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Summary 

The problem of predicting individual measurement is considered. This paper develops 

the Best Linear Unbiased Predictor (BLUP) of the fixed and random effects and the missing 

observations, under a mixed linear model. The mean square errors are also obtained. 
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1. Introduction 

According to Little and Rubin (1987) there are basically three ways lo analyse iucomplele 

data: elimination of the units partially observed, reweighting of units and imputation. This 

last approach predicts the missing values and then analyses the compleled data. In "hot 



deckb imputation, the prediction of values is made several times without a specific purpose 

of predicting any parameter. The idea is to complete the set of data to use in future studies, 

with different objectives. 

The mixed model has been intensively used. Searle (1988) has a survey of the random 

effects model or variance components model. Among the authors that use this model with 

complete data are Henderson (1975), Wang (1983) and Jeske and Harville (1988). Others, 

such as Chi and Reinscl {1989) and Harville and Carriquiry (1992) consider the model when 

data are not balanced which suits the case of non-response. The mixed model was also used 

by Box and Tiao (1968) with a Bayesian approach and by Lindstrom and Bates (1988) who 

implemented the Newton-Raphson and EM algorithms. 

In this paper, we consider the mixed model with incomplete data and derive the Best 

Linear Unbiased Predictor (BL~IP) for fixed and random effects and for the missing values. 

2. The model 

We consider the mixed linear model 

y = Xa+Zb+e (2.1) 

where y is a vector of d observed random variables, a is a vector of p unknown fixed parame­

ters (fixed effects), bis a vector of q unobservable random variables (random effects), X and 

Z are known matrices and e is a vector of d unobservable random variables (measurement 

errors) such that JE(b) = 0 , JE(e) = 0 and 

where G and R are known positive definite matrices, with dimension (q x q) and (d x d) 1 

respectively, and o 2 is a positive constant. We suppose that G and R are matrices of full 

rank. 
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Generally, it is assumed that, except for the parameter a 2, the variance-covariance struc­

ture is known. The variance-covariance matrix of y is 

Var(y) = (R + ZGZ')a2 = Wa2 , (2.2) 

where 

W =R+ZGZ'. 

The BLUP (Best Linear Unbiased Predictor), used in this context is the usual one with 

M-optimality, defined as in Subramani (1991), by: 

Definition 2.1 - Unbiased Predictor: the predictor iJ of O is said to be unbiased for O if 

IE(iJ - 0) = o . 

Definition 2.2 • Mean Square Error (MSE): the mean square error of iJ, as a predictor 

of O is defined as 

MSE(0) = IEl(6- 0)(6 - O)']. 

Definition 2.3 - BLUP: let £J 1 and £J2 be two linear unbiased predictors of O and A1 and 

A2 the respective matrices of mean square error. 61 is said to be better than 62 if A2 - A1 

ia a non negati11e definite -matriz. 

3. Derivation of BLUP 

The BLUP can be derived in several different ways. Hen<lerson(1950) derived the BLUP 

by maximizing the joint density of b and y with respect to a and b and suggested the 

name joint maximum likelihood c.dimate. Goldberger (1962) and Henderson(t963) applied 

Lagrange multipliers to obtain the BLUP of linear combinations of the effects and Harville 

(1977) showed that the BLUP of a linear combination of fixed an<l random effects is the 

same linear combination applied to the BLUP predictors of these effects. 

Mathematically, the BLUP of a and b are the solutions of the following equations, called 

equations of the mixed model, given by Henderson (1950) 

(3.1) 
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(3.2) 

The solutions, known as solutions of the mixed model, are: 

(3.3) 

and 

3.1. Estimation and prediction with known variances 

In this section we derive the BLUP of fixed and random effects and of the missing values, 

when the variance components are known. We consider the case in which m observations 

are missing at random and Lhe corresponding errors of observed and missing measurements 

have no correlation. In the dei·ivntion, we combine the ideas of Henderson (1950), Singh and 

Pratap (1989) and Harville (]!)90). 

We suppose that m of the d observations are missing and, without loss of generality, 

suppose that these are the last observations of the vector y. 

Thus, the model (2.1) can be written as 

(3.5) 

The BLUP of a, band Ym cau b~ obtained by minimizing the expression H, where 

( 

b )'(a-1 

H = y O - X 0 a - Z0 b 0 

Ym-Xma-Z,..b 0 

(3.6) 
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These estimators are the following: 

(3.7) 

(3.8) 

and 

where 

and 

• ( Yo ) y = . 
y,,. 

Note that (3.8) and (3.9) are the same expressions of er and b for com11lete data ((3.3) 

and (3.4)), but applied at completed data. 

3.2. Simplification of the predictors 

The predictors given in previous section can be simplifieJ using matrices of indicators 

of observed and missing values. Let E be the matrix c,f indicators of missing values and 

F the matrix of indicators of observed values. The dimension of E is (d x m), where each 

column corresponds n.t one of the missing data. Each column of E hns (d - 1) zero's and 

one I, located in the row corresponding to the missing value. The matrix F has dimension 

(d x (d - m)) and is analogous to E, but indicates the observed data. Using this notation, 

y., = F'y 

X 0 = F'X 
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Ym = E'y 

X..,=E'X 

(3.10) 

(3.11) 



Za = F'Z Zm = E'Z (3.12) 

R; 1 = F'R-1F R;;-_i = E1R- 1E (3. 13) 

and • 
E'E = I,,. F'F = I.i-m (3.14) 

E'F = 0 EE'+FF' = I.i (~. 15) 

FF'R-1FF' + EE'R-1EE' = R-1 • (3.16) 

Thus, 

Ym = (Im - E'QEE'R-1E)-1E'QFF'R-1FF'y (3.17) 

where • ,. 

Q = R(w- 1x(x'w-1x)- 1x'w- 1 + R- 1 - w-11R . • (3. 18) 

If the errors a.re independent, R = Id, the expressions in (3.17) and (3.18) become • 
(3.19) 

where 

(3.20) 

3.3. The Mean Square Error 

The mean square errors of the predictors a.re: 

M SE(im) = ((Im - E'QEE'R- 1E)- 1E'QFF'R-1FF' - E'JW 

IFF'R-1FF'QE(Im - E'R- 1EE'QE)- 1 - EJa2 (3.21) 

• 
M SE(o:) = BWB'u2 (3.22) 

MSE(b) = (CWC' - CZG - GZ'C' + G}a2 (3 .23) 

where 

6 



and 

If the errors are independent, 
.. ,. 
M SE(ym) = ((Im - E'QE)-1E'QFF' - E'JW(FF'QE(Im - E'QE)- 1 - Eja2 , 

B = (X'w-1x)- 1x'W-111d + E(Im - E'QEt1E'QJFF' I 

C = AZ'IId - X(X'w- 1x)-1X'w-1111d + E(I,n - E'QE)- 1E'QJFF'. 

4. Unknown variances 

When the variance components are unknown, the traditional method cousists of cstimat-
• 

ing these parameters and using the estimates as the true values. This approach is known as 

empirical BLUP and it can present problems when the estimate of the ratio of variance is 
• 
near to zero. According to Harville and Carriquiry (1992), "empirical BLUP is satisfactory 

- or can be made satisfactory by introducing appropriaLe modifications - unle:si; the estimate 

oC the variance ratio is imprecise and is close to zero, in which case more sensible point and .. 
• interval predictions can be obtained by adopting a Bay~iau approach". 

The main methods of estimation considered in the literature are Analysis of Variance •• (ANOVA), Estimation by Maximum Likelihood (EML), Restricted Estimation by Maxi-
• mum Likelihood (REML) and Minimum Norm Quadratic Unbiased Estimation (MINQUE). 

ReCecences about these methods are Winer (1971), Searle (1971), Patterson and Thompson 

(1971}, Patterson and Thompson (1975), Rao (1970, 1971a, 1971b, 1972, 1979) and Rao and 

.,Kleffe (1988} . 
• 

The estimation of variance components based on analysis of variance is m1e of the methods 

commonly suggested when the set of data is balanced. It is bc:st used uu Ll1c complete pa.rt 
• 

of the data. The problem is that negative estimates may occur, in whicl, l'. l ll>C they are taken 
l 

to be zero. '" 

For balanced data in 50me ca.ses of the model (2.1 ), the estimator provided by MINQUE 

theory, under the Euclidean norm, is the same estimator obtained from analysis of variance 
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and this, truncated at zero, is the same ns obtained from REML, under the assumption of 

a normal distribution for random effects and errors. This all suggests using the estimator 

from analysis of vnriance, truncated o.t zero. 
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