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A B S T R A C T   

Microwave-assisted thermal processing can provide superior quality for fruit-based products when compared to 
conventional thermal processing. Understanding the temperature-dependent dielectric properties of liquid foods 
is needed for the analysis and optimization of the microwave applicator chamber since they govern the heating 
rate and temperature distribution. While literature offers correlations for specific products, there is a scarcity of 
methods capable of accommodating variability in composition or predicting behavior for broader product 
groups. In this study, we measured the dielectric properties (dielectric constant and loss factor) of eight fruit 
juices (passion fruit, melon, pineapple, cashew, orange, lemon, acerola, and guava) using an open-ended coaxial- 
line technique for temperatures ranging from 5 to 90 ◦C at commercial frequencies of 915 and 2450 MHz, 
alongside electrical conductivity. These properties were successfully correlated with the temperature for each 
individual juice; then, machine learning techniques (random forest, gradient boosting machine, and multilayer 
perceptron) were used to predict the properties of this diverse group of eight juices based on various physico
chemical measurements. These techniques revealed temperature and electrical conductivity as the most critical 
predictors, while total solids, pH, acidity, ashes, and select color parameters also emerged as significant vari
ables. These findings demonstrate that the integration of physicochemical analyses with machine learning tools 
offers an objective approach to correlate and predict dielectric properties for a group of food products, facili
tating adjustments in product composition without additional measurements, thus enhancing the efficiency and 
accuracy of microwave-assisted thermal processing simulations and optimizations.   

1. Introduction 

Pasteurization is a fundamental processing technique in the food 
industry in which high temperatures (below 100 ◦C) are used for the 
inactivation of microorganisms and enzymes. For processing liquid 
products such as fruit juices and nectars, heat exchangers are employed 
for continuous flow heating and cooling of the product stream. One of 
the drawbacks of thermal processing is quality loss due to the heat [1,2]. 
Microwave-assisted thermal pasteurization has been thus reported to 
provide superior quality for fruit-based products when compared to 
conventional thermal processing [3–8]. The heat exchanger used for 
heating the product stream to the processing temperature is replaced by 
a microwave applicator chamber in which the flowing stream absorbs 
the radiation and heats up [9]. Its advantages are volumetric heating, 
higher heating rates, better thermal efficiency, and shorter heating times 

compared to conventional heating methods, resulting in products with 
better sensorial and nutritional properties [10,11]. The main drawback 
of microwave heating, mainly in solid and semisolid products, refers to 
nonuniform temperature distribution; however, this technology has 
been shown to be suitable for liquid foods, especially in a continuous 
fluid system since flow can improve thermal mixing [12]. 

To determine the extent of heating in materials subject to electro
magnetic fields, understanding dielectric properties (dielectric constant 
ε′ and dielectric loss factor ε″) is necessary for both designing and opti
mizing microwave heating systems [13,14]. These properties represent a 
material’s ability to polarize and store electric energy (ε′) and the extent 
of energy dissipation as heat (ε″) [14,15], important for achieving effi
cient and controlled heating processes. Dielectric properties, influenced 
by temperature, frequency of the applied electric field, composition, and 
physicochemical attributes of food [16,17], play a pivotal role in 
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microwave heating. In designing and simulating microwave applicator 
chambers, multi-physics software, such as COMSOL Multiphysics, is 
indispensable for coupling flow, heat transfer, and electromagnetic 
propagation phenomena. Such software facilitates the integration of 
fluid dynamics, heat transfer, and electromagnetic field simulations, 
allowing for a comprehensive analysis of the complex interactions 
within the chamber [5,18–22]. The solution of Maxwell’s equations of 
electromagnetism requires knowledge of the dielectric properties’ 
temperature dependence, enabling accurate calculation of heating rates 
[9,23,24]. Thus, a comprehensive understanding of dielectric properties 
facilitates not only efficient microwave heating but also enhances con
trol and precision in heating processes. 

The scientific literature contains data on the dielectric properties of 
various foods under specific conditions such as composition, tempera
ture, and frequencies, including different types of milk [16,25–27], fruit 
juice varieties [22,28,29], coconut water [30], and tomato puree [31], 
for instance. The published information is mostly limited to correlating 
measured properties with temperature, or with moisture content for 
drying applications [16,17,27,32–35]. These correlations are typically 
established for individual food products, with limited efforts made to 
generalize them across a broader range of food items [29]. Moreover, 
only a handful of studies have utilized more advanced prediction tech
niques, including artificial neural networks [22,25], or multivariate 
statistical methods [36–38]. Linear regression methods, commonly used 
for such analyses, may not adequately capture the complexity of the 
underlying phenomena, as they assume a probabilistic model for data 
generation. Consequently, algorithmic approaches such as machine 
learning methods have been proposed as more suitable alternatives 
[39]. The main challenge arises from the inherent variability in 
composition and physicochemical attributes among different food 
products. Each product possesses unique characteristics influenced by 
factors such as variety, ripeness, growing conditions, and processing 
methods. This variability complicates the establishment of generalized 

correlations, making it difficult to accurately capture all nuances since 
dielectric behavior is intrinsically related to composition. Thus, while 
single-product correlations provide valuable insights, extending these 
findings to diverse food groups necessitates careful consideration of the 
inherent variability across multiple factors. 

In this study, we investigate the correlation between the dielectric 
behavior of eight types of fruit juices and temperature/physicochemical 
attributes, relevant to microwave-assisted pasteurization processing. By 
combining data from multiple juices into a single dataset, we aim to 
determine the interconnectedness of these factors. To achieve this, we 
employ traditional multiple linear regression (MLR) and advanced ma
chine learning methods such as gradient boosting machine (GBM), 
random forest (RF), and multilayer perceptron (MLP) for dielectric 
properties prediction. This study offers a unique contribution by 
providing a comprehensive analysis of dielectric properties across 
various juices and comparing the predictive performance of different 
modeling techniques. Through this analysis, we aim to identify the most 
influential variables driving dielectric behavior, thereby enhancing our 
understanding of the mechanisms underlying microwave-assisted 
pasteurization. MLR, chosen alongside machine learning methods like 
GBM, RF, and MLP, offers interpretability and simplicity, enabling ex
amination of linear relationships between predictor variables (e.g., 
temperature, pH, soluble solid content) and dielectric properties. While 
MLR remains valuable for identifying direct linear associations, machine 
learning methods are able to capture complex, nonlinear relationships 
and interactions among predictors, enhancing prediction accuracy in 
high-dimensional datasets. By integrating both MLR and machine 
learning methods, this study provides a balanced approach to under
standing the relationship between temperature, physicochemical attri
butes, and dielectric properties in fruit juices. 

Table 1 
Formulation, physicochemical properties and color attributes of the fruit juices.  

Names Fruit juices 

Common name Yellow passion fruit ‘Canary’ 
melon 

‘Pernambuco’ 
pineapple 

Cashew apple ‘Pera’ sweet 
orange 

‘Tahiti’ lemon Acerola cherry ‘Paluma’ 
guava 

Scientific name Passiflora edulis f. 
flavicarpa Deg. 

Cucumis 
melo L. 

Ananas comosus (L.) 
Merril 

Anacardium 
occidentale L. 

Citrus sinensis 
(L.) Osbeck 

Citrus latifolia 
Tanaka 

Malpighia 
emarginata D.C. 

Psidium 
guajava L. 

Codification Passion fruit Melon Pineapple Cashew Orange Lemon Acerola Guava 
Formulation         
Fruit pulp:water 

ratio 
1:6 - 1:2 1:3 - 1:3 1:3 1:3 

Sucrose added         
in juice (g/100 

g) 
7 - 2 5 - 10 5 3 

Analyses         
TS (g/100 g) 1 8.62 ± 0.03e 11.21 ±

0.01b 
13.33 ± 0.02a 8.45 ± 0.02f 9.94 ± 0.07d 10.07 ± 0.09c 7.01 ± 0.02h 7.66 ± 0.04g 

TSS (◦Brix) 2 8.63 ± 0.07f 11.66 ±
0.14e 

6.68 ± 0.14h 7.83 ± 0.07g 12.83 ± 0.07d 26.23 ± 0.21c 29.62 ± 0.01b 30.27 ±
0.06a 

aw 0.959 ± 0.001a 0.975 ±
0.026a 

0.985 ± 0.001a 0.957 ± 0.001a 0.954 ± 0.001a 0.931 ±
0.035b 

0.948 ± 0.001a 0.973 ±
0.003a 

TTA (g/ 100 mL) 
3 

0.538 ± 0.019b 0.081 ±
0.004c 

0.163 ± 0.002c 0.057 ± 0.006c 0.637 ± 0.006b 1.356 ±
0.283a 

0.600 ± 0.004b 0.111 ±
0.004c 

pH 3.06 ± 0.01f 6.28 ±
0.01a 

3.97 ± 0.01d 4.86 ± 0.01b 3.96 ± 0.01d 2.44 ± 0.01g 3.47 ± 0.01e 4.09 ± 0.09c 

AC (g/100 g) 4 

w.b. 
0.077 ± 0.002d 0.539 ±

0.030b 
0.335 ± 0.001c 0.898 ± 0.107a 0.388 ± 0.001c 0.010 ±

0.039d 
0.052 ± 0.004d 0.060 ±

0.001d 

Color attributes         
L* 32.6 ± 0.1g 32.7 ± 0.1fg 35.5 ± 0.1e 65.8 ± 0.1a 42.7 ± 0.5c 33.2 ± 0.1f 39.7 ± 0.1d 52.6 ± 0.1b 

a* -0.630 ± 0.030e -0.390 ±
0.030d 

-0.780 ± 0.030e 3.88 ± 0.02c -1.51 ± 0.08f -0.280 ±
0.040d 

22.8 ± 0.1a 18.8 ± 0.1b 

b* 5.80 ± 0.06e 0.440 ±
0.030f 

-0.420 ± 0.050g 32.6 ± 0.1a 13.1 ± 0.7d -1.51 ± 0.07h 16.9 ± 0.1b 15.3 ± 0.1c 

All values are expressed as means ± standard deviation of three replicates. 
Different letters in the same row mean significant differences at 95 % confidence (p<0.05). 
1TS (total solids content). 2TSS (total soluble solids) expressed as ◦Brix at 20 ◦C. 3TTA (titratable acidity expressed as citric acid at 25 ◦C). 4AC (ash content). 
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2. Materials and methods 

In summary, several physicochemical attributes were measured for 
eight fruit beverages: total solids, total soluble solids, water activity, 
titratable acidity, pH, ashes content and CIELab color. Electrical con
ductivity and dielectric properties at 915 and 2450 MHz were measured 
for a range of temperatures compatible with thermal processing. For the 
data analyses, the dielectric properties were first correlated with the 
temperature for each beverage individually, and then multilinear 
regression and machine learning methods were used to correlate these 
properties with temperature and physicochemical attributes for the 
group of beverages. 

2.1. Raw material and preparation 

The eight different types of fruits were purchased from local sup
pliers in the city of São Paulo - SP (Brazil): yellow passion fruit (Passi
flora edulis f. flavicarpa Deg.), ‘Canary’ melon (Cucumis melo L.), 
‘Pernambuco’ pineapple (Ananas comosus (L.) Merril), cashew apple 
(Anacardium occidentale L.), ‘Pera’ sweet orange (Citrus sinensis (L.) 
Osbeck), ‘Tahiti’ lemon (Citrus latifolia Tanaka), acerola cherry (Mal
pighia emarginata), and ‘Paluma’ guava (Psidium guajava L.). Primarily, 
the fruits were washed in running water and subsequently sanitized in 
an aqueous solution of sodium hypochlorite (200 mg L− 1) for 30 min. 
Subsequently, the peels and seeds were manually removed, and the 
remaining pulps were shredded with a domestic blender RI2101 (Phil
ipps-Wallita, Brazil) and filtered through a stainless-steel household 
strainer with 1 mm orifices to remove large particles. 

The fruit beverages were prepared as ready-to-drink products. Other 
than melon and orange, the preparation of the remaining six juices 
involved the addition of Milli-Q® water and food-grade sucrose, with 
the proportions shown in Table 1. Dilution with water and the addition 
of sugar aimed to standardize Brix levels and acidity while ensuring 
optimal palatability. All formulations adhere to U.S. FDA standards (21 
CFR 101.30) and international Codex Alimentarius guidelines (Codex 
Stan 247–2005) for fruit juices and nectars [40,41]. After preparation, 
the fruit beverages were packed in 300-mL high-density polyethylene 
bottles and stored at − 30 ◦C in a 349 V Plasma Freezer (FANEM, Brazil). 

2.2. Physiochemical characterization 

Fruit juice samples were characterized as to total solids (TS), total 
soluble solids (TSS), titratable acidity (TTA), pH, water activity (aw) and 
ashes content (AC) according to official methods AOAC [42]. TSS was 
determined at room temperature by a 711,849 refractometry (Carl Zeiss 
Jena, Germany) and corrected according to temperature and acidity 
[43]. pH and TTA were measured using a pH-Stat PHM-290 (Radiom
eter, Denmark) and TTA was expressed as the citric acid equivalent. 
Water activity was measured with AquaLab 3TE (Decagon Devices, USA) 
at room temperature. Total solids (TS) content was determined in an 
MA030 vacuum oven (Marconi, Brazil) at 70 ºC and 13.3 kPa. AC was 
measured as described by method 900.02 in a Q-318D24 muffle furnace 
(Quimis, Brazil). The color was determined using the CIELab scale, 
measuring L* (lightness), a* (red-green axis), and b* (yellow-blue axis). 
RSEX calibration with D65 illuminant and a 10◦ angle was employed in a 
ColorQuest XE spectrophotometer (HunterLab, USA). 

2.3. Electrical conductivity 

The electrical conductivity (EC or σ) of the samples was determined 
with a YSI3200 conductivity meter and YSI3252 probe (YSI, USA) at the 
temperature interval (5 to 90) ◦C. For temperature control, the sample 
with a thermocouple was immersed in a TC550 thermostatic oil bath 
(Brookfield, USA). 

2.4. Dielectric properties measurement 

Usual methods for measuring the dielectric properties of foods at 
microwave frequencies are open-ended coaxial probe, transmission line, 
and resonant cavity. The choice depends on the material structure (solid 
or fluid), frequency range and accuracy. The open-ended coaxial probe 
is the most common method applied to foods and the most suitable for 
liquid foods since perfect contact is needed between the probe surface 
and the sample. This technique requires a network analyzer and is based 
on the fact that the reflected signal on an open-ended coaxial line 
attached to a material depends on its dielectric properties [14,44,45]. 

The reflection coefficient at the probe-sample interface was 
measured from fruit juice samples with an E5061B vector network 
analyzer connected to an open-ended coaxial-line probe (“Performance 
Probe” from the 85070E Dielectric Probe Kit) with a N6314A Type-N 
test port cable (Agilent Technologies, Malaysia). The measurements 
were conducted at a temperature interval from (5 to 90) ºC and fre
quency from (500 to 3000) MHz. The selected temperature range is 
consistent with juice pasteurization temperatures and the selected fre
quency range includes the frequencies of industrial interest, which are 
915 MHz (wavelength of 0.327 m) and 2450 MHz (wavelength of 0.122 
m). These microwave frequencies are among the ISM frequencies, which 
were allocated by the Federal Communications Commission (FCC) for 
industrial, scientific and medical electromagnetic energy applications 
[28]. 

The dielectric properties (ε′ and ε″) were calculated by the 85,070 v. 
E06.01.36 software (Agilent Technologies, Malaysia) based on the 
complex reflection coefficient of the sample measured around the probe 
tip. An electronic calibration module 85093C (Agilent Technologies, 
Malaysia) was used to minimize interferences and the calibration pro
cedure was performed according to the manufacturer’s instructions. The 
detailed procedure of calibration and dielectric measurements has been 
reported elsewhere [46]. 

2.5. Power penetration depth 

The penetration depth (dp) of the microwaves, an important 
parameter to evaluate the heating uniformity, was calculated according 
to the following equation [47]: 

dp =
c

2πf

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2ε′

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
(

ε’′
ε′

)2
√

− 1

]√
√
√
√ (1)  

wherein c is the speed of light in free space (2.9979 × 108 m s− 1), and f is 
the electromagnetic field frequency (Hz). The dp of the microwaves 
corresponds to the depth at which the power is reduced to 1/e = 36.8 % 
(Euler number: e = 2.7183) of the incident power at the surface of a 
semi-infinite body. The complex propagation of the electromagnetic 
waves in the microwave heating chamber, as affected by the presence of 
the foodstuff, can be predicted using multi-physics software that solves 
Maxwell’s equations of electromagnetism over the three-dimensional 
geometry. The penetration depth provides a quick estimate of the 
heating penetration regarding the foodstuff’s main dimensions. More
over, the dependence of the penetration depth with temperature can 
suggest if heating would be homogeneous or not along heating time. 

2.6. Data analyses 

2.6.1. Prediction of the temperature effect on the dielectric properties 
Polynomial correlations were adjusted to model the temperature 

dependence of the dielectric constant, dielectric loss factor, and pene
tration depth for the commercial frequencies of 915 MHz and 2450 MHz, 
using TIBCO Statistica 13.4.0 (TIBCO Software, USA). The polynomial 
order (n = 1, 2, or more) was tentatively chosen based on the coefficient 

R.N. Cavalcanti et al.                                                                                                                                                                                                                          



Measurement: Food 14 (2024) 100158

4

Fig. 1. Dielectric constant (ε′) of the fruit juices measured at a frequency interval from (500 to 3000) MHz and a temperature interval from (5 to 90) ◦C.  
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Fig. 2. Dielectric loss factor (ε″) of the fruit juices measured at a frequency interval from (500 to 3000) MHz and a temperature interval from (5 to 90) ◦C.  
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Fig. 3. Penetration depth (dp) of the fruit juices determined at a frequency interval from (500 to 3000) MHz and a temperature interval from (5 to 90) ◦C.  
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of determination (R2) of each equation [34,46]. 

2.6.2. Prediction of the multivariable effect on the dielectric properties 
In the Multiple linear regression (MLR) analysis, interpretive vari

ables (Xi) such as T, TSS, aw, TTA, pH, TS, AC, L*, a*, b*, and σ were 
examined for their tentatively linear relationship with response vari
ables (Yj), which were ε′, ε″, and dp. Model performance was evaluated 
using R2 to assess explained variance, RMSE for predictive accuracy, and 
the significance of coefficients (p < 0.05) to identify impactful variables. 

Nonlinear correlations between dielectric and physicochemical 
properties were assessed by using the machine learning methods 
random forest (RF), gradient boosting machine (GBM), and multilayer 
perceptron (MLP). The variable importance was determined for each 
method on a 0–100 scale. Two different datasets were evaluated sepa
rately for 915 MHz and 2450 MHz, each one composed of a matrix with 
240 rows (samples) and 14 columns (11 independent and 3 response 
variables). For all the machine learning methods, both datasets were 
randomly divided into a training set (70 %) and a test set (30 %). The 
training set was used for fitting the model parameters; then, the adjusted 
model was used to predict the responses for the data in the test set to 
evaluate the predictive ability of the model. The RMSE of the prediction 
dataset was used as a criterion to evaluate the model performance. All 
the methods (MLR, RF, GBM, MLP) were performed by TIBCO Statistica 
13.4.0 (TIBCO Software, USA). 

RF can be summarized as an ensemble of decision trees (DT) created 
during the training step and outputting the mean prediction of the in
dividual trees [48]. Each tree grows based on a bootstrap sampling from 
the original data, which relies on random sampling with replacement 
[49], and a subset of the explanatory variables is randomly selected at 
each node. The number of variables available for splitting at each tree 

node, the number of trees in the forest, and the node size are the main 
parameters that affect the stability and sensitivity of the model [50]. 

GBM is also a self-learning DT algorithm that improves the perfor
mance of the regression tree by adopting the gradient boosting algo
rithm [51,52]. During the training step, an initial regression tree is 
created, and then the next regression tree is trained taking into account 
the residual of the previous regression tree; finally, using multiple iter
ations, a model with high accuracy for predictive results is obtained [52, 
53]. 

MLP is a feed-forward neural network comprising an input layer to 
pass the input vector to the network, one or more hidden layers to 
perform computations, and an output layer for outputting the responses. 
After multiple iterations in the training step, the neural network model 
determines the mathematical functions and weights that correlate input 
and output data and creates an internal model that can be used to predict 
new input data. The model is calculated by the interconnection of 
neurons, and the accuracy of the model is affected by the architecture of 
the neural network [52]. 

2.7. Statistical analyses 

Experimental data were evaluated by the analysis of variance 
(ANOVA) followed by Tukey’s post hoc test at the 95 % significance 
level using the software TIBCO Statistica 13.4.0 (TIBCO Software, USA). 

3. Results and discussion 

3.1. Physicochemical characteristics 

Table 1 exhibits the formulation, physicochemical properties, and 
some compositional aspects of interest of the eight fruit juices. As ex
pected, there were significant differences for total solids (7.01 - 13.3) g/ 
100 g of juice, total soluble solids (6.68 - 30.3) ◦Brix, water activity 
(0.931 − 0.985), titratable acidity (0.057 - 1.356) g/ 100 g expressed as 
citric acid, pH (2.44 - 6.28), ashes content (0.010 - 0.898) g/100 g, and 
color parameters L* (32.6 - 65.8), a* (− 1.51 - 22.8) and b* (− 1.51 - 
32.6). The high variability of those properties is not only because 
different fruits were used but also due to different formulations applied 
to each juice. For instance, melon and orange juices were prepared with 
no addition of water and sucrose, while passion fruit juice was diluted 
with water at a proportion of 1:6 (v/v) and added with 7 g/100 g of 
sucrose. This heterogeneity of data enables higher power to generalize 
the models obtained from machine learning techniques. 

3.2. Dielectric properties 

Diagrams of the dielectric constant (ε′), dielectric loss factor (ε″), and 
penetration depth (dp) of all juices are shown in Figs. 1, 2 and 3, 
respectively. The profiles of ε′ were quite similar among the eight juices, 
indicating that water is the main factor for the electrical polarization 
(Fig. 1). According to Table 1, the water content varies between (86.7 
and 93.0) g/100 g. The decrease of ε′ values with an increase in tem
perature and frequency can be explained by the reduced polarization 
under thermal agitation and the reduced dipole response under higher 
frequencies, respectively [29]. Although ε′ values were close for all so
lutions, distilled water presented a higher dielectric constant [30]. The 
loss factor (ε″ = ε″

σ + ε″
d) can be described equally by the influence of 

two main mechanisms, dipole loss (ε″
d) and ionic loss (ε″

σ = σ /2πfε0). 
Fig. 2 allows observation that a rise in temperature may cause an in
crease or decrease in the loss factor, depending on which the dominant 
mechanism is [54]. Ionic loss is favored by higher temperatures, which 
cause an enhancement of ionic motion, and lower frequencies, which are 
associated with an increase in the length of ionic motion. Overall, this 
behavior can be better observed at frequencies lower than 1000 MHz. In 
contrast, the dipole loss is related to the dipolar relaxation of the water 

Fig. 4. Experimental data and respective linear regression of the electrical 
conductivity (σ) of the juices prepared from eight different types of fruit 
measured at a temperature interval from (5 to 90) ◦C. 

Table 2 
Linear regression parameters, standard errors of estimate (δest) and the coeffi
cient of determination (R2) of the electrical conductivity (σ = a0 + a1T) of the 
fruit juices, valid for the temperature interval from (5 to 90 ◦C).  

Fruit juices a0 (mS cm-1) a1 (mS cm-1 ◦C-1) δest (-) R2 

Passion fruit 0.404 ± 0.005 0.0193 ± 0.0001 0.02 0.9992 
Melon 2.291 ± 0.047 0.1142 ± 0.0009 0.14 0.9983 
Pineapple 0.588 ± 0.010 0.0290 ± 0.0002 0.03 0.9987 
Cashew 0.360 ± 0.007 0.0181 ± 0.0001 0.02 0.9985 
Orange 1.563 ± 0.051 0.0941 ± 0.0010 0.15 0.9971 
Lemon 0.843 ± 0.008 0.0350 ± 0.0002 0.02 0.9995 
Acerola 0.577 ± 0.039 0.0199 ± 0.0007 0.11 0.9641 
Guava 0.398 ± 0.013 0.0213 ± 0.0002 0.04 0.9983 

All values are expressed as means ± standard deviation (n = 3). 
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Fig. 5. Dielectric constant (ε′), dielectric loss factor (ε″) and penetration depth (dp) at 915 MHz and 2450 MHz of the juices prepared from eight different types of fruit 
measured at a temperature interval from (5 to 90) ◦C. 

R.N. Cavalcanti et al.                                                                                                                                                                                                                          



Measurement: Food 14 (2024) 100158

9

molecule, in which the loss factor increases with frequency can be seen 
for the lower temperatures (T < 30 ◦C). In summary, the behavior 
observed in the loss factor plot can be considered the transition from an 
ionic-governed loss to a dipolar-governed loss [30]. 

On the whole, the penetration depth of the microwaves Eq. (1) de
creases with increasing frequency; however, there is a clear change in 
temperature dependence with increasing frequency (Fig. 3). At lower 
frequencies, the penetration depth decreases with increasing tempera
ture, while at higher frequencies, the penetration depth increases with 
temperature. The second behavior is more desirable because, as the food 
is heated, the radiation penetrates more deeply, promoting more ho
mogenous heating. In the case of low frequencies, the penetration depth 
decreases with heating, which can cause cold spots in the material. In 
any case, note that the greater depths are found at the lower frequencies 
and that the heating pattern of the material depends heavily on its di
mensions and geometry. 

3.3. Electrical conductivity 

As shown in Fig. 4, the higher the temperature, the higher the elec
trical conductivity vis-à-vis the continuous intensification in the 
mobility of the ions due to the reduction in the solution viscosity as a 
result of the progressive increase in temperature [46]. The electrical 
conductivity exhibited a good linear correlation with temperature 
(0.9641 ≤ R2 ≤ 0.9995), as shown in Table 2. Although cashew juice 
showed the highest content of ashes and, consequently, more salts 

(Table 1), melon juice was the one with the highest angular coefficient 
(a1) and linear coefficient (a0). This phenomenon indicates that even 
though the ash content has a positive influence on the electrical con
ductivity, the addition of sugar to the formulation of cashew juice has 
promoted a great deleterious effect on the electrical conductivity. 
Hence, there is a great likelihood that ash content is not the main factor 
influencing electrical conductivity. Generally, these results agree with 
the behavior of other liquid foods regarding temperature dependence 
[16,26,30,46,29,55]. 

3.4. Commercial frequencies of 915 and 2450 MHz 

Fig. 5 shows ε′ and ε” of the juices as a function of temperature at 915 
and 2450 MHz commercial frequencies. All eight fruit juices presented a 
similar behavior with ε′ decreasing almost linearly with the temperature 
at both frequencies. Lower values were obtained for orange, lemon, and 
melon juices while higher ε′ values were achieved by pineapple, acerola, 
and passion fruit juices. Also observed is that the dielectric loss factor 
(ε”) showed a nearly constant value at 915 MHz for all juices, except for 
melon and orange juices, which exhibited an increase of ε″ with tem
perature. Likewise, all the juices presented a decrease of ε″ with the 
temperature at 2450 MHz but melon and orange juices suffered a fairly 
less pronounced decrease. In addition, melon and orange juices had the 
highest ε″ values at both frequencies. Fig. 5 also exhibits the penetration 
depth of the eight fruit juices as a function of temperature. At 915 MHz, 
the dp values of all samples were higher at intermediate temperatures 
(40–70 ◦C) whereas a slight decrease is observed for melon and orange 
juices as the temperature rises. At 2450 MHz, though, the juices 
exhibited an increase of dp with temperature, except melon and orange 
juices, which had practically constant values of dp throughout the tem
perature range studied. Once again, note that melon and orange juices 
displayed quite distinct behavior. The main reason is undoubtedly the 
fact that were formulated without adding sugar or water, but no con
crete explanation of how this interference occurs can be inferred from 
the results presented so far. Despite that, it is deducible that more heat 
can be dissipated from melon and orange juices due to the higher values 
of loss factor; more uneven heating is attained because of their lower 
penetration depth. 

The dielectric loss factor is a result of the contribution of ionic con
duction and dipole rotation mechanisms. Fig. 6 exhibits the relative 
contributions of ionic conduction, at 915 MHz and 2450 MHz: the ionic 
conduction (Cσ = (ε″

σ /ε″)× 100) and dipole rotation (Cd = (ε″
d /ε″)×

100). As observed, the ionic conduction mechanism is predominant as 
temperature increases, for both frequencies. This phenomenon was more 
pronounced for all juices at 915 MHz and for melon and orange juices at 
2450 MHz, which might be associated with the higher electrical con
ductivity values of those juices (Fig. 1). A similar behavior has been 
reported in the literature [30,46,54]. 

3.5. Data correlation 

3.5.1. Temperature-dependence effect on the dielectric properties 
Polynomial correlations adjusted to the temperature dependence for 

electrical conductivity (σ) are presented in Table 2, and those for 
dielectric properties (ε′, ε″ and dp) are presented in Table 3. Model fitting 
was made using the least number of polynomial coefficients to provide a 
good fit, valid for the range of temperature from (5 to 90) ◦C. In Table 3, 
for dielectric constant (ε′), for the regression with linear and quadratic 
coefficients, the standard errors of estimate (δest) were lower than 0.54, 
and a good fit was accomplished for all juices (0.9920 ≤ R2 ≤ 0.9993). 
For the dielectric loss factor (ε″), good correlations were obtained for 
cubic regressions (0.9824 ≤ R2 ≤ 0.9994), with standard errors of es
timate (δest) lower than 0.48. For penetration depth (dp), the best 
adjustment was obtained for quadratic equations (0.9120 ≤ R2 ≤

0.9984; 0.01 ≤ δest ≤ 3.3). 

Fig. 6. Contribution of the ionic conduction (Cσ = (ε″
σ /ε″) × 100%, ○) and 

dipole rotation (Cd = (ε″
d /ε″)× 100%,) mechanisms on dielectric loss factor 

(ε″) at 915 and 2450 MHz of the juices prepared from eight different types of 
fruit measured at a temperature interval from (5 to 90) ◦C. 
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3.5.2. Multivariable effect on the dielectric properties 
The MLR, GBM, RF, and MLP methods were applied to predict 

dielectric constant (ε′), dielectric loss factor (ε″) and penetration depth 
(dp), each one as a function of temperature, soluble solids (TSS), water 
activity (aw), titratable acidity (TTA), pH, total solids (TS), ashes content 
(AC), electrical conductivity (σ), and color parameters L*, a* and b*. 
Prediction performances were evaluated using R2 and/or RMSE between 
predicted and experimental values as criteria. 

In Table 4, it can be noticed that MLR achieved a good fit with 
observed data for the majority of the dielectric properties at both fre
quencies (R2 ≥ 0.982 and RMSE ≤ 0.936), except for ε″ at 915 MHz (R2 =

0.790; RMSE = 2.16) and 2450 MHz (R2 = 0.895; RMSE = 1.47), and dp 
at 915 MHz (R2 = 0.782; RMSE = 8.51). Temperature and electrical 
conductivity were considered significant parameters (p < 0.05) for all 
the response variables at both electric field frequencies. All the param
eters were considered significant for the dielectric constant at both 
frequencies. For the dielectric loss factor at 915 MHz, only pH and ashes 
content were considered non-significant while only temperature and 
electrical conductivity were significant at 2450 MHz. For penetration 

depth, titratable acidity, pH, and ashes content were considered non- 
significant at 915 MHz whereas only the constant was omitted in the 
equation at 2450 MHz. For each response variable, better fits were found 
at 2450 MHz, indicating this frequency might be a better choice than 
915 MHz for predicting dielectric properties by MLR. Similar trends 
were found for the MLR of sheep milk [56]. 

The GBM model needs to tune several hyper-parameters to optimize 
the model performance. The bag fraction of 50 % stipulates the per
centage of the training set applied to each interaction, while the 
maximum number of trees (2000), and the minimum number of cases in 
a node (1) were used as a stop criterion for the GBM model. Different 
learning rates were used (0.01, 0.05 and 0.1), in which diverse values of 
minimum node size (1–5), the maximum number of nodes in each tree 
(3–15), and the maximum number of levels in a tree (depth of the tree) 
(3–30) were assessed during training. The latter aforementioned pa
rameters are responsible for the tree complexity, limiting the maximum 
number of interactions between predictors. GBM models performed 
better with a minimum node size of 1, and a maximum of 30 levels for 
each tree, as well as a learning rate not lower than 0.1. The optimal 

Table 3 
Polynomial regression parameters, standard errors of estimate (δest) and the coefficient of determination (R2) of the dielectric constant (ε’), dielectric loss factor (ε”) and 
the penetration depth (dp) of the fruit juices at 915 MHz and 2450 MHz, valid for the temperature interval from (5 to 90◦C).  

Juices  f (MHz) a0 (× 10) a1 (× 10− 1◦C− 1) a2 (× 10− 4◦C− 2) a3 (× 10− 5◦C− 3) δest (-) R2 

Passion fruit ε’ 915 8.42 ± 0.02 -3.38 ± 0.09 8.30 ± 0.90 - 0.26 0.9989   
2450 7.88 ± 0.02 -1.96 ± 0.11 -2.04 ± 1.15 - 0.34 0.9970  

ε” 915 1.00 ± 0.01 -2.04 ± 0.05 30.5 ± 1.2 -1.41 ± 0.08 0.05 0.9982   
2450 2.07 ± 0.01 -4.85 ± 0.11 54.9 ± 2.8 -2.28 ± 0.20 0.13 0.9994  

dp (mm) 915 4.83 ± 0.080 10.3 ± 0.412 -94.5 ± 4.29 - 2.40 0.9627   
2450 0.725 ± 0.019 3.38 ± 0.097 -7.81 ± 1.01 - 0.13 0.9978 

Melon ε’ 915 8.11 ± 0.03 -2.53 ± 0.18 4.20 ± 1.87 - 0.55 0.9920   
2450 7.50 ± 0.03 -1.37 ± 0.17 -3.62 ± 1.87 - 0.29 0.9883  

ε” 915 1.69 ± 0.04 0.200 ± 0.43 14.8 ± 10.6 0.123 ± 0.741 0.48 0.9919   
2450 2.22 ± 0.02 -3.16 ± 0.17 37.4 ± 4.4 -1.27 ± 0.30 0.20 0.9942  

dp (mm) 915 2.02 ± 0.012 3.60 ± 0.060 -32.6 ± 0.624 - 0.05 0.9937   
2450 0.753 ± 0.004 1.35 ± 0.022 -12.2 ± 0.233 - 0.01 0.9937 

Pineapple ε’ 915 8.59 ± 0.01 -3.30 ± 0.07 6.35 ± 0.72 - 0.21 0.9993   
2450 8.09 ± 0.02 -2.02 ± 0.09 -2.71 ± 0.98 - 0.29 0.9980  

ε” 915 1.05 ± 0.01 -1.76 ± 0.07 28.5 ± 1.8 -1.15 ± 0.13 0.08 0.9917   
2450 2.08 ± 0.01 -4.79 ± 0.12 55.3 ± 3.1 -2.30 ± 0.21 0.14 0.9992  

dp (mm) 915 4.80 ± 0.081 6.17 ± 0.417 -75.5 ± 4.35 - 2.50 0.9320   
2450 0.727 ± 0.019 3.50 ± 0.096 -15.5 ± 1.00 - 0.13 0.9966 

Cashew ε’ 915 8.31 ± 0.02 -2.90 ± 0.11 4.01 ± 1.12 - 0.33 0.9979   
2450 7.79 ± 0.02 -1.57 ± 0.11 -5.45 ± 1.13 - 0.33 0.9969  

ε” 915 0.942 ± 0.006 -1.85 ± 0.06 26.0 ± 1.6 -1.09 ± 0.11 0.07 0.9965   
2450 1.98 ± 0.01 -4.53 ± 0.13 49.8 ± 3.3 -2.04 ± 0.23 0.15 0.9991  

dp (mm) 915 2.02 ± 0.069 9.14 ± 0.353 -16.0 ± 3.69 - 1.80 0.9965   
2450 0.753 ± 0.026 3.41 ± 0.132 -5.98 ± 1.38 - 0.25 0.9965 

Orange ε’ 915 8.08 ± 0.02 -2.70 ± 0.12 3.81 ± 1.26 - 0.37 0.9969   
2450 7.36 ± 0.03 -0.78 ± 0.31 -18.98 ± 7.79 - 0.35 0.9961  

ε” 915 1.53 ± 0.03 -0.781 ± 0.259 29.9 ± 6.4 -0.950 ± 0.449 0.29 0.9949   
2450 2.26 ± 0.02 -4.34 ± 0.17 56.5 ± 4.2 -2.38 ± 0.29 0.19 0.9969  

dp (mm) 915 3.25 ± 0.035 -1.09 ± 0.179 -8.93 ± 1.86 - 0.45 0.9862   
2450 0.720 ± 0.004 1.95 ± 0.019 -16.1 ± 0.195 - 0.01 0.9984 

Lemon ε’ 915 8.18 ± 0.02 -2.97 ± 0.10 4.94 ± 1.07 - 0.31 0.9981   
2450 7.63 ± 0.02 -1.65 ± 0.13 -4.08 ± 1.31 - 0.39 0.9956  

ε” 915 1.12 ± 0.01 -1.61 ± 0.09 28.9 ± 2.3 -1.34 ± 0.16 0.10 0.9824   
2450 2.04 ± 0.02 -4.31 ± 0.16 47.7 ± 4.1 -1.93 ± 0.28 0.19 0.9984  

dp (mm) 915 4.44 ± 0.069 3.40 ± 0.354 -46.8 ± 3.69 - 1.80 0.9120   
2450 0.749 ± 0.013 2.91 ± 0.067 -12.4 ± 0.694 - 0.06 0.9977 

Acerola ε’ 915 8.41 ± 0.02 -3.18 ± 0.10 6.76 ± 1.08 - 0.32 0.9983   
2450 7.93 ± 0.02 -1.89 ± 0.11 -2.63 ± 1.13 - 0.33 0.9973  

ε” 915 0.965 ± 0.066 -1.85 ± 0.06 28.6 ± 1.6 -1.30 ± 0.11 0.07 0.9948   
2450 2.00 ± 0.01 -4.62 ± 0.14 53.1 ± 3.5 -2.26 ± 0.24 0.16 0.9989  

dp (mm) 915 5.08 ± 0.093 9.01 ± 0.480 -90.9 ± 5.00 - 3.30 0.9288   
2450 0.770 ± 0.019 3.30 ± 0.098 -8.72 ± 1.02 - 0.14 0.9975 

Guava ε’ 915 8.25 ± 0.03 -2.85 ± 0.15 5.13 ± 1.57 - 0.46 0.9959   
2450 7.80 ± 0.03 -1.70 ± 0.18 -3.02 ± 1.83 - 0.54 0.9920  

ε” 915 0.916 ± 0.079 -1.62 ± 0.08 23.9 ± 1.9 -1.01 ± 0.13 0.09 0.9914   
2450 1.9 ± 0.02 -4.22 ± 0.16 46.7 ± 3.9 -1.90 ± 0.27 0.18 0.9984  

dp (mm) 915 5.25 ± 0.088 9.10 ± 0.454 -91.4 ± 4.73 - 2.90 0.9371   
2450 0.801 ± 0.024 3.39 ± 0.123 -9.04 ± 1.28 - 0.21 0.9962 

All values are expressed as means ± standard deviation. 
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result for 915 and 2450 MHz used 15 and 8 nodes at most for each tree, 
respectively. The finest number of trees found were 949 (ε′), 999 (ε″) and 
997 (dp) for 915 MHz, and 1140 (ε′), 1156 (ε″) and 1145 (dp) for 2450 
MHz. Table 5 presents the machine learning results for predicting the 
dielectric properties given the root mean square error as the perfor
mance criterion. The GBM model showed the lowest RMSE for the 
training set among all models (0.012–0.118), but for the test set, the 
values were quite higher. For 915 MHz, RMSE was 0.300 (ε′), 0.351 (ε″) 
and 1.27 (dp), but a slight decrease is observed for 2450 MHz, 0.321 (ε′), 
0.293 (ε″) and 0.215 (dp). This might not only be related to using a 
different dataset. According to [53], a higher number of trees and a 
lower learning rate yield better performances at a higher computational 
cost. 

Likewise, the RF model also relies on tuning hyper-parameters to 
attempt a better-performing model [57]. In this study, the maximum 
number of trees was 2000, while the number of variables selected at 
each node and the node size ranged from 1 to 7 for both. Different 
maximum numbers of levels (3–10) and nodes in each tree (5–50) were 
evaluated. The finest performance was obtained considering 7 variables 
for each node split, a maximum of 50 nodes in each tree and a node size 
equivalent to 1. The optimal number of levels was 15 and 30, respec
tively for 915 and 2450 MHz. For 915 MHz, the optimal number of trees 
was 160, 400 and 120 trees for ε′, ε″ and dp, respectively. Meanwhile, 
numbers of trees equal to 330 (ε′), 500 (ε″) and 240 (dp) were obtained 
for 2450 MHz. The RF model showed the worst agreement with exper
imental data for the training set (0.280–2.06) and test set (0.335–2.15) 

among the models. The RMSE values of 0.652 (ε′), 0.655 (ε″) and 2.15 
(dp) for 915 MHz and 0.782 (ε′), 0.335 (ε″) and 0.558 (dp) for 2450 MHz 
were found for the test dataset. Although GBM and RF are both based on 
the DT algorithm, the gradient algorithm seemed to have improved the 
performance of the GBM model concerning RF. 

MLPs, widely employed supervised learning neural networks for 
prediction and classification, were applied with 11 input neurons and 1 
output neuron for ε′, ε″, or dp. In the training phase, diverse hidden 
neuron quantities (1–30) and activation functions (tangent hyperbolic, 
logistic sigmoid, exponential, and identity) were tested for performance 
evaluation. The optimal configurations, determined by the training set, 
yielded the best results at 915 MHz with 4 hidden neurons for ε′ (RMSE 
= 0.239), and 6 hidden neurons for ε″ (RMSE = 0.166) and dp (RMSE =
0.692). At 2450 MHz, optimal results were achieved with 7 hidden 
neurons for ε′ (RMSE = 0.224), 6 hidden neurons for ε″ (RMSE = 0.147), 
and 8 hidden neurons for dp (RMSE = 0.142). Output activation func
tions identity and exponential were identified as optimal, while tangent 
hyperbolic and exponential served as ideal hidden activation functions. 
Notably, these configurations align with findings that demonstrated 
success in predicting model juice solutions at different sugar contents, 
temperatures, and field frequencies [54]. It is worth recognizing the 
significance of the training set in configuring the neural network, 
influencing hidden neurons, and determining optimal activation func
tions. The test set complements this process, independently assessing the 
model’s generalization capacity to new data and ensuring robust pre
dictions beyond the training. 

Fig. 7 presents the variable importance plots for ε′, ε″, and dp. 
Notably, when considering relative importance higher than 50 %, the 
dielectric constant showcased temperature and electrical conductivity 
as the foremost predictors for GBM and RF. Conversely, MLP identified 
a* and temperature as the primary variables at 915 MHz, while tem
perature, TS, and a* held the highest importance at 2450 MHz. Exam
ining the dielectric loss factor at 915 MHz, electrical conductivity 
emerged as the predominant factor, holding 100 % relative importance 
in all models. Additionally, in GBM, a* and TTA claimed the second and 
third positions, respectively. RF assigned ashes and a* to the second and 
third positions, while MLP allocated b* and L* to these respective po
sitions. At 2450 MHz, all machine learning methods consistently iden
tified electrical conductivity, temperature, and pH as the three most 
important variables influencing the dielectric loss factor. In terms of 
penetration depth, GBM highlighted electrical conductivity as the pri
mary variable, followed in descending order by ashes, TTA, b*, L*, and 

Table 4 
Parameters of the multiple linear regression (MLR), expressed as Yi = β0 +

∑n
i=1βiXi, standard errors of estimate (δest), coefficients of determination (R2) and root mean 

square error (RMSE) for the temperature, physicochemical attributes and composition dependence of the dielectric properties: dielectric constant (ε’), dielectric loss 
factor (ε”) and penetration depth (dp).  

Xi βi ε’ ε" dp (mm) 

915 MHz 2450 MHz 915 MHz 2450 MHz 915 MHz 2450 MHz 

Constant β0 86.6 ± 4.62 99.8 ± 3.49 -49.1 ± 11.8 9.00 ± 8.00* 205 ± 46.4 -8.25 ± 5.11* 
T β1 -1.06 ± 0.013 -1.03 ± 0.011 -0.363 ± 0.045 -1.01 ± 0.032 0.359 ± 0.046 1.17 ± 0.013 
TSS 1 β2 -0.579 ± 0.086 -1.04 ± 0.077 1.95 ± 0.311 0.212 ± 0.220* -1.47 ± 0.317 0.484 ± 0.090 
aw β3 0.003 ± 0.015 -0.075 ± 0.014 0.245 ± 0.055 0.039 ± 0.039* -0.120 ± 0.056 0.048 ± 0.016 
TTA 2 β4 0.073 ± 0.050 0.325 ± 0.044 -0.745 ± 0.181 -0.092 ± 0.127* 0.353 ± 0.184* -0.169 ± 0.052 
pH β5 -0.373 ± 0.034 -0.158 ± 0.030 -0.077 ± 0.122* 0.001 ± 0.086* -0.071 ± 0.124* 0.260 ± 0.035 
TS 3 β6 -0.040 ± 0.030 -0.204 ± 0.026 0.773 ± 0.107 0.039 ± 0.076* -0.758 ± 0.109 0.094 ± 0.031 
AC 4 β7 0.093 ± 0.032 0.175 ± 0.029 -0.164 ± 0.116* 0.024 ± 0.082* 0.062 ± 0.118* -0.096 ± 0.034 
L* β8 0.419 ± 0.080 0.830 ± 0.070 -1.78 ± 0.287 -0.258 ± 0.202* 1.22 ± 0.292 -0.491 ± 0.083 
a* β9 0.693 ± 0.080 1.14 ± 0.071 -1.99 ± 0.287 -0.222 ± 0.203* 1.43 ± 0.292 -0.512 ± 0.083 
b* β10 -0.603 ± 0.101 -1.24 ± 0.090 2.82 ± 0.365 0.279 ± 0.257* -1.97 ± 0.371 0.623 ± 0.106 
σ 5 β11 0.211 ± 0.021 0.138 ± 0.019 0.568 ± 0.077 0.561 ± 0.054 -0.506 ± 0.078 -0.980 ± 0.022 
δest 0.869 0.656 2.22 1.50 8.73 0.960 
R2 0.984 0.987 0.790 0.895 0.782 0.982 
RMSE 0.848 0.639 2.16 1.47 8.51 0.936 

All values are expressed as means ± standard deviation. 
* Non-significant parameter at the 95 % significance level (p>0.05). 1TSS (total soluble solids) are expressed as ◦Brix at 20◦C; 2TTA (titratable acidity) expressed as 
citric acid at 25◦C; 3TS (total solids content); 4AC (ashes content); 5σ (electrical conductivity). 

Table 5 
Performance of the machine learning methods GBM (gradient boosting ma
chine), RF (random forest) and MLP (multilayer perceptron) applied on pre
dicting the dielectric properties and expressed as root mean square error 
(RMSE).  

Machine 
learning 
method 

f 
(MHz) 

RMSE (Training set) RMSE (Test set) 

ε’ ε’’ dp 

(mm) 
ε’ ε’’ dp 

(mm) 

GBM 915 0.118 0.086 0.034 0.300 0.351 1.27 
2450 0.021 0.012 0.015 0.321 0.293 0.215 

RF 915 0.506 0.611 2.06 0.652 0.655 2.15 
2450 0.404 0.280 0.456 0.782 0.335 0.558 

MLP 915 0.245 0.130 0.573 0.239 0.166 0.692 
2450 0.192 0.137 0.146 0.224 0.147 0.142  
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Fig. 7. Variable importance plot of dielectric constant (ε′), dielectric loss factor (ε″), and penetration depth (dp) at 915 and 2450 MHz using GBM, RF and 
MLP models. 
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temperature. RF also emphasized electrical conductivity, with TS, ashes, 
b*, a*, and TTA following suit. MLP identified b*, L*, and electrical 
conductivity as the top three influential variables. Further scrutinizing 
the importance rankings at 2450 MHz, GBM prioritized electrical con
ductivity, while RF and MLP favored temperature. GBM underscored the 
significance of total solids (TS), temperature, and pH, each exceeding 50 
% relative importance. RF, on the other hand, considered electrical 
conductivity, TS, ashes, and pH as pivotal factors. For MLP, temperature 
was the sole variable with a relative importance higher than 50 %, with 
electrical conductivity and pH securing positions of 24.1 % and 6.3 %, 
respectively, in the second and third slots. 

In summary, this investigation revealed that temperature and elec
trical conductivity consistently emerged as pivotal predictors, demon
strating their robust ranking in all models. Notably, the variable 
importance plots underscored the substantial impact of ashes, pH, and 
total solids in certain scenarios, highlighting the influence of dilution, 
minerals, and acidity on dielectric properties. Moreover, the study 
observed a significant influence of color parameters, indicative of 
compounds, such as lycopene in guava and carotenoids in orange. A 
refined analysis, as detailed in the variable importance plots, provided a 
nuanced understanding of the intricate multivariate factors influencing 
the prediction of dielectric properties. While MLP exhibited notable 
strengths in capturing specific relationships, the choice of the optimal 
method may hinge on the specific objectives and nuances inherent in the 
dataset. 

4. Conclusions 

All machine learning techniques, notably multilayer perceptron 
(MLP), gradient boosting machine (GBM) and random forest (RF) 
excelled in predicting the temperature-dependent dielectric properties 
of the fruit juices based on physicochemical measurements. While 
lacking explicit mathematical or physical relationships compared to 
multiple linear regression (MLR), these models offer advantages such as 
effective handling of mixed datasets and suitability for non-linear sys
tems. Key predictors included temperature and electrical conductivity, 
with composition and physicochemical attributes, such as total solids, 
acidity, pH, and color parameters also playing important roles. In 
summary, chemical analyses coupled with machine learning tools pro
vided a swift and objective method for correlating and predicting the 
dielectric properties of this group of eight fruit juices. This approach, 
with its rapid learning and high accuracy, holds promise for advancing 
food processing simulation, particularly in microwave heating systems. 
Future studies can: (1) broaden the range of beverages in the group, (2) 
add new predictors to the data sets, or (3) make practical use of the 
adjusted machine learning tool, by using the predicted dielectric prop
erties of a given product and temperature range, for the multi-physics 
simulation of a microwave applicator chamber. 
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