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Objetivos

No  estudo  de  espalhamento  de  ondas 
acústicas  é  possível  representar,  através  do 
teorema  da  superposição,  os  potenciais  de 
velocidade acústicas em coordenadas esféricas 

de acordo com a série [1-4]:

Dentre  os  componentes  da  Eq.  1   são 
chamados  Beam  Shape  Coefficients  (BSCs), 
seguindo  o  padrão  estabelecido  pela  teoria 

generalizada  de  Lorenz-Mie  [5],   são 
polinômios associados de Legendre segundo a 

convenção de Robin [2,5-7] e   são funções 
esféricas de Bessel [2].

Ademais, é possível estruturar feixes de Bessel 
não-difrativos superpostos a fim de representar 
Funções Morfológicas F(z) [8]:

ψFW (ρ, z ) = ∑
q=−N

N

Aq J 0 (k ρq ρ )e ik zq z (2 )

A  formação  de  padrões  é  baseada  na 
semelhança da Eq. 2 com uma série truncada 
de Fourier, tendo como coeficientes:

Aq=
1
L
∫
0

L

F ( z ) e
i

2 π q
L
z

(3 )

Destarte,  o  objetivo  desta  pesquisa  é  definir 
Frozen Waves acústicas e os feixes de Bessel 
utilizados  através  da  expansão  em  ondas 
parciais,  assim como realizar  simulações que 
confirmem a validade da teoria, apoaindo assim 
as  aplicações  que  podem  ramificar  desta 
técnica, como a manipulação de partículas e a 
construção de displays volumétricos [9].

Métodos e Procedimentos

Como a construção de FWs se faz através da 
composição de feixes de Bessel de ordem nula, 
dados em sua forma ideal  pela equação nas 

coordenadas cilíndricas :

(4),

buscou-se a  descrição deste  feixe  de acordo 
com as  Eq.  (1).  A  Eq.  (4)  possui  convenção 

temporal  da  forma  ,  omitida  em  sua 
representação, e apresenta a função de Bessel 

cilíndrica    de  ordem   e  o  módulo  das 

projeções do vetor de propagação do feixe  

e  .  Inicialmente,  foi  utilizado  o  método  da 
quadratura,  explorando  as  relações  de 
ortonogonalidade dos polinômios de Legendre 
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e das funções exponencias [2], com o objetivo 
de  determinar  os  BSCs  para  os  feixes  de 

Bessel  centralizados  na  posição  , 
espalhados  por  uma  partícula  esférica 
localizada na origem de um sistema cartesiano 

de  coordenadas  ,  resultando  em:

gn
m=in−m (2 n+1 ) (n−m ) !

(n+m ) !
Jm−ν (k ρ ρ0 )Pn

m (cosαq )

e−i (m−ν )ϕ0e− ik z z0 , (5 )

onde   e   são  as  transformações  em 
coordenadas cilíndricas da posição cartesiana 

do feixe de Bessel e   é o ângulo de axicon 
do feixe espalhado.

Desta  forma,  como  podemos  definir  os 
coeficientes  necessários  para  o  cálculo  dos 
coeficientes das Eqs. 1 e 2 através das Eqs. 3 
e  5  respectivamente  é  possível  realizar  as 
necessárias  substituições  e  o  cálculo  das 
Frozen  Waves  se  faz  através  da  relação:

ψ = ∑
q=−N

N

∑
n=0

nmax

∑
m=−n

n

Aq gn ,q
m j (kr )Pn

m (cosθ ) eimϕ (6 )

O truncamento da série vista na Eq.1 realizada 
na Eq. 6 se faz necessária para a realização 
das  simulações  a  serem  apresentadas  e  é 
justificada  matematicamente  por  Wiscombe 
[10]. 

Para a realização das simulações foi utilizada a 
linguagem de programação Julia devido a sua 
alta  performance  (semelhante  a  C++)  e  sua 
agilidade  na  produção  de  protótipos  e 
simulações [11, 12]. Além disso o autor auxiliou 
na  construção  e  manutenção  de  bibliotecas 
para Computação de Alto Desempenho quando 
exerceu  um  estágio  de  pesquisa  no 
Massachusetts  Institute  of  Technology, 
orientado por grandes nomes da computação, 
em  específico  o  criador  da  linguagem 
supracitada,  como apoiado  pelas  publicações 
[13]  e  [14]  realizadas  pelo  autor  e  demais 
participantes.  A  fim  de  simular  com  maior 

eficiência,  cada  termo da  Eq.  6  foi  abstraído 
como  uma  tarefa  a  ser  realizada  por  uma 
unidade de processamento e a distribuição da 
carga de trabalho foi feita dinamicamente pela 
biblioteca  Dagger.jl,  da  qual  o  autor  é  co-
mantenedor,  além disso foi  utilizado o super-
computador  Satori  com  80  núcleos  de 
processamento  a  fim  de  alavancar  as 
adaptações supracitadas.

Resultados

Como pode ser visto na Fig.  1,  o método de 
construção  de  Frozen  Waves  associado  à 
expansão em ondas parciais apresenta grande 
precisão, visto que os únicos erros associados 
no plano de interesse (y=0),  considerando sua 
propagação em  Z, se dá exclusivamente pelo 
aparecimento  de  artefatos  ondulatórios, 
inerentes  à  aplicação  da  série  de  Fourier  e 
conhecido como Fenômeno de Gibbs.

 Figura 1: Perfil de instensidade de Frozen Waves 
(em vermelho), sobrepostas de suas funções 

morfológicas (em azul) para o plano (y=0) [(A), (D), 
(G), (J)]. Confinamento longitudinal do perfil de 

intensidade das Frozen Waves no plano (z=0) [B, E, 
H, K]. Perfil de instensidade em representação 

tridimensional [C, F, I, L]. Os conjuntos [A-C], [D-F], 
[G-I] e [J-l] dizem respeito às mesmas funções alvo 
(morfológicas) mas se diferenciam entre si. Fonte: 

Autor.
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Além  de  uma  boa  precisão  no  plano  de 
interesse,  a  técnica  apresenta  bom 
confinamento longitudinal a este plano, como 
visto também na Fig. 1.

Conclusões

Tendo  em  vista  as  simulações  realizadas,  o 
método  algorítmico  demonstra  sucesso  em 
suas  aplicações,  com  exceção  de  erros  de 
natureza  oscilatória  ao  representar  funções 
morfológicas não-oscilatórias.
Posteriormente,  seria  analisado  pelo  autor  a 
possibilidade  da  aplicação  de  técnicas  de 
emissores  e  receptores  e  algebra  linear  em 
acústica  para  que  sejam  evitadas  essas 
anomalias  oscilatórias  na  representação  de 
padrões,  como  realizado  por  Miller  [15]  em 
eletromagnetismo  em  conjunto  com 
participantes  do  grupo  coordenado  pelo 
orientador desta pesquisa em Harvard.
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