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Abstract - An extension of a simulation program for allocation
of emergency units in an urban area or highway is given. Several

measures of performance are proposed. A validation study is consi

dered.

1. Introduction

The literature on problems of allocation of emergency
units, such as ambulances, fire engines, repair vehicles, towing
cars, etc. has grown considerably in the last fifteen years. Most
of the research has concentrated on resource allocation problems
in urban areas. As Larson [4 nas formulated, the allocation pro-
blem of urban emergency services is composed of two related pro-
blems: the "districting" problem and the "location" problem. The
districting problem can be formulated as follows: given a region
with a certain'spatial distribution of demands for service and
given N response units spatially distributed in the region, how
should it be partitioned into areas of primary responsability (dis
tricts) so as to best achieve some level or combination of levels

of service?

The location problem can be formulated as follows: How
should the N response units be located or positioned while not

responding for calls for service?



In ambulance emergency services the district for a par-
ticular unit is the area in which calls for service are answered
by that particular ambulance, provided it is free. Usually every
hospital is located in a district but we may have several dis-

tricts with no hospital.

Most of the analytic models developed suffer from some
deficiencies: a) they have focused solely on intradistrict respon
se of the units b) they have considered only one performance mea
sure c¢) they have failed to incorporate the probabilistic nature

of urban emergency services.

Larson [4] has proposed the hipercubic queuing model

which overcomes the above limitations.

The simulation program we developed is used in the same
manner as the hipercubic model, since we adopted some of the per-
formance meansures of the hipercubic models and proposed some ad-

ditional ones.

2. The Hipercubic Model

The hipercubic model is a queuing model where the ser-
vers are distributed spacially in a region and answer calls gene-
rated in that region. The region is divided in a certain number
of minimal subregions which are called "atoms'. For modeling pur-
poses the atoms are the smallest subregions where the calls for

service are registered. The union of a certain number of atoms



will be called a district. In each district there is a unit of
the emergency service. This unit while not answering a call may be
stationed in a fixed iocation inside the district or may remain
in movement inside it. In the last case, the location may be speci
fied statistically by giving the relative amount of time it spends

in the various atoms of the region.

The hipercubic model was developed based on the follo-
wing assumptions: 1) The arrival process, ie, the calls for ser-
vice in the region follow a Poisson Process with rate A calls per
unit of time. 2) The service times of all the units of the sys-
tem have an exponential distribution with mean 1/u independent of
the location of the call and of the unit sent. 3) Only one wunit
is sent to answer a call.We note that for a system with N units,
if we do not take into account the identity of the units free or
busy under hipothesis 1, 2 and 3 we have a queuing model of the

type M/M/N.

A policy is defined when it is given a partition of the
region in districts, the location of the units in them and a rule
which assigns to each atom in decreasing order of priority the
units which attend calls generated there. When all the units are
busy there are two possibilities, either the call is rejected by
the system or it enters a queue and is attended by the first unit

to become free.

If the units are numbered from 1 to N and furthermore

to each unit is assigned the number zero or 1 according as the



unit is free or busy,the states of the systems in the case of 0-
capacity are identified with sequences of 0's and 1's of lenght N,

ie, the N-dimensional hipercube.

With this state space, under the hypothesis mentioned
the process is a continous parameter Markov chain. Since the ser-
vice times have a common exponential distribution with parameter
it follows that the transition rate from a state with kX to a
state with k-1 units busy is u, 1lgkg¢N. The transition rates from
a state with %k to one with k+1 busy units are difficult to
determine, because they depend on the state and on the priority
rule with which the units are sent to answer the call. Larson in

[4] constructed an algoritm to determine this rates.

Based on the transition rates one obtains the equations
of detailed balancing whose solution gives the stationary distri-
bution for the system with 2N states. With the stationary distri-
bution one obtains the workloads p; Which represent the amount of
time unit i is busy servicing calls. Using the workloads one
obtain the performance measures for the system as a whole and also
for the units and the districts.

To obtain the stationary distribution a system of ZN

equations must be solved. Larson introduced an aproximate proce-
dure which reduces the systems of equations to N. As it can be

seen in [5] the approximation is quite good.



3. The Simulation Model

In the hipercubic model the data such as arrival rate,
mean service time, probability of a call ocurring in an atom and
speed of the vehicles must be estimated. Estimates are obtained
in general for a configuration of the system with a given number
of units. If we want to operate with a different number of units

the mean total service time must be obtained.

Larson in his model cannot consider policies ‘with a
queue for certain units while others are unoccuppied. For large

distances this possibility might be convinient.

Besides the fact that usually total service times do
not have an exponential distribution the facts mentioned above were

the main reasons for the development of the simulation model in
(1].

Recently we have extended the model by considering new
meausures of performance and compared the results of the simula-

tion with those of the aproximated hipercubic model [3].

Hypothesis: As in the hypercubic model the region in which the

service operates is divided in atoms whose unions form the dis-

tricts.

To construct the model the following hypothesis were as
sumed:

a) The arrival process in the region is a Poisson process



with rate A, namely the interarrival times are exponentially dis-
tributed with mean 1/x. It follows that if f, Tepresents the pro-
bability that a call occurs in atom k, k=1,2,...,n? of atoms then
the number of calls in atom k is a Poisson Process with rate Ay

b) Each unit can perform various types of service the type
of service to be performed is selected from a discrete distribu-
tion.

c) The elapsed time of service at the scene (place of ocur-
rence) has an exponential distribution.

d) The velocity of the units when moving to the scene or whi
le performing a task are constant.

e) The units while not attending a call are stationed in a

district. There may be more than one unit in a district.

Remark

If the service times at the scene are not exponential
it will be sufficient to replace the routine that generate the ex

ponential variables by one that generates the other distribution.

The Program

The control of the program is done through the "event
scheduling approach”. An event will be an arrival or the end of a

service.

A simplified version of the flowchart of the program is

the following:
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Next Event: In this block the arrival times are generated and it

is decided which is the next event an arrival or the end of a ser
vice. The one that occurs first is the next scheduled event. Then
simulated time is advanced to this scheduled time and all the va-

riables (descriptors) associated with the simulation are adjusted.

Is there a unit to attend? This block determines the atom which

originates the call and searches if there is a unit to attend it.

Go to Queue: If there is no unit to attend a call this block sends
the unit to a queue, The queues are formed for the units in the

district where the call was generated.



Is there a queue? The unit that finishes a service searches if the

re are queues in the districts which it attends in decreasing or-

der of priority.

Service: This block generates the type of service, the elapsed ti
me of service at the scene; for services executed in two stages
it generates the location where the second stage is to be perfor-
med. It computes all the travel times using the velocity and the
matrix of the distances among the atoms. The total service time
is computed adding the travel times with the service time at the

scene.

The policies: To specify a policy for the simulation it is neces-

sary to add to the definition given for the hypercubic model (see
2) a table. This table assigns to every unit the districts which

it attends in decreasing order of priority at the moment it finis

hes a service.

4. Example

Before studying the validation of the simulation model,
we will give an example of its outputs. We will consider a towing
system in a highway. The highway was divided in 21 atoms and five
districts were formed with one towing car in each one. Calls may
require towing or not. In the first case the wehicles are towed to
given locations along the highway. This information is summarized

by a vector x=(xi, i=1l,...,21) where X; denotes the destination of



a vehicle towed from atom i.

The total service time (TST) is decomposed in either of

the following ways:

whether the

Here: TT

STCy

STC2

TOT
RT

[}

RTOT

(1) TsT TT + STC1 + RT

(2) TST

TT + STCZ + TOT + RTOT

call does not or does require towing.

travel time to the atom of the call

service time at the place of the call without towing
service time at the place of the call with towing
time to tow

return time to location of the unit

return time to location of the unit from towing place.

The policy adopted is specified by tables 1, 2 and 3.

TABLE 1
District L?;:;;g" Atoms
1 3 1 2 3 4 5
2 8 6 7 8 13
3 9 9 10 11 12 20 21
4 15 14 15 16 17 18

5 19 19
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TABLE 2 TABLE 3
District Units Unit Districts
1 1 4 2 1 1 4 2
2 2 3 1 2 2 3 1 4
3 35 3 3 5 2
4 4 1 2 4 4 1
5 5 3 5 5 3
Tables 1 gives the location of the units in the dis-

tricts and the atom that form them. Table 2 is associated with a
call: it gives the units which attend every district in decreasing
order of priority. Table 3 is associated with an end of service. It
lists in decreasing order of priority the district a unit shall

attend whenever there are calls waiting.

Four hundred periods of 18 hours of operation were simu
lated with the following data: call rate: A=3.24 calls per hour;
speed of the units = 60Km/h; probability a call requires towing =
0,33; STCy and STC, exponentially distributed with means 30' and

15' respectively.

The tables that gives the probability a call occurs in
each atom and the one giving the places the vehicles are towed to

are onmited.

Qutput
Regionwide fraction of dispaches which are interdistrict = 0,37

Regionwide workload imbalance = 0,105
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Performance measures associated with units

. Disp out of

Unit W district TST 1T STC TOT RT Lq

1 .5041 .51 48.72 14.17 17.57 12.00 14.89 .0378

2 .4528 .49 46.15 13.26 17.77 12,11 12.97 .0273

3 .5578 .37 43.53 11.02 17.65 8.46 13.35 .1088

4 .5347 .18 49.23 11.64 17.12 16.19 17.64 .0770

5 .5388 .33 52.29 9.02 17.63 7.97 24,30 .1059
Mean N - 47.81 11.77 17.55 11.26 16.52 -

Performance measures associated with districts

Fr. of Inter ............ MEAN............

District Disp. TTD W' WTQ WTQQ
1 .4134 12.22 22.03 4.36 19.61

2 . 3530 9.54 18.88 3.56 19.07

3 . 3487 10.06 37.39 8.72 22.99

4 .4260 15.07 20.03 4,98 23.31

5 . 3019 10.11 37.39 10.72 28.89

The regionwide workload imbalance is the maximum diffe-
rence among the workloads of the units; W = workload is the frac-
tion of time that a unit is busy; Fr, Disp out of District is the
fraction of dispaches performed by an unit out of its district;L
is the expected lenght of the queue for each unit; Fr of inter
disp - is the fraction of dispaches in a particular district at-
tended by units of other districts; TTD is the travel time to a

district; W' is the fraction of time all units which attend a dis
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trict are busy, ie, the fraction of time an arriving call will en
ter a queue; WIQ = waiting time in queue; WTQQ = waiting time in

queue given there is a queue.

5. Model Validation

From the hypothesis in section 3 we can easily conclude
that for a system with one unit we have an M/G/1 queue if service
is the total service time (TST). In fact the arrival process is

Poisson.

The total service times are i.i.d. because given the
instant a call occurs its location is obtained selecting an atom
from a discrete distribution independent of the instant of arri-
val, the service times at the scene are i.i.d. exponentially dis-
tributed random variables independent of the location of the call,

and the distances travelled depend on the atom selected.

For an M/G/1 queue with arrival rate X, average service
time 1/u the expected queue lenght Lq and the average waiting time

in queue Wd are given by:

+ Ao L
L=f—_s w =-4
A

q 2(1-p) 4

where p = % and og is the variance of the total service time.

The expected value and variance of TST are given by:
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(3) E(TST) = E(TT + STC, + RT|X=1) P(X=1) +

1
+ E(TT + STC, + T,T + RTOT[X=2) P (X=2)

(4) Var(TST) = E[Var(TST|X)] + Var[E(TST|X)]
where X=2 if the call require towing and X=1 if it does not.

We ran the simulation of four hundred periods of opera-
tion of the system with one unit centrally located for three dif-
ferent arrival rates: A= .25, .50 and .75 calls per hour and with

the same remaining data as in the example considered.

The table below gives the results obtained for Lq and
Wq in the simulation and a comparison with the values obtained for

them in the M/G/1 model. The times are given in minutes.

A = .25 A = .5 A= .75
SIM M/G/1 SIM M/G/1 SIM M/G/1

TST 57.99 - 56.43 - 56.52 =
p . 2462 . 2416 .4759 .4619 . 7011 .7064
Lq .0479 .0463 . 237 . 242 . 894 . 85
Wq 11,3 11,1' 28,15' 29" 72" 68'

In our simulation program we are developing a routine to
obtain confidence intervals for the above parameters. The results

will appear in a forthcoming paper.
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