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SINGULARITIES.
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Abstract. The generalized CR equation uz = au + bu + f is studied
when the coefficients a and b have a finite number of singular points
inside the domain. Solutions are constructed via the study of an asso-
ciated integral operator and the existence of nontrivial solutions of the
associated homogeneous equation is established.

1. Introduction

The study of generalized CR equations

∂u

∂z
= a(z)u+ b(z)u+ f(z)

in a domain Ω ⊂ C was initiated by L. Bers and I.N. Vekua in [3] and
[14]. This equation is of fundamental importance and has applications in
many areas (see for example [5] and [11] and the references therein). The
initiators of the theory considered the elliptic case when the coefficients
are in Lp(Ω) with p > 2 and this situation is now well understood (see
[1] for a comprehensive presentation). The case of degenerate coefficients
(either on the boundary of the domain or inside the domain) is of current
interest. Of particular interest to us, and in view of application to the
study of deformation of surfaces [4], we consider equations involving a finite
number of isolated singular points. Such type of equations were considered
in [2],[6], [7], [9], [10], [12], [13].

In this paper we consider the equation

∂u

∂z
=
A(z)

L(z)
u+

B(z)

L(z)
u+ F (z),

where L(z) =

N∏
j=1

(z − zj) and z1, · · · , zN are distinct points in the domain

Ω. It should be noted that the case N = 1 is studied in [6], through the use
of associated systems of ordinary differential equations when the coefficients
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A, B depend only on the argument θ of z and in [7] when the coefficients
could also depend on |z| but with small norm. The main results, Theorems
2.1 and 2.3 describe the solutions of such equations. To prove Theorem 2.1,
we make use of and associated integral operator (4.1) and its adjoint with
respect to a real bilinear form, which is inspired by the recent result in [10]
by A.B. Rasulov and A.P. Soldatov when the case of a single singular point
and small coefficients is considered. Theorem 2.3 shows the existence of
nontrivial solutions for the homogeneous equation (F = 0).

2. Main Results

Let Ω ⊂ C be a relatively compact domain, S = {z1, · · · , zN} be a
collection of N distinct points in Ω and A(z), B(z) ∈ L∞(Ω) ∩ C∞(Ω\S).
Assume that for every j ∈ {1, · · · , N}, there exist 0 < τj < 1, δj > 0,

2π-periodic functions pj(θ), qj(θ) and functions Aj(re
iθ), Bj(re

iθ) such that
Aj , Bj , ∈ L∞(D(0, δj))∩C∞(D(0, δj)\{0}), whereD(0, δj) denotes the open
disc centered at 0 and with radius δj , and

(2.1)
A(zj + reiθ) = pj(θ) + rτjAj(re

iθ)

B(zj + reiθ) = qj(θ) + rτjBj(re
iθ) .

Consider

(2.2)

γj =
1

π

∫ 2π

0
e−2iθpj(θ) dθ, j = 1, · · · N,

L(z) =

N∏
j=1

(z − zj) and M(z) =

N∏
j=1

|z − zj |γj .

Our goal is to understand the solutions of the equation

(2.3)
∂u

∂z
=
A(z)

L(z)
u+

B(z)

L(z)
u+ F (z),

when the nonhomogeneous term F (z) vanishes at the set of singular points
{z1, . . . , zN}.

For positive numbers m and p, with m ∈ Z+ and p > 1, consider the
Banach space

Em,p =

{
f : Ω −→ C :

f(z)

L(z)m
∈ Lp(Ω)

}
equipped with the norm

∥f∥m,p =
∥∥∥∥ f(z)

L(z)m

∥∥∥∥
Lp(Ω)

.

The main results of this paper are the following theorems.

Theorem 2.1. Let A and B be functions satisfying (2.1), m ∈ Z+ and

p > 2. Then for every function F in Ω such that
F (z)

M(z)
∈ Em+1,p(Ω), where

M(z) is given in (2.2), there exists a function v ∈ Em,p(Ω)∩Cα(Ω\S), with
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α = (p − 2)/p such that the function u(z) = v(z)M(z) is a solution of the
equation (2.3). Moreover, if in addition F ∈ Ck,σ(Ω\S) with k ∈ Z+ and
0 < σ < 1, then u ∈ Ck+1,σ(Ω\S).

Remark 2.2. In the paper [10], equation (2.3) is studied in the presence of
a single singular point p0 (so N = 1) and when the coefficient B has small
norm. In this case, the authors prove the existence of solutions of the form
v(z)/|z−p0|a with a < 1. In our case, we only require the number of singular
points to be finite and there is no restriction on the size of the norms of the
coefficients.

Theorem 2.3. Let A and B be functions satisfying (2.1) and k ∈ Z+. The
homogeneous equation

(2.4)
∂u

∂z
=
A(z)

L(z)
u+

B(z)

L(z)
u

has non trivial solutions in Ck(Ω). Moreover, for any a > 0, a nontrivial
solution u can be chosen so that u vanishes to an order ≥ a at each singular
point zj.

The rest of the paper deals with the proof of these results.

3. Reduction to the case A = 0

In this section we show that the solvability of equation (2.3) can be re-
duced to an analogous equation where the coefficient A = 0. For this we
start by proving the following lemma.

Lemma 3.1. For j = 1, · · · , N let γj be as in (2.2). Then there exists a
function µ ∈ L∞(Ω) ∩ C∞(Ω\S) such that

(3.1) w(z) =
N∑
j=1

γj log |z − zj | + µ(z)

satisfies

(3.2)
∂w(z)

∂z
=
A(z)

L(z)
.

Proof. Let δ > 0 be such that the discs D(zj , 2δ), with j = 1, · · · , N , are
contained in Ω and are pairwise disjoint. Let ϕ1, · · · , ϕN ∈ C∞(C) such
that

ϕj ≡ 1 in the disc D(zj , δ), Supp(ϕj) ⊂ D(zj , 2δ)

and set ϕ0 = 1 −
N∑
j=1

ϕj . Note that ϕ0 ≡ 1 in Ω\(
N⋃
j=1

D(zj , 2δ)) and ϕ0 ≡ 0

in
N⋃
j=1

D(zj , δ). The solvability of the equation (3.2) can be reduced to those
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of the N + 1 equations

(3.3)
∂wj
∂z

=
Aϕj
L

, j = 0, . . . , N

and taking w =
N∑
j=0

wj . Note that since ϕ0 ≡ 0 in
N⋃
j=1

D(zj , δ), it follows that

Aϕ0
L

∈ C∞(Ω) and so for j = 0, equation (3.3) has a solution w0 ∈ C∞(Ω)

(see [1]).
For j = 1, · · · , N , we use polar coordinates around the point zj , that

is, set z = zj + reiθ, and use property (2.1) of the function A to transform
equation (3.3) into an equation of the form

(3.4)
∂wj
∂r

+
i

r

∂wj
∂θ

=
γj + p̂j(θ)

r
+ rτj−1cj(r, θ) ,

where p̂j(θ) is a 2π-periodic, C∞ function with zero average and cj(r, θ) is a

bounded function, C∞ for r > 0. Since rτj−1cj ∈ Lp(Ω) with 2 < p <
2

1− τj
,

then equation
∂vj
∂r

+
i

r

∂vj
∂θ

= rτj−1cj(r, θ) ,

has a solution vj ∈ Cα(Ω) ∩ C∞(Ω\{zj}) with α = (p− 2)/p (see [1]).
The function

ζj(r, θ) = γj log r − i

∫ θ

0
p̂j(s) ds

satisfies
∂ζj
∂r

+
i

r

∂ζj
∂θ

=
γj + p̂j(θ)

r
.

It follows that the function

wj(r, θ) = ζj(r, θ) + vj(r, θ) = γj log r +

(
vj(r, θ)− i

∫ θ

0
p̂j(s) ds

)
︸ ︷︷ ︸

:=µj

solves equation (3.3). Therefore

w(z) =

N∑
j=1

γj log |z − zj |+ µ(z),

with µ(z) = w0(z) +

N∑
j=1

µj(z) is the desired solution of equation (3.2). □

With w(z) given by in Lemma (3.1), the function

ew(z) =

 N∏
j=1

|z − zj |γj

 eµ(z) =M(z) eµ(z)
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is smooth in Ω\S. A function u(z) satisfies equation (2.3) if and only if the
function

v(z) = e−w(z)u(z) = e−µ(z)
u(z)

M(z)

solves the equation

(3.5)
∂v

∂z
=
B1(z)

L(z)
v + F1(z) ,

with

B1(z) = B(z)ew(z)−w(z) and F1(z) =
e−µ(z)F (z)

M(z)
.

Note |B1(z)| = |B(z)| and that F1 ∈ Em+1,p(Ω) if and only if
F

M
∈

Em+1,p(Ω). Thanks to this reduction, from now on we will assume that
A = 0 and consider the equation

(3.6)
∂u

∂z
=
B(z)

L(z)
u + F (z) .

4. Properties of an associated integral operator

For L(z) as given in (2.2) and m ∈ Z+, consider the integral operator
TL,m defined by

(4.1) TL,mu(z) =
−L(z)m

π

∫
Ω

B(ζ)u(ζ)

L(ζ)m+1(ζ − z)
dξdη

where ζ = ξ + iη. We have the following lemma.

Lemma 4.1. For p > 2, the operator TL,m : Em+1,p(Ω) −→ Em,p(Ω) is

bounded and TL,m : Em+1,p(Ω) −→ C0(Ω) is compact. Furthermore

TL,m (Em+1,p(Ω)) ⊂ Cα(Ω), for α =
p− 2

p
.

Proof. The boundedness of TL,m is a consequence of estimates for the clas-
sical Cauchy-Pompeiu operator. Indeed, for u ∈ Em+1,p(Ω) with p > 2, we
have

|TL,mu(z)| ≤ |L(z)|m

π

∫
Ω

|B(ζ)| |u(ζ)|
|L(ζ)|m+1|ζ − z|

dξdη

≤ C|L(z)|m ∥B∥∞ ∥u∥m+1,p ,

where C is a constant depending only on p and the size of the domain Ω.
From this it also follows that TL,mu ∈ Em,p(Ω).

Now for arbitrary z1, z2 distinct points in Ω , we have
(4.2)

TL,mu(z1)− TL,mu(z2) =
−1

π

∫
Ω

B(ζ)u(ζ)

L(ζ)m+1

ζK1(z1, z2) +K2(z1, z2)

(ζ − z1)(ζ − z2)
dξdη,
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where
(4.3)

K1(z1, z2) = L(z1)
m − L(z2)

m = (z1 − z2)Pm(z1, z2),

K2(z1, z2) = L(z1)
m(z1 − z2)− z1(L(z1)

m − L(z2)
m) = (z1 − z2)Qm(z1, z2),

where Pm and Qm are polynomials in z1, z2 of degrees Nm − 1 and Nm,
respectively. It follows from (4.2) and (4.3)

|TL,mu(z1)− TL,mu(z2)| ≤ C ∥B∥∞ |z1 − z2|
∫
Ω

|u(ζ)| dξdη
|L(ζ)|m+1|ζ − z1||ζ − z2|

≤ C ∥B∥∞ |z1 − z2| ∥u∥m+1,p

(∫
Ω

dξdη

||ζ − z1|q|ζ − z2|q|

)1/q

≤ C ′ ∥B∥∞ ∥u∥m+1,p |z1 − z2|(p−2)/p,

(4.4)

where the constants depend only on p and Ω and q . In the last estimate,
we used Hadamard’s inequality (see [1] or [14]). The compactness of TL,m
follows from the compactness of embedding into Hölder spaces.

□

Next we define the adjoint of TL,m with respect to the real bilinear form
⟨., .⟩ given by by

⟨ϕ, ψ⟩ = Re(ϕ, ψ) = Re

(∫
Ω
ϕ(z)ψ(z) dxdy

)
.

If q is the Hölder conjugate of p, we set

T ∗
L,m : Xm,q(Ω) −→ Xm+1,q(Ω),

defined in the space

Xm,q(Ω) = {v : Ω −→ C : L(z)mv(z) ∈ Lq(Ω)} ,

and given by

(4.5) T ∗
L,mv(ζ) =

−B(ζ)

πL(ζ)m+1

∫
Ω

L(z)mv(z)

z − ζ
dxdy .

Remark 4.1. The fact that we can take Xm+1,q(Ω) as the target space is a
consequence of Theorem 1.2.6 of [14].

Now consider the operator

PL,m : Em+1,p(Ω) −→ Em,p(Ω), PL,mu := u− TL,mu,

and its adjoint

P ∗
L,m : Xm,q(Ω) −→ Xm+1,q(Ω), P ∗

L,mv := v − T ∗
L,mv.

We have the following lemmas

Lemma 4.2. The spaces Ker(PL,m) and Ker(P ∗
L,m) are finite dimensional.

Consequently, the operators PL,m and P ∗
L,m are Fredholm.
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Proof. First note that for u ∈ Ker(PL,m) we have u = TL,mu and since p > 2,

then u ∈ Cα(Ω) ⊂ L2(Ω) (where α = (p − 2)/p). We continue the proof
by contradiction, suppose that dim (Ker(PL,m)) = ∞, then we can find an
L2-orthonormal basis {uj}j∈N. It follows from the compactness of TL,m and
from the fact that uj = TL,muj that {uj}j∈N has a convergent subsequence.

This is absurd, since ∥uj − uk∥2 =
√
2 for j ̸= k.

Now consider v ∈ Ker(P ∗
L,m); then

(4.6) v(ζ) = T ∗
L,mv(ζ) = − B(ζ)

πL(ζ)m+1

∫
Ω

L(z)mv(z)

z − ζ
dxdy .

Since L(z)mv(z) ∈ Lq(Ω) (with q > 1), it follows (Theorem 1.26 of [14])
that v ∈ Xm+1,2(Ω). With this, a similar argument as the one used for
Ker(PL,m) shows that Ker(P ∗

L,m) is also finite dimensional. □

Lemma 4.3. Let Hm,p(Ω) = Em,p(Ω)∩H(Ω), where H(Ω) denotes the space
of holomorphic functions in Ω. Then

Em,p(Ω) = Range(PL,m) + Hm,p(Ω).

Proof. To prove this result, it is enough to verify that if v ∈ Xm,q(Ω) is such

that v ∈ Range(PL,m)
⊥ ∩Hm,p(Ω)

⊥, then v = 0. Since

Range(PL,m)
⊥ = Ker(P ∗

L,m),

such a function v satisfies (4.6). Also it follows from L(z)mv(z) ∈ Lq(Ω),
with 1 < q < 2, that ∫

Ω

L(z)mv(z)

z − ζ
dxdy ∈ Lγ(Ω),

for any q < γ <
2q

2− q
(see [1] or [14] for properties of the Cauchy-Pompeiu

operator). By repeating this argument, we find that in fact v is Hölder
continuous in Ω\S.

The function hζ(z) =
L(z)m

z − ζ
is holomorphic in Ω for any ζ /∈ Ω. Moreover,

since hζ vanishes to order m on the set S, then hζ ∈ Em,p(Ω) for ζ /∈ Ω.

Thus hζ ∈ Hm,p(Ω) for ζ /∈ Ω. It follows from v ∈ Hm,p(Ω)
⊥ that

⟨hζ , v⟩ = Re

(∫
Ω

L(z)mv(z)

z − ζ
dxdy

)
= 0.

Similarly ⟨ihζ , v⟩ = 0. This means that (hζ , v) = 0, which implies that

T ∗
L,mv(ζ) = 0 for every ζ /∈ Ω. Hence v(ζ) is extends continuously to C\S

by taking it to be zero outside Ω. In particular v = 0 on the boundary ∂Ω.
Let Z = {z ∈ Ω : B(z) = 0} and Ω1 = Ω\Z. It follows from (4.6) that

v = 0 on the closed set Z. Since v = 0 on ∂Ω, then v = 0 on ∂Ω1. By
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differentiating (4.6) with respect to ζ, we get

∂v

∂ζ
=

1

B(ζ)

∂B(ζ)

∂ζ
v − B(ζ)

L(ζ)
v

in Ω1\S. This equation is elliptic and it follows that locally v is similar to
a holomorphic function. Since v = 0 on ∂Ω1, then v = 0 everywhere. This
completes the proof of the lemma. □

5. Proof of Theorem 2.1

Let {w1, · · · , wn} ⊂ Xm,q(Ω) be a basis of Ker(P ∗
L,m). It follows from

Lemma 4.3 and from the fact that the operator PL,m is Fredholm that we
can find {h1, · · · , hn} ⊂ Hm,p(Ω) such that ⟨wj , hk⟩ = δjk, where δjk is the
Kronecker symbol, and such that

(5.1) Em,p(Ω) = Range(PL,m) + Span{h1, · · · , hn} .

Now given F ∈ Em,p(Ω), define

(5.2) f(z) =
−L(z)m

π

∫
Ω

F (ζ)

L(ζ)m(ζ − z)
dξdη .

Then f ∈ Em,p(Ω) and
∂f

∂z
= F . The decomposition (5.1) implies the

existence of real constants c1, · · · , cn such that

f = g +
n∑
k=1

ckhk ,

with g ∈ Range(PL,m). Let u ∈ Em+1,p(Ω) such that PL,mu = g. Thus,

PL,mu = u− TL,mu = g = f −
n∑
k=1

ckhk.

It follows from the definition of the operator TL,m in (4.1) and from the fact
that h1, · · · , hn are holomorphic that

∂u

∂z
=

∂

∂z

(
f −

n∑
k=1

ckhk + TL,mu

)
= F (z) +

B(z)

L(z)
u.

Therefore the function u solves (3.6). This completes the proof of the The-
orem 2.1.

Remark 5.1. It follows from the definition of the function f given in (5.2)
that if the function F vanishes to infinite order at the singular points
z1, · · · , zN , then the solution u can be taken to vanish to any prescribed
order at the points zj . For it is enough to take m larger than the prescribed
order of vanishing.
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6. Proof of Theorem 2.3

To show the existence of nontrivial solutions in Ω of the homogeneous
equation

(6.1)
∂u

∂z
=
B(z)

L(z)
u ,

we first recall results from [6] and [7] dealing with particular cases of (6.1).
Let q(θ) be a 2π-periodic and C∞ function. It is proved in [6] that there

exist a sequence of positive numbers

0 < λ1 < λ2 < · · · < λn < · · · with lim
n→∞

λn = ∞

and a sequence of nonvanishing 2π-periodic and C∞ functions fk(θ) such
for every k ∈ Z+, the function vk(r, θ) = rλkfk(θ) solves the equation

(6.2)
∂v

∂z
=
q(θ)

r
v where z = reiθ .

Let R > 0 and g ∈ C∞(D(0, R)\{0}) such that g = O(rα) for some
0 < α < 1. Then the proof of Theorem (4.1) of [7] shows that every solution
of the equation

(6.3)
∂v

∂z
=
q(θ) + g(r, θ)

r
v

is similar to a solution of (6.2) and vice versa. This means that for every
vk(r, θ) solution of (6.2) there exists a bounded function sk(r, θ) in the disc
D(0, R) such that the function wk = vke

sk solves (6.3).
Now we turn back to equation (6.1) in the domain Ω. It follows from

hypothesis (2.1) that the function B is of the form q(θ) + g(r, θ) with g =
O(rτj ) in a neighborhood of the singular point zj (here the polar coordinates
are centered at zj). It follows that equation (6.1) has a nontrivial solution
vj defined in a neighborhood of zj and moreover, vj can be chosen to vanish

to any prescribed order at zj . Thus such a function is class Ck near zj
(provided that the order of vanishing at zj is large enough).

Let ϵ > 0 be such that D(zj , 2ϵ) ⊂ Ω for every j = 1, · · · , N and the discs

are pairwise disjoint. For any fixed k ∈ N and each j, let ϕj ∈ Ck(C) with
Supp(ϕj) ⊂ D(zj , 2ϵ) and ϕj ≡ 1 in the disc D(zj , ϵ). We assume that ϵ is
small enough so that the functions vj (described above) are defined in the
disc D(zj , 2ϵ). We are going to construct a solution u of (6.1) in the whole
domain Ω of the form

(6.4) u(z) = w(z) +

N∑
j=1

ϕj(z)vj(z) .

In order for the function u to satisfy (6.1), the function w needs to solve

(6.5)
∂w

∂z
=
B(z)

L(z)
w + F (z) ,
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with

(6.6) F (z) =
N∑
j=1

(
B(z)

L(z)
ϕj(z)vj(z)−

∂(ϕj(z)vj(z))

∂z

)
.

Note that F ≡ 0 in the discs D(zj , ϵ) for j = 1, · · · , N . It follows from

Theorem 2.1 that equation (6.5) has a solution and that w ∈ Ck+1(Ω\S)
and that w can be chosen to vanish to any prescribed order at the singular
points (Remark 5.1).

Now we need to verify that for some set of cut off functions {ϕ1, · · · , ϕN}
the constructed solution u is not trivial. By contradiction, suppose that for
every {ϕ1, · · · , ϕN}, u ≡ 0. The corresponding function w satisfies

w = −
N∑
j=1

vj in
⋃N
j=1D(zj , ϵ),

w = 0 in Ω1 = Ω\
(⋃N

j=1D(zj , ϵ)
)
.

Let u′(z) = w′(z) +
∑N

j=1 ϕ
′
j(z)vj(z) ≡ 0 be another such solution corre-

sponding to another set {ϕ′1, · · · , ϕ′N} of cut off functions. Consider

ϕ′2 = ϕ2, · · · , ϕ′N = ϕN and ϕ′1 ̸= ϕ1.

Set ψ = ϕ′1 − ϕ1 and W = w′ − w. Hence W ≡ 0 everywhere except
possibly on the annulus Aϵ = D(z1, 2ϵ)\D(z1, ϵ) and it satisfies the equation

(6.7)
∂W

∂z
=
B(z)

L(z)
W +Gψ(z),

where
(6.8)

Gψ(z) = ψ(z)
∂v1(z)

∂z
− ∂(ψ(z)v1(z))

∂z
= ψ(z)

B(z)v1(z)

L(z)
− ∂(ψ(z)v1(z))

∂z
.

Let p0 ∈ Aϵ such that B(p0) ̸= 0 and v1(p0) ̸= 0, and so
∂v1
∂z

(p0) ̸= 0, and

let δ > 0 small enough so that
∂v1
∂z

(z) ̸= 0 for all z ∈ D(p0, δ) (the same is

again true for B and v1). We can assume after translation that p0 = 0. In
particular, we are in a situation where for any function

ψ = ϕ′1 − ϕ1 ∈ Ck(D(0, δ)) with Supp(ψ) ⊂ D(0, δ),

any solution of the equation (6.7) satisfies W (z) = 0 for all z ∈ C with
|z| ≥ δ. We are going to show that such a situation cannot happen.

We use results from [14], Chapter III, Sections 8 and 10, dealing with
representations of generalized analytic functions. In our case, we apply such
representation to the solutions of equation (6.7) in the disc D(0, δ). Thus,
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there exist kernels K1(ζ, z) and K2(ζ, z) (formulas 8.16, page 168 of [14])
depending only on the coefficient B/L in the disc such that

(6.9) K1(ζ, z) =
1

ζ − z
+ C1(ζ, z) and K2(ζ, z) = C2(ζ, z),

where C1, C2 are C
∞ functions (because B/L is C∞ in the annulus Aϵ) such

that any solution W of (6.7) has the representation

(6.10) W (z) =
−1

π

∫
D(0,δ)

(
K1(ζ, z)Gψ(ζ) +K2(ζ, z)Gψ(ζ)

)
dξdη .

Note that the original formula of Vekua contains an additional term in-
volving an integral over the boundary of the domain. But in our case the
additional term is 0 because W = 0 outside D(0, δ). It follows from (6.10)
that

(6.11)

∫
D(0,δ)

(
K1(ζ, z)Gψ(ζ) +K2(ζ, z)Gψ(ζ)

)
dξdη = 0 ∀z /∈ D(0, δ) ,

and this relation holds for any function ψ as above. We use (6.9) to rewrite
(6.11) as

(6.12)

∫
D(0,δ)

Gψ(ζ)dξdη

z − ζ
=

∫
D(0,δ)

(
C1(ζ, z)Gψ(ζ) + C2(ζ, z)Gψ(ζ)

)
dξdη ,

for |z| ≥ δ. By using the expression of Gψ given in (6.8) we have∫
D(0,δ)

Gψ(ζ)dξdη

z − ζ
= −

∫
D(0,δ)

ψ(ζ)B(ζ)v1(ζ)

L(ζ)(z − ζ)
dξdη .

Now we select the function ψ as

ψ(ζ) = (δ2 − r2)2k
L(ζ)

B(ζ) v1(ζ)
for ζ = reiθ ∈ D(0, δ) .

It follows that

Gψ(ζ) = (δ2 − r2)2k − ∂

∂ζ

(
(δ2 − r2)2k

L(ζ)

B(ζ)

)
and so

(6.13) |Gψ(ζ)| ≤ Ckδ
4k−1, ∀ζ ∈ D(0, δ),

where Ck is a constant which does not depend on δ. For such a choice of
the function ψ the relation (6.12) becomes
(6.14)∫

D(0,δ)

(δ2 − r2)2k

z − ζ
dξdη =

∫
D(0,δ)

(
C1(ζ, z)Gψ(ζ) + C2(ζ, z)Gψ(ζ)

)
dξdη ,

for |z| ≥ δ. We evaluate the left hand side of (6.14) by using the series

expansion
1

z − ζ
=

∞∑
j=0

ζj

zj+1
, for |z| > |ζ|, and by using polar coordinates to
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integrate. We find

πδ4k+2

(2k + 1)z
=

∫
D(0,δ)

(
C1(ζ, z)Gψ(ζ) + C2(ζ, z)Gψ(ζ)

)
dξdη ,

for |z| > δ. By differentiating with respect to z and using (6.13), we find
the estimate

πδ4k+2

(2k + 1)|z|2
≤
∫
D(0,δ)

(∣∣∣∣∂C1(ζ, z)

∂z

∣∣∣∣+ ∣∣∣∣∂C2(ζ, z)

∂z

∣∣∣∣) |Gψ(ζ)| dξdη

≤ Ckδ
4k−1

∫
D(0,δ)

(∣∣∣∣∂C1(ζ, z)

∂z

∣∣∣∣+ ∣∣∣∣∂C2(ζ, z)

∂z

∣∣∣∣) dξdη .

Since the functions inside the integral are bounded, by possibly increasing
Ck we have

πδ4k+2

(2k + 1)|z|2
≤ πCkδ

4k+1,

where Ck does not depend on δ when it is small. If we take |z| = 3δ

2
, it

follows that

πδ4k+2

(2k + 1)
≤ πCkδ

4k+3 ⇒ 1 ≤ (2k + 1)Ckδ.

This is clearly a contradiction if we reduce δ sufficiently, which completes
the proof of the theorem.
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