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Abstract

Given a smooth (0,1}-form w over a compact Riemann surface M it
is possible to associate, in a natural way, a CR structure over M x S1.
As a consequence of a result proved in [BCM] we derive conditions
on w that characterize the global hypoellipticity of the associated 8-
operator.

Introduction

The purpose of this note is to show how the results on global hypoellipticity
for real operators on compact manifolds obtained in [BCM] can be used to
derive analogous ones for the tangential CR operators associated to certain
classes of CR manifolds. In general, if X is an abstract, locally embed-
dable three-dimensional CR manifold, it is well known that the associated
3y operator is never locally hypoelliptic (see [T1]) and it is also not globally
hypoelliptic if there is some strictly psendoconvex point in X (cf. Propo-
sition 3 below and the argument that follows from it). Hence the study of
the global hypoellipticity for such an operator has only meaning when the
structure is Levi flat, in which case the validity of this property is expected
to depend upon some “diophantine approximation property” related to the
structure.

In this work we study this problem for certain classes of CR structures
defined on a product M x S!, where M is a compact Riemman surface and
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S1 is the unit circle. They are naturally associated to a (0,1)-form w on
M. The global hypoellipticity of the 8, operator is described in Theorem 1,
whose proof is a consequence of the observation that it is possible to relate
this property with the analogous one for 3 + ds, a real operator for which
the result in [BCM] can be applied. We conclude the note by also describing
the space of the global CR distributions.

Preliminaries - Statement of the main result

We start by establishing the notation to be used throughout the work. Let
M be a compact Riemann surface. We will denote by T*? (resp. T*!) the
vector bundles over M whose fiber at p is the space of cotangent vectors of
type (1,0) (resp. (0,1)) at p. Thus T10 ¢ TO! = CT*M, the complexified
cotangent bundle over M. The exterior derivative on M has its standard
decomposition d = 9+ and the space of holomorphic one-forms on M, that
is, the space of J-closed smooth (1,0)-forms on M, will be denoted by Q(M).
We will sistematically identify bundles over M with bundles over M x §!

by means of their pullbacks via the natural projection M x § 1, M.
Let 6 denote the angular variable on S1.
Proposition 1. Let w be a smooth one-form on M, of type (0,1), and define
a = df +w. Then
T = T'? @ span{a}

defines a rigid CR structure on M x S'.

Proof. It is clear that T’ defines a subbundle of CT*(M x §'). Furthermore
we have T' + T' = CT*(M x S!) for df = a — w is a section of T' + T'.
Let V denote the orthogonal (for the duality between one-forms and vector
fields) of T'. It follows immediately that V is a complex line bundle over
M x S? satisfying

YAV =0, CT(M x ') = V®V®span{-aa—0}, [g—a,V] = 0.

The proof is complefe.

The tangential CR operator associated to such a structure is the first order
operator _
8y :C°(M x §') — C®(M x §;CT*M)

given by
Oyu = fu — wa—u.
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The main goal of the present note is to derive conditions in order to ensure
that 0, is globally hypoelliptic in the sense of the following definition:

Definition 1. Let E and F be vector bundles over a smooth manifold M
and let P : C*°(M,E) — C®(M,F) be a linear partial differential operator
acting between sections of E and sections of F. The operator P is said to be
globally hypoelliptic if the conditions u € D'(M, E), Pu € C**(M, F) imply
u € C*°(M,E).

In order to state our main result some preparation is necessary. We begin
by applying Theorem 19.9 in [F]. We can write, in a unique way,

(1) w=14+8G

where G € C°(M) and ¥ € Q(M). In local coordinates we have

0G | <\ ..
w_(-£+A)d

where X is holomorphic. Thus V is locally spanned by the vector field
a aG J
L=~ (%+Y) %

and a simple computation gives

.0ImG @

(L. L) = 255> 55

Thus T’ is strictly pseudoconvex at every point (z,6) € M x §! such that

dlmG
0202 P20z D) #0

and Levi flat if and only if ImG is constant. It is important to point out
that such a structure can never be strictly pseudoconvex everywhere due to
the maximum principle for subharmonic functions.

Proposition 2. The following properties are equivalent:
(a) T is Levi flat;
(®) d(w +@) = 0



Proof. We first show that (a)=(b). According to the preceding discussion,
in the decompositon (1) the function G can be assumed real. Thus

w+T=79+94+0G+0G=V+9+dG

and hence N
dlw+@)=089+09=0.

Now we assume that (b) holds. As above we get
d(8G + 8G) = 0.
On the other hand
ddG + ddG = 38(G - G) = 2109(ImG);

hence ImG is harmonic and thus constant. The proof is complete.
Finally we recall the following definition (see [BCM}):

Definition 1. For a closed, smooth and real one-forn a on M, we define:
(a) a is integral if 3~ [ a € Z for any one-cycleo in M.
(b) a is rational if there exists ¢ € IN such that ga is an integral one-form.

(c) a is Liouville if a is not rational and there exist a sequence of closed,
integral one-forms {a;} and a sequence of integers q; > 2 such that

{qj (a - (%) a_,-)} is bounded in C°(M,CT*M).

It is easily seen that a is integral if and only if its cohomology class [a] €
H'(M,IR) belongs to the image of the natural homomorphism

HY(M,2nZ) — H'(M,R).

This remark shows that the terminology here adopted coincides (up to a
factor 27) with the classical one (see, e.g., [LB, p.36)).
We are now in position to state our main result:

Theorem 1. The following conditions are equivalent:
(a) The operator , is globally hypoelliptic;

(b) T' is Levi flat and w + @ is neither rational nor Liouville.



Proof of Theorem 1

We begin with a simple (and well known) observation:

Proposition 3. Let T be a locally integrable CR structure on an open
subset V of R3. Assume that T is strictly pseudoconvex at g0 € V. Then,
near po, there is a continuous CR function whose singular support equals
{po}-

Proof. . The proof is absolutely routine. It is well known (see, e.g., [T2,
sections 1.7 and 1.9]) that there are coordinates (z,y, s) centered at pp such
that 7 is spanned by dz, dw, where w = s + iy(2,s). Here z = z + iy and
7 is real, smooth and satisfies

1(2,8) = |2[* + O(|2° + |zlls| + &2).

In a small neighborhood of the origin we have y(z,0) > |2|?/2 and thus
v(z,8) = 7(2,s)—is has image contained in €\ (}— o0, 0[+i{0}) and vanishes
ifand only if z = 0 and s = 0. Taking /v, with the choice of the main branch
of the square root, gives the desired CR function.

We now begin the proof of Theorem 1. It is a consequence of Proposition 3
that if T is not Levi flat then §, cannot be globally hypoelliptic. In fact,

if there is a point p € M x S where the structure is strictly pseudoconvex
then, by Proposition 3, we get the existence of an open neighborhood Uy of
pin M x S! and of u € COUp) such that

dyu =0, singsuppu = {p}.

If take x € C°(Up) , with x = 1 near p then xu € COM x S1), dp(xu) €
C°(M x §',CT*M) and singsupp(xu) = {p} . This proves our assertion.
We now introduce the following real operator

L:C®(M x §') — C®(M x S!,CT* M)

defined by

du

a—o'-

Its relevance to our study relies on the following fact: according to [BCM,
Theorem 2.4), if w + & is closed then the operator 1L, is globally hypoelliptic
if and only if w + @ is neither rational nor Liouville. Taking Proposition 2

Lu=du—-(v+@)



into account it follows that Theorem ] will be a consequence of the following
result:

Proposition 4. Suppose that w + @ is closed. Ifu € D'(M x S') then
dyu € C®(M x §',CT*M) if and only if Lu € C®(M x SYLCT*M). In
particular the operator 8, is globally hypoelliptic if and only if the same is
true for the operator IL.

Proof. We select a hermitian metric on M. This metric defines hermitian
inner products on each fiber of CT*M and of A2CT*M which, in a local
holomorphic coordinate z = z + iy, satisfy

< dz,dz >=< dz,dz >=h"!, < dz,dz >=0;

<dzAdz,dzAdz >= k73,

for some h > 0 [LB, p.11]. Moreover, the corresponding volume element
has the expression dV = 2hdzdy. We can thus consider the Hilbert spaces
L3(M;dV), L*(M x §'; dV d9), as well as the Hilbert space L?(M, CT*M;dV)
(resp. L3*(M x S',CT*M;dVdf)) of measurable sections f of CT*M over
M (resp. M x 51) such that

/<f,f>dV<oo (resp./ < f, f > dVd8 < ).
M MxS!

Taking adjoints with respect to the corresponding hilbertian structures al-
lows us to introduce the operators

By, IL*IL : C°(M x §') —» C(M x §1).
We now compute them explicitly.
Lemma 1. Let w € C*°(M,T%!). Then:

(a) The adjoint of wd : C(M x S') — C®(M x S',CT*M) is the map
B —-< %g,w =3

(b) 8*(uw) = ud*w— < du,@ > for every u € C°(M x S?).

(c) < du,w + & >=< Ou,T > + < Ou,w > for every u € C*(M x S1).
(d) lw +@[* = 2Jw]?.

(e) Ifd(w + @) = 0 then d*(w + @) = 20*w.



Proof. All the properties are of easy veyification. We content ourselves in
proving property (e). In a local holomorphic coordinate z = z + iy we have

= BB db ab.
- = -1 P -1 1 2
0*(Bdz) = —h _3 y d%(hdz + bady) = —(2h) (_ + - ) X

Now write w = Adz. Then w + @ = 2(ReAdz + ImAdy) and consequently

104

Fw = =h" P

OReA .0ImA . OReA 0OIlmA
—_— . _,1 - - .
— ( Oz te oz ' dy + dy )

= %d‘(u + @)

since d(w + @) = 0. The proof is complete.

From (a) of Lemma 1 we obtain

An aw a

8,, =0+ < a—o,w >
and, consequently, (b} of Lemma 1 gives

d

Xt '
96’

A o A= A a' 6-‘ —_ e

By the same argument

™ — ™ a —_— —262 - — a
(3) ]LIL_(ld+2<aad,w+u>—|w+w|Bﬁ—(d (w+w))5-a—

and thus, (c), (d) and (e) of Lemma 1 in conjunction with the fact that
d*d = 258 imply

(4) L°L = 25;3;.

This identity is the key tool for the proof of Proposition 4. Let then u €
D'(M x S§') satisfy dyu & C®(M x §1,CT*M). By standard results on

partial hypoellipticity (see, e.g., [T2, Section 1.4]) u must necessarily belong
to C*°(M,D'(S')) and thus its Fourier expansion in 8 can be written as

- at7f
u= Z uje

JEZ
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where u; € C°(M). We have

(5) dhu = E(Eu, ijwu;)e’,
JEZ
(6) Lu= E (du; — ij(w + D)u;) e,
i€z

Now if we take adjoints with respect to the hilbertian structures of L}(M;dV)
and L3(M,CT*M;dV) it follows immediately from (4) that

2(9 - ijw)"(d - ijw) = (d — ij(w + D))" (d - ij(w + ©)).
Hence
() 18 - igwyusl? = 1@ - i3+ @) w5

with norms in L2(M, CT*M;dV). Summing up, (5), (6) and (7) show that
the following property holds true:

(8) If u € D'(M x §*) and Byu € C=(M x §1,CT* M) then Lu € L*(M X
S1,CT*M; dVd8).

Let again u € D'(M x §1) be such that d,u € C°(M x §1,CT*M). If pis
an arbitrary parameter we have

- - -— 2 _— -
)8 (6,:35u— pg—a;—‘) = (a,,a; —#(;992) abu €C™®(M x 91 CT"M)

- 2,0
L (a,:abu - I‘g 02) € L}(M x §',CT*M;dV de).
Taking (4) into account this last property can be rewritten as
1 " al 2 1 (Tl
9) IL H‘]L"'”'agz € L*(M x §',CT*M;dV db).

Finally we introduce the operator

L. :C®(M x §!,CT*M) — C®(M x S, A*CT*M)



defined by
m.f:df—(u+w)/\g—£.

Since w + @ is closed it follows that IL,IL = 0 and thus (9) gives
1 - - az 2 1 -
(10) 3 L.L, + LIL* - 2;1.% ILu € L*(M x §*,CT*M;dVde).

Now, it is easily seen that IL}IL, + ILIL* — 2427 is elliptic if > 0 is chosen
large enough and consequently (10) implies that ILu belongs to H3(M x
S1,CT*M), the Sobolev space of order 2. In conclusion we have improved
property (8) in the sense that L}(M x §!,CT*M;dVdd) can be replaced
by H%(M x S',CT*M) in its statement. By iterating the argument we
reach the conclusion that L2(M x §!,CT*M;dV dé) can in fact be replaced
by NsoH¥(M x S',CT*M) = C®(M x §',CT*M) in property (8). To
complete the proof of Proposition 4 it suffices then to notice that we can
interchange the roles of §, and IL in the whole argument.,

Final Remark: Global CR distributions

For these CR structures the kernel of the operator 8, can be completely
described. We keep the notation established throughout the work and take
u € D'(M x §") satisfying dyu = 0. Then u = ¥~z u;e'’®, where each u;
is smooth on M and satisfies

(11) (8 - ijw)u; = 0.

Let p: M — M be the universal covering of M . For the form ¥ introduced
in (1) we can find a holomorphic function & on M such that @h = p*9. Then

dh+h+Gop)=p'w
and hence (11) implies that
H; = e'ij("+i‘+G°p)(uj op)

is a holomorphic function on M. Now, since |H,| = exp{jImG o p}|u; o p| is
a well defined subharmonic function on M it follows that | H;| is constant.
Consequently H; is itself a constant and we can write

(12) ujop= cje.'j(h+ﬁ+c:op)

9



with ¢; € C. -
Suppose first that ¥ + 9 is not a rational form. If j € Z, j # 0 then there
are points A and B in M such that p(A) = p(B) and

i{(h + R)(A) = (h + h)(B)} ¢ 27 Z.

From the relation

(e-.','c:uj) op= cjeij(hﬂi)
it then follows that c; = 0. Suppose otherwise that J + ¥ is rational and
let ¢ be the smallest natural number such that ¢(9 + J) is integral. Then
eit(h+h) is a well defined smooth function on M and the same argument as
above shows that ¢; = 0 if j ¢ (Z. We summarize this discussion as follows
(cf. also [BCP, Lemma 2.2]):

Proposition 5. If ¥ + 9 is not a rational form then the kernel of 8, in
D'(M x S') contains only the constants. If otherwise J + 9 is a rational
form then the kernel of 8, in D'(M x S§') is the space of all distributions of
the form
= Z ajeij¢(9+h+ﬁ+6‘),
JEZ

where a; € C and h, ¢, and G have the meaning explained above. In
particular, when 9+ is rational, all the global CR functions are functionally
dependent on a single generating function.

10
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