

1 This is the accepted version of the following article: Caetano, D.S. & Quental,
2 T.B., "How important is budding speciation for comparative studies?", which has been published
3 in final form at <https://doi.org/10.1093/sysbio/syad050>

4
5
6

7 **How important is budding speciation for comparative studies?**

8 Daniel S. Caetano^{1,2,*} and Tiago Bosisio Quental²

9 ¹ *Department of Biological Sciences, Towson University, Towson, MD, 21252, USA*

10 ² *Department of Ecology, University of São Paulo, São Paulo, SP, 05508-090, Brazil*

11 * Author for correspondence: dcaetano@towson.edu

12

13 **Running title: BUDDING SPECIATION IN COMPARATIVE METHODS**

14 **Abstract:** The acknowledgment of evolutionary dependence among species has fundamentally
15 changed how we ask biological questions. Phylogenetic models became the standard approach for
16 studies with three or more lineages, in particular those using extant species. Most phylogenetic
17 comparative methods (PCMs) translate relatedness into covariance, meaning that evolutionary
18 changes before lineages split should be interpreted together whereas after the split lineages are
19 expected to change independently. This clever realization has shaped decades of research. Here we
20 discuss one element of the comparative method often ignored or assumed as unimportant: if nodes
21 of a phylogeny represent the dissolution of the ancestral lineage into two new ones or if the ancestral
22 lineage can survive speciation events (i.e., budding). Budding speciation is often reported in
23 paleontological studies, due to the nature of the evidence for budding in the fossil record, but it is
24 surprisingly absent in comparative methods. Here we show that many PCMs assume that divergence
25 happens as a symmetric split, even if these methods don't explicitly mention this assumption. We
26 discuss the properties of trait evolution models for continuous and discrete traits and their adequacy
27 under a scenario of budding speciation. We discuss the effects of budding speciation under a series
28 of plausible evolutionary scenarios and show when and how these can influence our estimates. We
29 also propose that long-lived lineages that have survived through a series of budding speciation
30 events and given birth to multiple new lineages can produce evolutionary patterns that challenge our

31 intuition about the most parsimonious history of trait changes in a clade. We hope our discussion
32 can help bridge comparative approaches in paleontology and neontology as well as foster awareness
33 about the assumptions we make when we use phylogenetic trees.

34

35 **Keywords:** budding speciation; diversification; fossil record; model adequacy; phylogenetic
36 comparative methods; speciation mode.

37 Phylogenetic trees are the main representation of evolutionary relationships among lineages
38 and stand as a symbol of evolutionary thought. However, their relatively simple structure is not
39 capable of informing us about all aspects of evolution. Processes such as horizontal gene transfer,
40 hybridization, and introgression can produce complex evolutionary relationships that challenge the
41 explanatory power of bifurcating phylogenies (Philippe and Douady, 2003; Mallet et al., 2016;
42 Bastide et al., 2018). Interestingly, the graphical representation of bifurcating trees could even
43 influence how we think (Baum et al., 2005). A node connecting one ancestral branch to two new
44 ones can suggest evolutionary histories much simpler than what we observe in nature and potentially
45 downplay important aspects of macroevolution. For instance, if read literally, bifurcating
46 phylogenies can be seen as speciation events that happened due to the split of an ancestral lineage
47 into two new ones, coincident with the extinction, or dissolution, of the ancestral lineage (Meier and
48 Willmann, 2000; Bokma, 2008). This view makes the concept of a lineage synonymous with a
49 branch of a phylogenetic tree. However, evidence from empirical systems shows the mode of
50 speciation can be varied and often complex (Rosenblum et al., 2012), including frequent instances of
51 budding speciation (Wagner, 1998; Funk and Omland, 2003; Gottlieb, 2004; Crawford, 2010;
52 Anacker and Strauss, 2014; Otero et al., 2019; Patsis et al., 2021).

53 The paleontological literature often adopts the representation of budding trees (e.g., Raup
54 and Gould, 1974; Raup, 1985; Foote, 1996; Wagner, 1998; Benton and Pearson, 2001; Silvestro et
55 al., 2018) that inform which branches are new lineages and which are the continuation of the
56 ancestral lineage. Budding is recognized in the fossil record as a cladogenetic event in which a new
57 lineage appears as a branching of an older lineage that can still be found after the speciation event
58 (e.g., Foote, 1996). Although budding speciation is commonly reported in paleontology, it is rarely
59 incorporated into phylogenetic comparative models (PCMs). Bokma and colleagues have developed
60 a series of PCMs incorporating budding and the effect of punctuated equilibrium (Bokma 2002;

61 Bokma, 2008; Matilla and Bokma, 2008; Monroe and Bokma, 2009; Bokma, 2010; Jansen et al.,
62 2022). Unfortunately, these and other similar methods (Bartoszek, 2014; Bartoszek, 2020, Pagel et
63 al., 2022) have not been widely used in the PCM literature, perhaps due to the perception that
64 bifurcating molecular phylogenies show no evidence of budding speciation. Here we bring a
65 different, and perhaps controversial, point of view; that budding speciation can be common, that it
66 might affect inferences of trait evolution, that it can be detected in molecular phylogenies, and it
67 should be considered in PCMs even when there is no information from the fossil record evidencing
68 its role in the diversification of the group.

69 There has not been a consensus about the effect of budding speciation on our estimates of the
70 tempo and mode of trait evolution using PCMs. Bokma (2008) implemented a trait evolution model
71 to estimate the contribution from cladogenetic and anagenetic changes, however, there is no
72 investigation of the impact of the cladogenetic process in inferences using PCMs that do not
73 accommodate such effects. De Lisle and colleagues (2021) explored the effect of shifts in the
74 adaptive optima on extinction rates using a model based on population-level dynamics and showed
75 that lineages would rarely survive peak shifts and those occupying stable optima are expected to
76 have a higher chance of survival. In turn, Duchen and colleagues (2021) studied how cladogenesis
77 changes the average species phenotype using individual-level simulations and showed that new
78 lineages budding off from an ancestral population can show a significant phenotypic deviation due
79 to neutral processes (see Gaborieau et al., 2023 for a similar approach). Combined, these results
80 point to the idea that long-lived evolutionary lineages might occupy stable optima (Eldredge and
81 Gould, 1972; Gould and Eldredge, 1993; also see Goldberg and Foo, 2020) whereas new lineages
82 may bud off with distinct phenotypes, due to the effect of cladogenesis on the species trait and
83 selection to occupy a distinct region of the morphospace (Eldredge and Gould, 1972; Gould and
84 Eldredge, 1993; Bokma, 2008; Matilla and Bokma, 2008).

85 Here we discuss in which circumstances budding speciation can affect our estimates of the
86 tempo and mode of trait evolution. More specifically, we review the properties of PCMs of trait
87 evolution that dictate whether or not budding speciation can influence our conclusions. In our view,
88 most PCMs of trait evolution were developed with the strong assumption that speciation is
89 symmetric, lineages cannot continue after speciation events, and there is no effect of budding in
90 molecular phylogenies. Here we discuss how budding speciation can bias our estimates using

91 simulations as an argumentative guide to our narrative. Distinct from previous studies (Matilla and
92 Bokma, 2008; Silvestro et al., 2018; De Lisle et al., 2021; Duchen et al., 2021; Crouch et al., 2021
93 among others), our discussion focuses on cases in which budding speciation is not considered when
94 using PCMs.

95

96

97 **What is budding and how to recognize it?**

98 Budding is defined as a speciation event in which the new species co-occurs in time with its
99 direct ancestral lineage (Foote, 1996), meaning the ancestral lineage continues to exist after
100 speciation. We use the term progenitor lineage to help differentiate the parent from the daughter
101 lineage (see Gottlieb, 2004). A progenitor lineage is a lineage that has given birth to one or more
102 new lineages through budding. Budding speciation is inherent in Mayr's (1942) concept of
103 speciation via peripatric speciation. Also, as discussed by Eldredge and Gould (1972) and Grant
104 (1981), drift likely has an important impact on small founder populations and, naturally, will have
105 consequences for trait evolution (see De Lisle et al., 2021). Perhaps due to its intrinsic role in
106 diversification, the neontological literature has attributed different nomenclature to what is
107 fundamentally budding speciation. In this section, we discuss how budding speciation has been
108 recognized in the literature, which patterns might be the result of past budding events, and how
109 budding can be detected using data from extant species. The reader will note that we attribute a
110 variety of processes to the effect of budding speciation. Indeed, one of the main goals of this
111 discussion is to bring awareness to the role of budding speciation in studies of macroevolution and
112 how it connects to multiple patterns we observe in phylogenetic trees.

113 In the absence of the fossil record, budding has been recognized as a new lineage formed
114 within or at the edge of the ancestral lineage (Anacker and Strauss, 2014) or as a biological cause of
115 paraphyletic species (Funk and Omland, 2003; also see Fig. S1). This has also been associated with
116 the hypothesis of Punctuated Equilibrium (Eldredge and Gould, 1972; Gould and Eldredge, 1993),
117 since peripheral populations can become isolated and show fast trait evolution due to selection
118 towards a new adaptive peak and/or the effects of drift in small populations, leading to speciation
119 (Mayr 1942; Simpson, 1944; Eldredge and Gould, 1972; Grant, 1981; Gould and Eldredge, 1993;
120 Bokma, 2008; Matilla and Bokma, 2008; De Lisle et al., 2021). Budding speciation is considered to

121 be opposed by bifurcation—the split of an ancestral lineage into two new ones (Fig. S1). Hagen and
122 colleagues (2015), for example, utilized the term *symmetrical* speciation to capture the role of
123 allopatric speciation and opposed it to *asymmetrical* speciation which represents peripatric
124 speciation with the continuation of the progenitor species—thus, budding. Although these authors
125 use distinct nomenclature, each is an example of budding. The paleontological literature suggests
126 budding is a common evolutionary pattern and some argue it represents the majority of speciation
127 events observed in deep time. For example, Wagner (1998) used budding speciation to estimate a
128 phylogeny of hyenas that implied reduced stratigraphic debt (i.e., less ghost lineages) when
129 compared with alternative trees, indicating a better fit to the fossil record. Aze and colleagues (2011)
130 reconstructed a large phylogeny of macroperforate foraminifera in which most cladogenetic events
131 were recognized as budding through analysis of morphological characters. Bapst and Hopkins
132 (2017) applied an explicit probabilistic model to date a phylogeny of trilobites and also show that
133 budding events are often supported by the fossil record. Similarly, Parins-Fukuchi (2021) re-
134 evaluated the diversification of hominins and suggests the occurrence of budding speciation events.
135 In contrast, there is little to no mention of budding speciation in the neontological literature which,
136 in our view, creates an undesirable disconnect between paleontology and neontology (but see
137 Silvestro et al., 2018). One could argue that this absence is due to the impossibility of detecting
138 budding using molecular phylogenies, however, as we discuss below, we disagree with this
139 sentiment.

140 If budding speciation is frequent, we expect to recover recent events of budding using
141 molecular data. When a new lineage buds off from its ancestral lineage, the progenitor species
142 becomes paraphyletic (Funk and Omland, 2003; see Fig. S1B). The advantage of neontological data
143 is that molecular phylogenies can show evidence of budding independent of the use of
144 morphological divergence to estimate the tree, which is necessary to both estimate phylogenies and
145 detect speciation based on fossil remains (Foote, 1996; Wagner, 1998; Bapst, 2013). If the new
146 lineage maintains cohesion and does not go extinct (see De Lisle et al., 2021) or is not reabsorbed
147 via hybridization with the progenitor (Taylor et al., 2006; Richmond and Jockush, 2007; Behm et al.,
148 2010; Lackey and Boughman, 2017), gene flow among the populations of the progenitor should
149 complete sorting and the progenitor and daughter lineages will eventually become sister species in
150 estimated molecular phylogenies—erasing the signal of budding. Thus, budding speciation can be

151 detected using molecular phylogenies, but its signal disappears over time whereas, in the fossil
152 record, the information is preserved if the record is reasonably complete. Otero and colleagues
153 (2019) show an interesting case in *Iberodes* plants which underwent two events of budding within
154 the last 5 million years. In both instances, the new lineage evolved distinct morphological and
155 ecological traits (Otero et al., 2019). *Iberodes* has inland and coastal species and the potential
156 change in selective pressure together with the peripheral distribution of the younger coastal lineages
157 likely were key factors for budding divergence. Similarly, Papuga and colleagues (2018) show
158 peripheral plant populations that have lower niche breadth (i.e., are more specialized) than central
159 populations as well as divergence in ecological traits (i.e., soil parameters), both factors that can
160 cause budding by ecological speciation. Strong evidence for budding speciation was also detected
161 from molecular phylogenies by Baldwin (2005), showing that *Layia glandulosa* (a Compositae
162 plant) is the progenitor species for *L. discoidea*. Anacker and Strauss (2014) tested 71 sister pairs
163 and demonstrated that young divergences frequently show overlapping and asymmetrical ranges—
164 another indication of budding speciation. This asymmetry was not detected among older clades,
165 suggesting the signal of budding on the geographic distribution of sister pairs is lost as lineages get
166 older. Furthermore, taxonomic revisions that re-name paraphyletic species into several new species
167 also erase the signal of budding.

168 If budding is frequent, and we suspect it is, it can be an important factor in understanding
169 trait evolution because peripheral populations can show distinct mean phenotypic values (Papuga et
170 al., 2018) and divergence through budding can generate new lineages with distinct average
171 phenotypes (Gottlieb, 2004; Duchen et al., 2021; Gaborieau et al., 2023) and evolutionary
172 trajectories (De Lisle et al., 2021). If we assume molecular phylogenies are literal bifurcating trees,
173 despite the evidence for budding speciation, then PCMs might be based on inadequate assumptions.
174 In the next two sections, we visit the most popular PCMs and discuss scenarios in which the
175 presence of budding would, or would not, affect our estimates.

176

177 When budding doesn't matter

178 Raup (1985) stated that budding should not influence estimates of net diversification rate
179 because the addition or subtraction of lineages at any given time would be perceived similarly if we
180 represent a phylogeny either by budding or bifurcation. This question has been revisited by Bapst

181 and Hopkins (2017) and Crouch et al. (2021), both showing that budding can change divergence
182 time estimation and alter estimates of the accumulation of lineages through time (also see Wagner,
183 1998). Thus, budding should not influence the net diversification rate only if the true dated tree is
184 known, otherwise, changes in divergence time estimation can potentially impact estimates of
185 diversification down the line.

186

187 With respect to models of trait evolution, budding should not influence our estimates if
188 changes happening at any point in time, and at any branch of the phylogeny, are independent of the
189 prior history of the lineage and their ancestors. Two important simplifications were introduced when
190 Felsenstein described the method of independent contrasts (1981; 1985); trait changes happen
191 independently in each branch of the phylogeny and evolutionary changes at each point along a
192 branch are independent and identically distributed (iid). Most models of trait evolution share these
193 assumptions (see review in O'Meara, 2012; Pennell and Harmon, 2013). However, few, if any,
194 PCMs were created with the intent to accurately describe evolution in a mechanistic way, and the
195 use of simplifications does not mean we assume evolution follows these rules.

196 If models of trait evolution that assume a homogeneous process across all branches of the
197 tree are adequate representations of macroevolution, the incorporation of budding speciation will not
198 change our estimates. This is because differentiating lineages in the phylogenetic tree will have no
199 influence on the underlying model—lineages become effectively interchangeable. However, this is
200 not the trend that we are currently observing in PCM development. Extensions allowing
201 heterogeneity in the process, often associated with some predictor, have been shown to better
202 capture the variation of empirical data (e.g., Eastman, 2011; Rabosky et al., 2014; Uyeda and
203 Harmon, 2014; Caetano et al., 2018; Pagel et al., 2022). More recently, studies have demonstrated
204 that rate heterogeneity should be taken into account even when no a priori predictors are present
205 (e.g., Rabosky and Goldberg, 2015; Beaulieu and O'Meara, 2016; Caetano et al., 2018; May and
206 Moore, 2020). Development of more adequate models often means the increase in model complexity
207 to reflect the dynamic nature of macroevolution and, as a result, hint that the condition of
208 homogeneous and memoryless evolutionary changes with interchangeable lineages—under which
209 budding would not matter—is unlikely across the tree of life. Below we discuss how budding could
210 be generating heterogeneity in the phylogenetic history of phenotypes and in which ways the results

211 affect our conclusions about trait evolution.

212

213 **When budding matters**

214 Budding is expected to be important in any evolutionary scenario in which the identity of
215 evolutionary sister lineages is relevant. This might be the case if lineage age influences the tempo
216 and/or mode of trait evolution (Hagen et al., 2018; Goldberg and Foo, 2020) or if the age of
217 competing lineages is important to predict their competitive strength and/or risk of extinction (Ezard
218 et al., 2011; Rosenblum et al., 2012; Carrillo et al., 2020; Januario and Quental, 2021). Although
219 there are other evolutionary processes under which the identity of lineages might be important, here
220 we focus on these two scenarios for simplification. In contrast, there are special cases that generate
221 heterogeneity in trait evolution but under which budding likely is not relevant. For example, if shifts
222 in rates of trait evolution are due to abiotic causes equally affecting all lineages concurrent with the
223 event, such as response to climatic changes or mass extinctions, then, everything else being equal,
224 we would expect responses to be independent of lineage identity (e.g., Clavel and Morlon, 2017).
225 Below we enumerate scenarios in which we argue that budding speciation could influence our
226 conclusions about the tempo and mode of trait evolution when using PCMs.

227

228 *1) When evolutionary changes are concentrated at or near lineage origination*

229 The central distinction between budding and bifurcation is the age contrast between
230 progenitor and daughter lineage immediately after divergence. The daughter species will usually
231 have a smaller population size and geographic distribution (Foote et al., 2007; Liow and Stenseth,
232 2007) and might undergo quick phenotypic change as they move towards a new adaptive peak
233 (Eldredge and Gould, 1972; Gould and Eldredge, 1993; Hunt et al., 2008; De Lisle et al., 2021). In
234 contrast, progenitor lineages might show a slowdown in trait evolution due to prolonged time under
235 a stable adaptive zone (Goldberg and Foo, 2020; De Lisle et al., 2021). If lineage age is related to
236 the tempo of trait evolution, such that younger lineages are expected to show faster rates of trait
237 change, we would expect relatively more evolution to happen in a daughter lineage when compared
238 to its progenitor. Thus, the disparity between two descendants of a budding node in a phylogenetic
239 tree should not be attributed to equal amounts of change at each branch because budding suggests
240 evolution will be concentrated in the daughter lineage (Fig. 1 top left panel).

241

242 2) *When daughter lineage survival depends on being ecologically different from its progenitor*

243 The asymmetry in age generated by budding speciation can influence the competitive

244 strength of daughter lineages relative to their progenitors and, as a result, also the extinction risk of

245 the younger lineage (Ezard et al., 2011; Rosenblum et al., 2012; Carrillo et al., 2020; Januario and

246 Quental, 2021). Progenitor lineages are expected to have larger population sizes and geographic

247 ranges (Anacker and Strauss, 2014) which, everything else being equal, improves their chance of

248 survival in interspecific competition with newly formed species. When competition between

249 progenitor and daughter lineages is present, daughter lineages that have lived enough to be sampled,

250 either in the fossil record or still living today, are expected to be sufficiently distinct from their

251 progenitors to have escaped competitive exclusion (De Lisle et al., 2021). Of course, competition is

252 not exclusive to budding. However, budding could potentially intensify the effect of interspecific

253 competition, and eventually increase heterogeneity in trait evolution.

254 Although we predict an intensifying effect of budding speciation on interspecific

255 competition, natures of other interactions might be more complex. Nuismer and Harmon (2015)

256 demonstrated mathematically the effect of the mode of trait evolution and phylogenetic diversity

257 (PD) in the outcome of interspecific interactions in communities of closely related taxa. They

258 showed that PD is a good predictor of interspecific interactions if these are dependent on phenotypic

259 matching, such as competition, with more closely related lineages showing stronger interspecific

260 interactions. Budding could change the relationship between PD and expected trait similarity,

261 because long-lived progenitor species would accumulate fewer evolutionary changes than expected

262 under a homogeneous trait evolution model, such as Brownian motion, causing the role of the

263 phylogeny as a predictor to become less prevalent. In contrast, Nuismer and Harmon (2015) show

264 that under stabilizing coevolution the phylogeny is a poor predictor of interactions, and we do not

265 expect that budding would influence this result.

266

267 **How do budding speciation and lineage-age-dependent processes influence estimates of trait**
268 **evolution?**

269 We use simple simulations to illustrate different scenarios in which budding speciation

270 should impact trait evolution and, more importantly, discuss if these deviations hinder our

271 understanding of phenotypic evolution using phylogenetic trees. We explored the impact of budding
272 on the parameter estimates and adequacy of PCMs for continuous and discrete traits. We also
273 investigated how likely is budding speciation to produce erroneous estimates of ancestral states. We
274 focused our attention on phylogenies of extant species, which are most often estimated using
275 molecular data, and in the absence of fossil tips.

276

277 *Simulation of trait evolution under budding*

278 We simulated 50 phylogenetic trees using a constant rate birth-death model ($\lambda = 0.2$, $\mu = 0.1$)
279 with root age set to 40 My and excluding all extinct lineages. To reduce variation in tree size we
280 used rejection sampling to keep only phylogenies with 250 to 350 extant lineages. We used the same
281 pool of 50 trees to perform all simulation replicates and conducted pairwise comparisons across
282 scenarios. We simulated budding speciation using an independent binary variable to control the
283 presence of budding on each node of the tree. As a result, long-lived progenitor lineages are
284 produced by random events of successive budding events. We produced four scenarios of budding
285 speciation, with frequencies of 0%, 25%, 50%, and 100% of the nodes.

286 We simulated a single continuous trait using a Brownian motion model ($\sigma^2 = 0.2$) and a
287 discrete trait with three states using an equal rates Markov model (transition rates = 0.02). To
288 emulate a scenario of fast evolution in younger lineages we introduced a rate slowdown process.
289 Relative rates of change, for both continuous and discrete traits, varied along the branches of the tree
290 following a scaling factor (s) computed as a function of lineage-age (a), such that

$$291 \quad s(a_i) = \frac{1}{\exp(za_i)} \quad (1)$$

292 where a_i is the average lineage-age at time interval i (i.e., lineage-age at the midpoint of the time
293 interval i) and z is the parameter controlling the rate slowdown. Note that progenitor lineages can
294 span multiple branches of the tree (see Fig. 1). In order to compute a , we divided the branches of the
295 tree into i time intervals of length 1×10^{-3} of the tree height. At lineage-age of 0 My, for instance, s is
296 equal to 1 and it decays as a function of z (Fig. 1). We simulated three scenarios of lineage-age
297 dependent rates of trait evolution: a mild effect ($z = 0.042$); a medium effect ($z = 0.279$); and a
298 strong effect ($z = 0.925$). The parameter values were chosen to produce a rate reduction of 10%,
299 50%, and 90% of the base rate when a lineage becomes 2.5 My old, respectively. Because the base
300 rate is scaled by s , which depends on the lineage age and the budding history of each phylogeny, the

301 average rate of trait evolution for each phylogeny (\bar{r}) can vary across replicates. We standardized \bar{r}
302 across the tree (for both discrete and continuous traits) to differentiate the rate slowdown of each
303 lineage from the confounding effect of an overall change in the average rate across the phylogeny.

304 For that, we computed the weighted average as

305 $\bar{r} = \sum_i r s_{(a_i)} t_i / \sum_i t_i$ (2)

306 where r is the base rate of trait evolution (i.e., the σ^2 for the BM model and the transition rate for the
307 equal rates Markov model), and $s_{(a_i)}$ is the slowdown scale factor at a time interval t_i (see Equation
308 (1)). Then we chose r values that minimized the distance of \bar{r} among replicates.

309 We also explored the effect of cladogenetic changes on discrete traits (associated or not with
310 budding). Cladogenetic changes were simulated as a change with equal probability to any state
311 immediately after speciation. When budding is present, cladogenetic changes were restricted to
312 daughter lineages whereas it could happen to either or both lineages in the absence of budding. We
313 also explored a scenario in which cladogenetic changes restricted to daughter lineages (thus
314 dependent on budding) produce convergence among all daughters of the same long-lived progenitor
315 lineage (see examples in Figs. 2 and 3). A detailed report of the simulation is available in the
316 Supplementary Materials (<https://doi.org/10.5061/dryad.qbzkh18kw>).

317

318 *Evaluating model adequacy and errors in ancestral estimation*

319 We used the method described by Pennell and colleagues (2015) to evaluate the adequacy of
320 PCMs for continuous traits in the presence of budding speciation and lineage-age-dependent rates of
321 trait evolution. This method computes a pool of summary statistics (see Table 1 in Pennell *et al.*,
322 2015) and compares each with an expected distribution estimated from the data. If the model is
323 adequate, the observed summary statistics should fall around the mean of the null distribution
324 whereas values outside the 95% highest density interval indicate that the PCM is inadequate. To
325 evaluate the effect of budding in the ancestral estimation of discrete states we used an index of how
326 incorrect the estimate at a node is with respect to the true history of the trait. We measured the
327 highest marginal probability among all states excluding the true state for the nodes as an estimate of
328 “wrongness”. This metric reflects how likely the state of a node would be estimated as the wrong
329 ancestral state. Note that this is distinct from uncertainty because wrongness is maximized when we
330 have certainty of the ancestral state but it is incongruent with the true (simulated) history.

331 Uncertainty is a lesser problem than wrongness because we will not, or at least should not, support
332 or refute evolutionary hypotheses based on uncertain estimates. Wrongness, on the other hand, can
333 result in misleading interpretations. We then used linear mixed models to test for the association
334 between node age and wrongness across all simulation scenarios and selected the best model using
335 the Akaike Information Criterion (AIC).

336

337 *Effects of budding and lineage-age dependent processes on the adequacy of continuous trait*
338 *evolution models*

339 After simulating continuous traits under 12 scenarios, varying the strength of the lineage-age
340 dependent process and the frequency of budding speciation, we estimated parameters for single rate
341 Brownian motion (Felsenstein, 1973), variable rate BM (Eastman et al., 2011), single optimum
342 Ornstein-Uhlenbeck (Butler and King, 2004), and Early-Burst (Harmon et al., 2010) models as
343 implemented in *geiger* (Pennell et al., 2014). Note that none of those models is the true model that
344 generated the data. Our goal is to evaluate which is the preferred model among the suite of PCMs
345 most used in the literature and to better understand the potential effects of budding speciation on our
346 inferences. We also hope that this simple illustration through the use of simulations motivates
347 further research in model development. Overall, variable rate BM models showed significant
348 improvement in model adequacy under budding.

349 Model adequacy tests for a homogeneous rate BM model (Pennell et al., 2015) detected a
350 negative slope of the linear fit between node depth and the size of the phylogenetic independent
351 contrasts (S_{hgt}) indicating that larger trait changes are more frequently detected closer to the tips
352 (Fig. S3). However, a variable rate BM model does not show evidence for such deviation (Fig. S3),
353 suggesting this is an effect of underestimating the rate variation introduced by budding (which
354 introduces heterogeneity in a different way than the variable rate BM models). A regression of
355 phylogenetic independent contrasts (PICs) and their expected variance (S_{var}) shows that nodes
356 connected by short branches are associated with more trait change (Fig. S2), independently of
357 whether the fitted BM model was homogeneous or not. Inadequacy of S_{var} is expected due to the
358 concentration of rates early in the history of lineages and the stronger effect of slowdown on the
359 more longeuous lineages when compared with short-lived ones—a pattern that is expected under
360 budding speciation and punctuated equilibrium. The deviances for S_{hgt} and S_{var} are only detectable

361 when the rate slowdown is strong, meaning that a relaxed rates model (Eastman et al., 2011) seems
362 to be able to adequately describe trait variation if lineage-age effects are mild, but not if they are
363 strong. Inadequacies in both S_{hgt} and S_{var} point to trait changes concentrated close to the tips, which
364 is expected since molecular trees have an accumulation of nodes near the present, some of these
365 generated by budding, producing new lineages with higher rates of trait evolution. Model
366 inadequacy could be an artifact of unobserved speciation events deeper in the tree but results remain
367 constant when we replicate analyses including extinct lineages. Deviations of S_{hgt} , S_{var} , and C_{var}
368 (coefficient of variation of PICs, a measure of rate heterogeneity) get stronger as the intensity of the
369 lineage-age-dependent slowdown factor increases. On the other hand, changing the frequency of
370 budding speciation, while controlling for the strength of the slowdown factor, did not change the
371 patterns of model adequacy across all summary statistics we investigated (Figs. S2-4). We did not
372 verify any deviation from the remaining summary statistics adopted by Pennell and colleagues
373 (2015). In summary, if budding speciation is frequent and there is strong age-dependent trait
374 evolution (punctuated equilibrium representing an extreme version of this), current inference
375 methods would have trouble adequately capturing patterns of trait evolution.

376 With respect to the support for alternative trait evolution models (i.e., Brownian motion,
377 Ornstein-Uhlenbeck, and Early-Burst) as a function of lineage-age dependent rate variation, the OU
378 model shows a marked increase in AIC weights in response to stronger slowdown factors (Figs. S5
379 and S6). In the majority of cases, the phylogenetic half-life was estimated to be multiple times
380 longer than the age of the clade (40 My) indicating very weak attraction towards the evolutionary
381 optimum (Cooper et al. 2016). Average phylogenetic half-life estimated across replicates was only
382 shorter than clade age when the strongest slowdown factor was applied (Fig. S7). This means that an
383 OU process is only supported when progenitor lineages are practically in stasis whereas virtually all
384 trait evolution is concentrated on the origination of new lineages following budding speciation. In
385 other words, if budding speciation produces a pattern congruent with Punctuated Equilibrium we
386 expect support for OU models. These results remain constant regardless of the frequency of budding
387 speciation used to simulate the data (Fig. S4) or the inclusion of extinct lineages.

388 When we simulate continuous traits under a lineage-age dependent process, the BM model
389 with varying rates adequately describes most characteristics of the data but fails to capture the
390 concentration of trait changes on shorter branches (S_{var}). If lineage-age dependent processes happen

391 in nature, our results reinforce the cautionary note that parameter estimates can be more informative
392 than model choice alone (Cooper et al. 2016). Although the majority of scenarios supported OU
393 models, only the strongest case of rate slowdown resulted in relatively short phylogenetic half-life
394 values. Fortunately, the deviance of the slope of absolute contrasts as a function of their expected
395 variance (S_{var} - Pennel et al. 2015) can help to detect a concentration of trait change towards shorter
396 branches, even when controlled for rate variation, which is one of the expectations of lineage-age-
397 dependent rates of evolution. Those simulations are far from being comprehensive (our goal was not
398 to be exhaustive but to provide examples to support our narrative), but they emphasize the potential
399 effects of not explicitly considering budding speciation, in particular when age-dependent trait
400 evolution is present. Future simulation studies should more deeply focus on the different aspects
401 superficially touched here as well as on others not discussed.

402

403 *Effects of budding speciation and lineage-age dependent processes on ancestral estimation*

404 Here we investigate how budding affects our estimations of ancestral state for discrete traits.
405 As expected, all fitted models show a strong positive association between node age and wrongness
406 (Fig. 4), meaning that ancestral estimation of nodes closer to the root of the tree is more likely to be
407 misleading. The best-ranked linear mixed model using AIC (Table S1) suggests that budding
408 speciation has a significant effect on wrongness when cladogenetic trait changes are also present
409 (see example in Fig. 3). Without cladogenetic changes, there is no detectable difference between the
410 null model (homogeneous rates and bifurcating speciation) and the model with budding speciation
411 (Fig. 4). Budding associated with cladogenetic changes increases the chance of misleading ancestral
412 state estimation, especially for younger nodes. This result is somewhat unexpected and important
413 because younger nodes are often expected to have more information than older ones (Schultz et al.,
414 1996; Boyko and Beaulieu, 2021).

415

416 **Can budding help us understand complex histories of trait evolution?**

417 Here we used simulations to exemplify the effect of budding speciation in PCMs of trait
418 evolution. Our initial results show that budding has an impact but does not completely hinder the
419 utility of the most popular models of trait evolution. Some of the effects we report here, for the most
420 part, can be translated as heterogeneity in trait evolution among lineages. Different from other

421 sources of heterogeneity (e.g., Uyeda and Harmon, 2014; Boyko and Beaulieu, 2021), budding
422 produces variation dependent on lineage identity, requiring the identification of progenitor lineages
423 potentially comprising multiple contiguous branches of a phylogeny. From this perspective, we are
424 optimistic about incorporating budding speciation into PCMs, and we hope our initial discussion on
425 the subject motivates further research on how we can properly incorporate budding speciation and
426 age-dependent trait evolution in PCMs. In fact, it is plausible that a portion of the intrinsic
427 heterogeneity captured by rate-varying models, such as hidden rates models for discrete traits
428 (Beaulieu and O’Meara, 2016; Caetano et al., 2018; Boyko and Beaulieu, 2021) and those applying
429 reversible jump MCMC for continuous traits (Eastman et al., 2011; Rabosky et al., 2014; Uyeda and
430 Harmon, 2014), is due to the effect of budding speciation.

431 Distinct from scenarios in which some predictor trait is responsible for rate shifts, budding is
432 expected to affect trait evolution dependent on the mode of speciation. This introduces a
433 complication because we need to reconstruct the budding history of lineages, which does not easily
434 leave a trace on molecular phylogenies (e.g., it needs samples of multiple populations of recently
435 diverged lineages). One potential solution is to use data augmentation (e.g., Quintero and Landis,
436 2020) to co-estimate budding history and trait evolution model parameters using simulations. This
437 approach could be challenging because both the frequency of budding speciation and the location of
438 the progenitor lineages would need to be sampled. However, our inability to pinpoint the location of
439 progenitor lineages should not be used as an argument for ignoring its effect on trait evolution.

440 Today we have several PCMs that are able to recover the signal of shifts in the tempo and mode of
441 trait evolution without a priori hypotheses (Eastman, 2011; Rabosky et al., 2014; Uyeda and
442 Harmon, 2014; Pagel et al., 2022) and, more importantly, there is evidence that such methods
443 improve model adequacy (Rabosky and Goldberg, 2015; Beaulieu and O’Meara, 2016; Caetano et
444 al., 2018). We suggest that budding speciation should be considered as a confounding factor akin to
445 rate heterogeneity, which needs to be taken into account when estimating the history of trait
446 evolution using molecular phylogenies—even if budding is not the focus of the study.

447 Another challenge is that progenitor lineages can produce scenarios incongruent with the
448 most parsimonious history for a trait (e.g. Figs. 2 and 3). For example, ancestral estimates of the
449 scenario shown in Figure 3 in the absence of fossil information would suggest, with confidence, that
450 the trait history is due to convergence. This is a scenario in which PCM estimates can conflict with

451 external evidence of homology. For instance, Pyron (2015) discusses the inference of multiple
452 transitions from viviparity back to oviparity in snakes, based on PCMs, despite the external evidence
453 based on development and physiology against it (Griffith et al., 2015). Pyron (2015) suggests that
454 comparative approaches should not ignore external evidence but also that findings from
455 phylogenetic inferences should be further investigated integratively. However, an unlikely ancestral
456 reconstruction of parity might simply mean that the model is inadequate. For instance, budding
457 speciation could help explain oviparous lineages nested deep into viviparous clades as descendants
458 of long-lived progenitor lineages (see discussion in Pyron 2015). The budding speciation scenario
459 would require many additional evolutionary transitions, but it would support the extensive
460 knowledge about genetics, development, and physiology of snakes (see discussion in Griffith et al.,
461 2015). In our view, when there is a clash between model estimates based on projections into millions
462 of years in the past and biological knowledge, it is wise to review our models and ponder which
463 important processes the model might be failing to capture, including the possibility of budding
464 speciation.

465

466 **Closing remarks**

467 Budding speciation might indirectly or directly impact both estimates of lineage
468 diversification and trait evolution under PCMs widely used in the literature. Our results suggest that
469 ignoring budding speciation when age-dependent trait evolution operates might lead to incorrect
470 inferences such as inferring the wrong ancestral state for younger nodes. We also suggest that it
471 might be possible, although challenging, to incorporate budding speciation into PCMs for both
472 discrete and continuous traits. The introduction of budding speciation in comparative approaches,
473 however, depends on the departure from the parsimony paradigm which we suspect is a barrier to
474 the development of macroevolutionary models that can fully integrate external biological
475 information about trait evolution. When we intuitively imagine a parsimonious trait history, we are
476 doing so independently of what is known about the evolutionary history of the system. Reflecting on
477 the role of comparative approaches and recognizing their limitations, especially when testing
478 scenarios of complex trait evolution, is key to the development of alternative models that help the
479 study of macroevolution to become a more integrative endeavor. The incorporation of budding
480 speciation is one example of the direction we can take in improving comparative studies, and we

481 hope our discussion motivates researchers to explore further some of these possibilities.

482

483

484

485

486

487 Acknowledgments

488 We would like to thank Matt Pennell and Jeremy Beaulieu for reading early versions of this work
489 and providing valuable feedback. Thanks to Michael Landis, Isabel Sanmartín, and three other
490 reviewers for insightful discussions and comments that helped us improve our work. This study was
491 supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) awards
492 number 2019/27212-4 and 2021/06780-4.

493

494 **Supplementary material, data, and R scripts are available through Data Dryad:**

495 <https://doi.org/10.5061/dryad.qbzkh18kw>

496

497 **Conflict of interest:** The authors have no conflicts of interest to declare.

498

499 References

500 Anacker, B. L., and S. Y. Strauss. 2014. The geography and ecology of plant speciation: range
501 overlap and niche divergence in sister species. *Proceedings of the Royal Society B: Biological Sciences* 281:20132980.

503 Aze, T., T. H. G. Ezard, A. Purvis, H. K. Coxall, D. R. M. Stewart, B. S. Wade, and P. N. Pearson.
504 2011. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data.
505 *Biological Reviews* 86:900–927.

506 Baker, J., A. Meade, M. Pagel, and C. Venditti. 2015. Adaptive evolution toward larger size in
507 mammals. *Proceedings of the National Academy of Sciences* 112(16):5093–5098.

508 Baldwin, B. G. 2005. Origin of the serpentine-endemic herb *Layia discoidea* from the widespread *L. glandulosa* (Compositae). *Evolution* 59:2473.

510 Bapst, D. W. 2013. When can clades be potentially resolved with morphology? *PLOS ONE*
511 8:e62312.

512 Bapst, D. W., and M. J. Hopkins. 2017. Comparing cal3 and other a posteriori time-scaling
513 approaches in a case study with the pterocephaliid trilobites. *Paleobiology* 43:49–67.

514 Bartoszek, K. 2014. Quantifying the effects of anagenetic and cladogenetic evolution. *Mathematical Biosciences* 254:42–57.

516 Bartoszek, K. 2020. A central limit theorem for punctuated equilibrium. *Stochastic Models* 36:473–
517 517.

518 Bastide, P., C. Solís-Lemus, R. Kriebel, K. W. Sparks, and C. Ané. 2018. Phylogenetic comparative
519 methods on phylogenetic networks with reticulations. *Systematic Biology* 67:800–820.

520 Baum, D. A., S. D. Smith, and S. S. S. Donovan. 2005. The Tree-Thinking Challenge. *Science*
521 310:979–980.

522 Beaulieu, J. M., and B. C. O'Meara. 2016. Detecting Hidden Diversification Shifts in Models of
523 Trait-Dependent Speciation and Extinction. *Systematic Biology* 65:583–601.

524 Behm, J. E., Ives, A. R., and J. W. Boughman. 2010. Breakdown in postmating isolation and the
525 collapse of a species pair through hybridization. *The American Naturalist* 175:11–26.

526 Benton, M. J., and P. N. Pearson. 2001. Speciation in the fossil record. *Trends in Ecology &*
527 *Evolution* 16:405–411.

528 Bokma, F. 2002. Detection of punctuated equilibrium from molecular phylogenies. *Journal of*
529 *Evolutionary Biology* 15:1048–1056.

530 Bokma, F. 2008. Detection of “Punctuated Equilibrium” by Bayesian estimation of speciation and
531 extinction rates, ancestral character states, and rates of anagenetic and cladogenetic evolution
532 on a molecular phylogeny. *Evolution* 62:2718–2726.

533 Bokma, F. 2010. Time, species, and separating their effects on trait variance in clades. *Systematic*
534 *Biology* 59:602–607.

535 Boyko, J. D., and J. M. Beaulieu. 2021. Generalized hidden Markov models for phylogenetic
536 comparative datasets. *Methods in Ecology and Evolution* 12:468–478.

537 Butler, M. A., and A. A. King. 2004. Phylogenetic comparative analysis: a modeling approach for
538 adaptive evolution. *American Naturalist* 164:683–695.

539 Caetano, D. S., B. C. O'Meara, and J. M. Beaulieu. 2018. Hidden state models improve state-
540 dependent diversification approaches, including biogeographical models. *Evolution*
541 72:2308–2324.

542 Carrillo, J. D., S. Faurby, D. Silvestro, A. Zizka, C. Jaramillo, C. D. Bacon, and A. Antonelli. 2020.
543 Disproportionate extinction of South American mammals drove the asymmetry of the Great
544 American Biotic Interchange. *Proceedings of the National Academy of Sciences* 117:26281–
545 26287.

546 Clavel, J., and H. Morlon. 2017. Accelerated body size evolution during cold climatic periods in the
547 Cenozoic. *Proceedings of the National Academy of Sciences* 114:4183–4188.

548 Cooper, N., G. H. Thomas, C. Venditti, A. Meade, and R. P. Freckleton. 2016. A cautionary note on
549 the use of Ornstein Uhlenbeck models in macroevolutionary studies. *Biological Journal of*
550 *the Linnean Society* 118:64–77.

551 Crawford, D. J. 2010. Progenitor-derivative species pairs and plant speciation. *Taxon* 59:1413–1423.

552 Crouch, N. M. A., S. M. Edie, K. S. Collins, R. Bieler, and D. Jablonski. 2021. Calibrating
553 phylogenies assuming bifurcation or budding alters inferred macroevolutionary dynamics in
554 a densely sampled phylogeny of bivalve families. *Proceedings of the Royal Society B:*
555 *Biological Sciences* 288:20212178.

556 De Lisle, S. P., D. Punzalan, N. Rollinson, and L. Rowe. 2021. Extinction and the temporal
557 distribution of macroevolutionary bursts. *Journal of Evolutionary Biology* 34:380–390.

558 Duchen, P., M. L. Alfaro, J. Rolland, N. Salamin, and D. Silvestro. 2021. On the effect of
559 asymmetrical trait inheritance on models of trait evolution. *Systematic Biology* 70:376–388.

560 Eastman, J. M., M. E. Alfaro, P. Joyce, A. L. Hipp, and L. J. Harmon. 2011. A novel comparative
561 method for identifying shifts in the rate of character evolution on trees. *Evolution* 65:3578–
562 3589.

563 Eldredge, N., and S. J. Gould. 1972. Punctuated equilibria: An alternative to phyletic gradualism,
564 pp. 82–115. In: Schopf, T. J. M., ed. *Models in Paleobiology*. Freeman, Cooper and Co.; San
565 Francisco, California.

566 Elliot, M. G., and A. Ø. Mooers. 2014. Inferring ancestral states without assuming neutrality or
567 gradualism using a stable model of continuous character evolution. *BMC Evolutionary
568 Biology* 14.

569 Ezard, T. H. G., T. Aze, P. N. Pearson, and A. Purvis. 2011. Interplay between changing climate and
570 species' ecology drives macroevolutionary dynamics. *Science* 332:349–351.

571 Felsenstein, J. 1973. Maximum likelihood estimation of evolutionary trees from continuous
572 characters. *American Journal of Human Genetics* 25:471–492.

573 Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach.
574 *Journal of Molecular Evolution* 17:368–376.

575 Felsenstein, J. 1985. Phylogenies and the Comparative Method. *American Naturalist* 125:1–15.

576 Foote, M. 1996. On the Probability of ancestors in the fossil record. *Paleobiology* 22:141–151.

577 Foote, M., J. S. Crampton, A. G. Beu, B. A. Marshall, R. A. Cooper, P. A. Maxwell, and I.
578 Matcham. 2007. Rise and Fall of Species Occupancy in Cenozoic Fossil Mollusks. *Science*
579 318:1131–1134.

580 Funk, D. J., and K. E. Omland. 2003. Species-Level Paraphyly and Polyphyly: Frequency, Causes,
581 and Consequences, with Insights from Animal Mitochondrial DNA. *Annual Review of
582 Ecology, Evolution, and Systematics* 34:397–423.

583 Gaboriau, T., Tobias, J. A., Silvestro, D., and N. Salamin. 2023. Exploring the Macroevolutionary
584 Signature of Asymmetric Inheritance at Speciation. *BioRxiv* doi:
585 <https://doi.org/10.1101/2023.02.28.530448>

586 Goldberg, E. E., and J. Foo. 2020. Memory in Trait Macroevolution. *The American Naturalist*
587 195:300–314.

588 Gottlieb, L. D. 2004. Rethinking classic examples of recent speciation in plants. *New Phytologist*
589 161:71–82.

590 Gould, S. J., and N. Eldredge. 1993. Punctuated equilibrium comes of age. *Nature* 366:223–227.

591 Grant, V. 1981. *Plant speciation*, 2nd ed. New York, NY, USA: Columbia University Press.

592 Griffith, O. W., D. G. Blackburn, M. C. Brandley, J. U. Van Dyke, C. M. Whittington, and M. B.
593 Thompson. 2015. Ancestral state reconstructions require biological evidence to test
594 evolutionary hypotheses: A case study examining the evolution of reproductive mode in
595 squamate reptiles. *Journal of Experimental Zoology Part B: Molecular and Developmental
596 Evolution* 324:493–503.

597 Hagen, O., K. Hartmann, M. Steel, and T. Stadler. 2015. Age-dependent speciation can explain the
598 shape of empirical phylogenies. *Systematic Biology* 64:432–440.

599 Harmon, L. J., J. B. Losos, T. J. Davies, R. G. Gillespie, J. L. Gittleman, W. B. Jennings, K. H.
600 Kozak, M. A. McPeek, F. Moreno-Roark, T. J. Near, A. Purvis, R. E. Ricklefs, D. Schlüter,
601 J. A. Schulte II, O. Seehausen, B. L. Sidlauskas, O. Torres-Carvajal, T. J. Weir, and A. Ø.
602 Mooers. 2010. Early bursts of body size and shape evolution are rare in comparative data.
603 *Evolution* 64: 2385–2396.

604 Helmstetter, A.J., Zenil-Ferguson, R., Sauquet, H., Otto, S.P., Méndez, M., Vallejo-Marin, M. et al.
605 (2023) Trait-dependent diversification in angiosperms: Patterns, models and data. *Ecology*
606 *Letters* 26:640– 657.

607 Huelsenbeck, J. P., R. Nielsen, and J. P. Bollback. 2003. Stochastic mapping of morphological
608 characters. *Systematic Biology* 52:131–158.

609 Hunt, G., M. A. Bell, and M. P. Travis. 2008. Evolution toward a new adaptive optimum:
610 phenotypic evolution in a fossil stickleback lineage. *Evolution* 62:700–710.

611 Janzen, T., F. Bokma, and R. S. Etienne. 2022. Nucleotide substitutions during speciation may
612 explain substitution rate variation. *Systematic biology* 71:1244-1254

613 Januario, M., and T. B. Quental. 2021. Re-evaluation of the “law of constant extinction” for
614 ruminants at different taxonomical scales. *Evolution* 75:656–671.

615 Lackey, A. C., J. W. Boughman. 2017. Evolution of reproductive isolation in stickleback fish.
616 *Evolution* 71:357-372

617 Liow L.H. & Stenseth N.C. 2007 The rise and fall of species: implications for macroevolutionary
618 and macroecological studies. *Proceedings of the Royal Society of London, Series B*
619 274:2745–2752.

620 Mallet, J., N. Besansky, and M. W. Hahn. 2016. How reticulated are species? *BioEssays* 38:140–
621 149.

622 Mattila, T. M., and F. Bokma. 2008. Extant mammal body masses suggest punctuated equilibrium.
623 *Proceedings of the Royal Society B: Biological Sciences* 275:2195–2199.

624 May, M. R., and B. R. Moore. 2020. A bayesian approach for inferring the impact of a discrete
625 character on rates of continuous-character evolution in the presence of background-rate
626 variation. *Systematic Biology* 69:530–544.

627 Mayr, E. 1942. Systematics and the origin of species. New York, NY, USA: Columbia University
628 Press.

629 Meier, R., and R. Willmann. 2000. The Hennigian species concept. In Wheeler, Q. D., and R. Meier
630 (eds). *Species concepts and phylogenetic theory: a debate* (pp. 30-43). Columbia University
631 Press, New York.

632 Monroe, M. J., and F. Bokma. 2009. Do speciation rates drive rates of body size evolution in
633 mammals? *The American Naturalist* 174:912–918.

634 Nuismer, S. L., and L. J. Harmon. 2015. Predicting rates of interspecific interaction from
635 phylogenetic trees. *Ecology Letters* 18:17–27.

636 O’Meara, B. C. 2012. Evolutionary Inferences from Phylogenies: A Review of Methods. *Annual
637 Review of Ecology, Evolution, and Systematics* 43:267–285.

638 Otero, A., P. Vargas, M. Fernández-Mazuecos, P. Jiménez-Mejías, V. Valcárcel, I. Villa-Machío,
639 and A. L. Hipp. 2022. A snapshot of progenitor–derivative speciation in *Iberodes*
640 (Boraginaceae). *Molecular Ecology* 31:3192–3209.

641 Pagel, M., C. O’Donovan, and A. Meade. 2022. General statistical model shows that
642 macroevolutionary patterns and processes are consistent with Darwinian gradualism. *Nature
643 Communications* 13:1113.

644 Papuga, G., P. Gauthier, V. Pons, E. Farris, and J. D. Thompson. 2018. Ecological niche
645 differentiation in peripheral populations: a comparative analysis of eleven Mediterranean
646 plant species. *Ecography* 41:1650–1664.

647 Parins-Fukuchi, C. 2021. Morphological and phylogeographic evidence for budding speciation: an
648 example in hominins. *Biology Letters* 17:20200754.

649 Patsis, A., R. P. Overson, K. A. Skogen, N. J. Wickett, M. G. Johnson, W. L. Wagner, R. A.
650 Raguso, J. B. Fant, and R. A. Levin. 2021. Elucidating the evolutionary history of oenothera
651 sect. *Pachylophus* (onagraceae): A phylogenomic approach. *Systematic Botany* 46:799–811.

652 Pennell, M. W., and L. J. Harmon. 2013. An integrative view of phylogenetic comparative methods:
653 Connections to population genetics, community ecology, and paleobiology. *Annals of the
654 New York Academy of Sciences* 1289:90–105.

655 Pennell, M. W., J. M. Eastman, G. J. Slater, J. W. Brown, J. C. Uyeda, R. G. FitzJohn, M. E. Alfaro,
656 and L. J. Harmon. 2014. geiger v2.0: An expanded suite of methods for fitting
657 macroevolutionary models to phylogenetic trees. *Bioinformatics* 30:2216–2218.

658 Pennell, M. W., R. G. FitzJohn, W. K. Cornwell, and L. J. Harmon. 2015. Model adequacy and the
659 macroevolution of angiosperm functional traits. *American Naturalist* 186:E33–E50.

660 Philippe, H., and C. J. Douady. 2003. Horizontal gene transfer and phylogenetics. *Current Opinion
661 in Microbiology* 6:498–505.

662 Pyron, R. A. 2015. Advancing perspectives on parity-mode evolution. *Journal of Experimental
663 Zoology Part B: Molecular and Developmental Evolution* 324:562–563.

664 Quintero, I., and M. J. Landis. 2020. Interdependent phenotypic and biogeographic evolution driven
665 by biotic interactionst. *Systematic Biology* 69:739–755.

666 Rabosky, D. L., S. C. Donnellan, M. Grundler, and I. J. Lovette. 2014. Analysis and visualization of
667 complex macroevolutionary dynamics: An example from australian scincid lizards.
668 *Systematic Biology* 63:610–627.

669 Rabosky, D. L., and E. E. Goldberg. 2015. Model inadequacy and mistaken inferences of trait-
670 dependent speciation. *Systematic Biology* 64(2):340–355.

671 Raup, D. M. 1985. Mathematical models of cladogenesis. *Paleobiology* 11:42–52.

672 Raup, D. M., and S. J. Gould. 1974. Stochastic simulation and evolution of morphology-towards a
673 nomothetic paleontology. *Systematic Zoology* 23(3):305–322.

674 Richmond, J. Q. and E. L. Jockusch. 2007. Body size evolution simultaneously creates and collapses
675 species boundaries in a clade of scincid lizards. *Proceedings of Biological Sciences*
676 274:1701–1708.

677 Rosenblum, E. B., B. A. J. Sarver, J. W. Brown, S. Des Roches, K. M. Hardwick, T. D. Hether, J.
678 M. Eastman, M. W. Pennell, and L. J. Harmon. 2012. Goldilocks meets Santa Rosalia: An
679 ephemeral speciation model explains patterns of diversification across time scales.
680 *Evolutionary Biology* 39:255–261.

681 Sankoff, D. 1975. Minimal mutation trees of sequences. *SIAM Journal on Applied Mathematics*
682 28:35–42.

683 Schultz T.R., Crocroft R.B., Churchill G.A. 1996. The reconstruction of ancestral character states.
684 *Evolution* 50:504–511.

685 Silvestro, D., Warnock, R.C.M., Gavryushkina, A., and T. Stadler. 2018. Closing the gap between
686 palaeontological and neontological speciation and extinction rate estimates. *Nature
687 Communications* 9:5237.

688 Simpson, G. G. 1944. *Tempo and Mode in Evolution*, Columbia Univ. Press, N.Y.

689 Taylor, E. B., J. W. Boughman, M. Groenenboom, M. Sniatynski, D. Schluter, and J. L. Gow. 2006.
690 Speciation in reverse: Morphological and genetic evidence of the collapse of a threespined
691 stickleback (*Gasterosteus aculeatus*) species pair. *Molecular Ecology* 15:343–355.

692 Uyeda, J. C., and L. J. Harmon. 2014. A novel Bayesian method for inferring and interpreting the
693 dynamics of adaptive landscapes from phylogenetic comparative data. *Systematic Biology*
694 63:902–918.

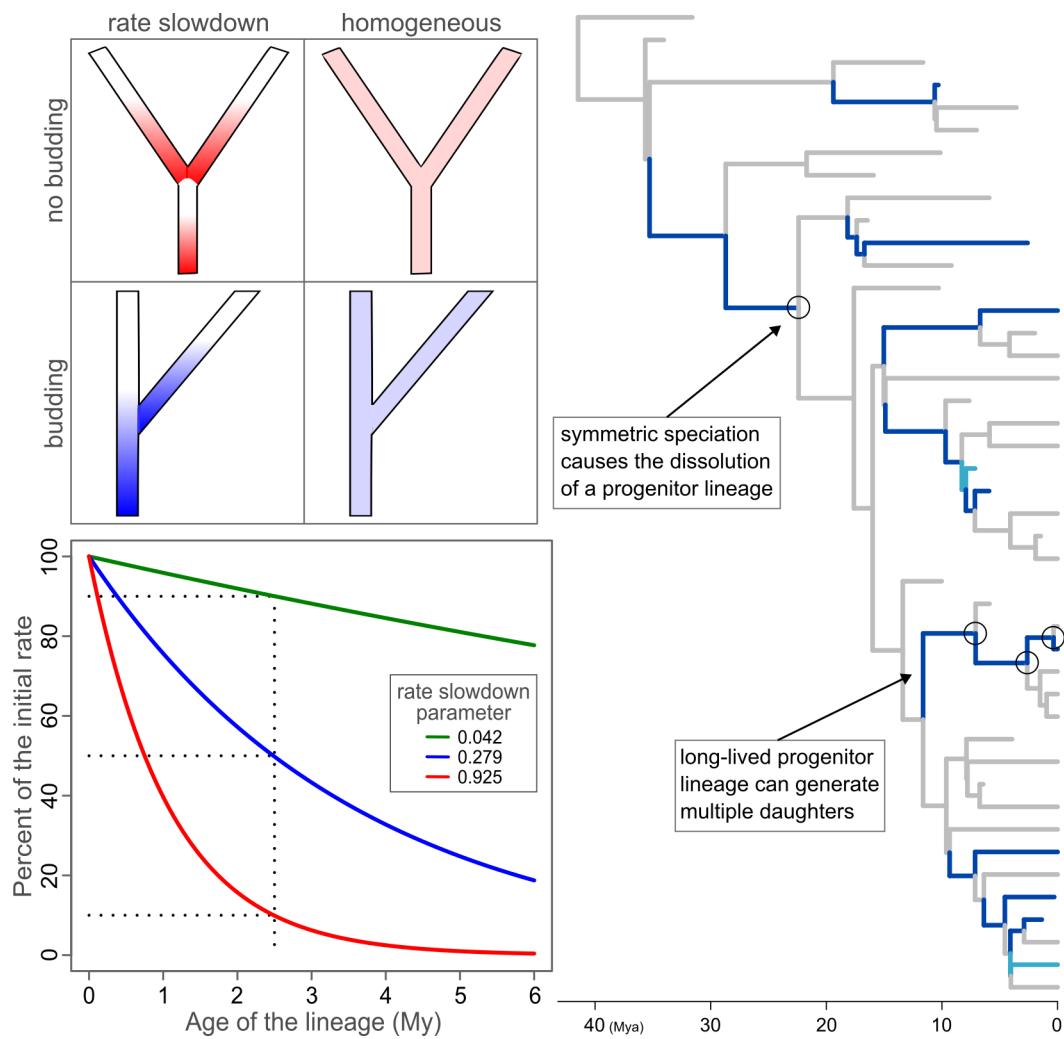
695 Wagner, P. J. 1998. A likelihood approach for evaluating estimates of phylogenetic relationships
696 among fossil taxa. *Paleobiology* 24:430–449.

697

698

699

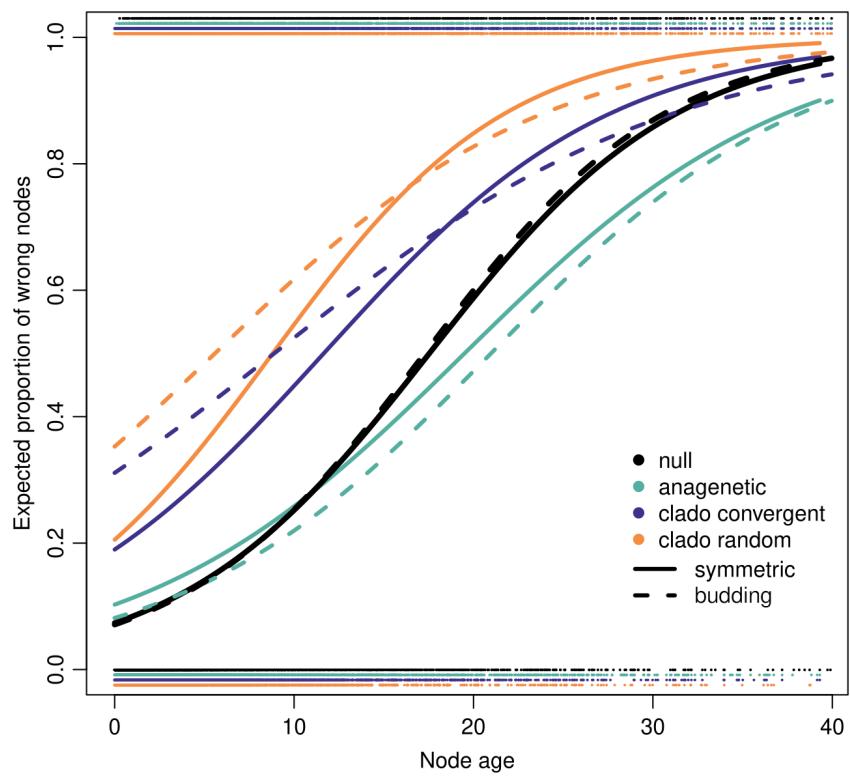
700


701

702

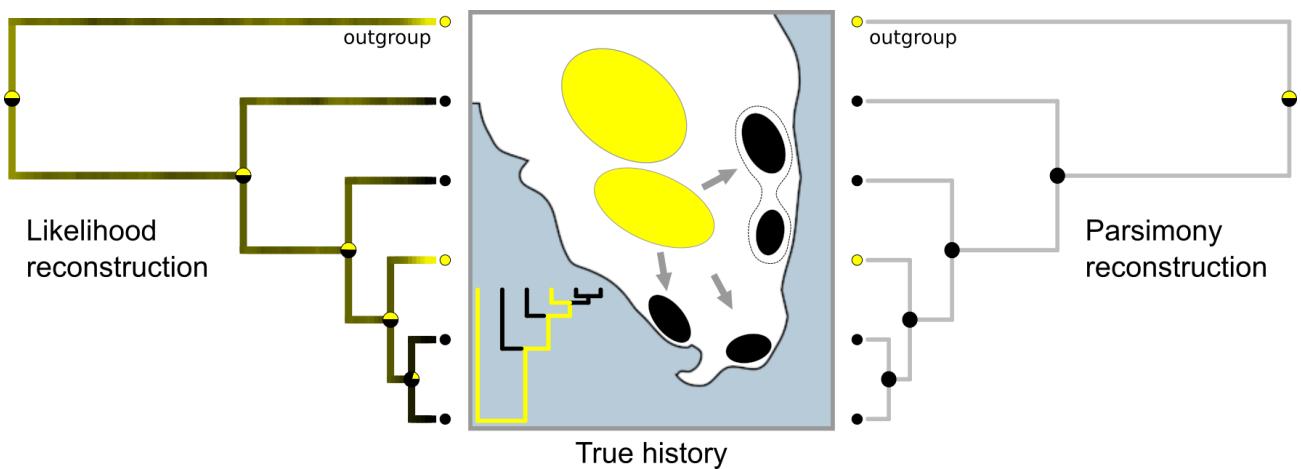
703 **FIGURES:**

704


705

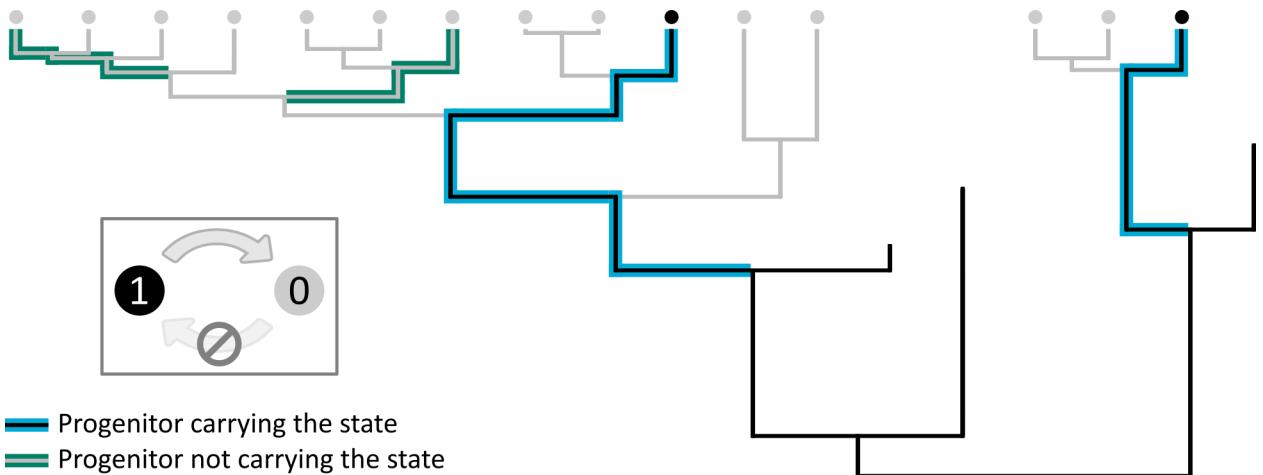
706

707 **Figure 1:** Approach used to illustrate and simulate budding speciation and trait evolution under


708 lineage-age dependent rates. Top-left: Interaction between age-dependent trait evolution and
709 speciation with and without budding. Stronger shades of color indicate faster rates of trait change.
710 Bottom-left: Rate slowdown as a function of lineage age under the three treatments used. Right:
711 Example of budding history with 20 extant species showing progenitor lineages in light and dark
712 blue.
713

714
715 **Figure 2:** Conflict between ancestral state estimation and the true history of lineage evolution under
716 budding. New species appeared through budding and converged three times into a different niche,
717 associated with the coastal distribution (black). The progenitor lineage is the sister to the outgroup
718 and carries the inland distribution (yellow). Neither likelihood nor parsimony recovered the true
719 history of the lineages. Left: Marginal ancestral state estimation for the best fit Markov model.
720 Branches are painted following a posterior distribution of 100 stochastic maps. Right: Most
721 parsimonious ancestral estimation following Sankoff's (1975) algorithm. Center: True history of the
722 trait. Phylogeny in the bottom left shows the continuation of the progenitor lineage through multiple
723 budding events.

725


726

727 **Figure 3:** Evolution of a truly irreversible trait. Long-lived progenitor lineages carry the ancestral
728 state whereas daughter lineages have lost the trait independently several times. Fossil lineages show
729 evidence of trait homology. PCMs in the absence of the fossil record would wrongly estimate two
730 independent origins of the "black" trait.

731

732

733

734

735 **Figure 4:** Relationship between the presence of nodes with wrongly reconstructed states and node
736 age. Nodes were considered wrongly reconstructed if the marginal ancestral state probability for any
737 state distinct from the correct state were > 0.5 at that node. Logistic regressions were performed
738 with the pooled results from the 50 simulation replicates per group and independent for each type of
739 node and study group (see Table S1). Dashed lines represent nodes with budding speciation whereas
740 solid lines show nodes without budding. Dots on the top and bottom represent pooled nodes across
741 simulation replicates correctly and incorrectly estimated, respectively.

742

743