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Abstract - An extension of a simulation program for allocation 
of emergency units in an urban area or highway is given. Several · 
measures of performance are proposed. A validation study is consi 
dered. 

1. Introduction 

The literature on problems of allocation of emergency 
units, such as ambulances, fire engines, repair vehicles, towing 
cars, etc. has grown considerably in the last fifteen years. Most 
of the research has concentrated on resource allocation problems 
in urban areas. As Larson [4] has formulated, the allocation pro­
blem of urban emergency services is composed of two related pro­
blems: · the "districting" problem and the "location" problem. The 
districting probl em can be formulated as follows: given a region 
with a certain spatial distribution of demands for service and 
given N response units spatially distributed in the region, how 
should it ! partitioned into areas of primary responsability (di~ 
tricts) so as to best achieve some level or combination of levels 
of service? 

The location problem can be formulated as follows: How 
should the N response units be located or positioned while not 
responding for calls for service? 
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In ambulance emergency services the district for a par­

ticular unit is the area in which calls for service are answered 

by that particular ambulance, provided it is free. Usually 

hospital is located in a district but we may have several 

tricts with no hospital. 

Most of the analytic models developed suffer from 

every 

dis-

some 

deficiencies: a) they have focused solely on intradistrict respo~ 

se of the units b) they have considered only one performance me~ 

sure c) they have failed to incorporate the probabilistic nature 

of urban emergency services. 

Larson [4] has proposed the hipercubic 

which overcomes the above limitations. 

queuing model 

The simulation program we developed is used in the same 

manner as the hipercubic model, since we adopted some of the per­

formance meansures of the hipercubic models and proposed some ad­

ditional ones. 

2. The Hi percubic Model 

The hipercubic model is a queuing model where the ser­

vers are distributed spacially in a region and answer calls gene­

rated in that region. The region is divided in a certain number 

of minimal subregions which are called "atoms". For modeling pur­

poses the atoms are the smallest subregions where the calls for 

service are registered. The union of a certain number of atoms 
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will be called a district. In each district there is a unit of 

the emergency service. This unit while not answering a call may be 

stationed in a fixed location inside the district or may remain 

in movement inside it. In the last case, the location may be speci 

fied statistically by giving the relative amount of time it spends 

in the various atoms of the region. 

The hipercubic model was developed based on the follo­

wing assumptions: 1) The arrival process, ie, the calls for ser­

vice in the region follow a Poisson Process with rate A calls per 

unit of time. 2) The service times of all the units of the sys­

tem have an exponential distribution with mean 1/µ independent of 

the location of the call and of the unit sent. 3) Only one unit 

is sent to answer a call.We note that for a system with N units, 

if we do not take into account the identity of the units free or 

busy under hipothesis 1, 2 and 3 we have a queuing model of the 

type M/M/N. 

A policy is defined when it is given a partition of the 

region in districts, the location of the units in them and a rule 

which assigns to each atom in decreasing order of priority the 

units which attend calls generated there. When all the units are 

busy there are two possibilities, either the call is rejected by 

the system or it enters a queue and is attended by the first unit 

to become free. 

If the units are numbered from 1 to N and furthermore 

to each unit is assigned the number zero or 1 according as the 
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unit is free or busy,the states of the systems in the case of 0-
capacity are identified with sequences of O's and l's of lenght N, 
ie, the N-dimensional hipercube. 

With this state space, under the hypothesis mentioned 
the process is a continous parameter Markov chain. Since the ser­
vice times have a common exponential distribution with parameter 
µ it follows that the transition rate from a state with k to a 
state with k-1 units busy isµ, l~k~N. The transition rates from 
a state with k to one with R+l busy units are difficult to 
determine, because they depend on the state and on the priority 
rule with which the units are sent to answer the call. Larson in 
[4] constructed an algoritm to determine this rates. 

Based on the transition rates one obtains the equations 
of detailed balancing whose solution gives the stationary distri­
bution for the system with zN states. With the stationary distri­
bution one obtains the workloads p. which represent the amount of 1 

time unit i is busy servicing calls. Using the workloads one 
obtain the performance measures for the system as a whole and also 
for the units and the districts. 

To obtain the stationary distribution a system of 2N 
equations must be solved. Larson introduced an aproximate proce-
<lure which reduces the systems of equations to N. As it 
seen in [s] the approximation is quite good. 

can be 



• 

- 5 -

3. The Simulation Model 

In the hipe1cubic model the data such as arrival rate, 

mean service time, probability of a call ocurring in an atom and 

speed of the vehicles must be estimated. Estimates are obtained 

in general for a configuration of the system with a given number 

of units. If we want to operate with a different number of units 

the mean total service time must be obtained. 

Larson in his model cannot consider policies _. with a 

queue for certain units while others are unoccuppied. For large 

distances this possibility might be convinient. 

Besides the fact that usually total service times do 

not have an exponential distribution the facts mentioned above were 

the main reasons for the development of the simulation model in 

[1] . 

Recently we have extended the model by considering new 

meausures of performance and compared the results of the simula­

tion with those of the aproximated hipercubic model [3]. 

Hyp othesis: As in the hypercubic model the region in which the 

service operates is divided in atoms whose llllions form the 

tricts. 

dis-

To construct the model the following hypothesis were as 

sumed: 

a) The arrival process in the region is a Poisson process 
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with rate A, namely the interarrival times are exponentially dis­

tributed with mean 1/A, It follows that if fk represents the pro­

bability that a call occurs in atom k, k=l,2, ... ,n9 of atoms then 

the number of calls in atom k is a Poisson Process with rate Afk. 

b) Each unit can perform various types of service the type 

of service to be performed is selected from a discrete distribu­

tion. 

c) The elapsed time of service at the scene (place of ocur­

rence) has an exponential distribution. 

d) The velocity of the units when moving to the scene or whi 

le performing a task are constant. 

e) The units while not attending a call are stationed in a 

district. There may be more than one unit in a district. 

Remark 

If the service times at the scene are not exponential 

it will be sufficient to replace the routine that generate thee~ 

ponential variables by one that generates the other distribution. 

The Program 

The control of the program is done through the "event 

scheduling approach". An event will be an arrival or the end of a 

service. 

A simplified version of the flowchart of the program is 

the following: 
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End of s rvi cc 

Service 

No 

Yes 

I 

I 
I 

Next Event: In this block the arrival times are generated and it 

is decided which is the next event an arrival or the end of a ser 

vice. The one that occurs first is the next scheduled event. Then 

simulated time is advanced to this scheduled time and all the va-

,_. riables (descriptors) associated with the simulation are adjusted. 

Is there a unit to attend? This block determines the atom which 

originates the call an_d searches if there is a unit to attend it. 

Go ..!Q q' ue ue: If there is no unit to attend a call this block sends 

the unit to a queue. The queues are formed for the units in the 

district where the call was generated. 
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Is there! queue? The unit that finishes a service searches if the 

re are queues in the districts which it attends in decreasing or­

der of priority. 

Service: This block generates the type of service, the elapsed ti 

me of service at the scene; for services executed in two stages 

it generates the location where the second stage is to be perfor­

med. It computes all the travel times using the velocity and the 

matrix of the distances among the atoms. The total service time 

is computed adding the travel times with the service time at the 

scene. 

The policies: To specify a policy for the simulation it is neces­

sary to add to the definition given for the hypercubic model (see 

2) a table. This table assigns to every unit the districts which 

it attends in decreasing order of priority at the moment it finis 

hes a service. 

4. Example 

Before studying the validation of the simulation model, 

we will give an example of its outputs. We will consider a towing 

system in a highway. The highway was divided in 21 atoms and five 

districts were formed with one towing car in each one. Calls may 

require towing or not. In the first case the vehicles are towed to 

given locations along the highway. This information is summarized 

by a vector x=(xi, i=l, ••• ,21) where xi denotes the destination of 



• 

- 9 -

a vehicle towed from atom i. 

The total service time (TST) is decomposed in either of 

the following ways: 

(1) TST =TT+ STC1 + RT 

(2) TST =TT+ STCz + ToT + RToT 

whether the call does not or does require towing. 

Here: TT =·, travel time to the a torn of the call 

STC1= service time at the place of the call without towing 

STC 2= service time at the place of the call with towing 

T0T = time to tow 

RT = return time to location of the unit 

RT 0T= return time to location of the unit from towing place. 

The policy adopted is specified by tables 1, 2 and 3. 

TABLE 1 

District Location Atoms (atom) 

1 3 1 2 3 4 5 

2 8 6 7 8 13 

3 9 9 10 11 12 20 21 

4 15 14 15 16 17 18 

5 19 19 
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TABLE 2 TABLE 3 

District Uni ts Unit Districts 

1 1 4 2 1 1 4 2 

2 2 3 1 2 2 3 1 4 

3 3 5 3 3 s 2 

4 4 1 2 4 4 1 
s 5 3 5 5 3 

Tables 1 gives the location of the units in the dis-

tricts and the atom that form them. Table 2 is associated with a 

call: it gives the units which attend every district in decreasing 

order of priority. Table 3 is associated with an end of service. It 

lists in decreasing order of priority the district a unit 

attend whenever there are calls waiting. 

shall 

Four hundred periods of 18 hours of operation were simu 

lated with the following data: call rate: ~=3.24 calls per hour; 

speed of the units= 60Km/h; probability a call requires towing= 

0,33; STC1 and STC 2 exponentially distributed with means 30' and 

15' respectively. 

The tables that gives the probability a call occurs in 

each atom and the one giving the places the vehicles are towed to 

are omited. 

Output 

Regionwide fraction of dispaches which are interdistrict = 0, 37 

Regionwide workload imbalance= 0,105 



- 11 -

Performance measures associated with uni ts 

Unit w Disp out of TST TT STC T0T RT L district q 

1 .5041 .51 48. 72 14.17 17 .57 12.00 14.89 .0378 

2 .4528 .49 46.15 13.26 17. 77 12.11 12.97 .0273 

3 .5578 • 37 43.53 11.02 17.65 8.46 13. 35 .1088 

4 .5347 .18 49.23 11.64 17.12 16.19 17.64 .0770 

5 .5388 • 33 52. 29 9.02 17.63 7.97 24. 30 .1059 

Mean _ 4 7. 81 11. 77 17.55 11. 26 16.52 

Performance measures associated with districts 

Fr. of Inter ...........• MEAN .•......•.•. 
District Disp. TTD W' WTQ WTQQ 

1 . 4134 12.22 22.03 4.36 19.61 

2 . 3530 9.54 18.88 3.56 19.07 

3 .3487 10.06 37. 39 8.72 22.99 

4 .4260 15.07 20.03 4.98 23.31 
5 • 3019 10.11 37. 39 10.72 28.89 

The regionwide workload imbalance is the maximum diffe­

rence among the workloads of the units; W = workload is the frac­

tion of time that a unit is busy; Fr, Disp out of District is the 

fraction of dispaches performed by an unit out of its district;L q 

is the expected lenght' of the queue for each 1D1it; Fr of inter 

disp - is the fraction of dispaches in a particular district at­

tended by 1D1its of other districts; TTD is the travel time to a 

district; W' is the fraction of time all units which attend a dis 
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trict are busy, ie, the fraction of time an arriving call will en 

ter a queue; WTQ = waiting time in queue; WTQQ = waiting time in 

queue given there is a queue. 

5. Model Validation 

From the hypothesis in section 3 we can easily conclude 

that for a system with one unit we have an M/G/1 queue if service 

is the total service time (TST) . In fact the arrival process is 

Poisson. 

The total service times are i.i.d. because given the 

instant a call occurs its location is obtained selecting an atom 

from a discrete distribution independent of the instant of arri­

val, the service times at the scene are i.i.d. exponentially dis­

tributed random variables independent of the location of the call, 

and the distances travelled depend on the atom selected. 

For an M/G/1 queue with arrival rate A, average service 

time 1/µ the expected queue lenght L and the average waiting time q 

in queue W are given by: . q 

L q 
= 

2 2 2 
p + ). aS 

2(1-p) 
w q 

where p =~and a~ is the variance of the total service time. 

The expected value and variance of TST are given by: 
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(3) E(TST) = E(TT + STC1 + RT jX=l) P(X=l) + 

+ E(TT + STCz +TOT+ RToTIX=Z) P(X=Z) 

(4) Var(TST) = E[Var(TSTIX)] + Var[E(TST !X)] 

where X=2 if the call require towing and X=l if it does not. 

We ran the simulation of four hundred periods of opera­

tion of the system with one Wlit centrally located for three dif­

ferent arrival rates:_ A= • 25, • SO and . 75 calls per hour and with 

the same remaining data as in the example considered. 

The table below gives the results obtained for Lq and 

W in the simulation and a comparison with the values obtained for q 

them in the M/G/1 model. The times are given in minutes. 

TST 

p 

L q 
w q 

;\ = • 25 ). = • 5 >.. = • 75 

SIM 

57.99 

• 246 2 
. 04 79 
11,3' 

M/G/1 SIM 

56.43 

M/G/1 SIM 

56.52 

M/G/1 

.2416 .4759 .4619 .7011 .7064 

.0463 .237 .242 .894 .85 
11,1' 28,15' 29' 72' 68' 

In our simulation program we are developing a routine to 

obtain confidence intervals for the above parameters. The results 

will appear in a forthcoming paper. 
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