W]} : 

[P, W] E cl:'J,c}. 
Let I= {1,2,3,·· ·,n} be a set of indices. Let Yw, = {[~]: i E J]} be 

a collection of maximal intervals in Iw, and C e P(E). We define the set 
,,...v.,,,,,c _ -11IA~J.c x x -11IA~J.c 
.rw - nw · · · nw · 

Given a collection of maximal intervals Yw, e Iw• and a subset Ce 'P(E), 

let us define the set of collection of intervals •iw• ,c, where W = W' e C', by 

+~•0 = {Zw E Zw : Zw = U{F~, i E I}, (FW, F:V, · · ·, Fw) E :Fi""' •0 } 

Note that, by definition of the set 8~""' •0 in Section 4.3, if the right ex­

tremity of the intervals in Y w• and Zw are, respectively, the windows W' and 

wt then eiw• ,c is reduced to the set ~~· ,C • Thus, we C&D easily see that, 
~rw•,C ~ eiw•,c. 

The following result states the lower bounds for Xw in Equation {l) for 

increasing operators and it is a particular case of Theorem 19. 

Theorem 22 Let Ce 'P(E) and Yw, e Iw,. For all Xw e Iw ,tu:h that 

Xw eC' = Yw,, there e:ri6ta Zw e •~••0 auch that Zw ~ Xw and Zw EB 
C' =Yw,. 
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Proof: Let Yw• = {[~] : i e J}. By Proposition 21, for each interval 
[~] E Y w•, there exist a. E ct and [~) E Xw such that (Pi)o, = A~. Let 
Fw = {[Pi]}, for i e J. Let Zw be the collection of intervals in Iw such that 
Zw = LI{Fw: i E J}. 

The proof that Zw E t~w•,c and Zw :S Xw can be done in a similar way 
that we did in Theorem 19. 

Now, we prove that Zw ea'= Yw,. We divide this proof in two parts. In 
the first one, we prove that Zw E9 C' !: Y w• and, in the second one, we show 
that Yw, ~ Zw ea'. 

Since Zw ~ Xw, then, by Proposition 12, we can easily see that ZwE9C' !: 
XwEBC'=Yw,. 

Observe that y W' = {[A~] : l € I} = {[(AD-01 I w~o.10( ; i € I} :S 
LI{{((A:}-0(, W]c : C E C'} : i E I} !: LI{{[(AD-Oj, W]} EB C'} : i E I}, 
since each tli e C'. So, Yw, :S LI{Fiv ea': i e I}, since Fiv = {[(AD-o,H­
Thus, by Proposition 11, Y w• :S U{Fiv : i E I} EB ct = Zw EB ct. ■ 

As a consequence of Theorem 22, all lower bounds for Xw in Equation (1) 
are in t!,w••0

. In fact, each Zw e t!,w',c such that Zw © ct = Yw, is a 
lower bound for Xw. 

Algorithm SEARCH..INCREASING ( C, y w• ): 

Input: A set CE 'P(E) and a collection of intervals Yw, E Iw,. 
Output: The collections Xw e Iw, where W = W' ect, such that 

XweC' =Yw•-

begin 
. W" +- (W E9 ct) E9 C; 

for each Zw E t!,"'' ,c do 
if Zw E9 C' = Yw, then 

end. 

for each Xw such that Zw" :S Xwu :S Y w• e ct 
if Xw E9 C' = Yw, then 

output Xw; 

5.2. FEASIBLE SETS C FOR THE EQUATION (1) 

In the Problem defined in Section 4, a subset C E 'P(E) and Y w• E llw• are 
fixed. However, there exist subsets CE 'P(E) for which Equation (1) has no 
solution. 

Given Yw, E Iw,, the subsets C in 'P(E) such that Equation (1) has at 
least one solution are called feasible set.. 

In this section, we study some properties of Equation (1) in order to give a 
necessary condition for the existence of feasible sets. Observe that, by Propo­
sition 13, if a subset CE 'P(E) is feasible, then, so is c,., for any he E. 

Let us state an equivalence relation on a generic collection of maximal in­
tervals X e Iw. Let (A] and [A'] be two generic elements of X. We will Bay 
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that (A) and (A') are equivalent under translation iff the left extremity of one 

can be built by a translation of the other, that is, (A) = [A'] iff there exists 

h E E such that A = A~,.. 
As the equivalence under translation is an equivalence relation (i.e., reflex­

ive, symmetric and transitive), the set of their equivalence classes (i.e., the sets 
composed exactly of all the equivalent elements in X) constitute a partition of 

X. 
Let Z e Iw. We will denote by C(Z) the set of all equivalence classes 

(under translation) on Z. We will denote by E(Z) a set composed by exactly 
one element of each equivalence class in C(Z), that is, E(Z) is a set such that 

IE(Z)I = IC(Z)I and for each X E C(Z) there exists [A] E E(Z) such that 

[A]eX. 
Let [A] E X e Iw. We say that a left extremity A is minimal in X iff 

IAI :S IBI, for any interval [B] E X. Clearly, if IAI = IBI, then the extremities 
of [A) and [B] are minimal. 

Let Z e Iw. Let us denote by Min(Z) the set of all intervals in E(Z) such 

that its left extremity is minimal in E{Z), that is, Min(Z) = {[A) e E(Z) : 
A is minimal in E(Z)}. 

Given a collection of maximal intervals Z e Iw, for each set A E 'P(E), let 

us define the set Sj e 'P{E) BB Sj = {h EE: [A-1a) e Z}. 
The next result gives a necessary condition for feasible sets. 

Theorem 23 Let Y w• E I w• and C E 'P(E). If C i., a fea6ible set, then, for 

anr, [A') e Min(Yw,), there uista a e E such that Ca ~ s!,""' and C ia an 
, . t ,fSYw, anvanan o A' • 

Proof: Since C is fe&Bible, there exists Xw e Iw BUch that Xw EB C' = 
Yw•• Given an interval [A'] in Min{Yw,), let us denote I!,w and I!.w' the 

intervals of Xw and Y w•, respectively, such that the translation of their left 

extremity is equal to A', that is, I!,w = {[X, W] e Xw : 3h e E, X,. = A'} = 
{[A'... .. 1),[A'...,.2],· .. ,[A'...,.,.]} and I!,w' = {[X',W'] E Yw,: 3h e E,Xi. = 
A'} = {[A'...,,], (A'...,,], .. ·, (A'..., .. ]}. Note that, sf,w = {z1,z2, · · · ,zn} and 

s1,w• = {111,r,2,'",lfm}• Thus, I!,w = {[A~ .. ) : z e Sf."'} and I!.w' = 
{[A'...,) : 11 E s1,w• }. Now, we will prove that s1,w• = s!,w EB C. 

Since A' is minimal in E{Y w• }, then A' is also minimal in Y w•. 
On one hand, S_!,w EB C ~ s1,w•. In fact, let (A~.] E I!,w and c E C'. 

We will prove that [A'...,.+e• W1 E Yw,. Suppose that (A'...,.+e• W1 ¢ Yw,. 
Thus, there exists an interval [X', w1 e Y W' such that X' ~ A'... .. H and 

X' -:/- A'...s+c· So, by Proposition 1, IX'I < IA'...•+el• But, it contradicts the 

fact that A' ~ minimal in Y w•. Thus, [A'...•+e• W'] E Y w•. Hence, there exist 

If E s!r such that [A'...z+cl = (A~,]. that is, -z+c = -11. Thus, z+ (-c) = If 
and , therefore sf,w EB C ~ s 1, w• I since C e C'. 

On the other hand, s1,w• £ S_!,w EB C. To prove this, we will show that, 

given an interval (A~11] e Y w•, then there exist z E S'!,.,.. and c e C' such that 
-11 = -% + c. By Proposition 21, there exist an interval (P) E Xw and a point 
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c E ct such that Pc= A'...,. Thus, (P] = [A'....c-,] and, consequently, (P] E I!,w. 
Thus, there exists z E s!,w such that [Pl = [A~zl- Thus, -11 = -:t + c. 
Therefore, 11 = x + (-:c), a:nd, since 11 E s1,w•, x E sf,w and c E ct, then 
s:,w• C sX,w EBC. 

Sin~e s1,w• = S°!,w EB C, then by Proposition 4, C is an invariant of sI,w•. 
It remains to show that there exists a e E such that C,. ~ sI,w•. 

Let a E S!,w. By Corollary 7 and the definition of dilation, we have S !,w• = 
(S°!,w)-a EB C,.. Since a E szw, then o E (Sf,w)_,., and, by definition and 
the commutativity property of the Minkowski addition, C,. ~ Ca EB (s'!,w )_,. = 
(S!,w)-a EB Ca= sr,w•. ■ 

Given a collection of maximal intervals Yw, E Iw,, as a consequence of 
Proposition 13, if C is feasible, then so is c,., for any he E. By Theorem 23, 
if C is feasible, then, for any [A'] E Min(Y W' ), a translation of C, say Ca, is 
a subset of s1,w•. Since Ca is also feasible, then the feasible sets can be found 
by searching C \:;; sI,w• such that C is an invariant of s1,w•. 

Now, given a collection of maximal intervals Yw• e Iw,, we present an 
algorithm that outputs pairs (C,Xw) e 'P(E)xiw such that XwEBC' = Yw,, 

Algorithm SEARCH..lNCREASING..ALL (Yw,): 

Input: A collection of intervals Y w• e IIw,. 
Output: The pairs (C,Xw) E 'P(E) x Iw, with W = W' e ct, 

such that Xw EB ct= Yw,. 

begin 
let [A') e Min(Yw,) such that jSI,w'I is minimum. 

for each C \:;; sI,w' such that C is an invariant of sI,w• 
begin 

let {X1,X2,· ··,Xn} be the output of 
SEARCH..lNCREASINO (C, Yw,); 

for i = 1, 2, .. ·, n do 
output the pair (C,Xi)i 

end 
end. 

6. Compositions of Erosions and DilatioDl!I 

In this section, given the basis of a W-operator 1/J, that is an alternating 
composition of erosions and dilations, we describe how to find a representation 
of t/J using the algorithm pre5ellted in Section 5.2. 

We denote by Tw the set of all W-operators that is an alternating compo­
sition of erosions and dilations. Note that the set of all alternating sequential 
filters [8], locally defined within a window W, is a subset of Tw. 
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Given ,J, e ilw, the operators vt/J and v,11 are locally defined within W. 
Consequently, ,p• = vt/J11 is also locally defined within W. In addition, if 
t/J e Ilw is increasing, then so is ,p• [5, p. 46]. 

Let I = {l, 2, 3, • • •, n} be a set of indices. Given the basis of an increasing 
W -operator 1/J, the next result shows how to build the basis of ,J,• from the 
basis of t/J. This proposition is a particular~ of the result stated in [3]. 

Proposition 24 lf t/J ia an increasing W-operotor with baaia Bw(,t,) ={[A,]: 
i e I}, then the baaia of ita dual operator ,J,• ii 

Bw(tj,•) = n{[{a}]: a e ~.• e I}. 

The following result show that the dual operator of an erosion is a dilation, 
and vice-versa [5, p. 84, F.q. 4.41). 

Proposition 25 If C e 'P(E), then 6c = Ee• and Ee = 6c,. 

The next result is an immediate consequence of the definition of dual oper­
ator and Proposition 25. 

Corollary 26 If Ce 'P(E) and tj, e Ilw, then (Ec•tp)• = 6ct/>•. 

The following result is a consequence of Proposition 10 and Corollary 26. 

Corollary 27 Let t/1 E Ilw,, C E 'P(E) and ,J, E IIw. Then, v,' = Ec;,,p ijf 
Bw, ((,J,'t) = Bw(,J,•) EB ct.. 

Proof: Since ,J,' = Ec•t/J, then, by Corollary 26, (,J,')• = 6ctp•. Therefore, by 
Proposition 10, Bw,((tJl't) = Bw('I/J*) EB ct.. ■ 

ff t/J is an operator in T w, then a representation of ,p may start by a dilation 
or an erosion, that is, tp may be rewritten by 601"'1 or Ec2 1/)i. Recursively, t/11 
may be rewritten by 60.t/Js or Ec,'P•, t/Ji may be rewritten by 60,"'6 or Ec8 ,Pe, 
and so on. 

Given the basis of an operator ,p e T w that starts by a dilation, then, 
by Proposition 10, we can find a representation of tJ, applying the procedure 
SEARCH.lNCREASING..ALL for Bw(,J,). ff (C, X) is an output of the procedure 
SEARCH.lNCREASING..ALL (Bw(,J,)), then ,J, can be rewritten by 1P = 601/11, 
where t/)1 is the increasing W -operator such that the basis of ,J,1 is X. 

Given the basis of an operator ,J, e T w that starts by an eroeion, then, by 
Corollary 27, we can find a representation of ,J, taking the dual of the basis of ,p 
and applying the procedure SEARCH.lNCREASING..ALL for Bw(tt,•). ff (0,X) 
is an output of SEARCH..lNCREASING..ALL (Bw(t/J·)), then tp can be rewritten 
by t/J = Ee• 'Pl, where "'1 is the increasing W -operator such that the basis of 
t/Ji is x•. 

Thus, given the basis of an operator t/J e T w, we will construct the tree that 
represents the space of all possible representations oft/>, using the algorithm 
5EARCH.1NCREASING..A.LL1 presented in Section 5.2, and the properties given 
in Propositions 10 and 24 and Corollary 27 
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The representation tree is the tree such that the root is the basis of t/J. A 
node is a collection of maximal intervals Y w E I w. If Y w = {[{ o}]}, then 
Y w has no descendants. If Y w = {[ {a}]}, a #- o, then the descendant of Y w 
is {[{o}]} and the edge that joins Yw and its descendant is labeled 6{a}• In any 
other case, compute Yw and apply the procedure SEARCH..lNCREASING..ALL 
for Yw and Yw. H (C,X) is an output of SEARCH..lNCREASING-ALL (Yw), 
then X is a descendant of Y w and the edge that joins Y w to X is labeled 6c. 
H (C, X) is an output of the procedure SEARCH..lNCREASING..ALL (Yw ), then 
x• is a descendant of Y w and the edge that joins Y w to x• is labeled Ee•. 

Note that, given the basis of an operator tJ, e T w, the labels of the edges 
on the path from the root to a node Y w = { [ { o}]} forms a representation of 
tp. 

7. Conclusion 

In this paper, we have studied the problem of transforming the sup-decomposi­
tion of W -operators, parameterized by their basis, into more efficient sequen­
tial decompositions (when they exist). 

The solution of this problem depends essentially on the solution of the di­
lation factorization equation, that is a hard combinatorial problem. We have 
generalized this equation for the family of W -operators and given bounds for 
its space of solutions. 

Moreover, we have gotten new bounds for the space of solutions of the dil&­
tion factorization equation constrained to the family of increasing W -operators 
and showed how to apply it to build sequential decompositions from the basis 
of alternating compositions of dilations and erosions. 

The next steps of this research are the implementation of the technique 
proposed and the study of more restrict bounds for the family of alternating 
sequential filters. 
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