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ABSTRACT

Microwave-assisted thermal processing can provide superior quality for fruit-based products when compared to
conventional thermal processing. Understanding the temperature-dependent dielectric properties of liquid foods
is needed for the analysis and optimization of the microwave applicator chamber since they govern the heating
rate and temperature distribution. While literature offers correlations for specific products, there is a scarcity of
methods capable of accommodating variability in composition or predicting behavior for broader product
groups. In this study, we measured the dielectric properties (dielectric constant and loss factor) of eight fruit
juices (passion fruit, melon, pineapple, cashew, orange, lemon, acerola, and guava) using an open-ended coaxial-
line technique for temperatures ranging from 5 to 90 °C at commercial frequencies of 915 and 2450 MHz,
alongside electrical conductivity. These properties were successfully correlated with the temperature for each
individual juice; then, machine learning techniques (random forest, gradient boosting machine, and multilayer
perceptron) were used to predict the properties of this diverse group of eight juices based on various physico-
chemical measurements. These techniques revealed temperature and electrical conductivity as the most critical
predictors, while total solids, pH, acidity, ashes, and select color parameters also emerged as significant vari-
ables. These findings demonstrate that the integration of physicochemical analyses with machine learning tools
offers an objective approach to correlate and predict dielectric properties for a group of food products, facili-
tating adjustments in product composition without additional measurements, thus enhancing the efficiency and

accuracy of microwave-assisted thermal processing simulations and optimizations.

1. Introduction

Pasteurization is a fundamental processing technique in the food
industry in which high temperatures (below 100 °C) are used for the
inactivation of microorganisms and enzymes. For processing liquid
products such as fruit juices and nectars, heat exchangers are employed
for continuous flow heating and cooling of the product stream. One of
the drawbacks of thermal processing is quality loss due to the heat [1,2].
Microwave-assisted thermal pasteurization has been thus reported to
provide superior quality for fruit-based products when compared to
conventional thermal processing [3-8]. The heat exchanger used for
heating the product stream to the processing temperature is replaced by
a microwave applicator chamber in which the flowing stream absorbs
the radiation and heats up [9]. Its advantages are volumetric heating,
higher heating rates, better thermal efficiency, and shorter heating times

compared to conventional heating methods, resulting in products with
better sensorial and nutritional properties [10,11]. The main drawback
of microwave heating, mainly in solid and semisolid products, refers to
nonuniform temperature distribution; however, this technology has
been shown to be suitable for liquid foods, especially in a continuous
fluid system since flow can improve thermal mixing [12].

To determine the extent of heating in materials subject to electro-
magnetic fields, understanding dielectric properties (dielectric constant
¢' and dielectric loss factor €") is necessary for both designing and opti-
mizing microwave heating systems [13,14]. These properties represent a
material’s ability to polarize and store electric energy (¢") and the extent
of energy dissipation as heat (¢") [14,15], important for achieving effi-
cient and controlled heating processes. Dielectric properties, influenced
by temperature, frequency of the applied electric field, composition, and
physicochemical attributes of food [16,17], play a pivotal role in
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Table 1
Formulation, physicochemical properties and color attributes of the fruit juices.
Names Fruit juices
Common name Yellow passion fruit ~ ‘Canary’ ‘Pernambuco’ Cashew apple ‘Pera’ sweet ‘Tahiti’ lemon  Acerola cherry ‘Paluma’
melon pineapple orange guava
Scientific name Passiflora edulis f. Cucumis Ananas comosus (L.)  Anacardium Citrus sinensis Citrus latifolia ~ Malpighia Psidium
flavicarpa Deg. melo L. Merril occidentale L. (L.) Osbeck Tanaka emarginata D.C. guajava L.
Codification Passion fruit Melon Pineapple Cashew Orange Lemon Acerola Guava
Formulation
Fruit pulp:water 1:6 - 1:2 1:3 - 1:3 1:3 1:3
ratio
Sucrose added
in juice (g/100 7 - 2 5 - 10 5 3
)
Analyses
TS (g/100 g) 1 8.62 + 0.03° 11.21 + 13.33 +0.02° 8.45 + 0.02f 9.94 + 0.07¢ 10.07 + 0.09° 7.01 + 0.02" 7.66 + 0.04%
0.01°
TSS (°Brix) 2 8.63 + 0.07° 11.66 + 6.68 + 0.14" 7.83 £ 0.078 12.83 + 0.07¢ 26.23 + 0.21°¢ 29.62 + 0.01° 30.27 +
0.14¢ 0.06%
a, 0.959 + 0.001? 0.975 + 0.985 + 0.001° 0.957 + 0.001% 0.954 + 0.001* 0.931 + 0.948 + 0.001? 0.973 £
0.026° 0.035" 0.003°
TTA (g/ 100 mL) 0.538 + 0.019° 0.081 + 0.163 + 0.002° 0.057 + 0.006° 0.637 + 0.006" 1.356 + 0.600 + 0.004” 0.111 +
3 0.004¢ 0.283 0.004¢
pH 3.06 + 0.01° 6.28 £ 3.97 + 0.014 4.86 + 0.01° 3.96 + 0.01¢ 2.44 +£0.018  3.47 £0.01° 4.09 + 0.09°
0.01*
AC (g/100 g) 4 0.077 + 0.002¢ 0.539 + 0.335 + 0.001¢ 0.898 + 0.107% 0.388 & 0.001°¢ 0.010 + 0.052 + 0.004¢ 0.060 +
w.b. 0.030" 0.039¢ 0.0014
Color attributes
L* 32.6 + 0.1% 327 +0.1%  355+01° 65.8 + 0.1 42.7 + 0.5° 332+ 0.1° 39.7 +0.1¢ 52.6 + 0.1°
a* -0.630 + 0.030°¢ -0.390 + -0.780 + 0.030°¢ 3.88 + 0.02¢ -1.51 + 0.08f -0.280 + 22.8 + 0.1% 18.8 +0.1°
0.030¢ 0.040¢
b* 5.80 + 0.06° 0.440 + -0.420 + 0.050% 32.6 + 0.1 131+ 0.7¢ 151 +£0.07" 169 +0.1° 15.3 £ 0.1°
0.030f

All values are expressed as means + standard deviation of three replicates.

Different letters in the same row mean significant differences at 95 % confidence (p<0.05).
TS (total solids content). 2TSS (total soluble solids) expressed as °Brix at 20 °C. 3TTA (titratable acidity expressed as citric acid at 25 °C). 4AC (ash content).

microwave heating. In designing and simulating microwave applicator
chambers, multi-physics software, such as COMSOL Multiphysics, is
indispensable for coupling flow, heat transfer, and electromagnetic
propagation phenomena. Such software facilitates the integration of
fluid dynamics, heat transfer, and electromagnetic field simulations,
allowing for a comprehensive analysis of the complex interactions
within the chamber [5,18-22]. The solution of Maxwell’s equations of
electromagnetism requires knowledge of the dielectric properties’
temperature dependence, enabling accurate calculation of heating rates
[9,23,24]. Thus, a comprehensive understanding of dielectric properties
facilitates not only efficient microwave heating but also enhances con-
trol and precision in heating processes.

The scientific literature contains data on the dielectric properties of
various foods under specific conditions such as composition, tempera-
ture, and frequencies, including different types of milk [16,25-27], fruit
juice varieties [22,28,29], coconut water [30], and tomato puree [31],
for instance. The published information is mostly limited to correlating
measured properties with temperature, or with moisture content for
drying applications [16,17,27,32-35]. These correlations are typically
established for individual food products, with limited efforts made to
generalize them across a broader range of food items [29]. Moreover,
only a handful of studies have utilized more advanced prediction tech-
niques, including artificial neural networks [22,25], or multivariate
statistical methods [36-38]. Linear regression methods, commonly used
for such analyses, may not adequately capture the complexity of the
underlying phenomena, as they assume a probabilistic model for data
generation. Consequently, algorithmic approaches such as machine
learning methods have been proposed as more suitable alternatives
[39]. The main challenge arises from the inherent variability in
composition and physicochemical attributes among different food
products. Each product possesses unique characteristics influenced by
factors such as variety, ripeness, growing conditions, and processing
methods. This variability complicates the establishment of generalized

correlations, making it difficult to accurately capture all nuances since
dielectric behavior is intrinsically related to composition. Thus, while
single-product correlations provide valuable insights, extending these
findings to diverse food groups necessitates careful consideration of the
inherent variability across multiple factors.

In this study, we investigate the correlation between the dielectric
behavior of eight types of fruit juices and temperature/physicochemical
attributes, relevant to microwave-assisted pasteurization processing. By
combining data from multiple juices into a single dataset, we aim to
determine the interconnectedness of these factors. To achieve this, we
employ traditional multiple linear regression (MLR) and advanced ma-
chine learning methods such as gradient boosting machine (GBM),
random forest (RF), and multilayer perceptron (MLP) for dielectric
properties prediction. This study offers a unique contribution by
providing a comprehensive analysis of dielectric properties across
various juices and comparing the predictive performance of different
modeling techniques. Through this analysis, we aim to identify the most
influential variables driving dielectric behavior, thereby enhancing our
understanding of the mechanisms underlying microwave-assisted
pasteurization. MLR, chosen alongside machine learning methods like
GBM, RF, and MLP, offers interpretability and simplicity, enabling ex-
amination of linear relationships between predictor variables (e.g.,
temperature, pH, soluble solid content) and dielectric properties. While
MLR remains valuable for identifying direct linear associations, machine
learning methods are able to capture complex, nonlinear relationships
and interactions among predictors, enhancing prediction accuracy in
high-dimensional datasets. By integrating both MLR and machine
learning methods, this study provides a balanced approach to under-
standing the relationship between temperature, physicochemical attri-
butes, and dielectric properties in fruit juices.
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2. Materials and methods

In summary, several physicochemical attributes were measured for
eight fruit beverages: total solids, total soluble solids, water activity,
titratable acidity, pH, ashes content and CIELab color. Electrical con-
ductivity and dielectric properties at 915 and 2450 MHz were measured
for a range of temperatures compatible with thermal processing. For the
data analyses, the dielectric properties were first correlated with the
temperature for each beverage individually, and then multilinear
regression and machine learning methods were used to correlate these
properties with temperature and physicochemical attributes for the
group of beverages.

2.1. Raw material and preparation

The eight different types of fruits were purchased from local sup-
pliers in the city of Sao Paulo - SP (Brazil): yellow passion fruit (Passi-
flora edulis f. flavicarpa Deg.), ‘Canary’ melon (Cucumis melo L.),
‘Pernambuco’ pineapple (Ananas comosus (L.) Merril), cashew apple
(Anacardium occidentale L.), ‘Pera’ sweet orange (Citrus sinensis (L.)
Osbeck), ‘Tahiti’ lemon (Citrus latifolia Tanaka), acerola cherry (Mal-
pighia emarginata), and ‘Paluma’ guava (Psidium guajava L.). Primarily,
the fruits were washed in running water and subsequently sanitized in
an aqueous solution of sodium hypochlorite (200 mg L™1) for 30 min.
Subsequently, the peels and seeds were manually removed, and the
remaining pulps were shredded with a domestic blender RI2101 (Phil-
ipps-Wallita, Brazil) and filtered through a stainless-steel household
strainer with 1 mm orifices to remove large particles.

The fruit beverages were prepared as ready-to-drink products. Other
than melon and orange, the preparation of the remaining six juices
involved the addition of Milli-Q® water and food-grade sucrose, with
the proportions shown in Table 1. Dilution with water and the addition
of sugar aimed to standardize Brix levels and acidity while ensuring
optimal palatability. All formulations adhere to U.S. FDA standards (21
CFR 101.30) and international Codex Alimentarius guidelines (Codex
Stan 247-2005) for fruit juices and nectars [40,41]. After preparation,
the fruit beverages were packed in 300-mL high-density polyethylene
bottles and stored at —30 °C in a 349 V Plasma Freezer (FANEM, Brazil).

2.2. Physiochemical characterization

Fruit juice samples were characterized as to total solids (TS), total
soluble solids (TSS), titratable acidity (TTA), pH, water activity (a,) and
ashes content (AC) according to official methods AOAC [42]. TSS was
determined at room temperature by a 711,849 refractometry (Carl Zeiss
Jena, Germany) and corrected according to temperature and acidity
[43]. pH and TTA were measured using a pH-Stat PHM-290 (Radiom-
eter, Denmark) and TTA was expressed as the citric acid equivalent.
Water activity was measured with AquaLab 3TE (Decagon Devices, USA)
at room temperature. Total solids (TS) content was determined in an
MAO030 vacuum oven (Marconi, Brazil) at 70 °C and 13.3 kPa. AC was
measured as described by method 900.02 in a Q-318D24 muffle furnace
(Quimis, Brazil). The color was determined using the CIELab scale,
measuring L* (lightness), a* (red-green axis), and b* (yellow-blue axis).
RSEX calibration with D65 illuminant and a 10° angle was employed in a
ColorQuest XE spectrophotometer (HunterLab, USA).

2.3. Electrical conductivity

The electrical conductivity (EC or c) of the samples was determined
with a YSI3200 conductivity meter and YSI3252 probe (YSI, USA) at the
temperature interval (5 to 90) °C. For temperature control, the sample
with a thermocouple was immersed in a TC550 thermostatic oil bath
(Brookfield, USA).

Measurement: Food 14 (2024) 100158
2.4. Dielectric properties measurement

Usual methods for measuring the dielectric properties of foods at
microwave frequencies are open-ended coaxial probe, transmission line,
and resonant cavity. The choice depends on the material structure (solid
or fluid), frequency range and accuracy. The open-ended coaxial probe
is the most common method applied to foods and the most suitable for
liquid foods since perfect contact is needed between the probe surface
and the sample. This technique requires a network analyzer and is based
on the fact that the reflected signal on an open-ended coaxial line
attached to a material depends on its dielectric properties [14,44,45].

The reflection coefficient at the probe-sample interface was
measured from fruit juice samples with an E5061B vector network
analyzer connected to an open-ended coaxial-line probe (“Performance
Probe” from the 85070E Dielectric Probe Kit) with a N6314A Type-N
test port cable (Agilent Technologies, Malaysia). The measurements
were conducted at a temperature interval from (5 to 90) °C and fre-
quency from (500 to 3000) MHz. The selected temperature range is
consistent with juice pasteurization temperatures and the selected fre-
quency range includes the frequencies of industrial interest, which are
915 MHz (wavelength of 0.327 m) and 2450 MHz (wavelength of 0.122
m). These microwave frequencies are among the ISM frequencies, which
were allocated by the Federal Communications Commission (FCC) for
industrial, scientific and medical electromagnetic energy applications
[28].

The dielectric properties (¢' and £") were calculated by the 85,070 v.
E06.01.36 software (Agilent Technologies, Malaysia) based on the
complex reflection coefficient of the sample measured around the probe
tip. An electronic calibration module 85093C (Agilent Technologies,
Malaysia) was used to minimize interferences and the calibration pro-
cedure was performed according to the manufacturer’s instructions. The
detailed procedure of calibration and dielectric measurements has been
reported elsewhere [46].

2.5. Power penetration depth

The penetration depth (d,) of the microwaves, an important
parameter to evaluate the heating uniformity, was calculated according
to the following equation [47]:

.
2nf\j 28’[ 1+ (7)2 _ 1} ¢h)

wherein ¢ is the speed of light in free space (2.9979 x 108 ms™1), and fis
the electromagnetic field frequency (Hz). The d, of the microwaves
corresponds to the depth at which the power is reduced to 1/e = 36.8 %
(Euler number: e = 2.7183) of the incident power at the surface of a
semi-infinite body. The complex propagation of the electromagnetic
waves in the microwave heating chamber, as affected by the presence of
the foodstuff, can be predicted using multi-physics software that solves
Maxwell’s equations of electromagnetism over the three-dimensional
geometry. The penetration depth provides a quick estimate of the
heating penetration regarding the foodstuff’s main dimensions. More-
over, the dependence of the penetration depth with temperature can
suggest if heating would be homogeneous or not along heating time.

d, =

2.6. Data analyses

2.6.1. Prediction of the temperature effect on the dielectric properties
Polynomial correlations were adjusted to model the temperature
dependence of the dielectric constant, dielectric loss factor, and pene-
tration depth for the commercial frequencies of 915 MHz and 2450 MHz,
using TIBCO Statistica 13.4.0 (TIBCO Software, USA). The polynomial
order (n =1, 2, or more) was tentatively chosen based on the coefficient
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Fig. 1. Dielectric constant (¢') of the fruit juices measured at a frequency interval from (500 to 3000) MHz and a temperature interval from (5 to 90) °C.
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Fig. 2. Dielectric loss factor (¢") of the fruit juices measured at a frequency interval from (500 to 3000) MHz and a temperature interval from (5 to 90) °C.
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conductivity (o) of the juices prepared from eight different types of fruit
measured at a temperature interval from (5 to 90) °C.

Table 2

Linear regression parameters, standard errors of estimate (8.5t and the coeffi-
cient of determination (R?) of the electrical conductivity (6 =ag + a;T) of the
fruit juices, valid for the temperature interval from (5 to 90 °C).

Fruit juices ao (mS ecm™) a; (mS em™ °C) Best (-) R?

Passion fruit 0.404 + 0.005 0.0193 + 0.0001 0.02 0.9992
Melon 2.291 + 0.047 0.1142 + 0.0009 0.14 0.9983
Pineapple 0.588 + 0.010 0.0290 + 0.0002 0.03 0.9987
Cashew 0.360 + 0.007 0.0181 + 0.0001 0.02 0.9985
Orange 1.563 + 0.051 0.0941 + 0.0010 0.15 0.9971
Lemon 0.843 + 0.008 0.0350 + 0.0002 0.02 0.9995
Acerola 0.577 + 0.039 0.0199 + 0.0007 0.11 0.9641
Guava 0.398 + 0.013 0.0213 + 0.0002 0.04 0.9983

All values are expressed as means + standard deviation (n = 3).
of determination (R?) of each equation [34,46].

2.6.2. Prediction of the multivariable effect on the dielectric properties

In the Multiple linear regression (MLR) analysis, interpretive vari-
ables (X;) such as T, TSS, a,, TTA, pH, TS, AC, L*, a*, b*, and ¢ were
examined for their tentatively linear relationship with response vari-
ables (Y}), which were €, ¢’, and dp,. Model performance was evaluated
using R to assess explained variance, RMSE for predictive accuracy, and
the significance of coefficients (p < 0.05) to identify impactful variables.

Nonlinear correlations between dielectric and physicochemical
properties were assessed by using the machine learning methods
random forest (RF), gradient boosting machine (GBM), and multilayer
perceptron (MLP). The variable importance was determined for each
method on a 0-100 scale. Two different datasets were evaluated sepa-
rately for 915 MHz and 2450 MHz, each one composed of a matrix with
240 rows (samples) and 14 columns (11 independent and 3 response
variables). For all the machine learning methods, both datasets were
randomly divided into a training set (70 %) and a test set (30 %). The
training set was used for fitting the model parameters; then, the adjusted
model was used to predict the responses for the data in the test set to
evaluate the predictive ability of the model. The RMSE of the prediction
dataset was used as a criterion to evaluate the model performance. All
the methods (MLR, RF, GBM, MLP) were performed by TIBCO Statistica
13.4.0 (TIBCO Software, USA).

RF can be summarized as an ensemble of decision trees (DT) created
during the training step and outputting the mean prediction of the in-
dividual trees [48]. Each tree grows based on a bootstrap sampling from
the original data, which relies on random sampling with replacement
[49], and a subset of the explanatory variables is randomly selected at
each node. The number of variables available for splitting at each tree
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node, the number of trees in the forest, and the node size are the main
parameters that affect the stability and sensitivity of the model [50].

GBM is also a self-learning DT algorithm that improves the perfor-
mance of the regression tree by adopting the gradient boosting algo-
rithm [51,52]. During the training step, an initial regression tree is
created, and then the next regression tree is trained taking into account
the residual of the previous regression tree; finally, using multiple iter-
ations, a model with high accuracy for predictive results is obtained [52,
53].

MLP is a feed-forward neural network comprising an input layer to
pass the input vector to the network, one or more hidden layers to
perform computations, and an output layer for outputting the responses.
After multiple iterations in the training step, the neural network model
determines the mathematical functions and weights that correlate input
and output data and creates an internal model that can be used to predict
new input data. The model is calculated by the interconnection of
neurons, and the accuracy of the model is affected by the architecture of
the neural network [52].

2.7. Statistical analyses

Experimental data were evaluated by the analysis of variance
(ANOVA) followed by Tukey’s post hoc test at the 95 % significance
level using the software TIBCO Statistica 13.4.0 (TIBCO Software, USA).

3. Results and discussion
3.1. Physicochemical characteristics

Table 1 exhibits the formulation, physicochemical properties, and
some compositional aspects of interest of the eight fruit juices. As ex-
pected, there were significant differences for total solids (7.01 - 13.3) g/
100 g of juice, total soluble solids (6.68 - 30.3) °Brix, water activity
(0.931 —0.985), titratable acidity (0.057 - 1.356) g/ 100 g expressed as
citric acid, pH (2.44 - 6.28), ashes content (0.010 - 0.898) g/100 g, and
color parameters L* (32.6 - 65.8), a* (—1.51 - 22.8) and b* (—1.51 -
32.6). The high variability of those properties is not only because
different fruits were used but also due to different formulations applied
to each juice. For instance, melon and orange juices were prepared with
no addition of water and sucrose, while passion fruit juice was diluted
with water at a proportion of 1:6 (v/v) and added with 7 g/100 g of
sucrose. This heterogeneity of data enables higher power to generalize
the models obtained from machine learning techniques.

3.2. Dielectric properties

Diagrams of the dielectric constant (¢'), dielectric loss factor (¢"), and
penetration depth (dy) of all juices are shown in Figs. 1, 2 and 3,
respectively. The profiles of ¢ were quite similar among the eight juices,
indicating that water is the main factor for the electrical polarization
(Fig. 1). According to Table 1, the water content varies between (86.7
and 93.0) g/100 g. The decrease of ¢ values with an increase in tem-
perature and frequency can be explained by the reduced polarization
under thermal agitation and the reduced dipole response under higher
frequencies, respectively [29]. Although €' values were close for all so-
lutions, distilled water presented a higher dielectric constant [30]. The
loss factor (¢ = €, + £ 4) can be described equally by the influence of
two main mechanisms, dipole loss (e”d) and ionic loss (¢, = ¢ /2zfeo).
Fig. 2 allows observation that a rise in temperature may cause an in-
crease or decrease in the loss factor, depending on which the dominant
mechanism is [54]. Ionic loss is favored by higher temperatures, which
cause an enhancement of ionic motion, and lower frequencies, which are
associated with an increase in the length of ionic motion. Overall, this
behavior can be better observed at frequencies lower than 1000 MHz. In
contrast, the dipole loss is related to the dipolar relaxation of the water
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Fig. 5. Dielectric constant ("), dielectric loss factor (¢") and penetration depth (d,) at 915 MHz and 2450 MHz of the juices prepared from eight different types of fruit
measured at a temperature interval from (5 to 90) °C.
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molecule, in which the loss factor increases with frequency can be seen
for the lower temperatures (T < 30 °C). In summary, the behavior
observed in the loss factor plot can be considered the transition from an
ionic-governed loss to a dipolar-governed loss [30].

On the whole, the penetration depth of the microwaves Eq. (1) de-
creases with increasing frequency; however, there is a clear change in
temperature dependence with increasing frequency (Fig. 3). At lower
frequencies, the penetration depth decreases with increasing tempera-
ture, while at higher frequencies, the penetration depth increases with
temperature. The second behavior is more desirable because, as the food
is heated, the radiation penetrates more deeply, promoting more ho-
mogenous heating. In the case of low frequencies, the penetration depth
decreases with heating, which can cause cold spots in the material. In
any case, note that the greater depths are found at the lower frequencies
and that the heating pattern of the material depends heavily on its di-
mensions and geometry.

3.3. Electrical conductivity

As shown in Fig. 4, the higher the temperature, the higher the elec-
trical conductivity vis-a-vis the continuous intensification in the
mobility of the ions due to the reduction in the solution viscosity as a
result of the progressive increase in temperature [46]. The electrical
conductivity exhibited a good linear correlation with temperature
(0.9641 < R®> < 0.9995), as shown in Table 2. Although cashew juice
showed the highest content of ashes and, consequently, more salts

Measurement: Food 14 (2024) 100158

(Table 1), melon juice was the one with the highest angular coefficient
(ap) and linear coefficient (ap). This phenomenon indicates that even
though the ash content has a positive influence on the electrical con-
ductivity, the addition of sugar to the formulation of cashew juice has
promoted a great deleterious effect on the electrical conductivity.
Hence, there is a great likelihood that ash content is not the main factor
influencing electrical conductivity. Generally, these results agree with
the behavior of other liquid foods regarding temperature dependence
[16,26,30,46,29,55].

3.4. Commercial frequencies of 915 and 2450 MHz

Fig. 5 shows ¢ and ¢ of the juices as a function of temperature at 915
and 2450 MHz commercial frequencies. All eight fruit juices presented a
similar behavior with ¢ decreasing almost linearly with the temperature
at both frequencies. Lower values were obtained for orange, lemon, and
melon juices while higher ¢ values were achieved by pineapple, acerola,
and passion fruit juices. Also observed is that the dielectric loss factor
(€) showed a nearly constant value at 915 MHz for all juices, except for
melon and orange juices, which exhibited an increase of ¢ with tem-
perature. Likewise, all the juices presented a decrease of ¢” with the
temperature at 2450 MHz but melon and orange juices suffered a fairly
less pronounced decrease. In addition, melon and orange juices had the
highest ¢” values at both frequencies. Fig. 5 also exhibits the penetration
depth of the eight fruit juices as a function of temperature. At 915 MHz,
the d,, values of all samples were higher at intermediate temperatures
(40-70 °C) whereas a slight decrease is observed for melon and orange
juices as the temperature rises. At 2450 MHz, though, the juices
exhibited an increase of d, with temperature, except melon and orange
juices, which had practically constant values of d,, throughout the tem-
perature range studied. Once again, note that melon and orange juices
displayed quite distinct behavior. The main reason is undoubtedly the
fact that were formulated without adding sugar or water, but no con-
crete explanation of how this interference occurs can be inferred from
the results presented so far. Despite that, it is deducible that more heat
can be dissipated from melon and orange juices due to the higher values
of loss factor; more uneven heating is attained because of their lower
penetration depth.

The dielectric loss factor is a result of the contribution of ionic con-
duction and dipole rotation mechanisms. Fig. 6 exhibits the relative
contributions of ionic conduction, at 915 MHz and 2450 MHz: the ionic
conduction (C, = (¢, /¢ ) x 100) and dipole rotation (Cq = (¢4 /€) x
100). As observed, the ionic conduction mechanism is predominant as
temperature increases, for both frequencies. This phenomenon was more
pronounced for all juices at 915 MHz and for melon and orange juices at
2450 MHz, which might be associated with the higher electrical con-
ductivity values of those juices (Fig. 1). A similar behavior has been
reported in the literature [30,46,54].

3.5. Data correlation

3.5.1. Temperature-dependence effect on the dielectric properties

Polynomial correlations adjusted to the temperature dependence for
electrical conductivity (o) are presented in Table 2, and those for
dielectric properties (¢, ¢’ and dp) are presented in Table 3. Model fitting
was made using the least number of polynomial coefficients to provide a
good fit, valid for the range of temperature from (5 to 90) °C. In Table 3,
for dielectric constant (&), for the regression with linear and quadratic
coefficients, the standard errors of estimate (8.st) were lower than 0.54,
and a good fit was accomplished for all juices (0.9920 < R? < 0.9993).
For the dielectric loss factor (¢"), good correlations were obtained for
cubic regressions (0.9824 < R?> < 0.9994), with standard errors of es-
timate (Ses) lower than 0.48. For penetration depth (dp), the best
adjustment was obtained for quadratic equations (0.9120 < R? <
0.9984; 0.01 < gt < 3.3).
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Table 3

Measurement: Food 14 (2024) 100158

Polynomial regression parameters, standard errors of estimate (Ses) and the coefficient of determination (R?) of the dielectric constant (¢ ), dielectric loss factor (¢) and
the penetration depth (d,) of the fruit juices at 915 MHz and 2450 MHz, valid for the temperature interval from (5 to 90°C).

Juices f (MHz) ao (x 10) a (x 107t°c™) ay (x 107%C7?) as (x 107%°C7%) Best () R?
Passion fruit ¢ 915 8.42 + 0.02 -3.38 £ 0.09 8.30 + 0.90 - 0.26 0.9989
2450 7.88 + 0.02 -1.96 + 0.11 -2.04 £1.15 - 0.34 0.9970
¢ 915 1.00 + 0.01 -2.04 + 0.05 30.5 + 1.2 -1.41 £ 0.08 0.05 0.9982
2450 2.07 + 0.01 -4.85 4+ 0.11 54.9 + 2.8 -2.28 4+ 0.20 0.13 0.9994
d, (mm) 915 4.83 + 0.080 10.3 + 0.412 -94.5 + 4.29 - 2.40 0.9627
2450 0.725 + 0.019 3.38 + 0.097 -7.81 £ 1.01 - 0.13 0.9978
Melon € 915 8.11 + 0.03 -2.53 +0.18 4.20 + 1.87 - 0.55 0.9920
2450 7.50 + 0.03 -1.37 £ 0.17 -3.62 £ 1.87 - 0.29 0.9883
¢ 915 1.69 + 0.04 0.200 + 0.43 14.8 + 10.6 0.123 + 0.741 0.48 0.9919
2450 2.22 + 0.02 -3.16 + 0.17 37.4 + 4.4 -1.27 £+ 0.30 0.20 0.9942
d, (mm) 915 2.02 + 0.012 3.60 =+ 0.060 -32.6 + 0.624 - 0.05 0.9937
2450 0.753 =+ 0.004 1.35 + 0.022 -12.2 £ 0.233 - 0.01 0.9937
Pineapple e 915 8.59 + 0.01 -3.30 + 0.07 6.35 + 0.72 - 0.21 0.9993
2450 8.09 + 0.02 -2.02 + 0.09 -2.71 + 0.98 - 0.29 0.9980
¢ 915 1.05 + 0.01 -1.76 + 0.07 28.5 + 1.8 -1.15 £ 0.13 0.08 0.9917
2450 2.08 + 0.01 -4.79 + 0.12 55.3 + 3.1 -2.30 £ 0.21 0.14 0.9992
d, (mm) 915 4.80 + 0.081 6.17 + 0.417 -75.5 + 4.35 - 2.50 0.9320
2450 0.727 + 0.019 3.50 + 0.096 -15.5 £ 1.00 - 0.13 0.9966
Cashew ¢ 915 8.31 + 0.02 -2.90 +0.11 401 +1.12 - 0.33 0.9979
2450 7.79 + 0.02 -1.57 £ 0.11 -5.45 £ 1.13 - 0.33 0.9969
¢ 915 0.942 + 0.006 -1.85 + 0.06 26.0 + 1.6 -1.09 £ 0.11 0.07 0.9965
2450 1.98 + 0.01 -4.53 +0.13 49.8 + 3.3 -2.04 £ 0.23 0.15 0.9991
d, (mm) 915 2.02 + 0.069 9.14 + 0.353 -16.0 + 3.69 - 1.80 0.9965
2450 0.753 + 0.026 3.41 +0.132 -5.98 + 1.38 - 0.25 0.9965
Orange ¢ 915 8.08 + 0.02 -2.70 + 0.12 3.81 + 1.26 - 0.37 0.9969
2450 7.36 + 0.03 -0.78 + 0.31 -18.98 + 7.79 - 0.35 0.9961
¢ 915 1.53 + 0.03 -0.781 + 0.259 29.9 + 6.4 -0.950 + 0.449 0.29 0.9949
2450 2.26 + 0.02 -4.34 +0.17 56.5 + 4.2 -2.38 £ 0.29 0.19 0.9969
d, (mm) 915 3.25 + 0.035 -1.09 + 0.179 -8.93 + 1.86 - 0.45 0.9862
2450 0.720 + 0.004 1.95 + 0.019 -16.1 £ 0.195 - 0.01 0.9984
Lemon e 915 8.18 + 0.02 -2.97 +0.10 4.94 +1.07 - 0.31 0.9981
2450 7.63 + 0.02 -1.65 + 0.13 -4.08 £ 1.31 - 0.39 0.9956
¢ 915 1.12 +0.01 -1.61 + 0.09 28.9 + 2.3 -1.34 £ 0.16 0.10 0.9824
2450 2.04 + 0.02 -4.31 +0.16 47.7 + 4.1 -1.93 £ 0.28 0.19 0.9984
d, (mm) 915 4.44 + 0.069 3.40 + 0.354 -46.8 + 3.69 - 1.80 0.9120
2450 0.749 + 0.013 2.91 + 0.067 -12.4 £ 0.694 - 0.06 0.9977
Acerola € 915 8.41 + 0.02 -3.18 + 0.10 6.76 + 1.08 - 0.32 0.9983
2450 7.93 + 0.02 -1.89 +0.11 -2.63 £ 1.13 - 0.33 0.9973
¢ 915 0.965 =+ 0.066 -1.85 + 0.06 28.6 + 1.6 -1.30 £ 0.11 0.07 0.9948
2450 2.00 + 0.01 -4.62 + 0.14 53.1 +3.5 -2.26 + 0.24 0.16 0.9989
d, (mm) 915 5.08 + 0.093 9.01 + 0.480 -90.9 + 5.00 - 3.30 0.9288
2450 0.770 £ 0.019 3.30 + 0.098 -8.72 £ 1.02 - 0.14 0.9975
Guava ¢ 915 8.25 + 0.03 -2.85 + 0.15 5.13 + 1.57 - 0.46 0.9959
2450 7.80 + 0.03 -1.70 + 0.18 -3.02 + 1.83 - 0.54 0.9920
¢ 915 0.916 =+ 0.079 -1.62 + 0.08 23.9+ 1.9 -1.01 £ 0.13 0.09 0.9914
2450 1.9 +0.02 -4.22 +0.16 46.7 + 3.9 -1.90 + 0.27 0.18 0.9984
d, (mm) 915 5.25 + 0.088 9.10 + 0.454 -91.4 + 4.73 - 2.90 0.9371
2450 0.801 =+ 0.024 3.39 + 0.123 9.04 +1.28 - 0.21 0.9962

All values are expressed as means + standard deviation.

3.5.2. Multivariable effect on the dielectric properties

The MLR, GBM, RF, and MLP methods were applied to predict
dielectric constant (¢"), dielectric loss factor (¢") and penetration depth
(dp), each one as a function of temperature, soluble solids (TSS), water
activity (ay), titratable acidity (TTA), pH, total solids (TS), ashes content
(AC), electrical conductivity (o), and color parameters L*, a* and b*.
Prediction performances were evaluated using RZ and/or RMSE between
predicted and experimental values as criteria.

In Table 4, it can be noticed that MLR achieved a good fit with
observed data for the majority of the dielectric properties at both fre-
quencies (R% > 0.982 and RMSE < 0.936), except for ¢” at 915 MHz (R? =
0.790; RMSE = 2.16) and 2450 MHz R%= 0.895; RMSE = 1.47), and d,,
at 915 MHz (R2 = 0.782; RMSE = 8.51). Temperature and electrical
conductivity were considered significant parameters (p < 0.05) for all
the response variables at both electric field frequencies. All the param-
eters were considered significant for the dielectric constant at both
frequencies. For the dielectric loss factor at 915 MHz, only pH and ashes
content were considered non-significant while only temperature and
electrical conductivity were significant at 2450 MHz. For penetration
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depth, titratable acidity, pH, and ashes content were considered non-
significant at 915 MHz whereas only the constant was omitted in the
equation at 2450 MHz. For each response variable, better fits were found
at 2450 MHz, indicating this frequency might be a better choice than
915 MHz for predicting dielectric properties by MLR. Similar trends
were found for the MLR of sheep milk [56].

The GBM model needs to tune several hyper-parameters to optimize
the model performance. The bag fraction of 50 % stipulates the per-
centage of the training set applied to each interaction, while the
maximum number of trees (2000), and the minimum number of cases in
a node (1) were used as a stop criterion for the GBM model. Different
learning rates were used (0.01, 0.05 and 0.1), in which diverse values of
minimum node size (1-5), the maximum number of nodes in each tree
(3-15), and the maximum number of levels in a tree (depth of the tree)
(3-30) were assessed during training. The latter aforementioned pa-
rameters are responsible for the tree complexity, limiting the maximum
number of interactions between predictors. GBM models performed
better with a minimum node size of 1, and a maximum of 30 levels for
each tree, as well as a learning rate not lower than 0.1. The optimal
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Table 4

Measurement: Food 14 (2024) 100158

Parameters of the multiple linear regression (MLR), expressed as Y; =, + ZLI B:Xi, standard errors of estimate (8st), coefficients of determination (R?) and root mean
square error (RMSE) for the temperature, physicochemical attributes and composition dependence of the dielectric properties: dielectric constant (¢"), dielectric loss

factor (¢) and penetration depth (dp).

X; By 5 g d, (mm)
915 MHz 2450 MHz 915 MHz 2450 MHz 915 MHz 2450 MHz

Constant Bo 86.6 + 4.62 99.8 + 3.49 -49.1+11.8 9.00 + 8.00% 205 + 46.4 -8.25 + 5.11%
T By -1.06 % 0.013 -1.03 + 0.011 -0.363 % 0.045 -1.01 % 0.032 0.359 + 0.046 1.17 £ 0.013
TSS ! Ba -0.579 + 0.086 -1.04 % 0.077 1.95 + 0.311 0.212 + 0.220* -1.47 £ 0.317 0.484 % 0.090
a, Bs 0.003 + 0.015 -0.075 + 0.014 0.245 + 0.055 0.039 + 0.039* -0.120 + 0.056 0.048 + 0.016
TTA 2 Ba 0.073 + 0.050 0.325 + 0.044 -0.745 + 0.181 -0.092 + 0.127% 0.353 + 0.184* -0.169 + 0.052
pH Bs -0.373 % 0.034 -0.158 + 0.030 -0.077 % 0.122% 0.001 £ 0.086* -0.071 & 0.124* 0.260 % 0.035
1S3 Be -0.040 + 0.030 -0.204 + 0.026 0.773 + 0.107 0.039 + 0.076* -0.758 + 0.109 0.094 + 0.031
AC* By 0.093 + 0.032 0.175 + 0.029 -0.164 + 0.116% 0.024 + 0.082* 0.062 + 0.118* -0.096 + 0.034
L* Bs 0.419 + 0.080 0.830 % 0.070 -1.78 + 0.287 -0.258 & 0.202* 1.22 4 0.292 -0.491 + 0.083
a* Bo 0.693 + 0.080 1.14 + 0.071 -1.99 + 0.287 -0.222 + 0.203* 1.43 + 0.292 -0.512 + 0.083
b* Bro -0.603 + 0.101 -1.24 + 0.090 2.82 £ 0.365 0.279 + 0.257* -1.97 £ 0.371 0.623 + 0.106
65 P 0.211 + 0.021 0.138 £ 0.019 0.568 + 0.077 0.561 + 0.054 -0.506 + 0.078 -0.980 + 0.022
Best 0.869 0.656 2.22 1.50 8.73 0.960

R? 0.984 0.987 0.790 0.895 0.782 0.982

RMSE 0.848 0.639 2.16 1.47 8.51 0.936

All values are expressed as means + standard deviation.

* Non-significant parameter at the 95 % significance level (p>0.05). ' TSS (total soluble solids) are expressed as °Brix at 20°C; >TTA (titratable acidity) expressed as
citric acid at 25°C; 3TS (total solids content); “AC (ashes content); °c (electrical conductivity).

Table 5
Performance of the machine learning methods GBM (gradient boosting ma-
chine), RF (random forest) and MLP (multilayer perceptron) applied on pre-
dicting the dielectric properties and expressed as root mean square error
(RMSE).

Machine f RMSE (Training set) RMSE (Test set)

1 i MH:

g e

(mm) (mm)

GBM 915 0.118  0.086  0.034 0.300 0351 1.27
2450 0.021  0.012  0.015 0.321  0.293  0.215

RF 915 0.506 0.611 2.06 0.652 0.655 2.15
2450 0.404  0.280  0.456 0.782  0.335  0.558

MLP 915 0.245  0.130  0.573 0.239 0.166  0.692
2450 0.192 0.137 0.146 0.224 0.147 0.142

result for 915 and 2450 MHz used 15 and 8 nodes at most for each tree,
respectively. The finest number of trees found were 949 (g'), 999 (¢") and
997 (dp) for 915 MHz, and 1140 (¢), 1156 (¢") and 1145 (d,) for 2450
MHz. Table 5 presents the machine learning results for predicting the
dielectric properties given the root mean square error as the perfor-
mance criterion. The GBM model showed the lowest RMSE for the
training set among all models (0.012-0.118), but for the test set, the
values were quite higher. For 915 MHz, RMSE was 0.300 (¢"), 0.351 (&")
and 1.27 (dp), but a slight decrease is observed for 2450 MHz, 0.321 &),
0.293 (¢") and 0.215 (dp). This might not only be related to using a
different dataset. According to [53], a higher number of trees and a
lower learning rate yield better performances at a higher computational
cost.

Likewise, the RF model also relies on tuning hyper-parameters to
attempt a better-performing model [57]. In this study, the maximum
number of trees was 2000, while the number of variables selected at
each node and the node size ranged from 1 to 7 for both. Different
maximum numbers of levels (3-10) and nodes in each tree (5-50) were
evaluated. The finest performance was obtained considering 7 variables
for each node split, a maximum of 50 nodes in each tree and a node size
equivalent to 1. The optimal number of levels was 15 and 30, respec-
tively for 915 and 2450 MHz. For 915 MHz, the optimal number of trees
was 160, 400 and 120 trees for €, ¢” and d,, respectively. Meanwhile,
numbers of trees equal to 330 (¢'), 500 (¢") and 240 (d,) were obtained
for 2450 MHz. The RF model showed the worst agreement with exper-
imental data for the training set (0.280-2.06) and test set (0.335-2.15)
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among the models. The RMSE values of 0.652 (g"), 0.655 (¢") and 2.15
(dp) for 915 MHz and 0.782 (¢'), 0.335 (¢") and 0.558 (d,,) for 2450 MHz
were found for the test dataset. Although GBM and RF are both based on
the DT algorithm, the gradient algorithm seemed to have improved the
performance of the GBM model concerning RF.

MLPs, widely employed supervised learning neural networks for
prediction and classification, were applied with 11 input neurons and 1
output neuron for €, ¢, or d,. In the training phase, diverse hidden
neuron quantities (1-30) and activation functions (tangent hyperbolic,
logistic sigmoid, exponential, and identity) were tested for performance
evaluation. The optimal configurations, determined by the training set,
yielded the best results at 915 MHz with 4 hidden neurons for ¢ (RMSE
= 0.239), and 6 hidden neurons for ¢” (RMSE = 0.166) and d, (RMSE =
0.692). At 2450 MHz, optimal results were achieved with 7 hidden
neurons for ¢ (RMSE = 0.224), 6 hidden neurons for ¢’ (RMSE = 0.147),
and 8 hidden neurons for d, (RMSE = 0.142). Output activation func-
tions identity and exponential were identified as optimal, while tangent
hyperbolic and exponential served as ideal hidden activation functions.
Notably, these configurations align with findings that demonstrated
success in predicting model juice solutions at different sugar contents,
temperatures, and field frequencies [54]. It is worth recognizing the
significance of the training set in configuring the neural network,
influencing hidden neurons, and determining optimal activation func-
tions. The test set complements this process, independently assessing the
model’s generalization capacity to new data and ensuring robust pre-
dictions beyond the training.

Fig. 7 presents the variable importance plots for ¢, ¢, and d,.
Notably, when considering relative importance higher than 50 %, the
dielectric constant showcased temperature and electrical conductivity
as the foremost predictors for GBM and RF. Conversely, MLP identified
a* and temperature as the primary variables at 915 MHz, while tem-
perature, TS, and a* held the highest importance at 2450 MHz. Exam-
ining the dielectric loss factor at 915 MHz, electrical conductivity
emerged as the predominant factor, holding 100 % relative importance
in all models. Additionally, in GBM, a* and TTA claimed the second and
third positions, respectively. RF assigned ashes and a* to the second and
third positions, while MLP allocated b* and L* to these respective po-
sitions. At 2450 MHz, all machine learning methods consistently iden-
tified electrical conductivity, temperature, and pH as the three most
important variables influencing the dielectric loss factor. In terms of
penetration depth, GBM highlighted electrical conductivity as the pri-
mary variable, followed in descending order by ashes, TTA, b*, L*, and
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temperature. RF also emphasized electrical conductivity, with TS, ashes,
b* a*, and TTA following suit. MLP identified b*, L*, and electrical
conductivity as the top three influential variables. Further scrutinizing
the importance rankings at 2450 MHz, GBM prioritized electrical con-
ductivity, while RF and MLP favored temperature. GBM underscored the
significance of total solids (TS), temperature, and pH, each exceeding 50
% relative importance. RF, on the other hand, considered electrical
conductivity, TS, ashes, and pH as pivotal factors. For MLP, temperature
was the sole variable with a relative importance higher than 50 %, with
electrical conductivity and pH securing positions of 24.1 % and 6.3 %,
respectively, in the second and third slots.

In summary, this investigation revealed that temperature and elec-
trical conductivity consistently emerged as pivotal predictors, demon-
strating their robust ranking in all models. Notably, the variable
importance plots underscored the substantial impact of ashes, pH, and
total solids in certain scenarios, highlighting the influence of dilution,
minerals, and acidity on dielectric properties. Moreover, the study
observed a significant influence of color parameters, indicative of
compounds, such as lycopene in guava and carotenoids in orange. A
refined analysis, as detailed in the variable importance plots, provided a
nuanced understanding of the intricate multivariate factors influencing
the prediction of dielectric properties. While MLP exhibited notable
strengths in capturing specific relationships, the choice of the optimal
method may hinge on the specific objectives and nuances inherent in the
dataset.

4. Conclusions

All machine learning techniques, notably multilayer perceptron
(MLP), gradient boosting machine (GBM) and random forest (RF)
excelled in predicting the temperature-dependent dielectric properties
of the fruit juices based on physicochemical measurements. While
lacking explicit mathematical or physical relationships compared to
multiple linear regression (MLR), these models offer advantages such as
effective handling of mixed datasets and suitability for non-linear sys-
tems. Key predictors included temperature and electrical conductivity,
with composition and physicochemical attributes, such as total solids,
acidity, pH, and color parameters also playing important roles. In
summary, chemical analyses coupled with machine learning tools pro-
vided a swift and objective method for correlating and predicting the
dielectric properties of this group of eight fruit juices. This approach,
with its rapid learning and high accuracy, holds promise for advancing
food processing simulation, particularly in microwave heating systems.
Future studies can: (1) broaden the range of beverages in the group, (2)
add new predictors to the data sets, or (3) make practical use of the
adjusted machine learning tool, by using the predicted dielectric prop-
erties of a given product and temperature range, for the multi-physics
simulation of a microwave applicator chamber.
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