A GENERALIZED CR EQUATION WITH ISOLATED
SINGULARITIES.

B. DE LESSA VICTOR AND ABDELHAMID MEZIANI

ABSTRACT. The generalized CR equation uz = au + bu + f is studied
when the coefficients a and b have a finite number of singular points
inside the domain. Solutions are constructed via the study of an asso-
ciated integral operator and the existence of nontrivial solutions of the
associated homogeneous equation is established.

1. INTRODUCTION

The study of generalized CR equations

ou -
e a(z)u +b(2)u + f(z)

in a domain  C C was initiated by L. Bers and I.LN. Vekua in [3] and
[14]. This equation is of fundamental importance and has applications in
many areas (see for example [5] and [11] and the references therein). The
initiators of the theory considered the elliptic case when the coefficients
are in LP(€) with p > 2 and this situation is now well understood (see
[1] for a comprehensive presentation). The case of degenerate coefficients
(either on the boundary of the domain or inside the domain) is of current
interest. Of particular interest to us, and in view of application to the
study of deformation of surfaces [4], we consider equations involving a finite
number of isolated singular points. Such type of equations were considered
in [2),6], (7], [9], [10], [12], [13].
In this paper we consider the equation
673 _ A(z)u+ B(z)
0z  L(z) L(2)

Tt F(2),

N
where L(z) = H(z — z;) and z1,--- , 2N are distinct points in the domain
j=1
Q. Tt should be noted that the case N =1 is studied in [6], through the use
of associated systems of ordinary differential equations when the coefficients
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A, B depend only on the argument 6 of z and in [7] when the coefficients
could also depend on |z| but with small norm. The main results, Theorems
2.1 and 2.3 describe the solutions of such equations. To prove Theorem 2.1,
we make use of and associated integral operator (4.1) and its adjoint with
respect to a real bilinear form, which is inspired by the recent result in [10]
by A.B. Rasulov and A.P. Soldatov when the case of a single singular point
and small coefficients is considered. Theorem 2.3 shows the existence of
nontrivial solutions for the homogeneous equation (F' = 0).

2. MAIN RESULTS

Let @ C C be a relatively compact domain, S = {z1, -+, zy} be a
collection of N distinct points in Q and A(z), B(z) € L>®(Q2) N C=(2\S).
Assume that for every j € {1, ---, N}, there exist 0 < 7; < 1, ¢; > 0,

2m-periodic functions p;(6), ¢;(#) and functions A;(re?), B;(re) such that
Aj, Bj, € L*>(D(0,6;))NC*>(D(0,5;)\{0}), where D(0, d;) denotes the open
disc centered at 0 and with radius d;, and

Az + rew) =p;(0) + rTjAj(reie)

(2.1) B(zj + rew) =q;(0) +r7 Bj(rew) )
Consider
177 o :
’)/]:7_‘_/0 € p](e)daﬂ 3217N7
(2.2) N N
L(2) :H(z—zj) and M(z) :H|z—zj|71'.
j=1 j=1

Our goal is to understand the solutions of the equation

ou  A(z) B(z)
e = U+
0z  L(z) L(z)
when the nonhomogeneous term F'(z) vanishes at the set of singular points
{z1,...,2N}.

For positive numbers m and p, with m € Z* and p > 1, consider the
Banach space

(2.3)

u+ F(z),

Bop = {f Q0 C: Lf((zz)zn c LP(Q)}

equipped with the norm

s = | 20

Lr(Q)

The main results of this paper are the following theorems.

Theorem 2.1. Let A and B be functions satisfying (2.1), m € Z* and
F(z)
M(z)
M (z) is given in (2.2), there exists a function v € Ep, ,(Q2) NCY(Q\S), with

p > 2. Then for every function F in Q such that € Ent1p(Q), where
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a = (p—2)/p such that the function u(z) = v(z)M(2) is a solution of the
equation (2.3). Moreover, if in addition F' € C*7(Q\S) with k € Z* and
0< o<1, thenuc CHLI(Q\S).

Remark 2.2. In the paper [10], equation (2.3) is studied in the presence of
a single singular point pg (so N = 1) and when the coefficient B has small
norm. In this case, the authors prove the existence of solutions of the form
v(z)/|z—po|* with a < 1. In our case, we only require the number of singular
points to be finite and there is no restriction on the size of the norms of the
coeflicients.

Theorem 2.3. Let A and B be functions satisfying (2.1) and k € Z*. The
homogeneous equation

ou  A(z) B(z)
— = u+

0z  L(z) L(z)
has non trivial solutions in C*(Q). Moreover, for any a > 0, a nontrivial

solution u can be chosen so that u vanishes to an order > a at each singular
point z;.

(2.4)

The rest of the paper deals with the proof of these results.

3. REDUCTION TO THE CASE A =0

In this section we show that the solvability of equation (2.3) can be re-
duced to an analogous equation where the coefficient A = 0. For this we
start by proving the following lemma.

Lemma 3.1. For j =1,---, N let v; be as in (2.2). Then there exists a
function p € L>°(Q) N C*>°(Q\S) such that
N
(31) w(z) =Yy loglz — 2| +4(2)
j=1
satisfies
A
(3.2) du(z) _ Alz)
0z L(2)
Proof. Let § > 0 be such that the discs D(z;,26), with j = 1,--- , N, are
contained in Q and are pairwise disjoint. Let ¢1, -+, ¢ € C*°(C) such
that
¢j = 1 in the disc D(z;,0), Supp(¢;) C D(zj,29)
N N
and set ¢p = 1 — Zqﬁj. Note that ¢g =1 in Q\(U D(z,26)) and ¢g = 0
j=1 j=1

N
in U D(zj,0). The solvability of the equation (3.2) can be reduced to those
j=1
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of the N + 1 equations

ow;  Adp;
3.3 -2 =7 j=0,..., N
( ) 85 L ? .] Y 9y
N N
and taking w = Z w;. Note that since ¢9 = 0 in U D(zj,0), it follows that
j=0 j=1
A — _
Ado € C*(Q2) and so for j = 0, equation (3.3) has a solution wy € C*°(Q2)
(see [1]).
For j = 1,---, N, we use polar coordinates around the point z;, that

is, set z = z; + re? and use property (2.1) of the function A to transform
equation (3.3) into an equation of the form
ow; i 0w; v+ p;(0) _
3.4 J - J _ 1 J 7i—1 . 0
(3:4) or +7’ 00 r e 0),

where p;(0) is a 2m-periodic, C*° function with zero average and c;(r, ) is a

bounded function, C* for r > 0. Since r7~'¢; € LP(Q) with2 < p < =
then equation ’
o%j /) 81)j _
Or ' r 00
has a solution v; € C%(Q) N C>®(Q\{z;}) with a = (p — 2)/p (see [1]).
The function

0
¢i(r,0) —’yjlogr—i/o pj(s)ds

satisfies

or r oo r
It follows that the function

wi(r, 0) = ¢(r, 0) +v;(r,0) = ~; log r + <vj(r, 0) —i /09 5. (s) ds>

=

06 | 196 _ 7 +1;(0)

solves equation (3.3). Therefore

N
w(z) =Y 7jloglz — 2| + p(2),
j=1

N
with p(z) = wo(z) + Z j(z) is the desired solution of equation (3.2). O
j=1
With w(z) given by in Lemma (3.1), the function

N
ow(z) — H |2 — 2| M2 — M (z) eH(2)
j=1
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is smooth in Q\S. A function u(z) satisfies equation (2.3) if and only if the
function

— amw(2) — o H(2) U(Z)
v(z)=e u(z) =e M(2)
solves the equation
Ov  Bi(z)

(3.5) 7~ L) v+ Fi(2),

&

with

e M) F(2)

Bi(z) = B(2)e"®) %) and Fy(z) = M)

F
Note |Bi(z)| = |B(z)| and that F| € E;,41,() if and only if i €

Ept1p(Q). Thanks to this reduction, from now on we will assume that
A = 0 and consider the equation
ou  B(z)

(3.6) 9 L(z)ﬂ + F(2).

4. PROPERTIES OF AN ASSOCIATED INTEGRAL OPERATOR

For L(z) as given in (2.2) and m € Z", consider the integral operator
11, m defined by

@ o[ HOTD

where ( = £ + in. We have the following lemma.

Lemma 4.1. For p > 2, the operator Ty p, @ Epmi1p(Q2) — Epp(Q) is
bounded and Ty, : Epi1p(Q) — C°(Q) is compact. Furthermore
-2
Tim (Bns1p(@) © COQ), for a=F=.

Proof. The boundedness of T}, ,, is a consequence of estimates for the clas-
sical Cauchy-Pompeiu operator. Indeed, for u € Ep,41,(Q2) with p > 2, we

have
|L(z)|™ |B(C)] |[u(¢)]
Thmu()] < =25 /Q T 5 den

< CIL(2)[™ 1Bl
where C' is a constant depending only on p and the size of the domain €.
From this it also follows that T y,u € Ep, p(£2).

Now for arbitrary z1, z9 distinct points in 2 , we have
(4.2)

[l

TL,mU(Z1) — TL,mu(Z2> = _71 /Q igg:@(fl) CKIE?’_Z;))—(Z%%Z;’ ZQ)

d&dn,
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where
(4.3)
Ki(z1,22) = L(21)™ — L(22)™ = (21 — 22) P (21, 22),

Ka(z1,22) = L(21)™ (21 — 22) — 21(L(21)™ — L(22)™) = (21 — 22)Qm(21, 22),

where P, and (), are polynomials in z1, zo of degrees Nm — 1 and Nm,
respectively. It follows from (4.2) and (4.3)

(4.4)
Q)| d&dn
T m T m <C B
T mu(z1) — Tromu(22)| 1Bl oo z2|/dL |m+1|§—z1||g_Z2|
dedn >1/q
SC B zZ1 — & u /
|| Hoo| 1 2| || |m+1,P< O ||C_Zl|q|<—2’2‘q‘
S C, ||B||oc ”uH’rn-‘rl,p |Zl - 22|(p*2)/p’

where the constants depend only on p and €2 and ¢ . In the last estimate,
we used Hadamard’s inequality (see [1] or [14]). The compactness of T}, ,,
follows from the compactness of embedding into Hélder spaces.

O

Next we define the adjoint of 17, with respect to the real bilinear form
(.,.) given by by

(6, ) = Re(6, ) = Re ( [ ot dxdy)

If ¢ is the Holder conjugate of p, we set
T7 s Xmg(Q) — Xina1,4(Q),

defined in the space |
Xmg(Q)={v: Q@ — C: L(2)"v(z) € L1(Q)},
and given by
-B L(z)™v(z)
(145) Tim0(0) = b [P deay.

Remark 4.1. The fact that we can take X, 114(Q) as the target space is a
consequence of Theorem 1.2.6 of [14].

Now consider the operator
Prom : Emi1p(Q) — Epp(Q), Ppmu:=u—TLnu,
and its adjoint
Pl i Ximg(Q) — Ximy1,4(Q), Prv:=v-=1T5 0.
We have the following lemmas

Lemma 4.2. The spaces Ker(Pm) and Ker(Py ) are finite dimensional.
Consequently, the operators Pr, ,, and Pim are Fredholm.
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Proof. First note that for u € Ker(Pp, ,,,) we have u = T}, ,u and since p > 2,
then v € C*(Q) C L*(Q) (where a = (p — 2)/p). We continue the proof
by contradiction, suppose that dim (Ker(Pr,,,)) = oo, then we can find an
L%-orthonormal basis {u;}jen. It follows from the compactness of Ty, ,,, and
from the fact that u; = 17, ,,u; that {u;};en has a convergent subsequence.
This is absurd, since |luj — ||, = V2 for j # k.

Now consider v € Ker(Fy ,,); then

46 w0 =Tiwo0) =~y [N ey

Since L(z)™v(z) € L1(Q) (with ¢ > 1), it follows (Theorem 1.26 of [14])
that v € X, 412(92). With this, a similar argument as the one used for
Ker(Pp,m) shows that Ker(P; ) is also finite dimensional. O

Lemma 4.3. Let Hy, ,(2) = Ep, p(Q)NH(Q), where H(SY) denotes the space
of holomorphic functions in Q. Then

Epp(Q) = Range(Prm) + Hp,p(2).

Proof. To prove this result, it is enough to verify that if v € X, 4(Q2) is such
that v € Range(Pr )" N Hy,p(2)1, then v = 0. Since

Raunge(PL,m)l = Ker(Pz,m),

such a function v satisfies (4.6). Also it follows from L(z)"v(z) € L?(2),
with 1 < ¢ < 2, that

/ dedy e L7(Q),
o 2-¢

2
for any ¢ < v < 5 q (see [1] or [14] for properties of the Cauchy-Pompeiu

operator). By repeating this argument, we find that in fact v is Holder
continuous in Q\S.

L m
The function h¢(2) = (2) c is holomorphic in 2 for any ¢ ¢ Q. Moreover,
z

since h¢ vanishes to order m on the set S, then he € Ep, () for ¢ ¢ Q.
Thus h¢ € Hy, () for ¢ ¢ Q. It follows from v € H,y, ,(Q)* that

(h¢,v) =Re </QL(',Z)’_”12(2') da:dy) =

Similarly (ih¢,v) = 0. This means that (he,v) = 0, which implies that
Ty . v(¢) = 0 for every ¢ ¢ Q. Hence v(() is extends continuously to C\S
by,taking it to be zero outside 2. In particular v = 0 on the boundary 0.

Let Z={2¢€ Q: B(z) =0} and Q; = Q\Z. It follows from (4.6) that
v = 0 on the closed set Z. Since v = 0 on 02, then v = 0 on 9{2;. By
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differentiating (4.6) with respect to ¢, we get
v 1 0B(¢)  B(Q) _

— = 2 v
a¢ B aC L(¢)
in Q;\S. This equation is elliptic and it follows that locally v is similar to

a holomorphic function. Since v = 0 on 02y, then v = 0 everywhere. This
completes the proof of the lemma. O

5. PROOF OoF THEOREM 2.1

Let {w1, -+, wn} C X g(Q2) be a basis of Ker(Pr ). It follows from
Lemma 4.3 and from the fact that the operator Py ,, is Fredholm that we
can find {h1, -+, hp} C Hp,p(Q2) such that (wj, hy) = 0%, where d;, is the
Kronecker symbol, and such that

(5.1) Ep »(Q) = Range(Pr ) + Span{hy, - -+, hyp}.
Now given F' € Ey, ,(Q2), define
6.2 1= =57 [ rignie =

0
Then f € E,,p(Q2) and 8—{ = F. The decomposition (5.1) implies the
z

existence of real constants c1, --- , ¢, such that

n
F=9+Y chi,
k=1
with g € Range(Pr ). Let u € Ep,y1,,(2) such that Pru = g. Thus,

n
Prpu=u—-T,u=g9=f— Z chy,.
k=1

It follows from the definition of the operator 77, ,,, in (4.1) and from the fact

that hq, -+, h, are holomorphic that
ou 0 " B(z) _
— = — hy+Trmu ]| =F .
e (f Lo “) Ao

Therefore the function u solves (3.6). This completes the proof of the The-
orem 2.1.

Remark 5.1. It follows from the definition of the function f given in (5.2)
that if the function F vanishes to infinite order at the singular points
z1, -+, 2N, then the solution w can be taken to vanish to any prescribed
order at the points z;. For it is enough to take m larger than the prescribed
order of vanishing.
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6. PROOF OF THEOREM 2.3

To show the existence of nontrivial solutions in 2 of the homogeneous

equation
ou  B(z)

6.1 — =—"Tu
(6.1) 9z L(z)
we first recall results from [6] and [7] dealing with particular cases of (6.1).

Let g(0) be a 2m-periodic and C* function. It is proved in [6] that there
exist a sequence of positive numbers

D<M < < - <A\, < -+ with lim M\, =

n—oo

and a sequence of nonvanishing 2m-periodic and C*° functions fi(#) such
for every k € Z7, the function vg(r, ) = r* f(6) solves the equation
8—3 = @5 where z = re'? .
0z r

Let R > 0 and g € C*(D(0,R)\{0}) such that g = O(r®) for some
0 < a < 1. Then the proof of Theorem (4.1) of [7] shows that every solution
of the equation

(6.2)

Ov _ q(9) +9(r,0)
0z r

is similar to a solution of (6.2) and vice versa. This means that for every
v (r, @) solution of (6.2) there exists a bounded function si(r, 6) in the disc
D(0, R) such that the function wy = vie®* solves (6.3).

Now we turn back to equation (6.1) in the domain 2. It follows from
hypothesis (2.1) that the function B is of the form ¢(6) + g(r,0) with g =
O(r™) in a neighborhood of the singular point z; (here the polar coordinates
are centered at z;). It follows that equation (6.1) has a nontrivial solution
v; defined in a neighborhood of z; and moreover, v; can be chosen to vanish
to any prescribed order at z;. Thus such a function is class C* near Zj
(provided that the order of vanishing at z; is large enough).

Let € > 0 be such that D(z;,2¢) C Q for every j = 1,--- , N and the discs
are pairwise disjoint. For any fixed £ € N and each j, let ¢; C*(C) with
Supp(¢;) C D(z;,2¢) and ¢; = 1 in the disc D(zj,€). We assume that e is
small enough so that the functions v; (described above) are defined in the
disc D(z;,2€). We are going to construct a solution u of (6.1) in the whole
domain € of the form

v

(6.3)

N
(6.4) u(z) =w(z) + Z oj(2)vj(z) .
j=1

In order for the function u to satisfy (6.1), the function w needs to solve

(6.5) » - f(f; T4 F(2),
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with

al i\Z)Uil\Z
60 F@ =3 (1 - 2aCLED) .

Note that F' = 0 in the discs D(zj,€) for j = 1,---,N. It follows from
Theorem 2.1 that equation (6.5) has a solution and that w € C*+1(Q\S9)
and that w can be chosen to vanish to any prescribed order at the singular
points (Remark 5.1).

j=1

Now we need to verify that for some set of cut off functions {¢1, -+, én}
the constructed solution u is not trivial. By contradiction, suppose that for
every {¢1, --+, én}, u = 0. The corresponding function w satisfies

N
w :—Zvj in U;V:1 D(zj,€),
j=1
w =0 in O =Q\ <U§V:1 D(zj,e)) .

Let u/(z) = w'(z) + Zévzl ¢%(2)vj(z) = 0 be another such solution corre-
sponding to another set {¢}, ---, ¢y} of cut off functions. Consider
¢y =2, -+, iy = o and ¢} # ¢1.

Set ) = ¢} — ¢1 and W = w’ — w. Hence W = 0 everywhere except
possibly on the annulus A = D(z1,2¢)\D(z1, €) and it satisfies the equation

oW B(z) —

(6.7) o7 =10 W+ Gy(2),
where
(6.8)

Gy(2) = B(2) ‘9"’59 - a(¢(2:1(2)) — () B(z)él)(z) _ 8(w(za):1(z))

0
Let pg € A. such that B(pg) # 0 and v1(pg) # 0, and so %(po) # 0, and

let 6 > 0 small enough so that %Ul(z) # 0 for all z € D(po,d) (the same is
Z

again true for B and v1). We can assume after translation that pp = 0. In
particular, we are in a situation where for any function

¥ = ¢} —¢1 € C¥(D(0,0)) with Supp(+) < D(0,4),

any solution of the equation (6.7) satisfies W(z) = 0 for all z € C with
|z| > . We are going to show that such a situation cannot happen.

We use results from [14], Chapter III, Sections 8 and 10, dealing with
representations of generalized analytic functions. In our case, we apply such
representation to the solutions of equation (6.7) in the disc D(0,0). Thus,
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there exist kernels K((, z) and K2((, z) (formulas 8.16, page 168 of [14])
depending only on the coefficient B/L in the disc such that

69)  Fi2) = o+ GG and KalG2) = CalC.2)

where C, Cy are C*° functions (because B/L is C* in the annulus A¢) such

that any solution W of (6.7) has the representation

(6.10)  W(z)= —

(K1(¢.2)Gu(€) + Ka(¢.2)Gu(Q) ) dedn.
T JD(0,6)

Note that the original formula of Vekua contains an additional term in-
volving an integral over the boundary of the domain. But in our case the
additional term is 0 because W = 0 outside D(0,4). It follows from (6.10)
that

610 [ (K660 + Kol G didn =0 V= D00,

and this relation holds for any function ¢ as above. We use (6.9) to rewrite
(6.11) as

Gy(Q)dédn _ B NCTE
1) [ G- [ (0660 + Calé G0 dein,

for |z| > 6. By using the expression of Gy, given in (6.8) we have

/ Gy(Q)d€dn _ $(¢) B(Q)v1(Q)
D(0,5)

c ¢ Jows OG-0 &

Now we select the function 1 as

— (62 — p2)\2k L(¢)
VO = = PP

It follows that

Gul) = @ = 2 (<52 _ ><<>>
and so
(6.13) Gy(O)] < Cpa™ L, V¢ € D(0,d),

where C}, is a constant which does not depend on é. For such a choice of
the function v the relation (6.12) becomes

(6.14)
(52 - T2)2k
[ E T b= [ (€6206u(0) + a6, G0 den,
pos) *—C D(0,6)
for |z] > 6. We evaluate the left hand side of (6.14) by using the series

Cj

1 o0
expansion = Z — for [2] > |¢], and by using polar coordinates to
z—C = 2t
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integrate. We find

54k+2
BETD: =y (1660 + €l 2B dedn

for |z| > 6. By differentiating with respect to z and using (6.13), we find
the estimate

T2 9C1(¢, 2)| | |0C:(¢, 2)
CESVE /D(o,@(‘ 2 *’ - ) G (<) dedn
Ak—1 9C1(¢, 2) ‘302(47 z) )
= G0 /D(0,6)<‘ 0z 9z e

Since the functions inside the integral are bounded, by possibly increasing

C}, we have
e

_ < aC 54k’+1
@k D ="
where Cj does not depend on § when it is small. If we take |z| = %, it
follows that
myihr? 4k+3
— < 7Cy6 1 < (2k 4+ 1)Cké.
@ht1) ="k = 1< @R+ D0

This is clearly a contradiction if we reduce ¢ sufficiently, which completes
the proof of the theorem.
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