





deck” imputation, the prediction of values is made several times without a specific purpose
of predicting any parameter. The idea is to complete the set of data to use in future studies,

with different objectives.

The mixed model has been intensively used. Searle (1988) has a survey of the random
effects model or variance components model. Among the authors that use this model with
complete data are Henderson (1975), Wang (1983) and Jeske and Harville (1988). Others,
such as Chi and Reinsel (1989) and Harville and Carriquiry (1992) consider the model when
data are not balanced which suits the case of non-response. The mixed model was also used
by Box and Tiao (1968) with a Bayesian approach and by Lindstrom and Bates (1988) who
implemented the Newton-Raphson and EM algorithms.

In this paper, we consider the mixed model with incomplete data and derive the Best

Linear Unbiased Predictor (BLUP) for fixed and random effects and for the missing values.

2. The model

We consider the mixed linear model
y=Xa+Zb+e (2.1)

where y is a vector of d observed random variables, & is u vector of p unknown fixed parame-
ters (fixed eflects), b is a vector of q unobservable random variables (random effects), X and
Z are known matrices and e is a vector of d unobservable random variables (measurement

errors) such that IE(b) = 0, [E(e) = 0 and

b G 0
Var = o°,
e 0 R

where G and R are known positive definite matrices, with dimension (g x ¢) and (d x d),
respectively, and o2 is a positive constant. We suppose that G and R are matrices of full

rank.



Generally, it is assumed that, except for the parameter o?, the variance-covariance struc-

ture is known. The variance-covariance matrix of y is
Var(y) = (R + 2GZ")0? = Wo?, (2.2)

where

W =R+2GZ'.

The BLUP (Best Linear Unbiased Predictor), used in this context is the usual one with

M-optimality, defined as in Subramani (1991), by:

Definition 2.1 - Unbiased Predictor: the predictor 6 of 8 is said to be unbiased for 0 if
EG-6)=0.
Definition 2.2 - Mean Square Error (MSE): the mean square error of 8, as a predictor
of 8 is defined as
MSE(8) = E|(6 — 8)(6 — 6).
Definition 2.3 - BLUP: let 8, and 8, be two linear unbiased predictors of 8 and A, and

Ag the respective malrices of mean square ervor. 0, is said to be better than 0, if Ag — A,

is a non negative definite mairiz.
3. Derivation of BLUP

The BLUP can be derived in several different ways. Henderson(1950) derived the BLUP
by maximizing the joint density of b and y with respect to a and b and suggested the
name joint marimum likelihood estimate. Goldberger (1962) and Henderson(1963) applied
Lagrange multipliers to obtain the BLUP of linear combinations of the effects and Harville
(1977) showed that the BLUP of a linear combination of fixed and random effects is the

same linear combination applied to the BLUP predictors of these effects.

Mathematically, the BLUP of & and b are the solutions of the following equations, called

equations of the mixed model, given by Henderson (1950)

X'R'X &+ X'R-'Zb = X'R™ly (3.1)



ZR'X a+(ZR'Z+G )b =2Ry. (3.2)
The solutions, known as solutions of the mixed model, are:
& = (X'WIX) IX'w-ly (3.3)

and

b=(ZR'Z+G ) 'ZR' - ZRIIXX'WIX)T'X'W)y. (3.4)

3.1. Estimation and prediction with known variances

In this section we derive the BLUP of fixed and random effects and of the missing values,
when the variance components are known. We consider the case in which m observations

are missing at random and the corresponding errors of observed and missing measurements
have no correlation. In the derivation, we combine the ideas of Henderson (1950), Singh and

Pratap (1989) and Harville {1990).

We suppose that m of the d observations are missing and, without loss of generality,

suppose that these are the last observations of the vector y.
Thus, the model (2.1) can be written as

X z
e | R W D e T B (3.5)

Ym Xom Z,, €m

The BLUP of @, b and y,, can be obtained by minimizing the expression H, where

b Gt 0 o b
H=| y,—X,a-Z>b 0 R;' 0 Yo—X,a-2Z,b | . (36)
Ym — xma —Z,b 0 0 R-,_,‘l Yin — Xma —2Z,b



These estimators are the following:

Fm= {In— Xm(X'WIX)'[X!, - X'R™'ZAZ,, R} - Z,A[Z), - ZRTX(X'WIX) !
(X = X'RT'ZAZ) IR} H{Xm(X'WIX) X, - X'R™'ZAZ)

+ZnAlZ, — ZRIX(X'WIX) (X, - X'R™IZAZL)IR Y, .

(3.7)
a=(X'WIX)y'X'wly. (3.8)
and
b=(ZR'Z+G ) (ZR'-ZRIX(X'W'X)'X'W )y (3.9)
where
A=(ZR'Z+G™)!
and

L3y
il

Yo
Im

Note that (3.8) and (3.9) are the same expressions of & and b for complete data ((3.3)

and (3.4)), but applied at completed data.

3.2. Simplification of the predictors

The predictors given in previous section can be simplified using matrices of indicators
of observed and missing values. Let E be the matrix of indicators of mis.sing values and
F the matrix of indicators of observed values. The dimension of E is (d x m), where cach
column corresponds at one of the missing data. Each column of E has (¢ — 1) zcro’s and
one 1, located in the row corresponding to the missing value. The matrix F has dimension

(d x (d — m)) and is analogous to E, but indicates the observed data. Using this notation,
Yo =F'y Ym=E'y (3.10)

X, = F'X X,. = E'X (3.11)



Z,=F1Z Zn=EZ (3.12)

R;' = FR"'F R;! =ER'E (3.13)
and

EE=1I, F'F=1l4m (3.14)
E'F=0 EE'+FF =4 (3.15)
FF'R™'FF' + EE'R'EE' =R, (3.16)

Thus,
¥m = (Im - EQEE'R™'E)"'E'QFF'R™'FF'y (3.17)

where
Q = RWI'X(X'WX) 'X'W ' +R'-W'R. (3.18)

If the errors are independent, R = I4, the expressions in (3.17) and (3.18) become
¥m = (Imn — E'QE)'E'QFF'y (3.19)
where

Q=W IXX'WIX)'X'W +I,- W™, (3.20)

3.3. The Mean Square Error

The mean square errors of the predictors are:

MSE(§m) =|(Im— E'QEE'R'E)"'E'‘QFF'R™'FF’' - E'|W
[FF'R'FF'QE(I,, — E'R"'EE'QE)"! — E|o? (3.21)

MSE(aG) =BWB's? (3.22)

MSE(b) =(CWC'-CZG - GZ'C' + G)o? (3.23)

where

B = (X'W-'X)"'X'W-!R|I; + EE'R'E(l,, - E'QEE'R"'E)~'E'QJFF'R"'FF'
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and

C=AZ([I;-R'X(X'WIX) 'X'W'R||[I,+EE'R'E(I,,.—~E'QEE'R 'E)"'E'Q|JFF'R"'FF'
If the errors are independent,

MSE(ym) = [(Im — E'QE)'E'QFF’' — E'|W|[FF'QE(I.. — E'QE)"' - E|¢?,
B = (X'W-IX)"'X'W-![1, + E(I,, — E‘QE)~'E'Q|FF’,
C = AZ'[ly - X(X'W™'X)"'X'W~}|[I; + E(I,, - E'QE)~'E'Q|FF" .

4. Unknown variances

When the variance components are unknown, the traditional method cousists of estimat-
ing these parameters and using the estimates as the true values. This approach is known as
empirical BLUP and it can present problems when the estimate of the ratio of variance is
near to zero. According to Harville and Carriquiry {1992), “empirical BLUP is satisfactory
- or can be made satisfactory by introducing appropriale modifications - unless the estimate
of the variance ratio is imprecise and is close to zero, in which case more sensible point and

interval predictions can be obtained by adopting a Bayesian approach”.

The main methods of estimation considered in the literature are Analysis of Variance
(ANOVA), Estimation by Maximum Likelihood (EML), Restricted Estimation by Maxi-
mum Likelihood (REML) and Minimum Norm Quadratic Unbiased Estimation (MINQUE).
Refegences about these methods are Winer (1971), Searle (1971), Patterson and Thompson
(1971), Patterson and Thompson (1975), Rao (1970, 1971a, 1971b, 1972, 1979} and Rao and
Kleffe (1988).

The estimation of variance components based on analysis of variance is one of the mcthods
commonly suggested when the set of data is balanced. It is best used vi the complete part
of the data. The problem is that negative estimates may occur, in which casc they are taken

to be zero.

For balanced data in some cases of the model (2.1), the estimator provided by MINQUE

theory, under the Euclidean norm, is the same estimator obtained from analysis of variance
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and this, truncated at zero, is the same as obtained from REML, under the assumption of
a normal distribution for random cffects and errors. This all suggests using the estimator

from analysis of variance, truncated at zero.
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