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Abstract 

Given a smooth (0,1)-form w over a compact Riemann surface M it 
is possible to associate, in a natural way, a CR structure over M x S1 • 

As a consequence of a result proved in [BCM] we derive conditions 
on w that characterize the global hypoellipticity of the associated 86-

operator. 

Introduction 

The purpose of this note is to show how the results on global hypoellipticity 
for real operators on compact manifolds obtained in (BCM] can be used to 
derive analogous ones for the tangential CR operators associated to certain 
classes of CR manifolds. In general, if X is an abstract, locally embed­
dable three-dimensional CR manifold, it is well known that the associated 
8,, operator is never locally hypoelliptic (see [Tl]) and it is also not globally 
hypoelliptic if there is some strictly pseudoconvex point in X ( cf. Propo­
sition 3 below and the argument that follows from it). Hence the study of 
the global hypoellipticity for such an operator has only meaning when the 
structure is Levi flat, in which case the validity of this property is expected 
to depend upon some "diophantine approximation property" related to the 
structure. 
In this work we study this problem for certain classes of CR structures 
defined on a product M x S1 , where M is a compact Riemman surface and 

•During this work the author was partially supported by CNPq, Brasil. 1991 Math­
ematics Subject Oassification: 32F40 (primary), 35805 (secondary). Key-words: global 
hypoellipticity, CR structures, (tangential) CR operators. 
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S1 is the unit circle. They are naturally associated to a. (0,1)-form w on 

M. The global hypoellipticity of the 81, opera.tor is described in Theorem 1, 

whose proof is a. consequence of the observation that it is possible to relate 

this property with the analogous one for 8,, + 81,, a. real opera.tor for which 

the result in [BCM) can be applied. We conclude the note by also describing 

the space of the global CR distributions. 

Preliminaries - Statement of the main result 

We start by establishing the notation to be used throughout the work. Let 

M be a compact Riemann surface. We will denote by T1•0 (resp. T0 •1 ) the 

vector bundles over M whose fiber at pis the space of cotangent vectors of 

type (1,0) (resp. (0,1)) at p. Thus T1•0 EB '1'°•1 = tT*M, the complexified 

cotangent bundle over M. The exterior derivative on M has its standard 

decomposition d = 8 + 8 and the space of holomorphic one-forms on M, that 

is, the space of 8-closed smooth (1,0)-forms on M, will be denoted by fi(M). 
We will sistematically identify bundles over M with bundles over M x S1 

by means of their pullbacks via the natural projection M x S1 - M. 
Let (J denote the angular variable on S1• 

Proposition 1. Let w be a smooth one-form on M, of type (0,1), and define 

a= d9 +w. Then 
T' = T1•0 EB spa.n{a} 

defines a rigid CR structure on M x S1• 

Proof. It is clear that T' defines a sub bundle of G::T*( M x S 1 ). Furthermore 

we have T' + T' = CCT*(M x S1 ) for d9 = a - w is a section of T' + T'. 

Let V denote the orthogonal (for the duality between one-forms and vector 

fields) of T'. It follows immediately that V is a. complex line bundle over 

M x S1 satisfying 

V n V = 0, CCT(M x S1
) = V EB V EB span{:

9
}, 

a 
[
09

, V] = 0. 

The proof is complete. 

The tangential CR operator associated to such a structure is the first order 
operator 

given by 
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The main goal of the present note is to derive conditions in order to ensure 
that 81, is globally bypoelliptic in the sense of the following definition: 

Definition 1. Let E and F be vector bundles over a smooth manifold M 
and let P : C00(M, E) - C00(M, F) be a linear partial differential operator 
acting between sections ofE and sections ofF. The operator Pis said to be 
globally bypoelliptic if the conditions u E 'D'(M, E), Pu E C00(M, F) imply 
u E C00(M, E). 

In order to state our ma.in result some preparation is necessary. We begin 
by applying Theorem 19.9 in (F). We can write, in a unique way, 

(1) 

where GE C00(M) and ,{J E n(M). In local coordinates we have 

( oG -) w = az + ,\ dz 

where ,\ is holomorphic. Thus V is locally spanned by the vector field 

L=-- - +A -8 (8G -) 8 a:z 8z ao 
and a simple computation gives 

- .8ImG a 
(L,L) = 2' 8zoz 81J" 

Thus T' is strictly pseudoconvex at every point ( z, IJ) E M x S 1 such that 

olm~ (z) f; 0 
8zoz 

and Levi flat if and only if ImG is constant. It is important to point out 
that such a structure can never be strictly pseudoconvex everywhere due to 
the maximum principle for subharmonic functions. 

Proposition 2. The folfowing properties are equivalent: 

(a) T' is Levi flat; 

(b} d(w +w) = O. 
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Proof. We first show that ( a.)⇒(b ). According to the preceding discussion, 
in the decompositon ( 1) the function G can be assumed real. Thus 

w + w = iJ + 1' + fJG + oG = 11 + 1' + dG 

a.nd hence 
d(w + w) = o.i + [N = 0. 

Now we assume that (b) holds. As a.hove we get 

d(8G + oG) = 0. 

On the other hand 

d8G + doG = o8(G - G) = 2io8(ImG); 

hence ImG is harmonic a.nd thus constant. The proof is complete. 

Finally we recall the following definition (see [BCM]): 

Definition 1. For a closed, smooth and rea.l one-form a on M, we define: 

( a) a is integral if 2~ J
11 

a E 71., for any one-cycle <1 in M. 

(b) a is rational if there exists q E IN such that qa is an integral one-form. 

(c) a is Liouville ifa is not rational and there exist a seque11ce of dosed, 
integral one-forms {a;} and a sequence of integers q; 2: 2 such that 

{ <fi ( a - (t) a;)} is bounded in C00(M, (;T* M). 

It is easily seen that a is integral if and only if its cohomology class [a] E 
H 1(M,Dl) belongs to the image of the natural homomorphism 

This remark shows that the terminology here adopted coincides ( up to a 
factor 2,r) with the classical one (see, e.g., [LB, p.361). 
We are now in position to state our main result: 

Theorem 1. Tlie following conditions are equivalent: 

(a) The operator 8b is globally hypoelliptic; 

(b) T' is Levi flat and w + w is neither rational nor Liouville. 
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Proof of Theorem 1 

We begin with a simple (and well known) observation: 

Proposition 3. Let T be a locally integrable CR structure on an open 
subset V ofJR.3 • Assume that Tis strictly pseudoconvex at Po EV. Then, 
near Po, there is a continuous CR function whose singular support equals 
{Po}-
Proof . . The proof is absolutely routine. It is well known (see, e.g., [T2, 
sections I. 7 and 1.9]) that there are coordinates ( x, y, s) centered at Po such 
that Tis spanned by dz, dw, where w = s + i-y(z, s). Here z = x + iy and 
"'f is real, smooth and satisfies 

In a small neighborhood of the origin we have 1(z, 0) 2: lzl2 /2 and thus 
v(z, s) = 1(z, s)- i.~ has image contained in Cl:\ (]-oo, 0(+i{0}) and vanishes 
if and only if z = 0 ands = 0. Taking ..,/v, with the choice of the main branch 
of the square root, gives the desired CR function. 

We now begin the proof of Theorem 1. It is a consequence of Proposition 3 
that if T' is not Levi flat then 86 cannot be globally hypoelliptic. In fact, 
if there is a point p E M x 5 1 where the structure is strictly pseudoconvex 
then, by Proposition 3, we get the existence of an open neighborhood U0 of 
p in M x 5 1 and of u E C0( Uo) such that 

81,u = 0, singsuppu = {p}. 

If take x E C~(U0 ), with x = 1 near p then xu E C0(M x S 1 ), 81,(xu) E 
C00(M x S 1, CT* M) and singsupp(xu) = {p} . This proves our assertion. 
We now introduce the following real operator 

defined by 
au 

ILu = du - (w + w) ao· 
Its relevance to our study relies on the following fact: according to (BCM, 
Theorem 2.4), if w + w is dosed then the operator IL is globally hypoelliptic 
if and only if w + w is neither rational nor Liouville. Taking Proposition 2 



• 
into account it follows that Theorem 1 will be a consequence of the following 

result: 

Proposition 4. Suppose that w + w is dosed. If u E V'( M x S1 ) then 

81,u E C00(M x St, G::T* M) if and only if Il,u E C00(M x S1 , CT* M). In 

particular the operator 8b is globally hypoelliptic if and only if the same is 

true for the operator Il,. 

Proof. We select a hermitian metric on M. This metric defines hermitian 

inner products on each fiber of CCT* M and of A2 CCT* M which, in a local 

holomorphic coordinate z = x + iy, satisfy 

< dz, dz>=< dz, dz>= h-1 , < dz, dz>= O; 

<dz/\ dz,dz /\dz>= h-2
, 

for some h > 0 [LB, p.11]. Moreover, the corresponding volume element 

has the expression dV = 2hdxdy. We can thus consider the Hilbert spaces 

L2(M; dV), L2(MxS1 ; dVd9), as well as the Hilbert space L2(M, CCT* M; dV) 

(resp. L2(M x S1 , G::T* M; dVcl9)) of measurable sections / of CCT* M over 

M (resp. M x S 1) such that 

f < f,f > clV < oo (resp. f < J,f > dVcl9 < oo). 
~ &x~ 

Taking adjoints with respect to the corresponding hilbertiau structures al­

lows us to introduce the operators 

We now compute them explicitly. 

Lemma 1. Let w E C00(M, T°·1 ). Then: 

(a) The adjoint ofw-A: C00(M x S 1 ) - C00(M x S1,CCT*M) is the map 

/31-+ - < ~,w>. 

(b) /j•(uw)::: u8*w- < au,w > for every u e C00(M x S1 ). 

(c) < du,w +w >=< ou,w > + < 8u,w > for every u E C00(M X S1). 

(d) lw + wl 2 = 2lwl2• 

(e) lfd(w + w) = 0 then d*(w + w) = 2a•w. 
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Proof. All the properties are of easy vepfication. We content ourselves in 
proving property (e). In a local holomorphic coordinate z = x + iy we have 

Now write w = Adz. Then w + w = 2(ReAdx + ImAdy) and consequently 

since d(w + w) = 0. The proof is complete. 

From (a) of Lemma I we obtain 

and, consequently, (b) of Lemma 1 gives 

(2) i'i•a- - a-•i'i 8 0 8 "' - I 12 
82 

(0-.. ) 0 
Vb b - v+ < c)(}O,W > + < c)IJv,W > - W i)IJ'l - W O(J" 

By the same argument 

(3) 

and thus, (c), (d) and (e) of Lemma l in conjunction with the fact that 
d*d = 28*li imply 

(4) 

This identity is the key tool for the proof of Proposition 4. Let then u E 
V'( M X S1 ) satisfy 8b u F. C00

( M x S1, d:T- M ). By standard results on 
partial hypoellipticity (see, e.g., [T2, Section I.4]) u must necessarily belong 
to C00(M, V'(S1 )) and thus its Fourier expansion in 8 can be written as 

u = L u;eiiB 
iE'lL 

7 



where u; E C00(M). We have 

(5) 

(6) 

Ob u = 1) 8u; - ijwu; )ei;B, 
;ez 

ll.u= L(du;-ij(w+w)u;)eii9 • 

;ez 

Now if we take adjoints with respect to the hilbertian structures of L2( M; dV) 

and L2(M,{:T*M;dV) it follows immediately from (4) that 

2(8- ijw)*(8 - ijw) = (d - ij(w + w)r (d - ij(w + w)). 

Hence 

(7) 11(8- ijw)u;ll2 = ½n (d - ij(w + w))u;ll 2 

with norms in L2(M, <CT* M; dV). Summing up, (5), (6) and (7) show that 

the following property holds true: 

(8) If u E V'(M X S1) and 8bu E C00(M x S1,Q;T*M) then ll,u E L2(M x 
S1,tT• M; dVdO). 

Let a.gain u E V'(M x S 1 ) be such that 8bu E C00 (M x S 1,G.:T*M). Ifµ is 

an arbitrary parameter we have 

and thus from (8) we obtain 

ll.. (a68bu-µ:::) E L2(M x S1,4:T*M;dVdO). 

Taking ( 4) into account this last property can be rewritten as 

Finally we introduce the operator 

IL.: C00(M x S1 , <CT* M)-+ C00(M x S1,A2(1;T* M) 
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defined by 
_ of 

JL./ = d/- (w+w) A 
06

. 

Since w + w is closed it follows that Il.,.JL = 0 and thus (9) gives 

(10) ~ (n.:JL. + JLJL• - 2µ ::2 ) JLu E L2(M x 51, CT* M; dVd6). 

Now, it is easily seen that JL:JL. + lLll! - 2µ-G,r is elliptic ifµ> 0 is chosen 
large enough and consequently (10) implies that JLu belongs to H2(M x 
51 , CT• M), the Sobolev space of order 2. In conclusion we have improved 
property (8) in the sense that L2(M x 5 1,CT-M;dVdO) can be replaced 
by H 2 ( M x 51, II:T* M) in its statement. By iterating the argument we 
reach the conclusion that L2( M x S1, er M; dV d6) can in fact be replaced 
by n1;>oH"(M x S1,tT•M) = C00(M x S1,II:T*M) in property (8). To 
complete the proof of Proposition 4 it suffices then to notice that we can 
interchange the roles of tib and lL in the whole argument, 

Final Remark: Global CR distributions 

For these CR structures the kernel of the operator ab can be completely 
described. We keep the notation established throughout the work and take 
u E V'(M X 5 1) satisfying abu = 0. Then u = L;ez u;eiill, where each u; 
is smooth on M and satisfies 

(11) (8- ijw)u; = 0. 

Let p : M - M be the universal covering of M. For the form {) introduced 
in (1) we can find a holomorphic function hon M such that i:Jh = p•{). Then 

8(h +ii.+ Go p) = p*w 

and hence ( 11) implies that 

H; = e-ij(h+h+Gap)(u; 0 p) 

is a holomorphic function on M. Now, since IH;I = exp{jlmGop}lu; opj is 
a well defined subharmonic function on M it follows that IH;I is constant. 
Consequently H; is itself a constant and we can write 

(12) 
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with c; E <C. 
Suppose first that tJ + '3 is not a. rational form. If j E 'll,, j #:. 0 then there 

are points A and Bin M such that p(A) = p(B) and 

j{(h + ii)(A) - (h + ii)(B)} r/. 2~7l. 

From the relation 
( e-iiG u;) op= c;eij(h+Ji) 

it then follows that c; = 0. Suppose otherwise that 1'J + d is rational and 

let l be the smallest natural number such that l( iJ + t?) is integral. Then 

e•t(h+Ji) is a well defined smooth function on M and the same argument as 

above shows that c; = 0 if j ,t ('ll,. We summarize this discussion as follows 

(cf. also [BCP, Lemma 2.2]): 

Proposition 5. If,? + i? is not a rational form tl1en tlie kernel of ab in 

V'(M x st) contains only the constants. If otherwise {)+ti is a rational 

form then the kernel of ab in V'(M x st) is the space of all distributions of 

the form 
u = L a;eijt(e+h+Ji+G)' 

;e'l/, 

where a; E (C and h, l, and G have the meaning explained above. In 

particular, when d+i? is rational, all the global CR functions are functionally 

dependent on a single generating function. 
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