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1. Introduction

Let M be a smooth closed three dimensional manifold and X be a C'*# vector field on
M with 8 > 0 which is non-singular, i.e. X, # 0 for all p € M. We want to code a “large”
subset of M with some non-uniform hyperbolicity for the flow ¢ = {¢'};er generated
by X. This subset carries all p—invariant hyperbolic ergodic probability measures with
the following nonuniform hyperbolic property. Let x > 0.

X—HYPERBOLIC MEASURE: A @p—invariant probability measure p on M is x—hyperbolic if
p—a.e. point has one Lyapunov exponent > x and one Lyapunov exponent < —y. The
Lyapunov exponent along the flow, which always vanishes, is called trivial.

This defines a rather natural, large, and uncountable class of measures. For instance,
by the Ruelle inequality, every p—invariant ergodic probability measure with metric en-
tropy larger than y is y—hyperbolic. Also, every p—invariant probability measure defined
by a closed orbit of saddle type with nontrivial Lyapunov exponents larger than x in
absolute value is y—hyperbolic. In this paper, for each y > 0 we construct a symbolic
system which lifts all x—hyperbolic measures.

Main Theorem. Let X be a non-singular C1# vector field (B > 0) on a closed 3-manifold
M. Given x > 0, there exist a locally compact topological Markov flow (X,,0,) and a
map 7, : B — M such that 7, o ol = @' om,., for all t € R, and satisfying:

(1) The roof function r and the projection 7, are Holder continuous.
(2) 7.[S7] has full measure for every x—hyperbolic measure on M.
#,ie. Card({z € 7 : m.(2) = 2}) < o0, for all v € 7. [SF].

(3) m, is finite-to-one on X7,

A more precise version of the Main Theorem is stated in Section 9.1, see Theorem 9.1.
A topological Markov flow is the unit speed vertical flow on a suspension space whose
basis is a topological Markov shift and whose roof function is continuous, everywhere
positive and uniformly bounded. We can endow (%,,0,) with a natural metric, called
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the Bowen-Walters metric, that makes o, a continuous flow. It is with respect to this
metric that m,. is Hélder continuous. The set ¥7 is the regular set of (X,,0,), consisting
of all elements of ¥,. for which the symbolic coordinate has a symbol repeating infinitely
often in the future and a symbol repeating infinitely often in the past. See Section 1.2
for the definitions.

The Main Theorem provides a single symbolic extension that codes all x—hyperbolic
measures at the same time, and that is finite-to-one almost everywhere. This improves
on the result by Lima & Sarig [28], whose codings depend on the choice of a measure
(or a countable class of measures). We will mention later the importance of this novelty.

In applications, it is useful to work with irreducible Markov shifts since, among other
properties, they are topologically transitive and they carry at most one measure of max-
imal entropy (see Section 1.2.1). This is related to the notion of homoclinically related
measures and of homoclinic classes of measures, defined in Section 10. In this context,
we prove the following theorem.

Theorem 1.1. In the setting of the Main Theorem, let p be a hyperbolic ergodic mea-
sure. Then 3, contains an irreducible component Y., which lifts any x—hyperbolic ergodic
measure v homoclinically related to p.

This implies the following local uniqueness result for measures of maximal entropy.

Corollary 1.2. In the setting of the Main Theorem, let p be a hyperbolic ergodic measure.
Then there is at most one measure v which is homoclinically related to pu and mazimizes
the entropy, i.e. satisfies h(p,v) = sup{h(p, p) : p is homoclinically related to p}.

Results about uniqueness of the measure of maximal entropy for flows have been
obtained previously under various settings, see for instance [8,24,20,11,21,18,19,31].

The field of symbolic dynamics has been extremely successful in analyzing systems
displaying hyperbolic behavior. Its modern history includes (but is not restricted to) the
construction of Markov partitions in various uniformly and non-uniformly hyperbolic
settings:

Adler & Weiss for two dimensional hyperbolic toral automorphisms [1].

Sinai for Anosov diffeomorphisms [37].

Ratner for Anosov flows [34,33].

Bowen for Axiom A diffeomorphisms [6,4] and Axiom A flows without fixed points [7].
Katok for sets approximating hyperbolic measures of diffeomorphisms [23].
Hofbauer [22] and Buzzi [13,14] for piecewise maps on the interval and beyond.
Sarig for surface diffeomorphisms [36].

Lima & Matheus for two dimensional non-uniformly hyperbolic billiards [27].

Ben Ovadia for diffeomorphisms in any dimension [3].

O 0O O O O O O O O O

Lima & Sarig for three dimensional flows without fixed points [28].
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o Lima for one-dimensional maps [29].
o Araujo, Lima, Poletti for non-invertible maps with singularities in any dimension [2].

In the first four settings above, that dealt with uniformly hyperbolic systems, the coding
is surjective and one-to-one in a large (Baire generic) set. Katok was the first to treat non-
uniformly hyperbolic systems [23]. When applied to surface diffeomorphisms, it implies
the existence of horseshoes of large (but not necessarily full) topological entropy. Sarig
was the first to construct non-uniformly hyperbolic horseshoes of full topological entropy
[36]. His work improved Katok’s to a great extent, proving that for each y > 0 there is
a symbolic coding with good properties, among them the finiteness-to-one property in
the regular set ©# (see Section 1.2.1 for the definition of X#). It codes all x—hyperbolic
measures simultaneously, and it implies many dynamical consequences such as estimates
on the number of closed orbits [36], an at most countable set of ergodic measures of
maximal entropy [36], ergodic properties of equilibrium measures [35], and the almost
Borel structure of surface diffeomorphisms [10]. In recent years, more advances are being
obtained, such as the coding of homoclinic classes of measures by irreducible Markov
shifts and finiteness/uniqueness of measures of maximal entropy [17], and continuity
properties of Lyapunov exponents [16].

The work of Lima & Sarig was the first to construct, for three dimensional flows, horse-
shoes of full topological entropy [28]. It is not as strong as Sarig’s, since it only codes
one y—hyperbolic measure at a time (actually, by an easy adaptation in the proof, it
codes countably many such measures). It implies some dynamical consequences, such as
estimates on the number of closed orbits [28], the countability on the number of measures
of maximal entropy [28], and ergodic properties of equilibrium measures [26]. Unfortu-
nately, their techniques do not seem to extend to, say, the coding of all y-hyperbolic
measures as in the case of diffeomorphisms.

Our Main Theorem identifies a subset of points in M with non-uniform hyperbolicity
at least x possessing local product structure, and constructs a finite-to-one extension of
this set by a locally compact topological Markov flow. This set carries all y—hyperbolic
measures. As an application, we code homoclinic classes of measures by irreducible
Markov flows.

1.1. Method of proof

We build on the seminal work of Sarig [36] and its extension to flows by Lima & Sarig
[28]. Lima & Sarig study a flow by considering the Poincaré return map to a section.
This yields a surface map to which they apply a version of Sarig’s result. The Poincaré
map has singularities, which are controlled at the price of choosing the section in a way
that almost all orbits slowly approach the boundary of the section. Here is where their
construction becomes specific to a single measure. It is still unknown whether there is
a global Poincaré section such that this latter property holds for every x—hyperbolic
measure. We call the presence of boundary the boundary effect.



J. Buzzi et al. / Advances in Mathematics 479 (2025) 110410 5

Additionally to the work of Sarig [36] and Lima & Sarig [28], we are also inspired
by the remarkable work of Bowen [7]. Bowen’s idea to construct Markov partitions for
flows is to replace the Poincaré map by good returns (suitable holonomy maps), which
are smooth by construction: the artificial singularities of [28] have disappeared. In this
way, we proceed as follows:

(1) Construct two global Poincaré sections A, A such that A C A. We use A as the
reference section for our construction, and Aasa security section.

(2) Let f : A — A be the Poincaré return map of A (note: f is not the Poincaré
return map of K) If p is x—hyperbolic and v is the measure induced on A, then
v—almost every x € A has a Pesin chart ¥, : [-Q(z), Q(z)]? — A whose size satisfies
lim £ log Q(f"(x)) = 0. Note that the center of the chart is in A, while the image is
on the security section A. Local changes of coordinates by linear maps of norm Q!
allow to conjugate f to a uniformly hyperbolic map.

(3) Introduce e-double charts W2 P" which are versions of Pesin charts that control
separately the local stable and local unstable hyperbolicity at x (the parameters
p®/p* can be seen as choices of sizes of the local stable/unstable manifolds). Define
the transition between e-double charts so that the parameters p®, p* are almost
maximal, given the previous and next charts.

(4) Construct a countable collection 7 of e-double charts that are dense in the space
of all e-double charts. The notion of denseness is defined in terms of finitely many
parameters of the e—double charts. Using pseudo-orbits, shadowing and the graph
transform method, the collection &7 defines a Markov cover %. Unfortunately, &
defines a symbolic coding that is usually infinite-to-one. Fortunately, 2 is locally
finite.

(5) Z satisfies a Markov property: for every = € |J,.4 Z there is k > 0 such that
f*(z) satisfies a Markov property in the stable direction and £ > 0 such that f~*(z)
satisfies a Markov property in the unstable direction. The values of k, £ are uniformly
bounded.

(6) The local finiteness of 2 and the uniform bounds on k, £ allow to apply a refinement
method to obtain a countable Markov partition, which defines a topological Markov
flow (X,,0,) and a map 7, : X,, — M satisfying the Main Theorem.

In analogy with Bowen [7], in our case a good return of the center of a chart is a return
to A. The ideas of [7] are also used in steps (5) and (6).

We use the same method of [36] to obtain step (2). Steps (3) and (4) use ideas
of [36,28], but they require novel ideas. The main difficulty is the following: there is
no canonical way to parse a flow orbit into good returns, hence a single orbit might
be cut into different ways. We call this the parsing problem. It relates to the inverse
problem, whose goal is to prove that the parameters of the e-double charts coding an
orbit are defined “up to bounded error”. Firstly, since the flow transition times of good
returns might belong to a continuum (hence uncountable), our definition of a transition
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between e—double charts requires inequalities between the parameters p®, p*, see relations
(4.1) and (4.2). This contrasts with all previous recent literature, whose definitions of
transition require equalities. Secondly, we compare the parameters of an orbit directly
with the parameters of the e-double charts coding it. To do that, we introduce analogues
of the parameters p°, p* for points of M. Indeed, we introduce continuous and discrete
versions of such parameters, see Sections 3.3 and 3.5. The continuous version is intrinsic
and only depends on the flow, while the discrete depends on the parsing. The discrete
one can more easily be compared with the parameters of the e-double charts. These new
parameters, already used in [27] in a non-essential way, are essential to us.

The definition of transition between e—double charts introduces new difficulties. Since
equalities between the parameters no longer hold, a single orbit can be shadowed by
two different sequences of e-double charts, and the accumulated transition times of the
two sequences might differ. To investigate this difference, which we call shear, we first
show that parameters at hyperbolic times are defined “up to bounded error”; and then
prove that between two hyperbolic times the shear is uniformly bounded, regardless the
number of hits to A and A, see Section 6.3.

Another difficulty we encounter related to Step (4) above is the coarse graining, which
consists on selecting a countable collection &7 of e~double charts that are dense in the
space of all e-double charts and such that the pseudo-orbits they generate shadow all
relevant orbits. This also relates to the definition of transition between e—double charts,
that has to be loose enough to code all relevant orbits and tight enough to impose that
charts parameters are defined “up to bounded error”. To guarantee that the definition is
loose enough, the countable collection we consider is much larger than those constructed
in the recent literature. Yet, proving that this family is sufficient also requires an analysis
at hyperbolic times, where parameters are essentially uniquely defined. We can then
define parameters between successive hyperbolic times. See Section 5.

1.2. Preliminaries

1.2.1. Symbolic dynamics
Let 4 = (V, E) be an oriented graph, where V, E are the vertex and edge sets. We
denote edges by v — w, and assume that V is countable.

TOPOLOGICAL MARKOV SHIFT (TMS): It is a pair (X, o) where
Y := {Z-indexed paths on ¥} = {y ={vptnez € VZ v, = Upt1, VN € Z}

is the symbolic space and o : ¥ — X, [0(v)]n, = vpt1, is the left shift. We endow 3 with
the distance d(v, w) := exp[— inf{|n| € Z : v,, # wy}]. The regular set of ¥ is
s# . Jves dnweV st v, = v for i.nﬁni.tely many n > 0 '
vy, = w for infinitely many n < 0
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We only consider TMS that are locally compact, i.e. for all v € V the number of
ingoing edges u — v and outgoing edges v — w is finite.

Given (X,0) a TMS, let 7 : ¥ — (0,400) be a continuous function. For n > 0, let
rm=7r4+7r004 +700""! be nth Birkhoff sum of r, and extend this definition
for n < 0 in the unique way such that the cocycle identity holds: rp, 1y, = 1y + 1 0 0™,
VYm,n € Z.

ToprPoLOGICAL MARKOV FLOW (TMF): The TMF defined by (X, o) and the roof func-
tion r is the pair (., o) where X, := {(v,t) ;v € 5,0 <t <r(v)} and 0y : ¥, — X, is
the flow on X, given by of(v,t') = (¢"(v),t’ +t — rp(v)), where n is the unique integer
such that r,(v) < ¢ +t < rp+1(v). We endow X, with a natural metric d,.(-,-), called
the Bowen-Walters metric, such that o, is a continuous flow [5,28]. The regular set of
(S, 0,) is BF = {(uv,t) € %, 1 v € B#}.

In other words, o, is the unit speed vertical flow on ¥, with the identification
(v,7(v)) ~ (0(v),0). The roof functions we will consider will be Hoélder continuous.
In this case, there exist x, C' > 0 such that d,.(oL(z2),cl(2")) < Cd,.(z,2')" for all [t| <1
and z,z’ € 3, see [28, Lemma 5.8].

IRREDUCIBLE COMPONENT: If ¥ is a countable Markov shift defined by an oriented graph
¢ = (V,E), its irreducible components are the subshifts ¥’ C ¥ over maximal subsets
V' C V satisfying the following condition:

Yu,w € V', Juv € ¥ and n > 1 such that vy = v and v, = w.

An irreducible component X! of a suspended shift 3, is a set of elements (v,t) € 3,
with v in an irreducible component ¥/ of X.

1.2.2. Notations
For a,b,e > 0, we write a = e**b when e ¢ < ¢ <e®. We also write a Ab := min(a, b).
We write | | A, to represent the disjoint union of sets A,,.

The Frobenius norm of a 2 x 2 matrix is H[ZZ]Hwa = Va2 +R2+2+d2 Tt is
equivalent to the sup norm || - ||, since || - || < || - [lfrob < V2| - ||. The co-norm of an

invertible matrix A is denoted by m(A4) = ||A=Y||~!. We write v < v if limu/v = 1.

1.2.3. Metrics

If M is a smooth Riemannian manifold, we denote by dj; the distance induced by
the Riemannian metric. The Riemannian metric induces a Riemannian metric dg,s(-, )
on TM, called the Sasaki metric, see e.g. [12, §2]. For nearby small vectors, the Sasaki
metric is almost a product metric in the following sense. Given a geodesic v in M joining
y to z, let Py, : TyM — T, M be the parallel transport along v. If v € T, M, w € T,M
then dgas(v, w) < d(x,y) + ||[v — Pyw|| as dgas(v, w) — 0, see e.g. [12, Appendix A]. The
rate of convergence depends on the curvature tensor of the metric on M.
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Given an open set U C R™ and h: U — R™, let ||h|co := sup, <y ||h(x)]| denote the
C" norm of h. For 0 < 8 < 1, let Holg(h) := sup W where the supremum ranges
over distinct elements x,y € U. Note that Holy (h) is a Lipschitz constant of h, that we
will also denote by Lip(h). If h is differentiable, let ||h||c1 := ||h||co + ||dh||co denote its
C* norm, and ||h||g1+s = ||h||cr + Hblg(dh) its C*+# norm.

For any «, y close to some point z in a Riemannian manifold M, the parallel transport
along the shortest geodesic between x and y induces a linear map P, : T, M — T, M.
To any linear map A: T,M — T,M, one associates a map A= P,.0AoP,,. By
definition, A depends on z but different basepoints z define a map that differs from A
by pre and post composition with isometries. In particular, ||ﬁ|| does not depend on
the choice of z. With this notation, a map f : U ¢ M — M is C*F if it is C! and
3C' > 0 such that ||c§]?z — é};” < Cd(z,y)? for all nearby x,y € U. In this case, define

Holg(df) = sup % where the supremum ranges over distinct nearby elements
z,yeU.

1.8. Standing assumptions

Let M be a three dimensional closed smooth Riemannian manifold, and let X : M —
TM be a C'P vector field such that X (z) # 0, Vo € M, and let ¢ = ('),cr be the
flow generated by X. We will denote the value of the vector field X at x by either X,
or X(z). Given a set Y C M and an interval I C R, write o' (Y) := U,¢; ¢*(Y).

Since obtaining a coding for the flow generated by X is equivalent to obtaining a
coding for the flow generated by c¢X for some ¢ > 0, we assume from now on that
[VX]|lo <1 (just change X to cX for ¢ > 0 small enough).! This assumption avoids the
introduction of some multiplicative constants. For instance, since an application of the
Gronwall inequality implies that [|det|| < ellVXIoltl for all t € R (see e.g. [25]), we will
simply write that ||d¢?|| < el!l, V& € R. Another consequence is that every Lyapunov
exponent of ¢ has absolute value at most 1, hence we can take x € (0,1) in the definition
of x-hyperbolicity.

2. Poincaré sections

In this section, we:

(1) Construct two sections A,K with good geometrical properties such that A C /A\,
d(A,@K) > 0, and the orbit under ¢ of every point of M hits A after some time
p < 1. The section A induces a Poincaré return map f and a return time . We call
A the reference section and A the security section.

1 The notation VX represents the covariant differential, i.e. for each © € M we have a linear map VX(x):
ToM — T, M defined by [VX(z)](Y) = Vy X.
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(2) Introduce the induced linear Poincaré flow ®, which is a flow that describes the local
behavior of ¢ in the complementary direction to X.

(3) Introduce the holonomy maps g;, g, for each x € A, which are local and continuous
versions of Poincaré return maps. It is for these maps that we will construct suitable
systems of coordinates in Section 3.

2.1. Transverse discs and flow boxes

Let p > 0.

p—TRANSVERSE DISC: An open disc D C M is p—transverse if:

o D is compactly contained in a C'*° disc of M.
o diam(D) < 4p.
o For every x € D, /(X (z), T, D*) < p.

In other words, a p-transverse disc is a small disc that is almost orthogonal to X. It
is easy to build p—transverse discs. For instance, we know by the tubular neighborhood
theorem that ¢ can be conjugated in local charts to the flow (z,t9) € RZ xR — (x,t9 +
t). If p' is small enough, then the image of B(0,p’) x {to} under the local chart is a
p—transverse disc.

FLOW BOX: Every p-transverse disc D defines a flow box @l=**1D.

The assumption that X does not vanish implies that for all p > 0 small enough, the
map I'p: (y,t) € Dx[—4p,4p] — ¢! (y) is a diffeomorphism onto the flow box @l=4741D.
We denote its inverse by = € pl=*4ID s (qp(x),tp(z)), where qp : ¢l=**4ID — D
and tp : =% D — [—4p, 4p)].

Lemma 2.1. There is a pg = po(M, X) > 0 such that for every po—transverse discs D, D’:

(1) The maps qp,tp are C1F5.

(2) The map qp has a Lipchitz constant smaller than 2.

(3) If D' intersects the flow box pl=*P04Pl D then the restriction to D' of the map tp
has a Lipschitz constant smaller than 1.

Proof. By the implicit function theorem, for any p—transverse disc D the chart
I'p: (x,t) € D x [~4p,4p] — @'(x) is C'T# hence the inverse maps qp,tp are also
C*P. This proves part (1).

Let us consider the foliation of R® whose leaves are the verticals {(z,y)} x R, and
let A be a section whose tangent spaces T, A define angles with the horizontal planes
smaller than v > 0. Then the holonomy along the vertical lines define a projection to A
which is (1/ cosy)-Lipschitz.
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Given e > 0 arbitrarily small, there exists a covering of M by finitely many charts
©: (—a,a)® — M which are (1 + e)-biLipschitz and such that the lifted vector field
X = 0*X is tangent to the vertical lines. Choosing e and then py > 0 small enough,
for any po-transverse disc D, the set ¢[_4, 4,(D) is contained in the image of a chart
©; moreover ©71(A) is a disc whose tangent spaces define angles with the horizontal
planes smaller than v > 0. The projection qp to D is conjugated by © to the projection
by holonomy along vertical lines to the set ©1(A). Consequently, the map qp is (1 +
e)?/ cos y-Lipschitz, which can be chosen arbitrarily close to 1 if e, v, and hence pg, are
small enough. This proves part (2).

Now consider two po—transverse discs D, D’ such that D’ intersects pl~4°0:40l D Since
po is chosen small, both D, D’ are contained in the image of a same chart ©. As before,
let X := ©*X be the vector field X lifted in the chart. The discs ©1(D’),01(D)
are graphs {(z,y, p;(z,y))} over the horizontal hyperplane of C'*# maps ¢; and s
respectively. For z = O(z,y, ¢1(z,y)) € D’ which intersects the flow box ¢l=4ro-4r0l D
the projection time to D can be computed in the chart as:

592(w!y)
_ 1
to(z) = / X@w0ll
w1(z,y)

The C'norm of ”A” is bounded, independently from the charts ©. Taking po small, the

derivatives Dy; and the differences @ (x, y) — 1 (z, y) are close to 0. Hence the derivative
of the map z — tp(z) for z € D’ is close to 0, proving part (3). O

2.2. Proper sections and Poincaré return maps

We begin with some definitions.

PROPER SECTION: A proper section of size p is a finite union A = (J;_, D; of p-transverse
discs Dy, ..., D, such that:

(1) COVER: M = U;‘:l ¢[07p)Di_
(2) PARTIAL ORDER: For all i # j, at least one of the sets D; N4 D; or D; N4 D;
is empty; in particular D; N D; = (.

Define the return time function r5 : A — (0, p) by ra(z) := inf{t > 0: ¢'(x) € A}.

POINCARE RETURN MAP: The Poincaré return map of a proper section A is the map
fa: A — A defined by fa(z) := ™) (z).

In the following, we fix p < min{0.25 po} small and consider two proper sections A, A
of size p/2 such that A C A and dar (A, 8A) > 0. We let d = d; be the metric on A

defined by the induced Riemannian metric on A ForzeAandr > 0, we write:
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o B(z,r) C A for the ball in the distance d with center z and radius T
o Byg[r] C T,A for the ball with center 0 and radius r;
o R[r] :=[-r,r]?> CR2%

Since the associated flow boxes are C'*# | there exists L > 0 such that for any transverse
disc D; defining the section A, the maps qp,, tp, satisfy:

Holg(dqp,) < L and Holg(dtp,) < L.
2.3. Ezponential maps

Given x € K, let inj(z) denote the injectivity radius of A at x, and let exp, be the
exponential map of A at x, wherever it can be defined. Below we list the properties of
exp, that we will use.

REGULARITY OF exp,: There is v € (0,p) such that for every z € A the following
properties hold on the ball B, := B(x,2t) C A:

(Expl) If y € B, then inj(y) > 2t, the map exp;1 : B, — TyK is a diffeomorphism onto
its image, and for all v € T,A,w e TyK with [Jv]|, [Jw|| < 2t it holds

3(d(z,y) +llv = Pygwl]) < dsas(v,w) < 2(d(z,y) + v — Pyowl),

where P, , is the parallel transport along the geodesic joining y to x.

(Exp2) If y1,y2 € B, then d(exp, v1,exp,,v2) < 2dsas(vi,v2) for [Jv]], [lvzf < 2,
and dsas(expgllzl,expszle) < 2[d(y1,y2) + d(z1, 22)] for z1,29 € B, whenever
the expression makes sense. In particular, ||d(exp,).|| < 2 for ||v|| < 2t and
[d(exp; )|l < 2 for y € B,

Conditions (Expl)—(Exp2) say that the exponential maps and their inverses are well-
defined and have Lipschitz constants bounded by 2 in balls of radius 2t. The existence
of ¢ follows from compactness, since dps (A, 8K) > 0 and d(exp,)o is the identity map.

The next two assumptions describe the regularity of dexp,. For z, 2’ € K, let &L 5 =
{4: TJE/AX — TZ/JAX : A is linear} and %, := %, ,. In particular, P, , considered in (Expl)
isin %, .. Given y € B,,z € By and A € %, ., let Ac Lo A= P,y 0AoP,,.
The norm ||A| does not depend on the choice of x,2’. If A; € .%,, ., then 1A — Ayl
does depend on the choice of z,z’, but if we change the basepoints x, 2’ to w,w’ then
the respective differences differ by precompositions and postocompositions with norm of
the order of the areas of the geodesic triangles formed by z, w, y; and by 2, w’, z;, which
will be negligibl/e\‘go/ our estimates. For x € A, define the map 7 =7, : B, X By = %,

by 7(y, 2) = d(expy ')., where we use the identification Tv(Ty/A\) = Ty/A\ for all v € TyK.

REGULARITY OF dexp,: There is 8 > 1 such that for all z € A the following holds:
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—_~—

(Exp3) If y1,y2 € B, then Hol(expyl)v1 —d(expr)WH < Rdgas(v1,v2), for all [jv1]], ||v2]] <
2v, and ||7(y1, 21) — 7(y2, 22)|| < R[d(y1,y2) + d(z1, z2)] for all 21,20 € B,.

(Exp4) If y1,y2 € B, then the map 7(y1,-) — 7(y2,-) : By — %, has Lipschitz constant
< Rd(y1,y2)-

Condition (Exp3) controls the Lipschitz constants of the derivatives of exp,, and
(Exp4) controls the Lipschitz constants of their second derivatives. The existence of £ is
guaranteed whenever the curvature tensor of A s uniformly bounded, and this happens
because A is the restriction to a compact subset of a finite union of p—transverse (open)
discs.

2.4. Induced linear Poincaré flows

Classically, the linear Poincaré flow is the R—cocycle induced by dy in the bundle
orthogonal to X. In this paper we employ a different definition: we fix a 1-form 6 and
consider parallel projections to X onto the bundle Ker(6). We begin choosing a suitable
1-form.

Lemma 2.2. IfK is a proper section of size p/2, there exists a 1-form 6 on M such that:

(1) 9(X(x)) =1 and £(X (x),Ker(0,)1) < p, Vo € M.

(2) Ker(0,) =T,A, Vz € A.

Proof. Take n(v) = f"’;iﬁlé for v € T, M. Clearly n is a 1-form on M satisfying (1)
above. Let U be a small neighborhood of A. By the tubular neighborhood theorem,
there exists a 1-form ¢ on U such that {(X(z)) =1 and £(X(z), Ker(gx) ) < p for all
x €U, and Ker((,) =Ty A for all z € A. Let V be a neighborhood of A with A € V C U,
and take a bump function h : M — [0, 1] such that h [y= 0 and h [\ y= 1. The 1-form
0 := hn + (1 — h)( satisfies the following:

o (X (x)) =1, Vx € M: clear, since n(X (z)) = ((X(x)) = 1.

o /(X (z),Ker(6,)r) < p, Vo € M: to see this, write 1,(-) = (-,v,) and ((+) =
(-, w,), where v, = ﬁ and Z(X(z),w;) < p. Since Ker(,)* is generated
by the linear combination h(x)v, + (1 — h(x))w,, we have /(X (z),Ker(d,)') <
£(X(2), w2) < p. .

o Ker(0,) =T, A, Vz € A: since h(z) = 0, we have Ker(f,) = Ker({,) = T, A.

The proof is complete. [

From now on, we fix a 1-form 6 satisfying Lemma 2.2. Introduce the two dimensional
bundle



J. Buzzi et al. / Advances in Mathematics 479 (2025) 110410 13
N = |_| Ker(6,,).
xeM

For each x € M, let p, : T.M — N, be the projection to N, parallel to X (x). By
Lemma 2.2(1), for all z € M we have:

— 1 1
Hp“”” ~ cos £(X(z),Ker(6,)1) < cos p <l+p.

INDUCED LINEAR POINCARE FLOW: The linear Poincaré flow of ¢ induced by 0 is the
flow ® = {®'},cr : N = N defined by ®*(v) = pyi(4)[del (v)] for v € N,.

When the context is clear, we will omit the subscripts z and ¢! (z). Clearly @ is Holder
continmons, and [ B4 < 1 [[dpt || < (1-+ p)elt! < er+1, vt € R. In particular:

18] = ™4, W|¢| < 2p. (2.1)
Lemma 2.3. The following hold.

(1) ® is a flow: ' =t o &, VL, € R.
(2) If D C A is a transverse disc, then for all x € D it holds d(qp). = Pz-

Proof. (1) If v € N, and t,t' € R, then there is v € R such that

O (B (1)) = B (P () [dipl, (v)]) = O (dipl (v) + ¥ X (¢ (7))
= P e () [0 ) (A (0) + VX (91 (2)))] = P v e (o [dipl T (0) + ¥ X (0" T ()]
= Py ldigh, T (v)] = @ T (v),

(2) Fixx € D C A. Tt is enough to show that d(qp)z[X(x)] = 0 and d(qp)z[v] = v for
all v € N,. We have d(qp).[X(z)] = &|,_ lap(¢'(x))] = 0 because qp(¢'(z)) =  for
small t. Now, since N, = TI/A\ and qp [3 is the identity, d(qp)[v] = v forallv € N,. O

2.5. Holonomy maps

We have fixed A, 1/{, two proper sections of size p/2. From now on, write f := fx. The
maps f,ra admit discontinuities, hence we introduce a related family of local diffeomor-
phisms. Recall that v > 0 is a fixed small parameter, and that B, := B(x,2t). Write
A= U?:l D; as the disjoint union of p-transverse discs D;, and let qp, as before. By
Lemma 2.1, Lip(qp,) < 2.

Assume that z, o' (z) € A for some [t| < p, with € D; and ¢'(z) € D;. In this case,
the restrictions qp; [, and qp, | Bt are diffeomorphisms onto their images, and one
is the inverse of the other when the compositions makes sense. When this happens, we
call these restrictions holonomy maps.
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Fig. 1. The holonomy map g : it may differ from f and fa-

Lemma 2.4. Under the above conditions, the holonomy map qp, B, s a 2-bi-Lipschitz
C'™P diffeomorphism onto its image, and its derivative at x equals ®* [x. .

@

Proof. Write g = qp, [p,. The first statement follows from Lemma 2.1. Now, since
g = qp, o ¢', Lemma 2.3(2) implies dg, = d(qp,)et(x) © del, [, A= Pot(a) © del Iy, =
ot |y, O

In the sequel we will investigate some particular holonomy maps, defined as follows.
Let 0 < t,t' < p such that f(z) = ¢'(z) € D; and f~(z) = ¢~ (z) € Dy.

HoroNomy MAPS: The forward holonomy map at x is gf = qp; |B,- Similarly, the
backward holonomy map at = is g, :=qp, |B,-

Note that g} differs from f and from the Poincaré return to /A\, see Fig. 1. Also,

3. The non-uniformly hyperbolic locus

Up to now, we have fixed ¢, x, p, A, A and 6. In this section, we:

(1) Define the set NUH of points that exhibit a hyperbolicity of strength at least x. We
fix £ > 0 small enough, and associate to each x € NUH a number Q(z) € (0,1) that
approaches zero as the quality of the hyperbolicity at x deteriorates.

(2) Introduce numbers g(x) € [0,1), that measure how fast Q(y!(z)) decreases to zero
as [t| — oo. We also associate analogous number ¢*(z) and ¢*(x) for future and past
orbits.

(3) Define the set NUH? of points z € NUH whose hyperbolicity satisfies a recurrence
property: there is ¢(x) > 0 such that q(¢'(z)) > c(z) for some values of ¢ arbitrarily
close to +£oo. This set carries all y—hyperbolic measures.

(4) Define Pesin charts ¥, for each 2 € A N NUH. We then prove that, in Pesin charts,
the holonomy maps g are close to hyperbolic linear maps.
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3.1. The non-uniformly hyperbolic locus NUH

NON-UNIFORMLY HYPERBOLIC LOCUS NUH = NUH(yp, x, p, 6): It is the invariant set of
points z € M for which there are unitary vectors n;,nly with the following properties:

(NUH1) s—DIRECTION: lgi)n_ﬁ&f +log||®7'ng | > 0, limsup § log || ®'ng|| < —x, and
t—-+o0

oo 1/2
s(z) == 2e% / X dins |2 dt < 400.

0

(NUH2) u—DIRECTION: ltim inf 1 log [|®'n%|| > 0, limsup 1 log @~ *n%|| < —x, and
—+oo t—+o0o

+o0o 1/2
u(z) = 2e* / XD k|| 2dt < +o00.
0
It is clear that nj,n? are unique up to a choice of signs. We choose the sign so that
their angle is less than or equal to /2, and make the following definition.
ANGLE: a(z) := Z(ns,n¥).

Let us remind that x € (0,1), see Section 1.3. From the estimate before (2.1), we have

+o00 +o0

_ _ —4p —4p
/62xt||<1>tnfg|\2dt2 /62xt€ =2t gy — —2(517)() > 5,
0 0

therefore for each € NUH we have s(z), u(x) € [v/2,4+00) and a(z) # 0.

Conditions (NUH1)—(NUH2) are weaker than Lyapunov regularity, hence NUH con-
tains all Lyapunov regular points with exponents greater than x in absolute value.
Moreover, a periodic point z is in NUH iff all of its exponents are greater than y in
absolute value. But NUH might contain points with Lyapunov exponents equal to %y,
and even points which are not Lyapunov regular, where the contraction rates oscillate
infinitely often.

Proposition 3.1. If u is a x—hyperbolic measure, then u[NUH] = 1.

Proof. Fix a x—hyperbolic measure u. By the Oseledets theorem, there is a set X C M
5,es e T, M satisfying:

T T

with u[X] = 1 such that for all z € X there are unitary vectors e

: 1 t, s _ : 1 t
(1) dim Glog|ldper|| < —x and lim 3log|ldpfez|l > x.

(2) tiiinoo 2 log | sin (€0 () €opt ()| = tiiinoo 2 log | sin Z( Xyt (), efp/f(;)ﬂ =0.
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If 2 € X then /" ¢ span(X,), hence there are scalars v*/%(x), §%/%(z) such that

ny =v°(x)es + 6°(x) X, and ny =% (x)ey + 0“(2) X, (3.1)

x

are unitary vectors in N,. If X(x) L N, then v¥/%(z) = iﬁ Since by con-
struction we have Z(N,, X(z)Y) < p (see Lemma 2.2), we conclude that */%(z) =

e:t4p

A~ —

and so condition (2) translates to

sin L(Xz,e';/“)
: 1 s( .t — 1 1 u(, t —
Jim g log[y*(¢(x))[ = lim 5 log|y*(¢'(2))] = 0.
We claim that X C NUH, and we prove this showing that
. 1 t. s _ : 1 -t u _
Jim g log [|9fng || < —x and  lim 3 log [[®7 ng| < —x.

We show the first estimate (the second is analogous). For that, we claim that ||®'ns|| =

%Hdgp’feiﬂ for all z € X. By (3.1),

dp'ng, = do'[v* (z)es, + 0°(2) X ] = v*(2) |dp'es [l e (o) + 0% (2) Xt (a)
hence
(I)tnasv = pgot(m) [’ys(l‘)Hd(pteiHefpf,(w) + 5S(x)X¢‘(w)] = 75($)||d<pt€;||p¢t(m) [efof(a:)]

s ( ( 53 t E} s
= 7 (@) lde"ex 9,1 o) | i) — S Kot )] = oty et Iy

Taking norms, we get that ||®ns|| = %Hdgptei |. Hence
: 1 tos|| — _ i 1 s( .t : 1 t s
Jim glog |90z || = — lim flog [y (¢"(x))[ + lim 4 log|ldees|
— b L tos|| «
= lim Glogllde’er]| < —x. O

3.2. Oseledets-Pesin reduction
Let e; = (1,0),e2 = (0,1) be the canonical basis of R?2. We define a change of
coordinates that diagonalizes the induced linear Poincaré flow.

LINEAR MAP C(z): For x € NUH, let C(z) : R> — N, be the linear map defined by

C(x):elH&,C(x):eg»—)n—z-

s(z) u(z)

Lemma 3.2. The following holds for all x € NUH.
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(1) 1C@)]| < 1C@)llpwab < 1 and [C(x) ™ [prop = L2

(2) C(pt(x))"t o ®t o C(x) is a diagonal matriz with diagonal entries A;(z), Bi(z) sat-
isfying:

e < |A(x)| < e™Xt and X' < |By(x)| < ', VO < t < 2p.
(3) For all |t| < 2p:

s(¢'(2)) _ x10p W@'(®) _ s10, [sina(e'(2))]

+8p
s(z) T u(x) " |sina(z)] '

=€

In particular,

IO @)~ Hlerob _ +18p
1C(@) = lgron

The proof is in Appendix A. Part (2) is known as Oseledets-Pesin reduction, and
represents the diagonalization of ®.

3.3. Quantification of hyperbolicity: the parameters Q(x), q(x), q%/*(x)

We now introduce another small parameter ¢ € (0,t) such that ¢ < p < 1 (each
symbol < is defined by means of a finite number of inequalities that need to be satisfied
throughout the paper). Instead of working with ||C(2)™||gob, it is more convenient to
introduce:

THE PARAMETER Q(z): For 2 € NUH, let Q(z) 1= &3/8(|C/(2) || p/?.

The choice of the powers 3/8 and 12/ is not canonical but just an artifact of the
proof, and any choice of powers larger than these values also makes the proof work. The
hyperbolicity degenerates as @) goes to 0. Lemma 3.2 immediately implies that

Qe ) — 255 vz e NUH,VO <t < 2p, (3.2)

and the following result.

Proposition 3.3. An invariant set K C NUH is uniformly hyperbolic if and only if
inf Q(z) > 0.
reK

It will be important to identify the orbits in NUH whose hyperbolicity satisfies some
recurrence (to ensure e.g. the existence of stable and unstable manifolds) and ask how
fast Q(p'(z)) can go to zero when k — +oo. For that reason, we introduce:
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THE PARAMETERS ¢(2),¢*(z), ¢"(x): For € NUH, define:

q(x) = einf{e"1Q(o!(2)) : t € R}
¢*(@) = eint{e Qg (@) : ¢ > 0}
¢“(x) == einf{e“MQ(p! (2)) : t < 0}.

Clearly 0 < ¢(x),¢°(z),q"(x) < eQ(x), hence these parameters are much smaller

than Q(z). Also, ¢°(z) A q¢“(x) = q(z). The families {¢°(¢'(z)) }scr and {q“(¢! (7)) }ier
represent the local quantifications of hyperbolicity along the orbit {¢!(x)};er. We collect
the following simple lemma, for later use.

Lemma 3.4. For all x € NUH and t € R, it holds q(p'(z)) = e**Itlg(x).
Proof. Using that |t'| = |t/ + t| £ |t|, we have

g(¢'(2)) = e e inf e TQ(P T (@) ' € R} = eVlg(a).
The proof is complete. [J

3.4. The recurrently non-uniformly hyperbolic locus NUH?

RECURRENTLY NON-UNIFORMLY HYPERBOLIC Locus NUH# = NUH#(@,X,p,G,s): It
is the invariant set of points € NUH such that:

(NUH3) ¢(z) > 0.
(NUH4) limsup q(¢'(x)) > 0 and limsup g(¢*(z)) > 0.

t—+oo t——o0

Note that if (NUH3) holds then g(¢*()), ¢°(¢'(x)), ¢“(¢'(x)) are positive for all t € R.
Condition (NUH4) requires that these values do not degenerate to zero in the limit. The
set NUH? carries all x—hyperbolic measures, as we now prove.

Proposition 3.5. If pu is a @—invariant probability measure with u[NUH] = 1, then
p[NUH#] = 1. In particular, if i is x—hyperbolic then uy[NUH#] = 1.

Proof. Note that

lim 7logQ(¢"(x)) =0 = lim 3logQ(¢'(x)) =0 = q(x) > 0.

n—+oo

To establish the first limit, we use the following basic fact of ergodic theory.

Fact: Let (X, u, T') be an invertible probability-preserving system, and u : X — (0, +00)
measurable. If there is C' > 0 such that C~! < uu((j;;) < C for p—a.e. z € X, then
lim 1logu(T"z) =0 for pae. z € X.

n—too
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Proof of the fact. By the Poincaré recurrence theorem, limji[nfu(T"x) < +o00 a.e., hence
n—mIT oo
lim ji[nf % logu(T™z) = 0 a.e. Now, applying the Birkhoff ergodic theorem to the bounded
n— oo
function U :=loguoT —logu, lim Llogu(T™z) exists a.e. Therefore
n—doo ™

. 1 n I . 1 n _
ngriloo Slogu(T"z) = lﬁil{}filog“(T z)=0

for pae. x e X. O

Now we prove the proposition. Assume that 4[NUH] = 1. By (3.2), % = %

for all x € NUH. Applying the Fact to the transformation T" = ¢” and the function
@, we conclude that (NUH3) holds p—a.e. Finally, by the Poincaré recurrence theorem,
(NUH4) also holds p—a.e. O

3.5. The Z—indexed versions of ¢ (x): the parameters p>/*(x)

We now define discrete time approximate versions of ¢*(z), ¢*(x) that satisfy recursive
explicit formulas, which we call Z—indexed versions of ¢*(x), q*(x). Recall that rj is the
Poincaré return time of the proper section A of size p/2. In particular, 0 < inf(ry) <

sup(ra) < p/2.

Z—INDEXED VERSIONS OF ¢°, ¢*: Let € NUH. For each sequence T = {t, },cz of real
numbers with %inf(m) <tpt1 — tn, < 2sup(ry), define:

p°(z,T,n) = einf{estn =) Qo™ (2)) : m > n}
pU(z, T,n) = einf{e=ttm)Q(pt (z)) : m < n}.

Clearly, p*/"(z,T,n) > ¢*/*(p' (x)). As the choice of T will be always clear in the
context, we will simply write p*/*(p'» (x)) for p*/*(x, T,n). As a matter of fact, although
the values p*/*(p'" (z)) do depend on the choice of T, they are not very sensitive to this
choice.

Proposition 3.6. The following holds for all x € NUH? and T = {tn}tnez with
$inf(ra) < tngr — tn < 2sup(ra).

(1) ROBUSTNESS: Let $ :=¢ep + %. Foralln € Z and t € [ty, tn41], it holds:

Pl @) _ s
¢lilgt@)

(2) GREEDY ALGORITHM: For alln € Z it holds:

P(¢" (@) = min { et =0p (gl (@), £Q(' () |
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P (" (2)) = min { et~ (o= (2),£Q(" (1)) |

In particular:

Y

Q¢! (x)) > p(p'n(x)) = e nTtm)p(phm (2)), Vn > m,
Qe (2)) 2 p(¢™ (2)) 2 e Um=tp* (ot (), Ym 2 n.

(3) MAXIMALITY: p*(p'n(x)) = eQ(¢'" (x)) for infinitely many n > 0, and p* (o' (z)) =
eQ(p' (x)) for infinitely many n < 0.

Proof. We prove the statements for p® (the proofs for p* are analogous).

(1) Fix 2 € NUH*, n € Z, t € [tn, t11]. By Lemma 3.4, we have 2 tn(%))) =g Egijggg :

% = is”% hence we need to estimate %. For m > n, let vy, :=

= (tm—tn )Q(gotm( )) and §,, = inf{et=)Q(p!(x)) : ty, < t < tpmy1}. By definition,

we have p®(p'» @: = einf{y, : m > n} and ¢*(p'(z)) = inf{d,, : m > n}. Since
25

% eET5" for ty, <t < tmg (see (3.2)), we get:

Y = Oy = €=t inf{efEtm) Qo (1)) t by <t < by}

250p 250p

> £ tn i)t () = ¢y

po(e™" (z)) 25le PP (x) _ +9
Hence 1 < o (@) <e # and so o) ¢

(2) We have

P (@) = einf {0 Qe (@) s m = )
= min {z—:mf{ (tm=tn )Q( tm(x)) :m >n+ 1} ,eQ (' (x))}
= min {eg(t”“_t”)ps ((pt”“ (2)), EQ(SOtn (x))} )

which proves the recursive relation. Clearly p* < Q. For, the other side of the inequality,
note that if n > m then:

P (™ (2)) = einf{es Qg (x)) : £ > n}
= et inf ettt Q" (a
> e~ mtm)g inf{e=( Tt Q" (x

(3) The proof is based on [36, Prop. 8.3]. Since 2z € NUH#, lim supt_>Oo 7 (p'(z)) > 0.
By part (1), limsup,, ., p*(¢'"(x)) > 0 hence 35y > 0 such that p*(¢'~(x)) > do for
infinitely many n > 0. By contradiction, assume 3ng > 0 such that p*(¢'"(x)) <
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eQ(p'n(z)) for all n > ng. By the greedy algorithm in part (2), p*(¢'(z)) =
eftnii=tn)ps(ptnti(z)) for all n > mny. This implies that p°(pimo(z)) =
e=(tnote=tng) ps (ptno+e (1)) for all £ > 0, hence p*(pino (z)) > e=(tro+e=tno) 5y for infinitely
many ¢ > 0, which is a contradiction since efltno+e=tng) 5 o0 as £ — co. [

3.6. Pesin charts U,

Recall that R[] := [, t]> C R2. We define Pesin charts for z € A N NUH.
PESIN CHART AT z: It is the map VU, : R[t] — A defined by ¥, := exp, o C(z).

The center z of the Pesin chart ¥, always belongs to the reference section A, while
its image is contained in the security section A. Tn particular, when x is close to the
boundary of A, the image of ¥, is not contained in A. This definition is different from
[28], and it is the first step to bypass the boundary effect mentioned in Section 1.1.

For z € /AX, let ¢y : TIIAX — R? be an isometry. If z € A,y € A with d(z,y) < 2t, we
consider as in section 1.2.3 an isometry P, : T,M — T, M. If A: R2 — T,A is a linear
map, we define A : R2 — R2 by A := 4, o P, ;o A. The map A depends on z but || A
does not.

Lemma 3.7. For all x € ANNUH, the Pesin chart V,, is a diffeomorphism onto its image
and:

(1) U, is 2-Lipschitz and W is 2||C(x) || -Lipschitz.
(2) 1d(Ty)y, — d(Py)w, || < Rllur — val| for all vi,vs € RJx].

Proof. Since C(z) is a contraction, C(x)R[t] C B,[2t] and so VU, is well-defined with
inverse C(z)~! o exp, 1. It is a diffeomorphism because C(x) and exp, are.

(1) C(z) is a contraction and exp,, is 2-bi-Lipschitz in B, [2t]. Therefore ¥, is 2-Lipschitz
and W1 is 2||C(z)~!||-Lipschitz.

(2) Since C(z)v; € By[2t], condition (Exp3) gives that

—_~

Jd(W2) 0, — Aoy | = 1d(exD, )y © C() — d(exD,) oy, © Ca)]
< K| Cx)or — Cla)val < Ko — va.

The proof is complete. [
3.7. Holonomy maps g in Pesin charts

The parameter Q(z) defines the size of the domain where we can control g in Pesin
charts: in these coordinates, gi are small perturbations of hyperbolic linear maps.
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Theorem 3.8. The following holds for all € > 0 small enough. For all x € ANNUH the
map fi = \Il;(lm) o gt oW, is well-defined on R[10Q(z)] and satisfies:

(1) d(f;)o = C(f(2))" 0 "2 0 C(x) and e~ <m(d(f;)o) < [ld(f7)o]l < e*.
(2) f.f = {jg g} + H where:

a) e < |A| < e X" @) gnd X2 (@) < |B| < e*, ¢f. Lemma 3.2(2).
b) H(0) =0 and dHy = 0.
) I g <

—_

A similar statement holds for f, := V¥ 1o g;(z) oWsiy.
The proof is in Appendix A.
3.8. The overlap condition

We now control the coordinate change from ¥, to ¥, when z, y are “sufficiently close”.
This can only be made when both z,y and C(x),C(y) are very close. In the sequel we
will make extensive use of Pesin charts with different domains.

PESIN CHART W!: It is the restriction of ¥, to R[n], where 0 < n < Q(x).
Recall that d is the distance on A associated to the induced Riemannian metric.

€-OVERLAP: We say that two Pesin charts W}, W72 c—overlap if % = e*® and d(z1, 2)+

z1)
—

|C(z1) — C(x2)|| < (mim2)?. Ingparticular, x1,x2 belong to the same local connected
component of A. We write Ul ~ W}2.

Lemma 3.9. The following holds for ¢ >0 small. If U1 ~ Uiz then
U, (R[10Q(z;)]) C By, N By,.
In particular, it makes sense to consider |C(z1) — C(z2)]|.

Proof. Let i = 1. By Lemma 3.7(1), ¥, (R[10Q(z1)]) C B(z1,40Q(x1)). This latter ball
is contained in By, since 40Q(z;) < 40e%/# < 2t when € > 0 is small. Also:

U, (R[10Q(z1)]) C B(1,40Q(x1)) C B(x2,40Q(z1) + d(x1, x2)).

Since 40Q(x1) + d(z1,z2) < 40e3/8 + £24/8 < 2¢ for small € > 0, U, (R[10Q(x1)]) C
B,,. O

The next result guarantees that the e—overlap of Pesin charts allows to change coor-
dinates while maintaining a good control on the dynamics and geometry of the charts.
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Proposition 3.10. The following holds for € > 0 small. If U1 ~ Uz then:

(1) CONTROL OF s,u: s@) _ px(mm)® gpg Wz _ oE(mn2)?
T s(w2) , @)
(2) CONTROL OF a: % = etmm)”,
(3) OVERLAP: Wy, (Rle ;) C Wy, (R[n;]) fori,j=1,2.
(4) CHANGE OF COORDINATES: For i,j = 1,2, the map \I';il oW, is well-defined in

R[t], and ||V o U, —1Id||c2 < e(min2)? where the norm is taken in R[t].
The proof is in Appendix A.

8.9. The maps ff,, fu,

@,y
Let x,y € ANNUH such that \I/?(m) ~ \I!Z/. In this section, we change ¥¢(,) by ¥, in
the definition of f;7 and obtain a result similar to Theorem 3.8.
THE MAPS f, AND fr: If W) & WY, we define the map f;, := W1 o gF oW, If
Ul ~ WYy, we define fr, =W tog oW,

Since any meaningful estimate of f, in the C1*#/2 norm cannot be better than that
of Theorem 3.8, and to keep estimates of size e, we consider the C'*#/3 norm of ffy

Theorem 3.8 The following holds for all ¢ > 0 small enough. If x,y € A N NUH
and U &~ U then [, is well-defined on R[10Q(z)] and can be written as

f(z) Yy’
4= [61 g} + H where:

(1) e < |A| < e X @) exma(@) < |B| < %, cf. Lemma 3.2(2).
(2) Fori=1,2, it holds |[H(0)|| < en, ||dHo|l < en®/?, Hélg/3(dH) < e.

If v ~ \I/?ll(y) then a similar statement holds for f, .

Proof. We write ff, = (¥, ' o Wy,)o ff = go f} and see it as a small perturbation
of f.F. By Theorem 3.8,

FHO) =0, ld(f)lleo < 2¢*, [[d(f)o = d(f)ull < ello = w]P/2, Yo, w € RI10Q(x)],
where the CY norm is taken in R[10Q(z)], and by Proposition 3.10(4) we have
lg = 1d|| < e(n)?, lld(g = 1d) o < e(nn')?, g — dgull < e(nn')?|lv —w][*/?

for v,w € R[t], where the CY norm is taken in RJt].



24 J. Buzzi et al. / Advances in Mathematics 479 (2025) 110410

We first prove that ff is well-defined on R[10Q(x)]. For € > 0 small enough we
have fi(R[10Q(x)]) C B(0,40e*Q(x)) C R[t] since 40e**Q(x) < 40e*7e%/# < v. By
Proposition 3.10(4), f,, is well-defined.

Letting A, B as in Lemma 3.2, part (1) is clear, so we focus on part (2). We have
|H(0)] = [lg(0)|| < e(nn)? < en and for € > 0 small enough:

ldHo|| < lldgo o d(£5)o — d(foll < lld(g — 1d)ollId(£)oll < e(im’)?e* < en/?.

Finally, since f;f (R[10Q(z)]) C RJt], if € > 0 is small then for v,w € R[10Q(x)] it holds:

|dH, — dH,|| = Hdgf;r(v) od(fi)v — dgf;r(w) o d(f )ul
< Hdgf;(u) - dgf;(w)HHd(f;r)vH + ||d9f;(w)”||d(f;)v —d(f)wll
< el N1 (0) = L @)P2 () eo + elldglleollo — w] P/

< [etm PIACEDIEE + 40e]dgllcoQ()*/®] o — w]*/?

< [P0 2(261)1 /2 + 80Q(2)*/°] elfo — w]|*/*
< [512/5(ze4p)1+ﬂ/2 + 8051/2] ellv — w])P/? < el|v — w]|?/3.
The proof is now complete. O

4. Invariant manifolds and shadowing

Up to now, we have fixed <p7x,p,A,[Ax,9 and e, where p,e are small parameters. In
this section, we:

(1) Define e-double charts W2"P" which are double versions of Pesin charts whose stable
and unstable sizes p®, p* may differ. The parameters p®/p“ control separately the
local stable/unstable hyperbolicity at x.

(2) Define generalized pseudo-orbit, which is a sequence v of e-double charts satisfying
edge conditions, which are nearest neighbor conditions relating the parameters of
consecutive e—double charts.

(3) Associate to each generalized pseudo-orbit its local stable and unstable manifolds
V#[v] and V*[v]. As a consequence, we obtain a shadowing lemma.

4.1. Pseudo-orbits

£-DOUBLE CHART: An e-double chart is a pair of Pesin charts U2 P" = (U?" ¥P") where
0<p®,p" <eQ().

The parameters p®/p* are local quantifications of the hyperbolicity at z. One can
think of them as a definite size for the stable and unstable manifolds at x.
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TRANSITION TIME: For two e-double charts v = W2 P = \Ilgs’qu we define T'(v, w)
by

min {min{7T7"(2) : 2 € U, (R[5 (p° Ap")])}, min{—T"(2) : 2 € U, (R[5 (¢* A ¢“)])}},

where T+ : B, — R and T~ : B, — R are the C'*# functions satisfying g} = goT+,
sy = ¢ Wb T () = ra(2) and T-(3) = —ra (/1)

EDGE v = w: Given two e-double charts v = \Iﬂjvp“, w = \Ifgs’qu, we draw an edge from
v to w if the two following conditions are satisfied:

g s u

S CEE

SAQh £ oA 5 At
(GPO1) \P;(w)q ~ Vi AT and \I/fc,ll(’y)

(GPO2) The following estimates hold:

e~ " min{es T ¢* e eQ(x)} < p* < min{esT g% eQ(x)} (4.1)
e~ min{e T pt =2 eQ(y)} < ¢ < min{esT WPt cQ(y)}.  (4.2)

Remark 4.1. In the above notation, if v = w then by Theorem 3.8’ we have

gy (Uy(Rl55(¢" A ")) € Ca(R[F5 (0" Ap")])
and so T'(v,w) = T (2) for some z € ¥, (R[7 (p* Ap*)]). In particular, T'(v,w) < p.

€~GENERALIZED PSEUDO-ORBIT (e—GPO): An e-generalized pseudo-orbit (e—gpo) is a
sequence v = {vy, }nez of e—double charts such that v, 5 Upy1 for all n € Z. We say
that v is regular if there are v, w such that v,, = v for infinitely many n > 0 and v, = w
for infinitely many n < 0.

POSITIVE AND NEGATIVE é-GPO: A positive e—gpo is a sequence vt = {v,},>0 of
e-double charts such that v, — v,41 for all n > 0. A negative e—gpo is a sequence
~ = {vn}n<o of e-~double charts such that v, 5 vy foralln < —1.

Condition (GPO1) allows to pass from an e-double chart at = to an e-double chart
at y and vice-versa. Condition (GPO2) is a greedy recursion that implies that the local
quantifications of hyperbolicity are “as large as possible”. The need of (GPO2) will be
clear in the proof of Theorem 5.1 (coarse graining) and Theorem 6.1 (inverse theorem).

Lemma 4.2. If v = W2 P o = \Ilgs’qu are e—double charts satisfying (GPO2) then

PAPY _ E2e
qeAGE T ’

Proof. We have e~°?" min{e*7("") g% e=2cQ(x)} < p* < min{esT("")¢* Q(x)}, there-
fore e=*P" min{esT (") e=pu} < p° A p* < min{esT (") g* p*} and so

e—s—sps min{esT(v,w) Sp } <p’Ap* < mln{esT v w)qs,pu}
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By the same reason, e 557" min{e7("®)p¥ ¢} < ¢* A ¢* < min{esT () p¥ ¢*} hence
e—e—aq“—eT(v,w) min{eET(v,w)qs7pu} < qs A qu < eeT(v,w) min{eeT(v,w)qs’pu}.
Together, these inequalities imply that

e—e[l+pS+T(v,w)] < % < ee[l—&-q“-{-T(v,w)].

Since p®, g% < e < 0.25 and T'(v,w) < p < 0.25, it follows that Zi%’: =et2. O

Remark 4.3. There is a big difference between (GPO2) above and all previous definitions
used in [36,27,3,28,29,2]. The first is that we only require inequalities, while previous
work required equalities. One reason is the following: while for diffeomorphisms the
hyperbolicity acquired in an edge v — w is at least €2, for flows it is at least e7(**)  Since
T (v, w) usually does not belong to a countable set, neither does min{es”(**)¢* eQ(x)}.
Therefore, instead of requiring p® to be equal to this minimum we relax the assumption
to an “approximate equality”. This approximate equality implies that either p*® is of
the order of eeT(»®)g5 and/or it is essentially maximal (of the order of Q(z)). The
conditions we consider are weak enough to code all relevant orbits (Theorem 5.1(2)) but

still strong enough for the coding to be “unique up to bounded error” (Theorem 6.1).
4.2. Graph transforms and invariant manifolds

Let v = U2 ?" be an e-double chart.

ADMISSIBLE MANIFOLDS: An s—admissible manifold at v is a set of the form
V=W {(t, F(t)) : [t| <p°}
where F : [-p®,p*] — R is a C**8/3 function such that:

(AMI) [F(0)] < 1072(p* A p").
(AM2) [F'(0)] < 5(p° A p*)P72.
(AM3) ||[F'||co + Hblg/3(F’) < 3 where the norms are taken in [—p*, p®].

The function F is called the representing function of V. Similarly, a u—admissible mani-
fold at v is a set of the form W, {(G(t),t) : [t| < p*} where G : [-p", p"] — R is a C1+F/3
function satisfying (AM1)-(AM3), with norms taken in [—p", p"].

If V1, V5 are two s—admissible manifolds at v, with representing functions Fi, Fs, for
) > 0 define dci(Vl,‘/Q) = HFI — Fg‘
applies to u—admissible manifolds.

¢+ where the norm is taken in [—p®, p*]. The same

In the sequel, we introduce graph transforms, which is the tool used to construct
invariant manifolds. Since the proofs are adaptations of [36], we restrict the discussion
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to stable manifolds. The main result of this section, Theorem 4.5, collects the basic
properties of invariant manifolds. Given a e-double chart v = WP P" we denote by
A *(v) the set of its s—admissible manifolds.

THE GRAPH TRANSFORM .Z; ,: To any edge v = w between e-double charts v = W& "
and w = \IJ,ZS*‘?“, we associate the graph transform #; , : M *(w) — #*(v) as being the
map that sends an s—admissible manifold at w with representing function F' : [—¢*, ¢°] —
R to the unique s—admissible manifold at v with representing function G : [—p®, p*] — R
such that {(¢,G(t)) : [t| < p°} C fr (&, F(1)) : [t] < ¢°}.

Lemma 4.4. If € > 0 is small enough, then Z;,, is well-defined for any edge v S w.
Furthermore, if V1, Vo € M°(w) then:

When M is compact and f is a C'+7 diffeomorphism, this is [36, Prop. 4.12 and 4.14].
The same proofs work by changing C and x in [36] to e and x inf(r,) in our case, and
observing that by Lemma 3.2(2) and Theorem 3.8'(1) we have e~%” < |A| < e~ Xnf(ra)
and eX (") < |B| < e,

THE STABLE MANIFOLD OF POSITIVE ¢—GPO: The stable manifold of a positive e—gpo

vt ={vp}n>o is

Vet = lim (F5 , o---0F o F, )(Vi)

n— 400 Vo,V1 Un—2,Un—1 Un—1,Un

for some (any) choice (V,,)n>o with V,, € .#%(v,,). The convergence occurs in the C*
topology.

The proof of the good definition and C* convergence is done as in [36, Prop. 4.15,
part (1)]. Similarly, we introduce the unstable manifold V*[v~] of a negative e-gpo. We
then arrive at the basic properties of V*[u*] and V*[v~].

Theorem 4.5 (Stable manifold theorem). The following holds for all € > 0 small enough.
Let v = {v, >0 = {¥h"" )50 be a positive e—gpo.

(1) ADMISSIBILITY. The set V3[v™] is an s—admissible manifold at v, equal to
Vo] = {z € Uuy (RIpg]) : (92, 0+ 0 94, (%) € U, (R[10Q(z1)]), ¥r > 0}.

(2) INVARIANCE. gt (V*[{vn}n>0]) C VE[{vn}n>1].
(3) HYPERBOLICITY. For all y,y’ in V:[v"] and all n > 0:

inf
_xnfrp)

d(gt o ogh(W),g o ogh(y) <dVil(y), ¥, (¥)) e
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For any unit vector w tangent to V¥[v™| at a point y and alln > 0:

x_inf(rp)
——— n

ld(g,_, oo, )ywll < 8[Clwo) | e and

B
2

X inf(rA)_ﬁ_.g
ldlgs.., 0o gz )yl > 1wg A pt) s 75 %)

n
e :
(4) BOUNDED DISTORTION. For ally,y' in V:[v™], unit vectors w,w’ tangent to V:[v™]
at y,y' respectively and all n > 0,

loglld(gy, _, o+~ 0 gl )ywll —log [ld(g, _, o0 gl )yw'll| < Qao)/*.

(5) HOLDER PROPERTY. The map v — V*[u"] is Hélder continuous:
There are K > 0 and 0 € (0,1) such that for all N > 0, if v, w" are positive
e—gpo’s with v, = w, forn =0,...,N then dc:(V:[v*t], VS[w*]) < KoN.

The curve V*[v"] is called local stable manifold of v*. A similar statement holds for
unstable manifold V*[v™] of a negative e-gpo v~ .

The above theorem is a strengthening of the Pesin stable manifold theorem [32]. Its
statement is similar to [36], and its proof is perfomed exactly as in [36, Prop. 4.15
and 6.3], noting that in Pesin charts the composition 9;_”,1 0---0 92—0 is represented by
fir o---o ft . Since each f is hyperbolic (Theorem 3.8") and each .72

Tn—1,Tn Zo,T1 sLi41 Vi, Vit+1
is contracting (Lemma 4.4), the proof follows. We note that the second estimate of part

(3) is proved as in [36, Prop. 6.5], see also the proof of [2, Prop. 4.11].
4.8. Shadowing
We say that an e—gpo {\Ilﬁi’pz Ynez shadows a point x € A if:

(g4 o---ogd)(x) € Uy, (R[p;, Aph]) for all n >0,
(Gzpsy © 0 Gy ) (@) € Wy (R[pj, A py]) for all n < 0.

An important property is the following.

Proposition 4.6. If £ is small enough, then every e—gpo v shadows a unique point {x} =
Vel N V).

The proof uses the following property of admissible manifolds.

Lemma 4.7. The following holds for all € > 0 small enough. If v = \Iﬂ;s’pu is an e—double
chart, then for every V/* € 4%/ (v) it holds:
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(1) V* and V* intersect at a single point P € W, (R[107%(p® A p*)]).
(2) % = e g |cos Z(V*, V") — cosa(z)] < 2(p° A p*)P/%, where

Z(V3,V¥) is the angle of intersection of V* and V¥ at P.

When M is compact and f is a C'*# diffeomorphism, the above lemma is [36, Prop.
4.11]. The same proof works in our case, since inside U, (R[10Q(z)]) the estimates
(Expl)—(Exp4) hold.

Proof of Proposition 4.6. Let v = {v,}nez = {\Iliif’pz }nez be an e—gpo. The proof is
the same as that of [36, Theorem 4.2], and follows the steps below:

o By Theorem 4.5(1), any point shadowed by v must lie in V*[{v,, }n>0] "V*[{vn }n<ol-
By Lemma 4.7(1), this intersection is a single point {x}. We claim that v shadows
x.

o The definition of shadowing is equivalent to the following weaker definition: v shad-
ows z if and only if

(g;[n_1 0---0 gjo)(x) €V, (R[10Q(z,)]) for all n > 0,
(g;wrl 0---0 g;o)(x) cev,, (R[lOQ(xn)]) for all n < 0.

o By Theorem 4.5(2), if n > 0 then gf  o---0gf(z) € V' [{vntrtrzo] C
V., (R[10Q(x,)]), and if n > 0 then (g, , o0 gy)(x) € V'[{onis}ro] C
U, (R[10Q(z,)]), and so the weaker definition of shadowing holds.

n

This concludes the proof. [J
4.4. Additional properties

Now, we relate stable/unstable manifolds of e-gpo’s with stable/unstable manifolds
of the flow ¢.

Proposition 4.8. The following holds for all € > 0 small enough. Let v = {vy}n>0 be a
positive e—gpo with vy = \Ilgs P"and let F : [—p°,p*] — R be the representing function
of V¥ = V3[uT]|. Then there exists a function A : [—p*,p*] — R with A(0) = 0 such that

inf(rp)

the curve V< := {@2O[W (¢, F(1))] : |t| < p*} satisfies d(¢'(7), ¢'(3)) < e~ Zeup(ry) for
ally,z € V° and t > 0. An analogous statement holds for negative e—gpo’s.

In other words, V¢ is a lift of V* to a curve that contracts in the future under the
flow (we are not claiming V'* is the local stable manifold of ¢ at x).

. S Pl 5 Y s pu Cy . .
Proof. Write v,, = WP with W50"° = WE"-P" . The idea is simple: A is the cumulative

shear of a point of V* under iterations of the maps g} . Write g7 = o™ where Tj, :



30 J. Buzzi et al. / Advances in Mathematics 479 (2025) 110410

B,, — Ris a C'7 function with T, (z,) = 7z (zy). Let Go =Id and G,, := g}  o---0
ga,n > 1. For n >0, define 7, : [-p®,p*] = R by

n—1
t) =Y Th(Gi[¥.(t, F(1)))),
k=0

equal to the flow displacement of the point W, (t, F(t)) under the maps g/t , g\ ..., g .
Define A, : [—p®,p*] = R by A, (t) := 7,(t) — 7,(0) for n > 0, and A : [-p®,p°] = R
by A(t) := lim A, (t). We have:

n—+o00

o Lip(T,) < 1, by Lemma 2.1(3).
o |A—=Aplco < e 3™ for all n > 0, since

1A = Aulles < D NT(Grl¥o (-, F())]) = Te(Gr[a (0, F(0))])|co

k=n
[ . s . .
! . _ xinf(rp) 6p _ xinf(rp) 1l _ xinf(ry)
<Y Lip(Tw)bp'e” 7 "< ——se 2 "<ee 2,
k=n 1—e = 2
! n 6
where in < we used Theorem 4.5(3) and in < we used that —Frmy <
l—e™ 2
62/ < £ when £ > 0 is small enough
) — xinf(ra) gh.
—e 5

Let 7* i= {p2O[0,(t, F(t))] : [t < p°}. Fix §,5 € 17, say § = 200 [T, (to, F(to)
= 2)(y) and 7 = AW, (t, F(t1))] = ") (2) with to,t, € [—p®, p°]. By defini-
tion, y, z € V*. Fix t > 0, and take the unique n > 0 such that 7,,_1(0) < t < 7,,(0). For
such n, write A = A, + E, with ||E||co < ce= "3 Therefore

Pl () = T (y) = HAn B () = =T OFE (G (y)],
and similarly ¢*(2) = !~ ™O+E) (G, (2)], hence

d(¢'(9), ' (2)) < d(p' T OFEWIG, (y)], T OFEEIG, (2)])+
d(p! T OFEIG,, (2)], ot T OFER (G, (2)])

< sup Lip(¢*)d(Gn(y), Gu(2)) + [ X |col Eto) — E(t1)]

inf(ry) inf(ry)
6p° sup Lip(°) 4 2¢[| X||co R
IcI<1

for ¢ > 0 small. Since t < 7,(0) < nsup(ry), we get that d(¢'(7),¢'(2)) <
X inf(rp)
672sup(7‘A) . O
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We note two important facts. Firstly, the choice of A(0) = 0 is arbitrary: given
y = V,(¢t,F(t)) € V*, we can choose A so that A(¢) = 0. The resulting smooth curve
Ves y also satisfies Proposition 4.8.

The second is more relevant. Given y € V* = V*[u], lift V* to Ve 3y, and let ey
be a unitary vector tangent to Ve at y (it is defined up to a sign). By construction, the
projection of €7 in the flow direction is a multiple of n;. Taking the angle Z(Ny, X (y))
into account, we can prove that d<pt€; contracts exponentially fast as ¢t — 400, i.e.
liril igop%log |[de*es|| < 0 (just a limsup, not necessarily a lim). The same holds for

u-admissible manifolds V*[v]. Therefore, given an e-gpo v = {\Il’;zp " bnez, if V] N
V¥u] = {«}, there are two smooth curves V* V* passing through x satisfying the
following;:

o If & is a unitary vector tangent to V* at z, then lim sup log [|de'es|| < 0.
t—+o0

o If e¥ is a unitary vector tangent to vV at z, then proceeding as in [36, Prop. 6.5] we
show that lim sup } log ||de’e%| > 0.
t—+oo

These two properties above uniquely define the directions eZ, e

(up to a sign). Therefore
we can consider a(z), s(x),u(z), although we do not know that s(x),u(zx) are finite.
Remember that nf,nY € N,, the tangent vectors to V*, V" at x, are the projections of
€2, er in the flow direction.

We finish this section proving another property about invariant manifolds.

Proposition 4.9. The following holds for e > 0 small enough. Let vt = {v,}n>0 and
w = {wy}n>0 be positive e—gpo’s, with vy = \I'QS”’“ and wy = \IJ;M“. Then either
Ve[ut], VEw™] are disjoint or one contains the other.

Proof. For C'*# surface diffeomorphism, this is [36, Prop. 6.4]. We apply a similar idea,
using Proposition 4.8. Write V* = V*¥[ut] and U® = V¥[wt]. H VS NU® = ), we are
done, so assume there is z € V¥ N U?®. Assuming without loss of generality that ¢° < p®,
we will prove that U® C V*. The proof will follow from three claims as in [36, Prop.
6.4]. Write vt = {\Il’;i’p " tn>0. We continue using the same terminology of the previous
proposition, with g} = ¢’ forn >0, Gy =1d, and G,, = g o---ogf forn>1.

CLAIM 1: If n is large enough then G,,(V*) C ¥, (R[2Q(z,)]).

Proof of Claim 1. Same as [36, Prop. 6.4], using that the representation of gjﬂ in Pesin
charts satisfies Theorem 3.8". O

CrLAaM 2: If n is large enough then G,,(U®) C ¥, (R[Q(zy)])-

2 One important ingredient in the proof of [36, Prop. 6.5] is the estimate Pry1 APny1 S e(p, Apy). We
have a similar result, by Lemma 4.2.
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Proof of Claim 2. Lift U* to a curve U* passing through z and satisfying Proposition 4.8.
Fix n > 0, and let t, = 71—y Ti(Gk(2)) be the total flow time of z under G,,. Let
zn = Gn(2) = p'(2). If D C A is the disc containing z,, then

Gn(U®) = qple™ (U*))].

Let ¢ := inf(rp)?/2sup(ra). Since qp is 2-Lipschitz (Lemma 2.1(2)), Lemma 2.4 and
Proposition 4.8 imply that

x inf(ry)

diam(G,, (U*)) = diam(qp[¢" (U*)]) < 2diam (o' (U?)) < 2e” 2500 < 2e7Xen,

since t,, > inf(ra)n. Hence ¥ G, (U*)] is contained in the ball with center ¥ !(z,) and
radius 4(|C(z,,)!{|e7*". Since by Claim 1 we have ¥;!(z,) € R[3Q(=,)], it is enough
to prove that 4[|C(z,)~!|le™*" < $Q(z,). Using that Q(zy,) < [|C(zn) |7, we just
need to prove that 8Q(z,) 2e X" < 1. We claim that Q(z,) 2e~X" converges to zero
exponentially fast as n increases. Indeed, by Lemma 4.2 we have Q(z,) > ps A pl >

—26n(

e pg A py) and so

Q(.’En)_Qe_ch < 645n(p8 /\pg)—2e—xcn _ (pS /\pg)_Qe_(Xc_4E)n
which converges to zero if € > 0 is small enough. 0O

By Theorem 4.5(1), we conclude that G, (U®) C VS[{\I'QE’pE}kzn] for every n large
enough.
CramM 3: U° C V2.

Proof of Claim 3. Fix n large enough so that G, (U®) C V‘g[{Wﬁ%’pz}an], and proceed
as in Claim 3 of [36, Prop. 6.4]. O

The proof of the proposition is complete. [
5. First coding

Up to now, we have fixed ga,x,p,A,K,@,s such that ¢ < p < 1, and we have con-
structed invariant manifolds for e—gpo’s. We also defined shadowing. In this section,
we:

o Construct a countable family of e~double charts whose e—gpo’s they define shadow
the whole set A N NUH?.
o Define a first coding, that is usually infinite-to-one.



J. Buzzi et al. / Advances in Mathematics 479 (2025) 110410 33

5.1. Coarse graining

This self-contained section comprises an important part of this work that cannot be
obtained using the methods of [36,28,27]. Indeed, condition (GPO2) in our definition
of edge between e—double charts is a set of inequalities, so we need to show it is loose
enough to shadow all points of AN NUH?. The proof of this fact requires an analysis of
orbits at hyperbolic times, where parameters are essentially uniquely defined.

Theorem 5.1 (Coarse graining). For all 0 < ¢ < p < 1, there exists a countable family
o of e—double charts with the following properties:

(1) DISCRETENESS: For allt > 0, the set {UP"P" € of = p* p* >t} is finite.

(2) SurrIcIENCY: If 2 € ANNUH? then there is a regular e—gpo v € &% that shadows
x.

(3) RELEVANCE: For each v € o/, Jv € AT an e—gpo with vy = v that shadows a point
in AN NUH#.

Recall that v = {v, }nez is regular if there are v, w such that v,, = v for infinitely many
n > 0 and v, = w for infinitely many n < 0. According to Proposition 3.5 and part (2)
above, the e—gpo’s in &7 shadow almost every point with respect to every x—hyperbolic
measure.

Proof. When M is a closed surface and f is a diffeomorphism, the above statement is
consequence of Propositions 3.5, 4.5 and Lemmas 4.6, 4.7 of [36]. When M is a compact
surface with boundary and f is a local diffeomorphism with bounded derivatives, this
is Proposition 4.3 of [28]. When M is a surface and f is a local diffeomorphism with
unbounded derivatives, this is Theorem 5.1 of [27]. Our proof follows a similar strategy
of [36,28] but the implementation is significantly harder, since the definition of edge is
more complicated. In particular, we need to control the cumulative shear between an
orbit and an e-gpo.

Let No = N U {0}, and let X := A% x GL(2,R)® x (0,1). For = € A N NUH¥, let
[(z) = (z,C, Q) € X with

L= (fil(x)’l'af(x))a C= (C(fil(x)),C(l'),C(f(fﬂ))), Q = (Q(x)ﬂq(x))

Let Y = {['(z) : # € AN NUH#}. We want to construct a countable dense subset
of Y. Since the maps z — C(x),Q(x),q(x) are usually just measurable, we apply a
precompactness argument. For each £ = (¢_1,0p,¢1) € NS’ and m, j € Ny, define

el <|C(fix) 7t < et —1<i<]
Yimy =A@ €Y: o1 < Qa) < e
eI <q(z)<ed
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CramM 1: Y= |J Ygm,j, and each Yy, ; is precompact in X.

LeN?
m,jE€ENp

Proof of Claim 1. The first statement is clear. We focus on precompactness. Fix £ € N,
m,j € Ny, and take I'(z) € Yy, ;. Then z € A3, a precompact subset of M3. For |i| < 1,
C(f%(x)) is an element of GL(2,R) with norm < 1 and inverse norm < e“*! hence it
belongs to a compact subset of GL(2,R). This guarantees that C belongs to a compact
subset of GL(2,R)?. Also, Q € [e=™*,1] x [e7771,1], a compact subinterval of (0,1].
Since the product of precompact sets is precompact, the claim is proved. O

By Claim 1, there exists a finite set Zy , j C Y m,; such that for every I'(x) € Yy m ;
there exists I'(y) € Zg,m,; with:

(a) (f( ) f1y) +1IC ({ x

(b) oty (z) _ o%e/3 and (—)

)~ CUP W) < ba@)®, lil < 1.

ia/S

v

A fortiori, (a) implies that fi(x), f(y) belong to the same disc of A, for |i| < 1. For
n>0,let I, := {6_52"’“ : k > 0}, a countable discrete set whose “thickness” depends
on 1.

THE ALPHABET &7 Let ./ be the countable family of W2"?" such that:

(CG1) I'(z) € Zgm,; for some (£,m,j) € N§ x Ny x Np.
(CG2) 0 < p*,p* < eQ(x) and p®,p" € I, 4(q)-
(CG3) e ™71 < % < 9t where § is given by Proposition 3.6(1).

Proof of discreteness. Fix t > 0, and let U2 P" € o with p*,p* > t. If T'(z) € Zom,j
then:

o Finiteness of £: we have eo < [|C(x)7!|| < Q(z)~! < ¢!, hence ¢y < |logt|. By
Lemma 3.2(3), for ¢ = +1 we have

e <[ C(f @) < IO (2)) ™ HIrrob < €*[IC (@) b < e!*t71,

hence ¢_1,¢; < 18p + |logt| =: T}, which is bigger than |logt|.
o Finiteness of m: e=™ > Q(z) > ¢, hence m < |logt|.
o Finiteness of j: e™7 > q(z) > e 971 (p* Ap*) > e P71, hence j < |logt| + 9 + 1.

Therefore

[[logt|+HT+1[|logt|] T,

# {F(z) : \If’;’pu € o st p’pt > t} < Z Z Z HZym
§=0 m=0 —1<i<1
;=0
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is the finite sum of finite terms, hence finite. For each such I'(z),

#{(p°,p") : UL P € of st p*p" >t} < (H#L g0y N (,1))?
is finite, hence

[ogt|+H1+1[|logt|]] Ty

# {\Iﬂ;s’pu e p®p" > t} < Z Z Z Z (#1eq) N (1,1))?
m=0 —1<z0<1 T(x)EZsm,;

is the finite sum of finite terms, hence finite. This proves the discreteness of 7.

Proof of sufficiency. Let x € AN NUH?”. Take (4)icz, (Mmy)icz, (4i)iez such that:

||C(f"(q;)) 1” c [ Ci eé +1)7Q<fz<x)) c [e—m,;—17e—mi)7
q(fi(x)) € [e77 L, e,

For n € Z, let £ = (0,_1,0n,0ni1). Then D(f™(z)) € Yy m., - Take D(zy,) €
Z£<n>,mmjn such that:

(an) ((fi((f;( z)), fi(zn)) + |(|CEJ")i)(f”(fE))) = C(fiza))ll < 5a(f"(@))*, lil < 1.
QUf" (= _ o*e/3 M=) _ +e/3
(bn) “g@y =¢ /3 and Ly =¢ /3.
From now on the proof differs from [36,28,27]. Take {t, },ez such that f"(z) = ' (x),
with tg = 0 and g7 [f"(x)] = @'+ 7t [f"(x)]. Define

P = Einf{ee‘t"”_tle(xn+k) ik >0},

n
P = ginf{eltn+ =t lQ(z, 1) : k < 0}.
There is no reason for \Ili’?’P’? belonging to &/ nor for {\I/ff’P#}nez being an e-gpo.
Indeed, with the above definitions one of the inequalities in (GPO2) holds in the reverse
direction. To satisfy (GPO2), we will slightly decrease each P2, P¥. Below we show how
to make this “surgery” for P$ (the method for P! is symmetric).
Start noting the greedy recursion P35 = min{es(tn+1=t) P3| cQ(z,)} and that

+£

P = eFSeinf{esltnri =t QR (1)) 1 k > 0} = eF5p*(x, T, n) = O+ g* (£7()),

by (b,) above and Proposition 3.6(1), where T = {t, }nez. We fix A := exp[e!5] and
divide the indices n € Z into two groups:

n is growing if P, > APj, | and it is marimal otherwise.
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Note that A has an exponent with order smaller than . The definition of growing/max-
imal indices is motivated by the following: the parameter P; gives a choice on the size
of the stable manifold at x,, therefore we expect P to be larger than Py, at least by
a multiplicative factor bigger than A, unless it reaches the maximal size eQ(x,). In the
first case the index is growing, and in the second it is maximal. Assuming that £ > 0 is
sufficiently small, we note two properties of this notion:

o Ifnis maximal then P; = eQ(z,,): otherwise P3 = es(tn+1=tn) ps | > ecinfra) ps | >
AP, ., which contradicts the assumption that n is maximal.

o There are infinitely many maximal indices n > 0, and infinitely many maximal
indices n < 0: the first claim follows exactly as in the proof of Proposition 3.6(3)

(remember we are assuming that € NUH? and so limsup P¥ > 0). The second
n—-+oo
claim follows from direct computation: if there is ng such that every n < ng is

growing then P; > A"0~" P for all n < ng, which cannot hold since A\"°™" — oo as
n — —oo.

We define p;, = a, P where e™° < a,, < 1 are appropriately chosen. We first define
an, for the maximal indices n € Z as the largest value in (0,1] with a, P} € I, 45, In
particular, e~ a@n) < apn < 1. Then we define a,, for the growing indices. Fix two con-
secutive maximal indices n < m and define a,,41,...,a;n—1 with a backwards induction
as follows. If n < k < m and ajy; is well-defined then we choose aj, largest as possible
satisfying:

(i) e"TPapr < eifiay, < apyq;
(ii) apPy € Ie guy)-

This choice is possible because the interval (e*%PI:akH,akH] intersects I; 4(z,), since
EPp > e TS (fR(x) > Sem (OFS)g(fF(2)) > Se~ (O F)g(ax) > e2q(ak). The first
condition implies that 0 < ap4+1 < -+ < apm—1 < ay, < 1. The maximality on the choice
of aj, indeed implies the inequality 6_52Q("'”k)ak+1 <eibiq, < a1 for every growing k
(this is stronger than (i)).

Before continuing, we collect some estimates relating ¢(z), Pg, p;. Fix two consecutive
maximal indices n < m. Then the following holds for all £ > 0 small enough:

m
o Z P; < ef L every k =n+1,...,m —1is growing, thus P; < )\"“*kPj_H for
k=n+1
k=n+1,...,m. This implies that

m—n—1

m
s s —i 3+1 1 3-0.5 3-1
ZPkSPn+1 Z A < ep m<25ﬁ <ep s
k=n+1 =0



J. Buzzi et al. / Advances in Mathematics 479 (2025) 110410 37

. . c15
since lim 5= = 1.
e—=0

m
o Z q(zy) < esh by the previous item,
k=n-+1

m
Z qlay) < 5 Z P < 20T F 505 < g5
k=n+1 k=n+1

o Qpy1 > AL using that a,, > e—c a(zm) > ¢~ Pm and that e*EPf:akH < ay, for every
growing k, we have

m—1 m
3 _
Gpt1 = €XPp [—5 Z Plf A 2 €Xp [_5 Plj > exp {_€B:| > A 13
k=n-+1 k=n+1

. 3
since €7 < glb.

In particular, aj, > A™! > e~ for all k € Z.

CLAIM 2: \Ilgi’pz € o forallneZ.

Proof of Claim 2. We have to check (CG1)—(CG3).
(CG1) By definition, I'(zn) € Zyon) 4, . -

(CG2) We have p8, < P? < eQ(zy), and the same holds for pi. By definition, pg, pl €
I

&,q(xn)

(CG3) Since ¢ < a, < 1 and P5 = eXO+5) ¢5(2,,), we have e~ 9725 < qf()i” 5 < edte.
By the same reason, ~972 < #2) < e9%¢. These inequalities imply that e™972¢ <

Pn/\Pp S ef)'f’f and SO e—fj—l S Pn/\Pn é eﬁ+1' D
q(zn) (wn)

CLAIM 3: WhrPr S @hnttPrst for all p € Z.

Proof of Claim 3. We have to check (GPO1)-(GPO2).
(GPO1) By (a,) with ¢ =1 and (ap4+1) with ¢ = 0, we have

d(f(@n),@ns1) + IC(F@n)) = Clansa)l
< d(f" (@), f(za) + IC(F (@) = C(f ()]

P

+d(f"H (@), znr) + [C(FrF1(2)) = Clanta) |

(@) + Ba(f T @)® < L1+ e%)q(fmH ()8

N[=

[l

56e
e*Nts (1+ 686)(pi+1 /\pz+1)8 < (pfz+1 /\quwl)sa

IA=
N[—=
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"
where in < we used Lemma 3.4, in < we used (b,,) and the estimate used to prove (CG3)

in the previous paragraph, and in < we used that 1 8’3‘*‘5%(1 +e%) <1 whene,p>0

are sufficiently small This proves that \pr?“)/\ p"“ ~ \I/I;ZﬂAp"“. Similarly, we prove

that \I/p"/l\f; N

(GPO2) We show that relation (4.1) holds for all k € Z:

Py APy
SIS

e Pk mm{eET ”k’”’“+1)p2+1, e eQ(xg)} <pi < min{eET(“’““’““)pZH, eQ(x)}.

Relation (4.2) is proved similarly. For ease of notation, write T = T'(vg,vgt+1) and
Ay = (tg+1—tx)—T}. Since T}, is the minimal time, we have Ay > 0. Using Lemma 2.1(3),
condition (a,) and Remark 4.1, we also have the following upper bound for Ag:

Ay, < diam(R[ 5 (p} Ap})]) = ¥2 (07 A pE) < B

We fix two consecutive maximal indices n < m and establish the above inequality for
k=mn,...,m— 1. We divide the proof into two cases: k = n and k # n. Assume first
that k = n. For € > 0 small enough (remember a,; > A™1),

Trps 1 =eTran1Piy > exp [inf(rp)e — '] Piy > APS > PS = eQ(xn).

Therefore

ey

€ apn mm{e p +1 e_EEQ(xn)} = e_EpZe_EEQ(xn) < e_EEQ(xn) < anP'rf = pfl

and

min{e*" "Phy1,€Q(@n)} = eQ(an) = Py = pj.
This proves (4.1) for k = n.
Now let k # n, and call I = min{e="kps . |, e “eQ(xx)}, I = min{esT p; , |, eQ(xr)}
We wish to show that e P < p; < II. Since agy1 > e’sAkakH > exp [—5% — 61'5] >

exp[—e], we have

o —eA thy1—t -
I = min{e "2k ay qetrt k)P,f_H,e “eQ(xk)}
. thp1—t
< appr min{e” TP 2Q(an)} = apia P
Therefore e~ Pkl < e~ 3% ap+1 P < apP; = pj,, where in the second inequality we used

property (i) in the definition of ay.
For the other inequality, start observing that

pr = arpP; = ag min{es(t’““_t’“)P,?H, eQ(zr)} = min{es(t’““_tk)akP,fH, areQ(xk)}.



J. Buzzi et al. / Advances in Mathematics 479 (2025) 110410 39

Clearly areQ(zy) < eQ(xg). Using that Ap < PT’f, we have e®kq;, < eil%ay < ajq1,

where in the last passage we used property (i) in the definition of aj. Hence
esiri=tilg, ps | = Thestrgy pp | < eTrap PEL = eTrpi .
The conclusion is that pj, < II. The proof of Claim 3 is now complete. [

CrLAM 4: {UhmPnY 7 is regular.

Proof of Claim 4. Since z € NUH# and q?;‘f(’f)) = e**) | we have limsup pS, A p¥ > 0
n—-+oo

and lim sup p;, Ape > 0. By the discreteness of .27, it follows that \I/f;i’p " repeats infinitely

n——oo

often in the future and infinitely often in the past. O
CrLAM 5: {TE"Pn}, 7 shadows x.

Proof of Claim 5. By (a,) with ¢ = 0, we have \Ilfci?f)z ~ \I/fgi/\pz, hence by Proposi-
tion 3.10(3) we have f"(x) = Win()(0) € V., (R[p;, A py]), thus {\Dgi’pz}nez shadows

x. This concludes the proof of sufficiency. O

Proof of relevance. The alphabet &/ might not a priori satisfy the relevance condition,
but we can easily reduce it to a sub-alphabet &7/ satisfying (1)—(3). Call v € & relevant
if there is v € &% with vy = v such that v shadows a point in ANNUH?. Since NUH? is
p—invariant, every v; is relevant. Hence &7’ = {v € &/ : v is relevant} is discrete because
' C &, it is sufficient and relevant by definition. 0O

5.2. First coding

Let ¥ be the TMS associated to the graph with vertex set & given by Theorem 5.1
and edges v — w. An element v € ¥ is an e-gpo, so let 7 : X — A by

{r(v)} = V[l N V*[u].
Here are the main properties of the triple (¥, o, ).

Proposition 5.2. The following holds for all 0 < e < p < 1.

(1) Each v € & has finite ingoing and outgoing degree, hence ¥ is locally compact.
(2) m: X — A is Holder continuous.
(3) w[¥#] > ANNUH?.

Part (1) follows from Lemma 4.2 and Theorem 5.1(1), part (2) follows from The-
orem 4.5(5), and part (3) follows from Theorem 5.1(2). It is important noting that
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(3, 0,7) is not the TMS that satisfies the Main Theorem, since m might be (and usually
is) infinite-to-one. We use 7 to induce a locally finite cover of ANNUH?, which will then
be refined to generate a new TMS whose TMF is the one satisfying the Main Theorem.

We finish this section introducing the TMF generated by (3, o, 7). Remember that
ra: A — (0,p/2] is the first return time to A.

THE ROOF FUNCTION 7 : ¥ — (0,p): Given v = {U22P"}, 7 € %, let z = 7(v) and
assume that z; belongs to the disc D C A. Define r(v) := ra(wo) — tp[p™ @) (z)].

Since g} = qp o @™ (20) () is the time increment for ¢ between the points 7(v)
and g [7(v)]. In particular, ¢"@ [r(v)] = 7[o(v)] belongs to A but not necessarily to A.
(Note: even if m(v), p" @ [r(v)] € A, the values of r(v) and ra[r(v)] may be different.)

THE TRIPLE (%, 0y, 7, ): We take (X, 0,) to be the TMF associated to the TMS (%, o)
and roof function r, and m, : ¥, — M to be the map defined by 7.[(v,t)] = p![r(v)].

The next proposition collects the main properties of (X,., o, 7).
Proposition 5.3. The following holds for all 0 < e < p < 1.

(1) 7,00l =t om,, forallt € R.
(2) m is Holder continuous with respect to the Bowen-Walters distance.
(3) 7.[2#] D NUH*.

Proof. Part (1) is direct from the definition of m,. The proof of Part (2) uses Proposi-
tion 5.2(2), and follows by the same methods used in the proof of [28, Lemma 5.9]. To
prove part (3), let S := £# x {0} ¢ ©#. By Proposition 5.2(3), m,.[S] D A N NUH¥.

Since 7,.[2#] = U ¢'[7,(9)] and NUH# = |J ¢'[A N NUH?], we get that m.[S#] D
teR teR
NUH#. O

6. Inverse theorem

In the previous section, we have constructed a first coding 7 : ¥ — A. As mentioned,
it is usually infinite-to-one. In this section, we investigate how = loses injectivity: if
v € ¥ and = = 7(v), what is the relation between the parameters defining v and those
associated to the orbit of 7 Our goal is to analyze this as an inverse problem: fixed
T € K, the parameters of v are defined “up to bounded error”. The answer to this inverse
problem is what we call an inverse theorem. From now on, we require that v € #, where
Y# is the regular set of X:

s#.—dpeX:IweV st vy, = v for i.nﬁni.telymanyn>0 '
vy, = w for infinitely many n < 0
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Recall 7 : ¥ — (0, p), the roof function defined before Proposition 5.3. Let r,, denote
its n—th Birkhoff sum with respect to the shift map o : 3 — ¥. Let v = {\Ilgj;’p" nez € 2,
and let = 7(v). Then:

o @™ (z) = 7[o™(v)], a point in A that is close to .
o g oW (@)] = ¢ ().

Let p¥/%(p™ @) (z)) be the Z-indexed version of the parameter ¢%/* with respect to the
sequence of times {r,(v)},ecz (see Section 3.5 for the definition).

Theorem 6.1 (Inverse theorem). The following holds for all 0 < e < p < 1. Ifv =
{\I/p" P Ynez € F and x = 7w (v), then x € NUH? and the following are true.

1) dlg" ) (x), ) < 50~ (0 A ).
2 7Sinzl(r;?ffﬁ))(w)) = et PnAP)™ 1 cos a(xy,) — cos a(p™ @ (2))] < 2(ps A pt)P/A.

D @)
Q(zn) — ei%
QO @) - 3
Py, — ke Py _ ot Ve
PGy — ¢ 0 ety = ¢
Ul oW (g and U m(v)( y© Ve, can be written in the form (—1)7v + 6 + A(v)

for v € R10Q(p™ W (x))], where o € {0,1}, 6 is a vector with ||| < 50~ (ps A pY)
and A is a vector field such that A(0) = 0 and ||dA|co < /£ on R[10Q(p" ™ (x))].

u

)
)
3) _ s@n) _ _ kVE gpg  wEe) ke
)
)
)

Part (1) is a direct consequence of Lemma 4.7. Indeed, since ") (z) = w[o"(v)],
this point is the intersection of a s-admissible and a u-admissible manifold at W2 "
By Lemma 4.7(1) and since Pesin charts are 2-Lipschitz, we get that d(p™® (2), z,) <
50~ 1 (py, A ppy)-

6.1. An improvement lemma

This section comprises the core of the proof that z € NUH and of part (3) above. It
states that the graph transforms .%° /.7 " improve the ratios of s/u—parameters, therefore
we call it an improvement lemma.

Lemma 6.2 (Improvement lemma). The following holds for all 0 < ¢ < p < 1. Let
v 5w with v = WP P 4w = \I/gs’qu, let W* € #°[w] be the stable manifold of a positive
e-gpo, and let V* = F;  (W?), then:

(1) If s(z) < oo for some (every) z € W*, then s(z') < oo for every z' € V.
(2) Let z € W* with g, (z) € V°. For & > /e, if 3 5(2) — et then !iqzx())) _
et (E=Q()*Y)
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We note that the ratio improves.

Proof. When M is a closed surface and f is a C'*# diffeomorphism, this is [36, Lemma
7.2]. When M is a surface (possibly with boundary) and f is a local diffeomorphism with
unbounded derivatives, this is [27, Lemma 6.3]. The main difference from these results
to what we will do below is that our parameters s, u involve integrals instead of sums.
So we need to be careful on how to split the integrals in a way that we can control each
part reasonably. In the sequel, we will use the parallel transports P, , and the maps A
defined in the beginning of Section 1.2.3. We will also use estimate (2.1), which states
that ||®!|| = e for |t| < 2p.

CramM 1: 3¢ = &€(M,p,0) > 0 such that if 2 € B, and v € TyA,w € T;A with
[lv]] = ||Jw|| = 1 then for all |t| < 2p:

12 (@)l = [2*(w)l| < €ld(y, 2)7 + [[v — P. ywll] and

[ @)l

1 < €fd(y, 2)" + [[v = P:ywl].
|2t (w)] ‘ !

In particular [log [ '(v)]| — log @ (w)[| < €ld(y, 2)° + [[v — P, ,wl].

Proof of Claim 1. The inequalities are direct consequences of the Hélder continuity of
®, as follows: if €9 = €o(M, p,0) > 0 is a constant such that

12 ()| = 12" (w)ll| < €old(y, 2)” + [[v — P.ywl]

for all y, z, v, w as above, then the claim holds with ¢ := e¢*’¢,. O

Now we start the proof of the lemma. We have g, (y) = f~1(y), therefore S(Z%m()z)) =

sgjy:gii . S(fsz;gy)). Since (p* A p*)*(¢° A ¢*)% < Q(y)?/*, Proposition 3.10(1) implies
5(9y

% = QW Thus it is enough to show that sgzi EZ;; = (20" We show
{9y

one side of the inequality (the other is similar). Note that this is the term that gives the

improvement.

Write g, = @7 where T is a C'™# function with T~ (y) = —ra(f~"(y)). Then
gy () = ¢ W(y) and g, (z) = 7 *)(z). For simplicity of notation, let to = —T ()
and t; = =T (z), then g, (y) = ¢~ " (y) and g, (2) = ¢~ "*(2). In the proof of Lemma 3.2
(see Appendix A), we saw that

t
(@) =46 [ A0 g Pt + 0 s )
0

for z € NUH and ¢ € R. Therefore we can decompose 5(g, (y))* and s(g,, (2))* as follows:



J. Buzzi et al. / Advances in Mathematics 479 (2025) 110410 43

to
s(g, (v))? = 464”/ezxtl\q)t”Z;(y)||2dt+e2xt°|\¢t°n§;(y)ll2 s(y)? = I + Lhs(y)?
0 ::Iz
::Il
t1
(g (I =40t [ @@t a4 X0 252 = o sl
0 ::I4
=:1I3
Using that ||‘I>t°n;7(y) | = |®~fng||~* and an analogous equation for z, we have
Y
to
L= 4649/62Xt||c1>*tn;||*2dt, I = Xt @=tons |2,
0

t1
b= et [ Xortns Rt 1= e o,
0

Before continuing, we need to make some estimates.

Cramm 2: d(y,z) < Q(y) and ||nj — P, yn| < 4eM/4Q(y)P/4,

Proof of Claim 2. We proceed as in [27, Lemma 6.3]. Let F, G be the representing func-
tions of V*, W* respectively, and let z = ¥, (¢,G(t)). Since Lip(G) < &, we have
atp]Il < [t +1G@)] < |1 + Lip(G)) + [GO)] < (1 + €)g® +107%(¢* A ¢*) < 2¢°,
therefore d(y, z) < 4¢° < 4eQ(y) < Q(y) for small £ > 0.

To bound the second term, we first estimate sin Z(n;, P, yn?). Since n;, is the unitary

vector in the direction of d(¥,)o {é} = d(exp,)o o C(y)

(1) and nj is the unitary vector

in the direction of d(Vy ), ()

G/l(t)] = d(expy)c(y) [Gzt)] o C(y){G,l(t)], the angles they

define are the same. In other words, if

—_~—

A= dlexp, oo Cw). B = dlexp, ), o 12 Cludvor = o] o2 = |

then sin Z(ns, P, ,n3) = sin Z(Avy, Bvy). Using (A.3) with L = A, v = v1, w = A7 By,

Yy
we get

|sin Z(Avy, Bvg)| < ||A||||A_1|||sin é(vl,A_le2)|
< |C(y) 7 [ sin Z(v1, va)| + | sin Z(va, A~ Bus)|] .

We have | sin Z(v1,v2)| < |G'(t)] < (¢° A q*)P/3 < Q(y)P/3. Also, by (Exp3):
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IATB —1d|| < [A7H[[|A = B|| < |C(y) "] ||d(exp,)o — d(exp,)

C(y) [Gr(/t)}

< 28¢°||C(y) 7| < 28eV1Q(y) M < 1O < 1.
This implies that vy, A~' B, are almost unitary vectors, therefore
|sin Z(vy, A"YBuy)| < 2|jva — A™ Buy|| < 4|A7IB — Id|| < Q(y)P/?,

and so |sin Z(ng, P, ,n3)| < 2(1C(y)~H|Q(y)?/3. Since [ngll = |P.ynill = 1 and the
angle between them is small, we conclude that for small € > 0:

Iy, — Pynil| < 2|sin Z(nj, P.yn?)| < 4C(y) 7 HIQW) < 4e1Q(y)**. O

CrLAamM 3: % = exp[£Q(y)?#/4] and % = exp[£Q(y)?/4].

Proof of Claim 3. We first bound % Since tg,t; > %, we have Iy, I3 > 464’)% X

e~87 = 2¢=% inf(r,) are uniformly bounded away from zero. We have

t[) tl
I, —Is = 464’)/62)@(”(1)71‘/712”72 - \|<I)7tn§|\72)dt - 4e4p/ezxt||<1>7tnz||72dt

0 to

We estimate each integral separately.

o By Claims 1 and 2:

to to

et [ (@t~ @ tnz| )t < 4ct [ 2t & |~ 6|
0 0

< 8pe€d(y, 2)” + [y, — Poyn2l] < 16pe'€Q(y)"* < £5Q(y) "/

o By Lemma 2.1(3) and the proof of Claim 2:

tq
et [ atng R < 461t — o] < 460y, 2) < 16872Q() < Qo).

to

Therefore |I; — I3] < /2Q(y)?/* + Q(y) < 2¢'/3Q(y)?/*, and so

=1 < 2e % inf(ry)] 126 /5Q)Y* < JQ(y)*,

Since e7? < 1 —t < 14+t < €% for small ¢t > 0, the above inequality implies that

7 = exp[£Q(y)"/1].
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—t 512
The estimate of % is easier. We have §—4 = e2X(t1_t0)%, nd:
4 2 [@=*1nz]
o 2x(ti — to) = Fxd(y.z) = FxQ(y) = £3Q(»)"/*, hence eX17t) =
exp[£5Q(y)*/1].
o By Claim 1,
@t0ns |
hm%’h — 1| < €ld(y, 2)" + |ny — Poynll] < 2€Q(y)""* < Q)%
‘~I>7t0’ns ¢7t0ns 2
therefore M = exp[i%Q(y)ﬁ/‘l] and so M = exp[i%@(y)ﬂ/ﬂ.

These two items together imply that % =exp[+Q(y)?/4]. O

- 2
Now we complete the proof of the lemma. By Claim 3, we can write % =
s(gy (2))° ‘

Is+14s(2)% B/41 Li+1. s(2)% Qs . _ -
7[?4—1;(1,)2 = exp[£Q(y)?/ ]711+Izs(y)2. Since we want to show that o ) = exp[£(2¢

4Q(y)P/Y)], it remains to prove that % = exp[+(2¢ — 5Q(y)?/*)]. We show one
side of the inequality and leave the other to the reader. By assumption, s(z) < efs(y),
hence

I +1Iys(z)? L+e* hs(y)® _ 026 I (e%-1) _ 026 [1 _ Ii(1-e”3)

Ii+12s(y)? — ILi+128(y)? T Li+Ls(w)? T I +12s(y)?
o2
It is enough to show that %‘Z(y)g > 5Q(y)?/*, since this implies

Ii(1—e”2¢ _ /4
e% [1 - A(Tes(y)z) < e*(1 - 5Q(y)P/*) < X 2QW,

Note that:

o I > 2e~*inf(ry), as established in the proof of Claim 3.

ol—e2>1-¢2"" > cl/2 when & > 0 is small enough.

o Since sup(ra) < 1, we have I} < 4e'* and I, < e'%. Since s(y) > /2, it follows
that I + Izs(y)? < 5el*rs(y)?.

Altogether, we get that

—5725 — . — — . — _
st > 2™ ini(r)e!s(y) 2 > Fe S ink(ra)e 2Oy |

> 267180 inf(ry )Q(y)*/® = 2e '8 inf(ry)Q(y) 7/ 12Q(y) "/t
> 2B inf(ry)eV1Q(y) 1 > 5Q(y) P4,

since 2e~187inf(ry)e1/* > 5 for € > 0 small enough. O
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Now we can prove that x € NUH.
Proposition 6.3. If 0 < ¢ < p < 1, then n[X#] C NUH.

Proof. Let v {\I/p"’p"}nez € Y% and let + = 7(v). We need to prove properties
(NUH1) and (NUH2) for x. We prove the first property (the second is symmetric). The
proof that s(z) < +oo for surface diffeomorphisms is contained in Claims 1 and 2 in [36,
Prop. 7.3], and uses four facts, which we also have here:

O

The derivative of the diffeomorphism is continuous: in our context, the induced linear
Poincaré flow @ is continuous.

e}

Every vertex of the alphabet & is relevant: in our context, this is Theorem 5.1(3).
Bounded distortion along invariant manifolds: in our context, this is Theorem 4.5(4).

[}

[}

Improvement lemma: in our context, this is Lemma 6.2.

Let us give the details. Let ny — +oo such that (v, )k>0 is constant. Since 7[X#] and
NUH are invariant, we can assume that ng = 0. Since vy is relevant, there is w = {wy, }nez
with wy = v such that y = m(w) € NUH¥. In particular, s(y) < +oco. Let V := V*[w].
We claim that sup,, ¢y s(y") < 4o00. To prove this, fix y' € V. Using the same notation
of Proposition 4.9, let

tn =3 Til(gs, o ogs)®)] and ¢, ZTk gh oo g )W)l

In particular, (g7, , o0 gf)(y) = ¢ (y) and (g, o+~ 0 gf)(y) = ¢ (y). By
Lemma 2.1(3) and Theorem 4.5(3), we have

n—1
ltn =t < > Lin(Ti)d((g, _, o+~ 0 g7)(®), (9,_, o 0 9)(¥)
k=0
1 L1 S _xinita) Apg
< d(\IJIU (y),\IJIU 8) Z € 2 < w L eKp.
R
Since [|d(gf,_, © - © g Jywll = @' ngl and |ld(gz, , o -+~ 0 gz )y w'll = [| @0 ), it
. [@tnns ] @] [ @tnndll
follows from Theorem 4.5(4) and estimate (2.1) that H‘Pt"njj/\l = H<I>t/nn:y,|\ . ||<I>t"njy;,\| =

eF Qo) +4p) — o260 Now we interpolate this estimate. Given ¢ > 0, let n such that
tn <t <tpt1. Since |tp41 — tn| < p, using estimate (2.1) again gives that

ll2¢ng I @yl e mngll (@ 0y _ otlp
[®*ny = [@tnngll  [[@tnns, | [[®n2, ] '

This implies that ;((5)) = eE1%. Since y' € V is arbitrary, Lo := sup,cy s(y) < +o0.



J. Buzzi et al. / Advances in Mathematics 479 (2025) 110410 47

The next step is to prove that s(xz) < 4+o00. Recalling that V € .#°(vy) = A *(vn, ),
define Vi := (F5, 4, 0 F5 0, 0 0TS )[V]. By Section 4.2, (Vi)i>0 converges in
the C* topology to V*[v]. In other words, if G is the representing function of V*[v] and
Gy, is the representing function of Vj, then (Gg)r>o converges to G in the C'" topology.
Writing = U, (¢, G(t)), let 2, = U, (¢, G(t)) € Vi and yi, = (g;n » o gt ) (k).

By Theorem 4.5(2), we have y; € V and so s(yx) < Lg. Consider the ratio Ey") which is

bounded by s(inoo) Since zy = x,, by our choice of ny, we can apply Lemma 6.2 along the

sequence of edges vg — v; — - -+ — vy, . We obtain that 65“; < max {e\/_ S(Lz%) } =: L.

Since @ is continuous and n3, — n; as k — +o0, for every T' > 0 we have

T T
464’3/62”“@%;”2& < limsupéle‘lp/62’<t||<13t77f2k||2 < s(z)? < L3s(x0)?.

k—+4o00
0

Taking T' — 400, we conclude that s(x) < Lys(z).

Now we prove that lim inf 2log [|®ng|| > 0. Let t,, = 7, (v) (see before the statement

of Theorem 6.1 for the deﬁmtlon of rn(v)). For n > 0, we have 0 < —t_,, < nsup(ra),
hence it is enough to prove that hm}rnf Llog ||@f-"ni|| > 0. This can also be done as
n—-+0oo

in the case of diffeomorphisms, as follows The second estimate of Theorem 4.5(3) gives
that [[ @7 Cnz | < 8|C(ao) !l
G_p(x) = w[o™"(v)], we get that

“z2 ™ for every n > 0. Applying this to o~ (v) and

inf(rp)
[otrns| = @t mng ol 2 LClaoy) YT 2

_n(x) |

Since [|C(z_p) "7t > Q(x—n)l%

B
2

> (p%, AP, % 2 (727 pf Ap) T2, we have that

hmlnf Llog || ®'—ns| > X‘“f(”\) — %7
which is positive if € > 0 is small enough. [

2. Control of a(an), s(n), u(wn), Q(wn)

We now prove parts (2)—(4) of Theorem 6.1. Part (2) follows directly from 4.7(2),
as follows: since @) (z) = 7r[0 (v)] is the intersection point of a s—admissible and a
u—admissible manifold at \IIZZ ™ we have

sin a(xy, B/4 rn(V s U
omale) = =D and [ cos a(wa) — cosalp™ @ ()] < 205 A pk)P.

Now we proceed to control s(z,) and u(zy,).

Proposition 6.4. The following holds for all0 < e K p < 1. Ifv = {\I/p"’p" nez € X7
and x = m(v) then for alln € Z:
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S(JJn) — i\/E u(wn) _ i\/g
Sen@y — ¢ ey =€

Proof. When M is a compact surface and f is a C'*# diffeomorphism, this is [36, Prop.

7.3], and our proof follows the same methods. To ease notation, write z, = ™ (9)(37),
n € Z. We sketch the proof for the first estimate:

o By Proposition 6.3, 7[~#] ¢ NUH hence s(z) < oo.
o As in Claim 1 of [36, Prop. 7.3], there is £ > /¢ and a sequence ny — 400 such that

$(Tny) _ 4¢
S(zn:) = e™5.

o Since g, (2n) = Zn—1, we can apply Lemma 6.2 along v and the points z,: if v, = v

for infinitely many n > 0, then the ratio improves at each of these indices.

The conclusion is that 3Zn) — ¢*VE for alln € Z. 0O

S(Zn)
Part (4) is consequence of parts (2) and (3). Remind that

‘ - : ~12/p
Q(z) == ¥8||C(a) Y52/ = /8 (M) '

| sin ()|

By part (2), % = e*VE. By part (3), 7%% = ¢*Ve. Therefore
[C(xn) " lrvon _ +2v/E Q) _ ICE) i 24 o _ 3
”C(Z(”)L)._l”FrObu_ € h’ and S0 Q(Zn) - ”C(zn),lugrti/ﬁ - exp[i B \/g] - eXp[:l:\/g] When
€ > 0 is small enough.

6.3. Control of ps, p¥

Up to now, we have proved that z € NUH and Parts (1)—(4) of Theorem 6.1. Now
we prove Part (5). In particular, it follows that z € NUH”. We continue to write
zy = @@ (x), as in the previous section. The control of pi/ “ consists on proving
that it is comparable to p*/“(2,). To have the control from below, we will use that
{\Ilfcfz’p Z}nEZ € Y% implies that the parameters pf/ “ are almost maximal infinitely often.
Proposition 3.6(3) is the statement of maximality for p*/%(z,). The statement for py*

is in the next lemma. For simplicity of notation, write Ty, = T (v, Vk+1)-

Lemma 6.5. If {\Ilﬁ’pz}nez € X% then min{e*mps_ |, e cQ(z,)} = e “eQ(xn) for
infinitely many n > 0, and min{ecTrp¥ e °cQ(zns1)} = e °cQ(zny1) for infinitely
many n < 0.

Proof. The strategy is the same used in the proof of Proposition 3.6(3). We prove the first
statement (the second is identical). By contradiction, assume that there exists n € Z such
that min{esTf‘{pf\,Jrl, e “eQ(an)} = e TNp3y,, for all N > n. By (GPO2), it follows that
py > esIN=Pr)ps,  forall N > n. Let A = exp[e!®], then e(Ty —pj) > e(inf(ra)—¢) >
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Awhen e > 0 is sufficiently small. Hence py > Ap3, for all N > n, and so p;, > )\N_”pﬁ’v

for all N > n. This is a contradiction, since p}, < € and limsuppy, > 0. O
N—+oco

Now we prove Theorem 6.1(5). We will prove the statement for p? and p®(z,) (the
proof for p¥ and p“(z,) is identical).

Step 1. p5 > e~ VEps(z,) for all n € Z.

We divide the proof into two cases, according to whether n satisfies Lemma 6.5 or not.
Assume first that it does, i.e. min{e*"p5 ,, e “eQ(xz,)} = e “eQ(z,). By (GPO2), we
have p$ > e~*Pre~%cQ(z,,) > e~ %cQ(z,,). By Theorem 6.1(4), we get that

Py > 6_285Q(mn) > 6_25_0(\/5)562(271) > 3_2E_O(ﬁ)ps(zn) >e %ps(zn)~

Now assume that n does not satisfy Lemma 6.5. Take the smallest m > n that
satisfies Lemma 6.5. Hence Inin{eET’q)Z_|r17 e ceQ(zr)} = eETkpz+1 fork=mn,...,m—1.
By (GPO2), we get that p; > eE(T’C_”i)pz+1 > Apj 4, for k =mn,...,m — 1. Therefore
pi < Akps for k =n,...,m—1. Writing Ay, = (tg41—tx) — Tk > 0, this latter estimate
gives two consequences:

m—1
o Z Py, < &: indeed,
k=n
m—1 m—1 1
—k 3 315
szgprZ)\” Séﬁl_—)\_l<25[’ <eg,
k=n k=n

1.5
: : e —
since lim 55— = 1.

e—0
m—1
o Z A} < e:since the transition time from xj, to x4 is 2-Lipschitz (Lemma 2.1(3)),
k=n
we have
m—1 m—1
3
Z Ay <4 ZPZ <851 <.
k=n k=n
Using that pj > es(Te=Pilps | = es@itAu)estteni=tilps | for k =mn,....m — 1, we

conclude that

m—1 m—1
P >exp |—e > ph—e > AgleftnTtpy
k=n k=n

> exp [—252 —2e — 0(Ve)] eStm=t)ps (2 ) > e %ps(zn),

where in the last inequality we used Proposition 3.6(2).
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Step 2. p°(z,) > e~ Veps for alln € Z.

The motivation for this inequality is that p®(z,) grows at least as much as p$, since
p®(2n) satisfies the recursive equality p®(z,) = min{ec(tn+1=t)p (2, 1),eQ(2,)} while
by (GPO2) we have the recursive inequality p; < min{e*""p3 ,,,eQ(2,)} and t,41—t, >
T,.. For ease of notation, let n = 0 (the general case is identical). By the above recurve
equality and inequality, we have

p*(20) = einf{e*"Q(z,) : n > 0} and p§ < einf{es o+ +T-0)Q(z,) : n > 0}.

n—1 n—1
Using Part (4) and that ¢, = > (tk41 — tx) > Y. Tk, we conclude that
k=0 k=0

p°(20) = einf{e" Q(z,) : n > 0} > e~ Veeinf{es ot +Tn-1)Q(z,) : n > 0} = e~ Vp3.
Steps 1 and 2 conclude the proof of Part (5). In particular, since {\If];i"pz}nez € X it
follows that € NUH?,

6.4. Control of U1 oW,

In the case of diffeomorphisms, this is [36, Thm. 5.2], whose idea of proof is the
following: if v = {\Ilf;z’pz}nez,g = {\Ilg/jj’qz nez € Y7 with 7(v) = 7(w) = x, then
the parameters of \Iﬂ;’i’” " and \Ilgi’qz are comparable, hence \Il;nl oW, is close to £Id.
In our case, we know that 2 € NUH?, hence the Pesin charts along the orbit of z are
well-defined. By parts (1)-(5), the parameters of 297 and ¥% ") are comparable,
therefore we can apply the same proof of [36, Thm 5.2] to conclude that both \IJ;(} oV,
and U1 o W, can be written in the form (—1)°v + § + A(v) for v € R[10Q(z)], where
o € {0,1} and A is a vector field such that A(0) = 0 and ||dA]|co < ¥/ on R[10Q(z)].
The proof will be complete once we estimate ||d]|.

Assume that (¥, ! o ¥,)(v) = (=1)7v + 6 + A(v) as above, and write p = p§ Ap§. By
Lemma 4.7(1), x = ¥, (n) for some n € R[10~2p]. In particular ||| < 1072y/2p < 50~ p.
Since ¥, (0) = z, taking v = 0 we conclude that n = d, hence ||| < 50~ p. Similarly, if
U loW, =(-1)v+6+ A(v) then v =7 gives 0 = (=1)7n + J + A(n) and so

1811 < llnll + 1AM < (1 + [[dA]lco)|lnll < (1+ ¥/£)1072v2p < 50~ 'p.
7. A countable locally finite section
Up to now, we have:

o Constructed a countable family 27 of e-double charts, see Theorem 5.1.

o Letting 3 be the TMS defined by ./ with the edge condition defined in Section 4.1,
we constructed a Holder continuous map 7« : ¥ — A that “captures” all orbits in
NUH?, see Propositions 5.2 and 5.3. The map 7 is defined as {r(v)} := V*[]NV*[u].



J. Buzzi et al. / Advances in Mathematics 479 (2025) 110410 51

o Although 7 is not finite-to-one, we solved the inverse problem by analyzing when 7
loses injectivity, see Theorem 6.1.

We now use these information to construct a countable family 2 of subsets of A with
the following properties:

o The union of elements of %2, from now on also denoted by %, is a section that
contains A N NUH.

o Z is locally finite: each point x € 2 belongs to at most finitely many rectangles
ZeZ.

o Every element Z € & is a rectangle: each point x € Z has invariant fibers W*(z, Z),
W (z,Z) in Z, and these fibers induce a local product structure on Z.

o % satisfies a symbolic Markov property.

In this section, all statements assume that 0 < ¢ < p < 1, so we will omit this informa-
tion.

7.1. The Markov cover Z
Let & :={Z(v) : v € &}, where
Z(v) = {n(v) : v € ¥ and vy = v}.

In other words, 2 is the family of sets induced by 7 under the natural partition of X%
into cylinders at the zeroth position. Using admissible manifolds, we define invariant
fibers inside each Z € . Let Z = Z(v).

$/u~FIBRES IN Z: Given z € Z, let W*(z,Z) := V*[{v,}n>0] N Z be the s—fiber of z
in Z for some (any) v = {v}nez € 7 such that 7(v) = z and vy = v. Similarly, let
W¥(z, Z) := V*[{vn}n<o] N Z be the u—fiber of z in Z.

By Proposition 4.9, the above definitions do not depend on the choice of v, and any two
s—fibers (u—fibers) either coincide or are disjoint. We also define V*(x, Z) := V*[{vy, }rn>0]
and V¥%(x,Z) := V¥[{vy }n<o]. We can make two distinctions between V*/%(z, Z) and
W/t (z, Z):

o Vs/%(z, Z) are smooth curves, while W*/%(x, Z) are usually fractal sets.
o V&/%(x, Z) are not subsets of Z, while W*/%(z, Z) are.

7.2. Fundamental properties of %

Although % is usually a fractal set (and hence not a proper section), we can still
define its Poincaré return map. Indeed, if z = 7(v) € 2 with v € X# then ™ @ (z) =
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mlo™(v)] € Z for all n € N. Define ry : 2 — (0,p) by re(x) := min{t > 0: p'(x) €

THE RETURN MAP H: It is the map H : 2 — % defined by H(z) := ¢"% (x).

Below we collect the main properties of Z.

Proposition 7.1. The following are true.

(1) COVERING PROPERTY: % is a cover of A\ NUH?.
(2) LOCAL FINITENESS: For every Z € &,

#Z ez | |JH'Z|NZ #£0) < cc.

In|<1

(3) LOCAL PRODUCT STRUCTURE: For every Z € & and every x,y € Z, the intersection
We(x, Z) N W¥(y, Z) consists of a single point, and this point belongs to Z.

(4) SymMBoOLIC MARKOV PROPERTY: If x = w(v) € Z with v = {va}nez =
{WhnPny ez € BF then

9ae (W* (2, Z(v0))) C W(gy,(2), Z(v1)) and
9o, W (92, (2), Z(v1))) € W (2, Z(v9))-
Before proceeding to the proof, we use part (3) to give the following definition: for

x,y € Z, let [z,y]z = intersection point of W*(z,Z) and W*(y, Z), and call it the
Smale bracket of x,y in Z.

Proof. We have 2 = 7[~#]. Since 7[X#] > ANNUH?* by Proposition 5.2(3), it follows
that 2 contains A N NUH#. This proves (1).

(2) Write Z = Z[¥2 »"], and take Z’ = Z[¥4"7"] such that

U H"Z] | nZ #0.

In|<1

We will estimate the ratio 2:22’: . By assumption, there is z € Z such that 2’ = H"(x) €

Z' for some |n| < 1. Let v € # with vy = U2 P" such that = = 7(v). Recalling that
p*/(x) = p¥/*(x, T,0) for T = {R,,(v)}nez, the following holds:

o x € Z, hence by Theorem 6.1(5) we have pf(;) = ¢+ V% and pfé;) = ¢*V% and so
% = ¢+ V. By Proposition 3.6(1), we have % = 9. The conclu-

sion is that ZARY — o*(VE+9)
q(z)
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o 7’ € Z', hence by the same reason q;(/;‘}; = t(Ve+9),

+2¢

o 1/ = ¢t(x) with |[t| < 2p, hence by Lemma 3.4 we have ;1((;,)) —e

Altogether, we conclude that % = eﬂ(\g'/g“‘a"’f’)7 and so

Zex: | | HMZ|nZ #£0;p c{u 7" € o : (¢"Ng") = e 2V (prpph) )
n<1

By Theorem 5.1(1), this latter set is finite.

(3) We proceed as in [36, Prop. 10.5]. Let Z = Z(v), and take z,y € Z, say © =
m(v),y = m(w) with v,w € B#, where v = {v,}nez = {¥2,"" }rez and w = {w, }nez =

{WmY, ez with vy = wo = v. We let z = 7(u) where u = {u, },cz is defined by

Vp ,n >0
Uy =
w, ,n < 0.
We claim that {z} = W%z, Z) N W¥%(y,Z). To prove this, first remember that
Ve{untn>0] N V*[{un}n<o] intersects at a single point (Lemma 4.7(1)), and that z

belongs to such intersection. Therefore, it is enough to show that z € 7[X#], which is
clear since u € I#.

(4) Proceed exactly as in [36, Prop. 10.9]. O

Let Z = Z(v),Z' = Z(w) where v = W2 2" o = \I!gs’qu € &, and assume that
ZNl=20:201 7' £ (). Let D, D' be the connected components of A such that Z ¢ D and
7' ¢ D'. We wish to compare s—fibers of Z with u—fibers of Z’ and vice-versa. To do
that, we apply the holonomy maps qp and qp/. Given z € Z,2' € Z’, define

{[2.2)2} == V*(:,2) Nap[V*(, 2)]
{212} = ap [V* (2, 2) N V(< Z').

The next proposition proves that [z, 2]z and [z, 2’] 2/ consist of single points, and some
compatibility properties that will be used in the next section.

Proposition 7.2. Let Z = Z(v),Z' = Z(w) where v = WP P o = \I/gs’qu € o, and
assume that Z N 20201 7" £ (. Let D, D’ be the connected components ofK such that
Z C D and Z' C D'. The following are true.

(1) apr o WL (R[5(p* A p)]) C Wy (R[g" A g™).
(2) If z € Z with 2’ = qp:(2) € Z', then qp/[W*/"(2, Z)] Cc V3/*(2', Z").
(3) If z€ Z,2' € Z' then |z,7]|z, [z,7']|z are points with |z,2'|z = qp([z, 2] z/).
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When M is a compact surface and f is a diffeomorphism, this is [36, Lemmas 10.8
and 10.10]. A very similar method of proof works in our case: Theorem 3.8 also works
when we change g;F to qps, so we can control the composition \I/;l oqpro¥,. The details
are in Appendix A. We will also need more information regarding the Smale product of
nearby charts.

Proposition 7.3. Let Z, 7', Z" such that Z N @l=2r201 7" £ O, Z 0 pl=20201 7" L, and
let D be the connected components of A such that Z C D. Assume that 2’ € Z' such that
©'(2") € Z" for some |t| < 2p. For every z € Z, it holds

2,21z = [2,¢" ()] z-

Note that [z, 2]z is defined by Z, Z’ while [z, p!(2")] 7 is defined by Z, Z". The equality
shows a compatibility of the Smale product along small flow displacements. It holds
because such displacements barely change the sizes of invariant fibers, hence the unique
intersection is preserved.

8. A refinement procedure

Up to now, we have constructed a countable family 2 of subsets of A with the
following properties:

o The union of elements of &, from now on also denoted by %, is a section that
contains A N NUH?.

o Z is locally finite: each point z € 2 belongs to at most finitely many rectangles
zZeZ.

o Every element Z € & is a rectangle: each point « € Z has invariant fibers W*(z, Z),
W¥(z,Z) in Z, and these fibers induce a local product structure on Z.

o % satisfies a symbolic Markov property.

In this section, we will refine 2 to generate a countable family of disjoint sets & that
satisfy a geometrical Markov property. We stress the difference from a symbolic to a geo-
metrical Markov property: by Proposition 7.1(4), g;co satisfy a symbolic Markov property;
our goal is to obtain a Markov property for the first return map H. In general the orbit of
= can intersect 2 between z and g (), in which case we will have that g (z) # H(x).
Therefore the symbolic Markov property of Proposition 7.1(4) does not directly translate
into a geometrical Markov property for H. To accomplish this latter property, we will use
a refinement procedure developed by Bowen [7], motivated by the work of Sinal [37,38].
The difference from our setup to Bowen’s is that, while in Bowen’s case all families are
finite, in ours it is usually countable. Fortunately, as implemented in [36], the refinement
procedure works well for countable covers with the local finiteness property, which we
have by Proposition 7.1(2).
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8.1. The partition X
We first see that the map gj{o can be deduced from H by a bounded time change.

Lemma 8.1. There exists N > 1 such that for any x = w(v) € & there exists 0 <n < N
such that g} () = H™(x).

Proof. We have gf (z) € Z, so g} (z) = H"(x) for some n > 0. Remember that

A= Ui, D; is a proper section of size p/2 (see Section 2 for the deﬁmtlons) In particular
inf(rz) > 0. Since 2 C A, every hit of  to 2 is also a hit to A. Writing gxo( z) = ¢'(z)

for some ¢t < p, we conclude that ninf(r;) < ¢ < p, therefore n < [ . We thus

define N := [mf(r )—‘ +1. O

inf(ry)

Therefore Proposition 7.1(4) implies that for every x € 2 there are 0 < k,/ < N
such that H*(x) satisfies a Markov property in the stable direction and H~*(z) satisfies
a Markov property in the unstable direction.

At this point, it is worth mentioning the method that Bowen used to construct Markov
partitions for Axiom A flows [7]:

(1) Fix a global section for the flow; inside this section, construct a finite family of
rectangles (sets that are closed under the Smale bracket operation). Let H be the
Poincaré return map of this family.

(2) Apply the method of Sinal of successive approximations to get a new family of
rectangles Z with the following property: if H is the Poincaré return map of &, then
for every x € Z there are k, ¢ > 0 such that H”(z) satisfies a Markov property in the
stable direction and H~‘(z) satisfies a Markov property in the unstable direction.
In addition, there is a global constant N > 0 such that &k, ¢ < N.

(3) Apply a refinement procedure to Z such that the resulting partition % is a disjoint
family of rectangles satisfying the Markov property for H.

The attentive reader might have note that, so far, we did implement steps (1) and (2)
above, with the difference that while Bowen used the method of successive approxima-
tions, we used the method of e—gpo’s. It remains to establish step (3), and we will do
this closely following Bowen [7].

For each Z € &, let

s7:={2 ez prrlznz 20},

By Theorem 6.1, %7 is finite. Let D be the connected component of A such that Z C D.
By continuity, having chosen the discs D; small enough the following property holds:

If Z' € 7y then Z' C 720201, (8.1)
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Therefore qp(Z’) is a well-defined subset of D. For each Z' € .z we consider the
partition of Z into four subsets as follows:

Eyy ={a € Z Wz, Z)Nap(Z') # 0, W"(z, Z) Nqp(Z') # 0}
EY, ={z€Z :W(z,Z)Nap(Z') #0,W"(z,Z) Naqp(Z’) = 0}
EYy, ={z€Z Wz, Z)Nap(Z') =0, W"(z,Z) N aqp(Z') # 0}
EY, ={zeZ:W(z,Z)Nap(Z') =0, W"(z,Z)Naqp(Z') = 0}.

Call this partition Pz, 7/ := {Ey',,, E5 ., EY', EY . }. Clearly, B3, = Z N qp(Z').
THE PARTITION &7%: It is the coarser partition of Z that refines all of Py z/, Z' € F5.
To define a partition of 2, we define an equivalence relation on 2.

N . N .
EQUIVALENCE RELATION ~ ON %: For z,y € %, we write x ~ y if for any |k| < N:

(i) Forall Z € 2: H*(z) € Z & H*(y) € Z.
(ii) For all Z € 2 such that H*(z), H*(y) € Z, the points H*(x), H*(y) belong to the
same element of &5.

Clearly X is an equivalence relation in 2, hence it defines a partition of Z. Before
proceeding, let us state a fact that will be used in the sequel: if z X y withz € Z =
Z(\Pgi’pg) € Z, then there exists [k| < N such that g} () = H*(z) and g (y) = H* ().
To see this, write © = 7(v) with vy = \Dié”’g, and let D’ be the connected component of
A with Z(v1) C D'. On one hand, g (y) = qp(y). On the other hand, since H*(z) €

Z(v1) C D' for some |k| < N, the definition of X implies that H*(y) € Z(v;) C D,
hence H*(y) = qp/(y). A similar result holds for g, .

THE MARKOV PARTITION Z: It is the partition of 2 whose elements are the equivalence
N
classes of ~.

By definition, & is a refinement of 2.

Lemma 8.2. The partition % satisfies the following properties.

(1) Forevery Z € %, #{R€ #: R C pl=7P1Z} < 0.
(2) For every RE R, #{Z € Z : RC pl=rP1Z} < .

Proof. (1) Start noting that, for every Z € &, #{R € % : R C Z} < 4#“7_ Hence

#ReR:RC P2y < Y #{Re#Z:RCZ}< Y 4#77 <40

zZ'e Iy zZ'e Iy

since the last summand is the finite sum of finite numbers.
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(2) For any Z’ € 2 such that Z' O R, we have {Z € & : R C pl=r/1Z} C 77 Since
each #z is finite, the result follows. [

8.2. The Markov property

The final step in the refinement procedure is to show that % is a Markov partition
for the map H, in the sense of Sinai [38].

$/u~FIBRES IN %Z: Given x in R € #, we define the s—fiber and u—fiber of x by:

We(x,R):= (] V'(z,2)nR, W"x,R):= ()] V“Z)NR
ZeEX:ZOR ZeEX:ZOR

By Proposition 4.9, any two s—fibers (u—fibers) either coincide or are disjoint.

Proposition 8.3. The following are true.

(1) PrRODUCT STRUCTURE: For every R € % and every x,y € R, the intersection
Wé(z, R) N W"(y, R) is a single point, and this point is in R. Denote it by [z, y].
(2) HypPERBOLICITY: If z,w € W#(x, R) then d(H"(z), H"(w)) — 0, and if z,w €
Wu(z, R) then d(H"™(z), H"(w)) —— 0. The rates are exponential.
n——oo
(3) GEOMETRICAL MARKOV PROPERTY: Let Ro, Ry € Z. If v € Ry N H™'(R;) then

H(W?#(z, Rog)) € W*(H(z),Ry) and H '(W"(H(z),Ry)) C W*(z, Rp).

Proof. The sets R € # are defined from the sets Z € 2 and the partitions &7. By
Proposition 7.1 and by the definition of the partitions &2z z/, each Z and each ele-
ment of &7 is a rectangle. Note that rectangles are preserved under the holonomy maps
qp, and that rectangles contained in a same disc D; are preserved under intersections.
Consequently the sets R € & are also rectangles and so part (1) follows. Part (2) is a
direct consequence of the properties of the stable and unstable manifolds obtained in
Theorem 4.5(3). It remains to prove part (3).

Fix Ry, R1 € Z and x € RyNH ~1(Ry). We check that H(W*(z, Ro)) C W*(H (x), R1)
(the other inclusion is proved similarly). Let y € W*(z, Ry). By Proposition 7.2(2) and
the definition of W*(H (z), R1), it is enough to check that H(x) K H(y). Since z A y, we
already know that H*(z), H*(y) satisfy the properties (i) and (ii) defining the relation
N when —N < k < N, hence it is enough to prove that this is also true for k = N + 1.
The property (ii) for k = N says that HY (x), H" () belong to the same elements of the
partitions &7. We claim that this implies that H¥ 1 (z), HN*1(y) belong to the same sets
7 € Z, which gives (i) for k = N + 1. To see this, let Z’ € 2 such that HN*1(z) € Z/,
and let D’ be the connected component of A that contains Z'. Let Z € & containing
HN (), HY (y). Noting that H" (x) € E3",,, it follows from property (i) for k = N that
HN(y) € B3y, hence qp/ (HN (y)) € Z'. 1 qp/ (H (y)) = HN*!(y), the claim is proved.
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If not, there is Z” € 2 such that HN*1(y) € Z”, and so repeating the same argument
with the roles of x,y interchanged gives that qp~(H™ (z)) € Z"”, a contradiction since
the time transition from Z to Z” is smaller than time transitions from Z to Z’. Hence
property (i) for k = N +1 is proved, and it remains to prove property (ii) for k = N + 1.
Let Z € & be a rectangle which contains HV+1(x), HN*1(y) and let D be the con-
nected component of A that contains Z. We need to show that HN+1 (z), HNT1(y) belong
to the same element of &7. We first note that W*(HN*1(z), Z) = W*(HN*1(y), Z): since
x,y belong to the same s—fiber of a rectangle in £, this can be checked by applying
Proposition 7.2(2) inductively. In particular, we have the following property:

VZ' € Sz, WHNTY2),Z)Nqp(Z') # 0 <= W (HNT(y), Z)Nqp(Z') # 0. (8.2)

We then prove the analogous property for the sets W*(HN*Y(z), Z), W*(HN*1(y), Z).
In Fig. 2 we draw the points we will define below.

Let us consider Z' € .#7 and assume for instance that W*(HN*1(x),Z) N qp(Z’)
contains a point z (the case when W*(HN*1(y),Z) N qp(Z') # 0 is treated analo-
gously). Write HNH1(z) = 7(v) with v = {v,, }nez = {\Ilgi’pz}nez € X% and Z = Z(vy).
By Lemma 8.1, there exists 0 < k < N such that the point & := H’(z) coincides
with 7[o~1(v)]. The rectangle Z := Z(v_;) contains . The symbolic Markov prop-
erty in Proposition 7.1(4) implies that the image of W"(Z, Z) under g = contains
W (HN*Y(z), Z), hence the point z. In particular, the backward orbit of z under the
flow intersects W*(Z, Z ) at some point z.

By the definition of z and Property 8.1, we have ¢®(z) € Z’ for some |s| < 2p,
thus we can write ¢*(2) = 7(w) with w = {wp}nez € % and Z’ = Z(wy). Since
all transition times of holonomy maps are bounded by p, necessarily the piece of orbit
©l0P1(Z) contains some [0 (w)] with b > 1. Let b > 1 and 0 < 5 < p with n[o~%(w)] =
©*(Z). Consequently the rectangle 7' = Z(w_y) belongs to .#5. Moreover, z belongs to
the intersection between W*(%, Z) and q 5(2’ ), where D is the connected component of
A containing Z.

By the induction assumption, the point 7 := H¥(y) also belongs to Z and to the
same element of the partition & 7, as . Since W"(z, Z) intersects qf)(Z’), the u—fiber

Wu(3, Z) intersects it as well at some point 7. Note that [z,t]; = [2,7]; also belongs
to W(y, Z) and to qﬁ(Z’) (this latter property follows from Proposition 7.2(3), noting
that Z,£ € ZN qE(Z’)), hence we can replace ¢ by any point in W*(7, Z) N qﬁ(é'). Take
%V = [E, :Ij] Z- _ - _

Let 0 < r < 2p such that ¢"(t) € W*(¢*(Z),Z’). The symbolic Markov property
in Proposition 7.1(4) then implies that its forward orbit under the flow will meet the
rectangles Z(w_p),. .., Z(wp).

Note that Z € Z = Z(v_1) and z = g5 (%) € Z = Z(vg). The same property holds
for § and HVT(y) = g}  (y) since the points H'(z) and H'(y) belong to the same
rectangles in & for each ¢ = k,..., N + 1. Using Proposition 7.2(3), it follows that
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Z/
©°(2) = m(w)
[z, HN 1 (y)] 2
- /
z ap(Z')
HNT(y) HV(z) = n(v)
z [/
'Z/
Lp ~ ~
u e'(t)  ©8(z) =m0 (w)]
: / ~
z q5(2")
Z y=Hky) T =fi*(x) = 7[o (v)]

Fig. 2. Proof of the Markov property.

the image of = [Z,3]; by g7, belongs to Z and coincides with the Smale product

[2, HN* 1 (y)] 2.
The properties found in the two previous paragraphs imply that W*(HN*1(y), Z)
intersects qp(Z’) at a point of the orbit of ¢, contained in W#(z, Z). In particular, the

intersection W*(HN*1(y), Z) N qp(Z’) is non-empty. We have thus shown:
VZ'e Sz, WU(HNTY2),Z)qp(Z') #0 <= W (HN T (y), Z)Nqp(Z’) # 0. (8.3)
Properties (8.2) and (8.3) mean that HV*1(x) and HV*!(y) belong to the same element

of & for any rectangle Z € 2 containing HV*!(z), HN*+1(y). This concludes the proof
that H(x) N H(y), and of part (3) of the proposition. [
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9. A finite-to-one extension

In this section, we construct a finite-to-one extension and deduce the Main Theorem.
We rely on the family of disjoint sets # satisfying a geometrical Markov property. This
family was obtained in the previous section as a refinement of the family 2 constructed
in Section 7, which was itself induced by the coding 7 introduced in Section 5.2. One
important property of Z is that, due to the inverse theorem (Theorem 6.1), it satisfies a
local finiteness property, see Proposition 7.1(2). Having these facts in mind, we construct
a symbolic coding of the return map H.

9.1. A detailed statement

The theorem below implies the Main Theorem and includes additional properties that
will be useful for some applications, including the one we will obtain in Section 10. We
begin defining a Bowen relation for flows. This notion was formalized for diffeomorphisms
n [10], and the following is an adaptation for flows. We refer to [15] for a discussion on
the notion, and in particular on the non-uniqueness of such a relation.

Let T, : S, — S, be a suspension flow over a symbolic system S that is an extension
of some flow U : X — X by a semiconjugacy map 7 : S, — X, i.e. Ul o = moT! for
all t € R.

BOWEN RELATION: A Bowen relation ~ for (T, m,U) is a symmetric binary relation on
the alphabet of S satisfying the following two properties:

(i) Vw,w" € S, m(w) =7(w') = v(w) ~ v(w'), where v(x,t) := ¢ for x € S
(ii) 3y > 0 with the following property:

Vw,w' € Sy, [Vt ER, v(Tiw) ~ v(Tiw')] = [3lt| < v, 7(w) = U (r(w"))] .

Theorem 9.1. Let X be a non-singular C**8 vector field (3 > 0) on a closed 3-manifold
M. Given L X > 0, there exist a locally compact topologzcal Markov flow (Er, o) with graph
G = (V E) and roof function 7 and a map T7 : Z — M such that 77 0 5L = @' o 75, for
allt € R, and satisfying:

(1) 7 and 77 are Hélder continuous.

(2) %y[i?#] = NUH# has full measure for every x—hyperbolic measure; for every ergodic
x —hyperbolic measure u, there is an ergodic Gr—invariant measure [i on i; such that
Fo7:' = p and hy(G7) = hu(p).

(3) If (R,t) € if# satisfies R, = R and R,, = S for infinitely many n < 0 and m > 0,
then Card{z € if :7r(2) = Tr(R, 1)} is bounded by a number C(R,S), depending
only on R, S.

(4) There is A > 0 and for x € /71:?(2?) there is a unique splitting N, = N @& N such
that:
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limsup +log [[®|n:]| < —A  and liminf log ||®~"|n:[| > A
z t—+o0 ®
t—+4o0

> A

lim sup % log |~ |null < =X and  liminf { log [|®|yu
t——00 * t—+oo “

The splitting is ®—equivariant, and the maps z — N;{é) are Holder continuous on

S
(5) For every z € S, there are C' submanifolds V°(2),V%(z) passing through x :=
77(z) such that:
(a) T,V(2) = N+ R-X(x) and T,V (2) = N* + R - X ().
(b) For all y € V3(2), there is T € R such that d(¢*(x), o7 (y)) < e M, V¢ > 0.
(c) Forally € VU(z), there is T € R such that d(p~!(x), o 7 (y)) < e, Vt > 0.
(6) There is a symmetric binary relation ~ on the alphabet v satisfying:
(a) For any R eV, the set {S € V : R~ S} is finite.
(b) The relation ~ is a Bowen relation for (o7, 7?;|§?,<p).
(7) There exists a measurable set # with a measurable partition indexed by YA/, which we
denote by {R: R € V}, such that:
(a) The orbit of any point x € NUH? intersects Z.
(b) The first return map H: %Z — X induced by ¢ is a well-defined bijection.
(c) For any x € #, if R = {Rp}nez satisfies H"(x) € R,, for all n € Z, then
(R,0) € £ and 7+(R,0) = .
(8) For any compact transitive invariant hyperbolic set K C M whose ergodic

p—invariant measures are all x—hyperbolic, there is a transitive invariant compact
set X C X7 such that 77(X) = K.

Part (6) provides a combinatorial characterization of the noninjectivity of the coding.
It is an adaptation for flows of the Bowen property, which was introduced in [10] for
diffeomorphisms and motivated by the work of Bowen [9]. Note that, in contrast to [9],
we do not claim that the flow restricted to %;[if] is topologically equivalent to the
corresponding quotient dynamics.

The relation ~ will be the affiliation, which will be introduced in Section 9.3, following
a similar notion introduced in [36]. Note that the assumption [v(G4(2)) ~ v(%(z')) for
all t € R consists of countably many affiliation conditions: if z = (R, s) and 2’ = (S, s),
then varying ¢ in the interval [7,,(R), 7,41 (R)) provides i < Siilf’((g) affiliations of the form
Ry ~ Sty -y Ry ~ S

Part (7) provides for any = € NUH? a particular pair (R, t) € if such that T(R,t) =
x (here t is the smallest non-negative number such that o ~t(z) € #Z). We call the pair
(R,t) the canonical lift of . This is a measurable embedding of NUH# into 3;.

Part (8) is a version of [17, Proposition 3.9] in our context, and the proof is very

similar, see Section 9.4.
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9.2. Second coding

Let 4 = (‘A/, E) be the oriented graph with vertex set V = % and edge set E = {R—
S:R,S€Zst. HR)NS # 0}, and let (5,5) be the TMS induced by 4. We note
that the ingoing and outgoing degree of every vertex in S is finite. We show this for the
outgoing edges, since the proof for the ingoing edges is symmetric. Fix R € %, and fix
Z € % such that Z D R. If (R, S) € E then ¢l®’)(R) N S # 0, hence for any Z' € &
with S C Z’, we have Z’' € .#z. In particular,

#(RS)eEY< Y #{Se#:SCZ}<+x,
Z'e Iy

since both .#z and each {S € # : S C Z'} are finite sets (see Lemma 8.2(1)).
For £ € Z and a path R,, — -+ — R, on ¢ define

([Rms- .. Rp] = H *(Ry)N---nH==m)(R,),

the set of points whose itinerary under H from ¢ to ¢ + (n — m) visits the rectan-
gles Ry,,..., R, respectively. The crucial property that gives the new coding is that
¢[Rm, - -, Ry] # (0. This follows by induction, using the Markov property of 2 (Propo-
sition 8.3(3)).

The map 7 defines similar sets: for £ € Z and a path v, — --- = v, on X, let

Zolom,y - yvn] = {m(w) :w € Y% and wp = vy, . . . Wit (n—m) = Un}-

There is a relation between these sets we just defined. Before stating such a relation, we
will define the coding of H, and then collect some of its properties.

THE MAP 7 : & — M: Given R = {Ry}nez € &, 7(R) is defined by the identity

(7F(R)} = () —a[Bon.-- -, Ral.

n>0

Note that 7 is well-defined, because the right hand side is an intersection of nested
compact sets with diameters going to zero. The proposition below states relations be-
tween ¥ and ¥, and between 7 and 7. For v = {¥h"""}, .7 € &, define

G =

v

gf L o---ogf n>0
g;n+lo-~-og;O ,m <0.

Recall the integer N introduced in Lemma 8.1.
Proposition 9.2. For each R = (Ry,)nez € S and Z € Z with Z S Ry, there are an

e—gpo v = {vi }rez € X with Z(vy) = Z and a sequence (ny)rez of integers with ng =0
and 1 < ng —nkg_—1 < N for all k € Z such that:
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(1) For each k >1,
n,k[Rn,kan-aRnk] C Z_k[v_k,...,vk].

In particular, T(R) = w(v). Moreover, Ry, C Z(vx) for allk € Z.

(2) The map 7T is Holder continuous over S. In fact, {vi}ji<k depends only on
{R;}ji<kn for each k> 1.

(3) If R € S#, then v € S#.

(4) The two codings have the same regular image: w[S#] = 7[S#].

For diffeomorphisms, the above lemma is [36, Lemma 12.2]. The difference from the
case of diffeomorphisms relies on our definitions of ¢ and 4. While the edges of 2
correspond to possible time evolutions of H, the edges of ¢4 correspond to e—overlaps. In
particular, not every edge of G corresponds to an edge of ¢, and this is the reason we
have to introduce the sequence (ng)rez. In fact, each edge v, — vrt1 of & corresponds

to a sequence of edges R,,, — -+ = R of 4.

MNk+1

Proof. We begin proving part (1). Fix {R,}nez € . The proof consists of successive
uses of the following fact.

CrAmM: For alli € Z and v € & such that R; C Z(v), there are 1 <k < N and w € &/
such that o[R;, ..., Riyr] C Zo[v,w] and R+, C Z(w). Similarly, there are 1 < £ < N
and u € o such that o[Ri—y, ..., Ri] C Zolu,v] and Ri—y C Z(u).

Proof of the claim. We prove the first statement (the second is proved similarly). Let
v = WP'P" ¢ o such that R; C Z(v). Since R € f), there is y* € o[R;,..., Ri+n]-
Moreover, there is v* € X# such that 7(v*) = y* and v} = v. We set w := v} so that
v — w. By construction, g7 (7w(v*)) = 7(c(v*)) so Z(w) contains g} (y*). Also, there is
1 < k < N such that g} (y*) = H*(y*).

We claim that o[R;, ..., Ritx] C Zolv,w]. To see that, let y € o[R;, ..., Ritx]. We

have y N y*, thus the following occur:
oy € o[Ri,...,Ritx] C R; C Z(v), hence y = 7(v) for some v € X% with vy = v.
o g (y*) = H¥(y*) € Z(w) = g (y) = H*(y) € Z(w), hence 7(0(v)) = g (y) = 7(w)

for some w € # with wy = w.

Define u = {uy, }nez by
Up, ,n<0
Up, =
Wp—-1 N > 1

Note that u belongs to S# since v, W E ># and v — w on 4. To prove that y = 7(u),
note that:
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o If n <0, then G, (y) = Gy (y) € Z(vp).
o If n>1, then Gl(y) = Gy g ()] € Z(wn—1).

By Proposition 4.6, it follows that y = 7(u) € Zp[v, w], proving the inclusion.

-1

The rest of the claim follows by symmetry, replacing g, H,o by g, H !,07! and

noting that ~ considers H* for all k| <N. O

Now we prove part (1). Fix ng = 0 and vg € & such that Ry C Z(vg). Applying the
claim for ¢ = 0 and vy, we get 0 < ny < N and v; € & such that ¢[Ry,...,R,,] C
Zo[vo,v1] and R,,, C Z(v1). By induction, we obtain an increasing sequence ng = 0 <
ny < ng < --- such that ny < ngp1 < np + N, o[Rnys -5 Rupyy] C Zolvk, V1), and
Ry, C Z(vy) for all k > 0. Doing the same for negative iterates, we get a decreasing
sequence ng =0 >mn_1 >mn_g > --- such that ng —N < ngp_y < ng, o[Rn,,. .., Ruyyy] C
Zo[vk, vk+1], and Ry, C Z(vg) for all k < 0. We claim that the sequence v = {vi}rez
satisfies the proposition.

Fix k > 0. We wish to show that ,,_,[Rn_,,...,Rn,] C Z_g[v—k,..., vk, i.e. given
YE n_[Rn_.s---,Rn,) we want to find u € ¥# such that (u_g,...,ux) = (V_k,..., V)
and 7(u) = y. Since H"-*(y) € R,,_, C Z(v_y), there is w~ € Y% with wy = v_j
and H"-*(y) = m(w™). Similarly, since H™(y) € R,, C Z(v), there is w™ € L# with
wg = vy and H™ (y) = w(w™). Define u = {u;};cz by:

(O 1< =k
U = S v; i=—k,...,k

+ .
w;_, 1>k

Clearly u € ¥#. We claim that 7(u) = y. Indeed:

o —k < i < k: we have Gi(y) = H" (y) € Ry, C Z(vy).
o i < —k: since G *(y) = H"*(y) and G”;[’Z(u) = ij,k (the sequences o~ *(u) and
w™ coincide in the past), we have Gi(y) = Gﬁi}i(u) G k()] = GZF_k[H"*k(y)} €

Z(wi ) = Z(ui)- .
o i > k: as in the previous case, G\, (y) € Z(u;).
Therefore G, (y) € Z(u;) for all i € Z, hence by Proposition 4.6 it follows that m(u) = y.

Now we show that 7T(R) = m(v). Indeed, since ny — +oo as k — +oo, we have

{%(E)} = ﬂ n—k[Rn—k""’Rnk] C ﬂ ka[vfkw-ka]-

k>0 k>0

On one hand, this latter set is, by Theorem 4.5(3), the intersection of a descending chain
of closed sets with diameter going to zero, hence it is a singleton. On the other hand, it
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contains ﬂ Z_glv—g,...,v] = {w(v)}. Thus 7(R) = 7(v), which concludes the proof
k>0
of part (1).
To check part (2), note that its second statement is immediate from the above argu-
ment. It implies the rest, since 7 is Holder-continuous.
We turn to part (3). Assume that R € S#. Let R € % and m; — oo such that
Ry,; = R for all j. Since S is locally compact (the degrees of & are all finite), the set

P ={Se#:IpathSy=R— S — - — 5 =S with i < N}

is finite. Given j, let k = k(j) be the unique integer such that ny_; < m; < ny. Since
ng —ni—1 < N, it follows that R,, € &. By Lemma 8.2(2), it follows that vj belongs to
the finite set {Z € 2 : 35 € & such that S C Z}, and so there is a sequence k; — +00
such that {vg, }i>0 is a constant sequence. Proceeding similarly for the negative indices,
we conclude that v € #. This proves part (3).

Now we prove part (4). By part (3), we have %[i#] C 7w[%#]. To prove the converse
inclusion, let v = {vn}nez € »# and write z = 7(v). Let R,, € % such that H"(z) € R,,.
Clearly, R = {R,} € £ and z = 7(R). It remains to prove that R € 5#. Let v € & and
k; — 400 such that vy, = v for all ¢ > 0. Letting m; := ny, — 400 so that H™i(x) =
wlo¥i(v)], we have H™i(2) € Ry, N Z(v) and so R,,, C Z(v). By Lemma 8.2(1), there
is a subsequence my; such that (Rmej) is constant. Proceeding similarly for negative
indices, it follows that R € S# and so [S#] C #[S#]. This concludes the proof of part
(4), and of the proposition. [

We now define the topological Markov flow (TMF) and coding that satisfy the Main
Theorem. For that, recall the definition of TMF in Section 1.2.
THE TRIPLE (37, 57, 7i7): The topological Markov flow (57, 37) is the suspension of (3, 7)
by the roof function 7: X — (0, p) defined by
P(R) = min{t > 0: ¢"(F(R)) = 7(G(R))},

and the factor map 77 : 37 — M is given by 77(R, s) := ¢*(F(R)).

As claimed above, we have sup7” < p. Indeed, by Proposition 9.2 there is v =
{vn}nez € ¥ such that 7(R) = mw(v), and there are integers n_; < 0 < ny such that
a1 Bn_1s--y Rny] C Z_1[v_1,v0,v1], hence 7(R) < 7, (R) = r(v) < p. The rest of this
section is devoted to proving that (f];, o7, T7) satisfies Theorem 9.1. We start with some
fundamental properties.

Proposition 9.3. The following holds for all € > 0 small enough.

. % — (0,00) is well-defined and Hélder continuous.
0oLt = ¢! o7y, for all t € R.
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(3) 77 is Holder continuous with respect to the Bowen-Walters distance.
(4) 7:[2¥#] = NUH#.

Proof. To prove part (1), note that, by construction of & and of the sections A C A, 7 is
well-defined over 3. Now, let R € 3 and notice that U := {S € & : (So, 51) = (Ro, R1)}
is a neighborhood of R. Moreover, there are v,w € & and discs D;, D; from A such that
7(U) C Z(v) C D; and 7(6(U)) C Z(w) C D;. Setting 7(z) = inf{t > 0: ¢'(z) € D;}
for = on a neighborhood of Z(v), we have ¥ = 707 on U. Since 7 is a continuous passage
time between the two smooth disks, transverse to the flow, it is well-defined and smooth,
see Lemma 2.1(3). To finish the proof of part (1), recall that 7 is Holder continuous by
Proposition 9.2(2).

Part (2) follows from the definition of 7 by a routine argument, which we quickly
recall. For n € Z, let 7, be the n—th Birkhoff sum of 7 (see Section 1.2). Let (R, s) € 3.
Given t € R, let n € Z be defined by 7,(R) < t + s < 7p+1(R) so that Efq(ﬂ,s) =
(@"(R),t + s — M (R)). We have

(7 0GH)(R, 8) = 77 (0" (R), t + s — Tu(R)) = 9"+ B (7(5"(R)))
= !t (DR (R))) = (R (R)) = (¢ 0 7) (B, 5),

and so part (2) is established.

Now we prove part (3). By Proposition 9.2(2), 7 is Holder continuous. Applying the
same arguments of [28, Lemma 5.9], we conclude that 7 is Holder continuous with
respect to the Bowen-Walters distance.

We finally arrive at part (4). Recall from Proposition 9.2(4) that 7#[S#] = =[£#],
hence Proposition 5.2(3) rewrites as 7[S#] > ANNUH#. The flow saturation of #[%#] is
%;[f)?] by definition, and the flow saturation of AN NUH? is NUH* since A is a global
section and NUH? is ¢-invariant. Therefore 7[5#] > NUH”. Reversely, 7[5#] = n[2#]
is contained in NUH# by Theorem 6.1. Saturating this inclusion under the flow, we obtain
that %;[f]?} c NUH¥. This concludes the proof of part (4). [

By Proposition 3.5, the above proposition establishes Parts (1) and (2) of the Main
Theorem. In the next sections, we focus on proving part (3) and the other properties
stated in Theorem 9.1.

9.3. The map 7, is finite-to-one

Given Z € Z, remember that ., = {Z' € Z : ol=PP1Z N Z" # (}. The loss of
injectivity of 77 is related to the following notion.

AFFILIATION: We say that two rectangles R, S € Z are affiliated, and write R ~ S, if
there are Z, 7' € % such that R C Z, S C Z' and Z' € ;. This is a symmetric relation.
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Lemma 9.4. If #(R) = ©'[7(S)] with R,S € $# and |t| < p, then Ry ~ So. More
precisely, if v,w € X% are such that w(v) = T(R) and w(w) = 7(S), then Ry C Z(vo)
and Sy C Z(wo) with Z(wo) € I7(vy)-

Proof. Let y = 7(R) and z = 7(S), so that y = ¢!(z). Applying Proposition 9.2 to R
and S, we find two e-gpo’s v,w € ©# such that:

o w(v) =y and Ry C Z(vo),
o m(w) =z and Sy C Z(wo).

The lemma thus follows with Z = Z(vg) and Z" = Z(wy), since ¢'(z) € Z(vg). O

Remark 9.5. We observe that the condition 7(R) = ¢'[7(S)] in the above lemma actually
implies more than just Ry ~ Sp. It implies a strong affiliation: for any Z,Z’ € % such
that Z O Ry and Z' O Sy, we have Z' € #5. Indeed, if R, S € # and [t| < p satisfy
T(R) = ¢'[7(S)] and Z, Z' € & satisfy Z D Ry and Z' D Sp, Proposition 9.2 gives the
existence of v,w € X# such that 7(v) = 7(R) and 7w(w) = 7(S) with Z(vy) = Z and
Z(wg) = 7', and so Z' € 5.

For each R € Z, define
AR)={(5,2"Ye #x Z :R~ S and S C Z'} and N(R) := #A(R).

We can use Lemma 8.2 and proceed as in the proof of [36, Lemma 12.7] to show that
N(R) < 00, YR € #. Having this in mind, we now prove the finiteness-to-one property
of T, i.e. part (3) of the Main Theorem and of Theorem 9.1.

Theorem 9.6. Fvery x € %;[flf] has finitely many 7r—preimages inside /Z\]f More pre-
cisely, if v = wp(R,t) with R, = R for infinitely many n > 0 and R,, = S for infinitely
many n < 0, then #{(S,t') € 5% : 7:(S,t') = z} < N(R)N(S).

Proof. The proof is by contradiction. Assuming that #{(S,t) € EA]?# RS, ) = x}
contains N(R)N(S) + 1 distinct elements (R",t;), we are going to show that, up to
permutation of these preimages, there are arbitrarily large integers k < 0 < ¢ such that

RV, Ry = (rP,... R, (9.1)

i.e. E(l) and E(2) agree between positions k — —oo and ¢ — +4o00. This implies that
RM =R® and so t, # to. But then z is periodic with period [t2 — t1] < ?(E(l)) <p,a
contradiction to the choice of p (see Section 2.1).

The proof of equality (9.1) uses, as in [36, Theorem 12.8], an idea of Bowen [9, pp.
13-14]: it exploits the (non-uniform) expansiveness of ¢, expressed in terms of the unique-
ness of shadowing (Proposition 4.6). For simplicity of notation, we assume without loss
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oy = 7GH(R) = D) (z) @ =7(R) w =76 (R) = "B ()

B=RYC2() RY RO RO RO RY A=RY C(f{v( )
(O : o
> ] [ L] I Ll [

Rt | [ ] R M L L

/4| T T y»\‘\‘ T /|

o / o= F(RY) }

2 = 755 (RV) = m(u®) a\), = 767 (RV) = momi (v )

#(RY)

Fig. 3. The objects in the proof of Theorem 9.6. The line above depicts the points associated to z = 7(R)
and the line below to z = @' #(R(¥). Vertical segments represent visits to the section (long segments
correspond to the symbols from R or R(?). The origins #(R) and #(R") are marked by a zero.

of generality that ¢ = 0. Recall that r,, and 7, denote Birkhoff sums for n € Z, see
Section 1.2.

Let z, := ¢ (z) = 7[6"(R)], a point in the trajectory of z. Fix two integers
k < 0 < ¢ such that R, = S and Ry = R. (See Fig. 3.)

For each i =1,..., N(R)N(S) + 1, consider the following objects:

o Let k; € Z be the unique integer such that ?ﬁi(ﬁ(i)) <T(R)+t; < ?Kﬁl(ﬂ(i)),
so that (¢! o 7 o 5%)(R) belongs to the orbit segment between (7 o 5% )(R") and
(7 o 5% 'H)(R(i)) 4

o Let 0( )= = 71(R) + t; — 7, (R™), then 0 < 6’,(;) < p.

o Let ac,(c) = s (Bt ti(x) = w[o" (_E(i))], a point in the trajectory of x. Note that
o (2") = "B (z) = 2y, and GO B -TB) (50 = . | |

o By Proposition 9.2, there is an e-gpo v(¥ € ¥# such that 7[v()] = x,(:) and R,g? C
Z(vg). - |

o Let n; be the unique integer such that ,, (v() < 0,(:) +70(R) = TR(R) < 7y, p1 (D).
Hence z; belongs to the orbit segment between (7 o o™ )(v(®) and (7 o o™ t1)(v®).

o Let 7; > k; be the unique integer such that 7y, _,, [ (R™")] = r,,(0®). The exis-
tence of such an integer is ensured by Proposition 9.2 which also gives RSL cZ (v,(L)).

o Let x,(;) P @) (g )y — %[57 (R™)], a point in the trajectory of z.

o Let fy,% = 0,(5) +7(R) —T(R) —7rn, (v (1)) then \fyk | < p. This is the time displace-
ment between xff)g and xy, i.e. xp = go'Yk 1’( (l))

Therefore, for each i, we have:

o (R,(f,i), Z(v(()i))) € A(S): this follows from Lemma 9.4, since m,(C) 767 (RD)], 21, =
#[3%(R)] and @y, = ¥ (2).
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° (RS?, Z(v & )) € A(R): this also follows from Lemma 9.4, since x,(c)[ = 767 (RY)),
2 = 76" () and @, = ¥4 (2.
The previous paragraph implies that every quadruple (R,(.%)7 Z (v, (¢ )) R(ﬂ), Z (U»SZ})) we
constructed belongs to the cartesian product A(R) x A(S). This latter set has cardinality
N(R)N(S), hence by the pigeonhole principle there are distinct i, such that

(B, 2(0g”): RY. 2(02)) = (RY). Z(o5"): RY), Z(v1)).

For simplicity of notation, we assume ¢ = 1 and j = 2 and write R(l) R(g) : B and
RY =R® = A

Set a; := 7, (R) — t; and B; = 7, (R) — t; for i« = 1,2. By definition, we have
o; € [Fr(R) — p,7r(R)], and so |ag — az| < p. Since ¢ (z) = 7[67 (R™M)] and ¢*2 () =
7[672(R™)] both belong to B, we must have a; = a3. An analogous argument shows
that g1 = B2. We denote these common values by a, 5.

Since R,(fll) - = R(1 and Ry 2) 2)

- = R% are admissible paths on i, we can
find non—periodlc points

yeoRY, ..., R and z € o[RD), ..., RP)].

Let y' = H™ "1 (y) and 2’ = H™ "2(z). We have y,z € B and ¢/, 2’ € A. By Proposi-
tion 8.3(1), we can define two points w, w’ by the equalities

{w} = A{ly, 2]} = W*(y, B)nW*"(z, B)
{w'} =AY, 2]} =Wy, A) nW"(<, A).

Note that neither w nor w’ can be periodic.

CLAIM: w,w’ belong to the same trajectory of ¢. More precisely, w’ = H™ "1 (w).

Proof of the claim. This is a consequence of Proposition 7.3: we can obtain w’ from w
by applying small flow displacements of Smale products of points at nearby rectangles.
To implement this idea, we first divide the interval [, 5] by visits to the rectangles
{R(l)} and {R,(f)} . Since these visits are p—dense in this interval, we
r1<k<t{ ko <k<Ty

can select times:
dp=a<egy<d <e1<--<op <ep=Lsuchthat 0 < g5 — d5,0541 — €5 < p (9.2)

where each §; = ?,,L(E(l)) for some m = m(t) € [k1,71] and each g, =7, (E@)) for some
n =n(t) € [k2, T2].
By Lemma 9.4, this 1mphes that the successive rectangles implied by eq. (9.2) are

affiliated: RS) ~R% and RY ~ rW

) n(t) n(t) m(t41)" Applying Proposition 9.2, find rectangles
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Z,7',Z" of & that contain R( t),RnQ()t RS(HI)

tion 7.3. The same applies to the three rectangles R;(t RSLUH), Rf()tﬂ)

Now let yp = H* %1 (y) for Ky < k <71 and 2, = H'™"2(2) for ky < £ < 7. For each

t=0,1,...,T, note that y,,; € Rmzt) and 2,y c R (1) We let Dt(l) and Dt@) be the

connected components of A containing an(t) and Rn( b respectively.
On the one hand, since y,,14+1) = ¢ (ym(t)) with 0 < uw < p, Proposition 7.3 implies

that

and satisfy the conditions of Proposi-

[Ym () Znn)] p& = Ym+1), Znw)] p@ -

On the other hand, Proposition 7.2(3) yields:

[Ym(t+1)> Zn(t)]D&)l =dpm, (Wm+1) 20 p)

= apw ([Ym@)s 2a] pe) = (Apw 0 ape)([Ym)s 2am] pm)-

Finally, applying Proposition 7.3 again, we conclude that

[ym(t+1)7zn(t+1)]DSr)l = [ym(t+1)7zn(t)}D§1+>l = (apw, © 4p@) ([Um(t)s 2] pw)-

Proceeding inductively,

wl = [yla Z/] = quf) ([ym(T), Z7L(T)]Dg}))

= (ap@ ©apm 0 dpe N[Ym@-1)s Znr-1)]pw )

= (qDSI?) © qu}) ©---0 qul) © qD(()2>)([y7n(0)7 Zn(O)}Dél))
= (CIDQ °ldpm 0 oqpm ° qDé2))<[yvz]D[()1))

= (ape odapm oo dpm o qpe)(w),

which proves that w and w’ belong to the same trajectory. Repeating the argument
using the holonomy maps corresponding to the sequence (R,(.ill), . ,Rg))7 we get that
their composition sends w to w’. By the Markov property in the stable direction, these
holonomy maps correspond to first returns. This proves that w’ = H™ "t (w). O

Now it is easy to conclude the proof of the theorem. A symmetric version of the claim
implies that w = H~("27%2) (w'). Since w is not periodic, we obtain 7| — k1 = 75 — ko. It
follows that (R,(ill), cee R(T})) = (R,(.i), e ,R(Ti)), since both correspond to the rectangles
in # that contain H* (w),..., H™ (w). This concludes the proof. O
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9.4. Conclusion of the proof of Theorem 9.1

We already proved parts (1) and the first half of part (2). Also, Theorem 9.6 establishes
part (3). For the second half of part (2), we note that every point of NUH# has a finite
and nonzero number of lifts to if, hence every ergodic y—hyperbolic measure on M,
which is supported in NUH?, can be lifted to an ergodic 6;7—invariant measure z, exactly
as in the argument performed in [36, Section 13]. This concludes the proof of part (2) of
Theorem 9.1.

We now prove the remaining parts (4)—(8) stated in Theorem 9.1.

Part (/) Using Theorem 4.5, we define N3/ as follows:

o For z = (R,0) € S, define first V*/u(z) = Ws/*(7(R), Ry) and N/
T:(r)V?*/"(2). By definition, V*(z) and V*(z) are transverse.
o For z = (R,t) € S, define N = gt (N(Séuo)). Since ® is an isomorphism,
N?r;(ﬁ,t) = Nj @Ng
The geometrical Markov property of Proposition 8.3(3) implies that the families {N; / “1

are invariant under ®. The convergence rates along N. j/ “ follow from Theorem 4.5(3),
1 (Xirlf(7'A)

sip(ra) 2

taking A := — %) These estimates show, in particular, that these

spaces only depend on z := Tx(2), hence one can set N{Z/u = NZS/“. Finally, the Holder
continuity follows from Theorem 4.5(5). This concludes the proof of part (4).

Part (5) For any z = (R,0) € 5, Theorem 4.5 associates curves V/U(2) tangent to A,
hence transverse to the flow direction. For general z = (R, t) € f];, one then defines the
manifolds V¢/¢%(z) := olt=LtH(Vs/%(R,0)). By construction, V*/¢*(z) is tangent to
N/ +R- X (7#(2)). Moreover, by Proposition 4.8, for any y € V°°(z) there exists 7 € R
such that d(¢'(7#(2)), ' (y)) < exp(—At) for all ¢ > 0. The same holds for V(z),
thus concluding the proof of Part (5).

Part (7) The proof of this part is almost automatic. The measurable set 2 = Z#
contains A N NUH#7 hence the orbit of any point x € NUH? intersects % , which proves
item (a). Item (b) was proved in the beginning of Section 7.2. Finally, any « € % defines
{R,}nez such that H"(z) € R, for all n € Z. In particular, H(R,) N R,4+1 # 0 for
all n € Z and so R = {R,} € . Since Z = n[S#], we also have = 7(v) for some
v = {vy }nez € %, For each k € Z, the point 7[c*(v)] is a return of = to %, hence there
is an increasing sequence such that w[o*(v)] = H"™*(z). Therefore R,, C Z(v;). Using

~

that v € ¥# and Lemma 8.2(1), it follows that R € %#.

Part (8) Assume K C M is a compact, transitive, invariant, hyperbolic set such that
all p—invariant measures supported by it are y—hyperbolic. Let TK = E°* & X & E“
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be the continuous hyperbolic splitting. Proceeding as in [17, Proposition 2.8], there are
constants C' > 0 and k > x such that

|dp'v®|| < Ce™ " ||v*|| and ||de~"0"|| < Ce " ||v"|, for all v® € E*,v* € E* and t > 0.

Now we proceed as in the proof of Proposition 3.1. Using the notation of equation (3.1),
the functions x € K ~ */%(z) are continuous. Therefore there is a constant C; = C; (K)
such that s(x),u(z) < C; and a(x) = Z(ns,n%) > C;* for all z € K. This implies that
inf ek Q(x) > 0, which in turn implies that inf,cx g(x) > 0. In particular, K C NUH?.
This is enough to reproduce the method of proof of [17, Prop. 3.9], as follows. We recall
that X C 3 is 67 invariant if 51(X) = X for all ¢ € R.

STEP 1: There is a o—invariant compact set Xy C S+ such that m#(Xo) D K.

Proof of Step 1. For each x € KNZ, counsider its canonical coding R(x) = {R,,(z) }nez-
Since inf,cx g(x) > 0, K intersects finitely many rectangles of #Z. Hence there is a finite
set Vo C Z such that Ry(xz) € V, for all z € K NZ%. By invariance, the same happens
for all n € Z, i.e. R,(x) € Vp for all x € K N Z%. Therefore the subshift Xy induced by
Vo, which is compact since Vj is finite, satisfies 7(3p) D K N Z. Let Xy be the TMF
defined by (Xo, o) with roof function 7 [x,. Saturating the latter inclusion under ¢ and
using part (7)(a), we conclude that 7(Xp) D K. O

STEP 2: There is a transitive o—invariant compact subset X C X such that 7(X) = K.

Proof of Step 2. Among all compact gz—invariant sets X C Xy with 7-(X) D K, con-
sider one which is minimal for the inclusion (it exists by Zorn’s lemma). We claim that
such an X satisfies Step 2. To see that, let z € K whose forward orbit is dense in K, let
x € X be a lift of z, and let Y be the w-limit set of the forward orbit of x,

Y={ye St 3t, — +00 s.t. oir () — y.

For any n > 1, the set Y}, := {o&(x),t > n} UY C X is compact and forward invariant.
Hence the projection 77(Y;,) is compact and contains {¢'(z),¢ > n}. Since the forward
orbit of z is dense in K, we have 77(Y;,) D K. Taking the intersection over n, one deduces
that the projection of the of—invariant compact set Y contains K. By the minimality of
X, it follows that X =Y. O

This concludes the proof of Part (8).

Part (6), items (a) and (b)-(i) Item (a) of Part (6), the local finiteness of the affiliation,
was proved at the beginning of Section 9.3. Item (b) claims that the affiliation ~ is a
Bowen relation. This splits into two properties (i) and (ii).

To prove item (i) of the Bowen relation, let (R, ), (S, s) € if with Ta(R, t) = 72(S, s),
ie. T(R) = ¢*'7(S). Since |s — t| < sup(7) < p, Lemma 9.4 implies that Ry ~ Sp.
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Part (6), item (b)-(ii) We turn to property (ii) of a Bowen relation. Fig. 4 contains the
involved objects in the proof. We take v = 3p. Let 2,2’ € EA]TA# such that v(ckz) ~ v(ckz’)
for all ¢ € R. By flowing the two orbits, we can assume that z = (R,0) and 2’ = (S, s).
Let z = 7(R) and y = 7(S). We wish to show that z = ¢'*¥(y) for some [t| < 7. We will
deduce from the affiliation condition that the orbit of y must be shadowed by an e-gpo
that shadows x. By Proposition 4.6, the two orbits are equal and the time shift between
x and ¢®(y) will be easily bounded.

To do this, we first apply Proposition 9.2(1) and get e-gpo’s v,w € ¥# such that
x=7(R) = m(v) and y = 7(S) = m(w) with Ry C Z(vg) and Sy C Z(wg). Moreover,
there are increasing integer sequences (n;);ez, (Mi);ez such that R,,, C Z(v;) and S, C
Z(w;). For each i € Z, we locate affiliated symbols in the codings of x and y as follows.

We start with ¢(z) € Z(v;) for t = r;(v) = 7, (R). We have g4(R,0) = (6" (R),0),
hence v(ci(z)) = R,,. We also have 04(S,s) = (6% (9),t + s — 7¢,(S)), where ¢; is
the unique integer such that 7, (S) < t + s < 7g,41(S). Thus v(ci(z')) = Si, and, by
assumption, R,, ~ Sy,.

Let a; € Z be the largest integer such that m; := m,, < ¢;. Hence, S,,, C Z(wy,).
We have R,,, C Z(v;) C D; and likewise S,,, C Z(w,,) C E; for some unique connected
components D;, E; of the section A. ‘

We write \P?:’Pﬁ for v; and \Ilgf’Q? for w,, for all ¢ € Z. Finally, we set y; =
m(o%w) € Z(w,y,) and y; := qp, (@-).’We are going to show that, for all ¢ € Z:

(1) y; is well-defined, and for i = 0 we have yo = ¢“(yo) with |u| < 2p;
(2) yir1 = g%, (vi)-

Proposition 4.6 will then imply that z = yo = ¢“(90) = ¢“(y) = ¢"*(7#(S, s)), where
|u—s| < 2p+4sup7 < 3p. Property (ii) and therefore the Bowen relation claimed by Part
(6)(b) will be established.

It remains to prove the above identities. They require checking that some holonomies
along the flow are compatible. We will prove this using that affiliation implies that charts
have comparable parameters and their images fall inside A far from its boundary. The
claims below are not sharp but enough for our purposes. We begin by proving some
variants of Proposition 7.2(1).

CLAIM 1: Let Zy,Zy € % such that Z; Nl=7P1 Z, £ (. Write Z; = Z(\Ilp“pl) and let

D; be the connected component of A containing Z;. Then piﬁpl = E(O(¥E)+0() and

D, (Va, (Rle(p3 Ap3)])) C Vo, (R[2¢(p] A pY)))
for all 1 < ¢ < 64.

Proof of Claim 1. Same of Proposition 7.2(1). O
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pli(z) =7(G"R) = n(0'v)

Yi = %(a—\mli) = 7'r( azw ~ agls) ’/T( 4; +1S

Pt (y) = P (@(S)) = " (m(w))

Fig. 4. The objects in the proof of Theorem 9.1, part (6)(b). The time ¢; is r;(v) = 7y, (R) for an arbitrary
i € Z. The line above depicts the coding of x = 7(R) = m(v): large vertical lines correspond to Ry, C Z(v;),
shorter ones to other R,’s. The line below is related to the coding of y = 7(S) = 7(w) with S,,, C Z(wa,),
the symbol that our proof relates to R,, C Z(v;). By construction R,, ~ Sy, and Sy, ~ Sy,,. The point y;
is the trace of the orbit of y on D;, the connected component of the section containing Z(v;), figured by a
dotted line.

CrLAIM 2: Let Rl,Rg € % such that Ry ~ Ry. For i = 1,2, let D; be the connected

component of A containing R;, and let Z; = Z(\I/pl ’pl) € & such that Z; O R;. Then

PiNPL _ +(O(¥2)+0(0) and
P3APY

4D, (Va, (Rle(p3 Ap3)])) C Vo, (R[8e(p] A pY)]),
for all 1 < ¢ < 16.

Proof of Claim 2. Since Ry ~ Ry, there are Wy, Wy € % such that W; D R; and W7 N
ol=PPIWy #£ (. Write W; = Z(W{%). We apply Claim 1 three times:

o Since Wa, Zs D Ra, we have Wo N Zy # (), hence % = (O +0(0) and

W, (Rle(ps Ap3)]) C Wy, (R[2¢(g5 A g5)])-

o Since Wy N pl=PP1TW, # (), we have q%ﬁg? eO(YE)+0() and

ap, (Vy, (R[2c(g5 A 3)])) © Wy, (R[4c(g7 A g1)])-
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o Since W1, Z; D Ry, we have W1 N Z; # (), hence % = (O +0() and
Uy, (Rldc(qi A ai)]) © Vo, (R[Be(pi Apy))).
Plugging these inclusions together, Claim 2 is proved. [

CrLAM 3: Let Ry, Ry, R3 € % such that Ry ~ Ry and Ry ~ Rs3. Fori = 1,2,3, let D;
be the connected component of A containing R;, and let Z; = Z(¥h:""" ) € 2 such that
Zi D R;. Then ZAP: — (£(0(V5)+0(0) and

g P1/AP1

(ap, ©ap,)(Vay (Re(p3 A p5)])) = dpy (Vay (R[e(p A P5)])) C Vo, (R[64c(p] A pT)])
foralll1 <e¢<2.

Proof of Claim 3. The estimate ;?Xﬁ?f = EOWE+00) follows directly from Claim
2. Also by Claim 2, we have the inclusions qp,(V., (R[c(p§ A p¥)])) C Wu, (R[8c(ps A
p3)]) and qp, (Va, (R[8c(p3 A py)])) C Wo, (R[64c(pi A pi)]). This implies that (qp, o
aD,) (Uas (Rlc(p§ A PY)])) C ¥y, (R[64c(pi A pY)]). In particular, it proves that we can

project ... (R[c(p5 A pY)]) to D1, and so the equality follows. O

Now we apply the above claims to our particular situation. Write v; = \Ilgf P and
w; = W% so that Qf/“ = qg/“

CLAIM 4: Let i € Z. We have
e (Vv (RQF A Q7)) C Wy, (RI2(Q711 A Q)]
Proof of Claim 4. By Lemma 4.2 and Claim 3, we have

S u s u
Gajy1MNagyy _ Gay1MNagyg 'Pf+1/\17?+1 . PPy — e:l:(O(?/E)+O(p)).

a3, N, T pia AP pi AP} 93, N\a,

This estimate allows to apply the same proof of Proposition 7.2(1), and so we can obtain
the claimed inclusion in the same manner. [

CrLAaM 5: Let i € Z. Restricted to the set ¥y, (R[QF A Q¥]), we have the equality
4D, 41 9By = ADspy = g;i o qp,. A similar statement holds for ¢ < 0.

Proof of Claim 5. It is enough to prove the equality for ¢ = 0, i.e. that qp, oqp, = qp, =
9%, © 4p, when restricted to Wy, (R[Q§ A Q4]). By Claim 4, qp, [Vy, (R[Q§ A Q§])] C
Ty, (R[2(Q5 A QY)]). Applying Claim 3 with ¢ = 2 to the triple (Ry,, Se,, Sm, ), we get
that qp, [Ty, (R[2(QF A QY)])] is well-defined, hence qp, © qg, = qp, when restricted
to Uy, (R[Q§ A QF]). On the other hand, applying Claim 3 with ¢ = 1 to the triple
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(an Sfovsmo)’ we have that 4D, [\IIYO (R[QS A Qg])] C \IIXU(R[64(P5 A P[?)]) By defini-
tion, g%, = dp, when restricted to R[64(P; A Py')]. Therefore, g% o qp, = qp, when
restricted to WUy, (R[Q§ A Qy]). This proves Claim 5. O

We now complete the proof of identities (1) and (2) of page 73, which in turn will
complete the proof of part (6) of Theorem 9.1. For that, we use the claims we just proved.

Firstly we check that y; := ¢gp, (7;) is well-defined. By assumption R,,, ~ S,, and by
construction the orbit of y between S,,, and Sy, flows for a time at most sup(r) < p,
hence Sy, ~ Sp,,;. This allows us to apply Claim 3 for ¢ = 1 and get that y; := qp, (¥;)
is well-defined. To calculate the time displacement for ¢ = 0, recall that mg = ¢y = 0.
Since Ry ~ Sy, inclusion (8.1) implies that yo = ¢*(yo) with |u] < 2p.

Finally, Claim 5 implies that

g;r(i (yl) = g;i °qp; (?77,) =qD;4, © qE1+1(§l) = qu+1(37i+1) = Yi+1,
finishing the proof of Theorem 9.1.

10. Homoclinic classes of measures

In this final section, we prove Theorem 1.1 stated in the introduction, as well as
Corollary 1.2.

10.1. The homoclinic relation

For any hyperbolic measure p and p—a.e. x, the stable set W#(x) of the orbit of z is the
set of points y such that there exists an increasing homeomorphism h: R — R satisfying
d(t(z), " (y)) — 0 as t — +o0. This is an injectively immersed submanifold which
is tangent to ES @ X (x) and invariant under the flow. We define similarly the unstable
manifold W*(z) by considering past orbits.

HOMOCLINIC RELATION OF MEASURES: We say that two ergodic hyperbolic measures u, v
are homoclinically related if for y—a.e. x and v—a.e. y there exist transverse intersections
Ws(z) h WH(y) # @ and W¥(z) h W3(y) # 0, i.e., points z; € W*(z) N W*(y) and
zo € WH(x) NW?*(y) satisfying T,, M = T,, W*(z) +T,, W"(y) and T,,M = T,,W"(x) +
T.,W*(y).

Note that the invariance of the stable and unstable manifolds makes this notion
slightly simpler than it is for diffeomorphisms. Since any hyperbolic periodic orbit sup-
ports a (unique) ergodic measure, the above homoclinic relation is also defined between
hyperbolic periodic orbits, in which case it coincides with the classical notion, see, e.g.,
[30].

Proposition 10.1. The homoclinic relation is an equivalence relation among ergodic hy-
perbolic measures.
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W(z)

W (z)

Fig. 5. The objects in the proof of the inclination lemma.

Proof. The only property that is not obvious is the transitivity of the relation. Its proof
uses the following standard lemma.

Inclination lemma. For any hyperbolic measure p, there is a set Y C M of full p—measure
satisfying the following: if x € Y, D C W"(x) is a two-dimensional disc and A is a two-
dimensional disc tangent to X having a transverse intersection point with W*(x), then
there are discs Ay C @k, 4o0)(A) which converge to D in the C* topology.

Sketch of the proof. Taking x > 0 small, the measure p is y—hyperbolic and the con-
structions done in the other sections apply. Consequently one may replace x by an iterate
in the section A and assume that it is the projection under 7 of a regular sequence v € X7,
We denote Z = Z(vg) and let ny — +oo such that o™ (v) — v.

We let zy := 7(0™* (v)). We consider the curves V*(xy, Z) — V3 (x, Z), V¥ (xk, Z) —
V¥(x,Z) as in Section 4.2 and especially Theorem 4.5(5). The intersections W*(z) N A
and W*(x) N A contain the stable and unstable curves V*(z, Z) and V¥(x, Z). See Fig. 5
for the various objects.

Now, the orbit of A contains a disk A’ transversally intersecting V*(z, Z) C A. Thus
A’ transversally intersects A along some curve V’. This curve V' intersects the stable
curve V*(x, Z) transversally inside the section A.

Hence, if k is large enough, then the curve V*(xy, Z) also intersects A’ transversally
inside A along the curve V'. Now, the graph transform argument in Section 4.2 shows
that the images of V' (by suitable holonomies of the flow mapping xj, to x for &' > k)
contain curves V/ that C''-approximate V*(zy, Z).

It follows that the orbit of A contains a curve which is arbitrarily C'-close to V¥ (z, Z).
By invariance, this orbit contains discs which are arbitrarily C'-close to the arbitrary
subset D C W*(z). O



78 J. Buzzi et al. / Advances in Mathematics 479 (2025) 110410

In order to prove the proposition, let us consider three measures p1, po, 3 such that
141, o are homoclinically related and ps, p3 are homoclinically related. For each measure
i, let z; be a point in the full measure set implied by the homoclinic relation. In
particular, there exist a disc A C W"(x1) which intersects transversally W?*(z2) and
a disc D C W"(y2) which intersects transversally W?*(z3). By the inclination lemma,
the orbit of A contains discs that converge to D for the C''-topology. This proves that
W*(x1) has a transverse intersection point with W*(z3). The same argument shows that
W*(z3) has a transverse intersection with W#(x;). Hence py and us are homoclinically
related. O

HOMOCLINIC CLASSES OF MEASURES: The equivalence classes for the homoclinic relation
on the set of hyperbolic measures are called homoclinic classes of measures.

10.2. Proof of Theorem 1.1

The proof follows closely the argument in [17, Section 3]. We consider the setting
of the Main Theorem and especially a topological Markov flow (5;7 o7) satisfying the
properties stated in Theorem 9.1.

We begin by some preliminary lemmas. The first two correspond to properties (C6),

(C7) in [17].

Lemma 10.2. For any two ergodic measures supported on a common irreducible compo-
nent of Xz, their projections under T are hyperbolic ergodic measures that are homo-
clinically related.

Proof. Let us consider two ergodic measures [z and 7 on a same irreducible component of
f); and their projections p = o 7?7;1 and v =7o %;1. These two measures are obviously
ergodic. They are hyperbolic by Theorem 9.1(4).

Let x,y be points in full measure sets for p and v respectively: they are the projections
of points T,y which are in the irreducible component supporting the measures 1, 7. Note
that one can replace z,y, T, by iterates and assume that T = (R,0), 7 = (S,0). Since
T,y belong to the same irreducible component, there exists a finite word w = wowy - - - wy
such that wg = Ry and wy = Sp. One can thus consider the point Z = (T, 0) such that
T, =R_, and Tyy, = S, for any n > 0 and T,, = w,, for 1 < n < {. One deduces
from the Holder-continuity of 77 that the projection z = 7x(z) = 7(T) belongs to the
intersection between W#*(z) and W*(y). In particular W*(z) = W*(z), hence using
Theorem 9.1(4)(5) we have

lim sup % log ||‘I’t|Tz(WS(m)mA)H <-A<0.
t——+o0

Therefore N = T, (W*(x)NA), and similarly N* = T, (W*(z)NA). Since NS&NY = N,
one deduces that the intersection between W*(x) and W*(y) at z is transverse. By the



J. Buzzi et al. / Advances in Mathematics 479 (2025) 110410 79

same argument, one finds a transverse intersection between W*(z) and W*(y). Since the
points x and y can be taken in full measure sets for u and v respectively, this proves
that p and v are homoclinically related. O

Lemma 10.3. For any X' > 0, the set of ergodic measures on i? whose projection is
X' —hyperbolic is open for the weak—* topology.

Proof. The two Lyapunov exponents of the projection of any measure 7z on i; are
obtained by integration of the bounded continuous functions  ~— log || ®*|n:|| and T —
log [| | v
topology. [

(x = 7#(T)). Hence they vary continuously with the measure i in the weak—*

The next lemma finds an irreducible component that lifts periodic orbits.

Lemma 10.4. There exists an irreducible component f]'? - f]; to which one can lift all
X —hyperbolic periodic orbits that are homoclinically related to .

Proof. Periodic orbits that are homoclinically related to p are homoclinically related
together. Hence, given any finite set of such periodic orbits, there exists a transitive
x—hyperbolic set K which contains all of them. By Theorem 9.1(8), there is a transitive
invariant compact set X C i? such that 77(X) = K. In particular, X is contained in an
irreducible component of f];

Note that X C if, the regular set of i;, since X sees only finitely many vertices. In
particular, 77 : X — K is not only onto but finite-to-one and all periodic orbits of K
lift to periodic orbits of X (though with perhaps larger periods).

Let us enumerate all the y—hyperbolic periodic orbits O; ~ p, i = 1,2, . ... For each n,
the set of irreducible components which contains periodic lifts of all the periodic orbits
O; with 1 < i < n is non-empty (by the previous paragraph), finite (by the finiteness-
to-one property of the coding) and is non-increasing with n. Hence their intersection is
nonempty, and any irreducible component which belongs to it satisfies the claim. [J

Let v be a x—hyperbolic ergodic measure that is homoclinically related to u. By
Theorem 9.1(2), there exists an ergodic lift 7 of v to EA Consider a point g € E that is
recurrent (such that there exists a sequence of forward iterates 5% (¢q) which converges
to q) and generic for 7, and let & = 7x(q).

The recurrence of ¢ gives rise to a sequence of periodic points ¢° in i; which converge
to ¢ (hence are in a same irreducible component) and whose orbits weak—* converge
to 7. By Lemma 10.3 the projections of these periodic orbits are y—hyperbolic and by
Lemma 10.2 they are homoclinically related to . Therefore there are periodic orbits p?
in the irreducible component f)} which have the same projections as the periodic orbits
q".

Let us write ¢’ = (R%,¢!) and p’ = (S’ s*). Since (¢) is converging and 3 is locally
compact, the sequence (EZ) is relatively compact. The Bowen property of Theorem 9.1(6)
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implies that v(5%(q%)) ~ v(ck(p?)) for all ¢ € R so, by the local finiteness of the affiliation,
the sequence (S%) is relatively compact. This implies that (p?) is relatively compact and
(up to taking a subsequence) converges to some p € i’? By continuity of the projection,
7i(p) = Tr(q) = .

We claim that p € fl\’f . This follows from the fact that ¢ is recurrent and that
the Bowen relation is locally finite. More precisely, there are some vertex A € V and
integers my, ny — oo such that g,,, = q_,, = A. In particular, for each k > 1 we have
4, = q-,, = A for all large i. Hence pi, ,p", are related to A, and so they belong
to the set {B € V:B~ A}. Since this latter set is finite, some symbol must repeat as
required and this passes to the limit p, proving the claim.

We have proved that v—almost every point has a lift in i]\’,f The finiteness-to-one
property of Theorem 9.1(3) and the same averaging argument used in the proof of The-
orem 9.1(2) imply that v has a lift in EA]’? Considering the ergodic decomposition, we can
choose an ergodic lift, as claimed. Theorem 1.1 is now proved. O

10.3. Proof of Corollary 1.2

Let ‘H be some homoclinic class of hyperbolic ergodic measures. Let us deduce from
Theorem 1.1 that there is at most one v € H such that h(p,v) = sup{h(p,p) : p € H}.
Let v, € H be two measures with this property. They are both hyperbolic, hence
x—hyperbolic for some x > 0. For one such fixed parameter x, let m, : ¥, — M be the
coding given by the Main Theorem.

By Theorem 1.1, there is an irreducible component ¥/ of ¥, to which both v and
v/ lift. Since the factor map , preserves the entropy and since the projection of any
ergodic measure on X/ is homoclinically related to v and v/ by Lemma 10.2, the two
lifts are measures of maximal entropy for /.. But the measure of maximal entropy of
an irreducible component of a topological Markov flow with a Hélder continuous roof
function r is unique (see e.g. [28, Proof of Theorem 6.2]). Hence v = v/, which proves
Corollary 1.2.

Appendix A. Standard proofs
Remind we are assuming that ||[VX]|| <1, and that this implies two facts:

o Every Lyapunov exponent of ¢ has absolute value < 1, hence we consider x € (0,1).
o ||®!|| < eIt Wt € R, see Section 2.4.

Proof of Lemma 3.2. We begin with some preliminary calculations. Fix ¢ € R. We
prove that e is an eigenvector of C(¢!(z))~! o ® o C(x), and calculate its eigenvalue.

By the proof of Proposition 3.1, ®'nj = £[|®'n}|n’, ), therefore [®' o C(z)](e1) =

% nclys, . This implies that [C(¢!(2)) ™) 0 @' 0 Cla)](er) = +[@n3] e Ele,
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s(e!(z))

hence e; is an eigenvector with eigenvalue A;(z) = £||®'ns |2 <o

. Similarly, es is an

eigenvector with eigenvalue B;(x) = +||®'n “||u(;f(g Note that

t o)
s = et [ @ ng a4 aet [0 ng Par
0 t
t

— et [ @ g Pt 4 e o (i 2)?
0
and so
i

ehw@ H%%CW 1_4&p/€%ﬂ@ﬁﬁwﬁc

(z)2 s(z)?

0

When 0 < t < 2p, we have :(i; fg e2Xt|| B s ||2dt < 4petér < 5p for p > 0 small

enough, therefore

e~ < eXt|@in Hs(f(x . (A.1)
Similarly,
t 00
T e L T e L
0 t
t
— et [ ot Pat + @t Pu(a)
0
since 1 = || ®tng|| = [|®'ng - [@7'n:(,Il, and so

e < X[t ]| Tt s < 1 (A.2)

We will use (A.1) and (A.2) to prove (2)—(3).
(1) In the basis {e1, ez} of R? and the basis {nZ, (n2)*} of N,, C(x) takes the form

cos a(x)
56”) Si;‘g&) ] , hence ||C(2)]|3,1, = W + W < 1. Now observe that the inverse of
u(w)
s(z) cos a(z)
. S(.T) T T sinal(z) _ s(x)24u(x)?
Cla) is l : 2@ | hence [|C(2) o = Y3 ITH?
sin a(x)

(2) The first part was already proved, so we concentrate on the second part. Fix 0 <
t <2p. By (A1), e7” < eXt|Ay(z)| < 1 and so ™37 < |Ay(x)| < e”Xt. Similarly, (A.2)
implies that e~ < eX!|By(z)|~! < 1, and so eX! < |By(x)| < €.
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(3) For [t| < 2p, we have eX!||®'n?| = €57 therefore by (A.1) it follows that

e 10 < % < €%, so that % = ¢+, Similarly, % = 197 To esti-

, we use the general inequality for an invertible linear transformation

1 | sin Z(Lv, Lw)|

= s < IZILTH)- A3
LI ILH] | sin Z(v, w)] LI L] (A.3)

Apply this to L = &', v = nf, w = n¥ to get that Lsina(e @)] _ 48p, Finally, the above

| sin a(z)]
t IC(e* (@) [ Erob — eilSp. O

estimates and part (1) imply tha o o

For the proof of the next theorem we will need some estimates on Q(z). By

Lemma 3.2(3) proved above, % = =5 for all 2 € NUH and |t| < 2p. Therefore,

if x € ANNUH then % = =% Hence the following bounds hold for Q(x):

Q(z) <& and |C(z) 7| Q(z)P/12 < &'/4 for all # € NUH,
Q(x)P/?* < e!%Q(f(x))?/? for all z € AN NUH.

Proof of Theorem 3.8. Recall that B, = B(x,2t). If ¢ > 0 is small enough then
Lemma 3.7(1) implies

V. (R[10Q(x)]) C B(x,40Q(z)) C By,

and in this ball (Expl)-(Exp4) are valid. We first show that f; : R[10Q(z)] — R? is
well-defined. Since C(z) is a contraction, we have C(x)R[10Q(x)] C B,[20Q(x)]. Since
C(f(z))~?! is globally defined, it is enough to show that

(9 0 exp,)(Ba[20Q(2)]) C exp sy (By(a)(2t])-

For small € > 0 we have:

o 20Q(x) < 2t, hence exp, is well-defined on B,[20Q(z)]. By (Exp2), exp, maps
B,[20Q(x)] diffeomorphically into B(z,40Q(z)).

o 40Q(z) < 2v = B(z,40Q(x)) C By, hence Lemma 2.4 implies that g}~ maps the ball
B(x,40Q(x)) diffeomorphically into B(f(x),80Q(x)).

o 80Q(z) < 2v = B(f(x),80Q(x)) C By). By condition (Exp2), exp;(lgﬂ) maps
B(f(x),80Q(x)) diffeomorphically onto its image.

The conclusion is that f,f : R[10Q(z)] — R? is a diffeomorphism onto its image.
Now we check (1)-(2). Using the equalities d(¥;)o = C(x), d(¥f»))o = C(f(x))
and Lemma 2.4, we get that d(f;)o = C(f(z))~! o ®"2(*) o C(z). By Lemma 3.2(2),
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d(fHoe = 0 g with e < |A| < e7X"(®) and ex™2(®) < |B| < . This proves
part (1). Items (a)—(b) of part (2) are automatic, hence we focus on (c).
CLa: [[d(f )y — d(f o || < Sllvr — v2|?/2 for all vy, v € R[10Q(z)].

Before proving the claim, we show how to conclude (c). If ¢ > 0 is small enough then
R[10Q(z)] C By[1]. Applying the claim with vy = 0, we get [|dH,|| < £|jv]|?/? < £. By
the mean value inequality, ||H(v)|| < 5|lv]| < §, hence ||H||C1+§ <e.

5l

Proof of the claim. Let us choose L > Holg(dg; ). For i = 1,2, write w; = C(z)v; and
let

e~ e~ o

A= D3 gy B = 6 o €5 = D
We first estimate ||A; B1C1 — A2 B2Cs||.
o By (Exp2), ||A:|| < 2. By (Exp2), (Exp3) and Lemma 2.4:
[ A1 — Aa|| < 8d((g5 0 exp,)(wr), (97 © exp,)(w2)) < 4R[wr — ws.
o By Lemma 2.4, ||B;|| < 2. By (Exp2) and Lemma 2.4:
|B1 = Ba|| < Ld(exp, (w1), exp, (w2))” < 2L|wy —ws|”.
o By (Exp2), ||Ci]| < 2. By (Exp3), [[C1 — Caf| < Rllwi — wa|.
Applying some triangle inequalities, we get that
|A1B1C) — Ay ByCy|| < 24RL||Jwy — wo|® < 24RL|jvy — va]|”.
Now we estimate ||d(f, ), — d(f1)u, |I:

(£ )or = A(£)wa | S NC(f(2)) M| ALB1CL = A2 BaCo|[|C ()|
< A4RL|C(f(2) Hlllor = va|.

Using estimate (3.2) and that ||v; — v2|| < 40Q(x), we conclude that for £ > 0 small:

24RL||C(f () lllvr — v2l|?? < 2008L[|C(f(2)) " Q(x)"/?
< 2008Le"* || C(f(x)) " |Q(f(2))?/? < 200RLe'*57e%/2||C(f ()|~
< 2008 Le'25re3/2 < ¢,

Hence the claim is proved. O
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This completes the proof of the theorem. [

Remark A.1. The sole property of g~ used in the above proof is Lemma 2.4. Since any
holonomy map qp, also satisfies this lemma, we conclude that qp, satisfies a statement
analogous to Theorem 3.8. We will use this fact in the proof of Proposition 7.2.

Proof of Proposition 3.10. Write C; = C(x;) : R? — T, A. By assumption, d(xq,z2) +
[C1 — Ca| < (mmz)*. Note that ¥,, = exp,. o Py, 4, 0 C;.

(1) We prove the estimate for s (the calculation for w is similar). Since € > 0 is small,
it is enough to prove that ’S(Il) - 1‘ < &3/B(mma)3. We have s(z;)~! = ||C(z:)er]| =

s(z2)
[Ciexll, hence |s(x1)™" — s(z2) 7| = [[|Crex|| — [|Caenll] < [|C1 — Caf| < (mn2)*. Also

5 5
s(z1) = ||C(z1)er|| 7t < ||C(z1) 71| < 5?z1) < %7 therefore

o | = san)stan) " — s(2) 7 < P )

s(x2)
(2) Apply (A.3) to L = 01051, v = Che1, w = Ches to get that

1 sin (1)

U < 1cvec,oL.
|CLCH|[|C2CT Y|~ sin (o) <G ICCr |l

We have ||C1C5 1 — Id|| < [|C1 — Co||C5 || < /8 (mmg2)?, and by symmetry ||CoCyt —
1d|| < 3/%(mnp)?, therefore [|C1C5|[[C2OT Y| < [1+ €3/8(mma)3)? < 2" (mm)® <
e(mn2)* The left hand side estimate is proved similarly.

(3) We prove that U, (R[e=%m]) C V., (R[n]). If v € R[e™%n;] then ||C(z1)v|| <
V2e7%n; < 2, hence by (Expl):

dgas(C(x1)v, Cx2)v) < 2(d(21,22) + [|Crv — Covl]) < 2(mma)*.

By (Exp2), d(¥g,(v),¥s,(v)) < 4(mm)* = ¥u(v) € B(¥,(v),4(mme)?). By
Lemma 3.7(1), B(¥,,(v),4(mn2)*) C ¥,,(B) where B C R? is the ball with center
v and radius 8||C5 !||(n172)*, hence it is enough to show that B C R[n]. If w € B then
w]loo < [vlloe + 8IC5 | (11m2)* < (75 + 83/8)ny < 1y for € > 0 small enough.

(4) The proof that W1 o W, is well-defined in R[t] is similar to the proof of (3). The
only difference is in the last calculation: if € > 0 is small enough then for w € B it holds

lwll < (ol + 8J1Cy HI(mrn2)* < V2e +8(mma)® < [V2+ 8% e < 2x,

therefore B is contained in the ball of R? with center 0 and radius 2t, and in this latter
ball ¥,, is a diffeomorphism onto its image. Now:
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U oW, —Id=C(zs) " oexp, oexp,, oC(z1) —1d
= [02_1 © PIE27IE1] © [exp;; O €XPy, — Pﬂll,ﬂlz] © [thafl © Cl] + Cf2_1(6'1 - CQ)
= [02_1 © PI27I1] © [eXp;; - PI17I2 © exp;ll] © \ijl + 02_1(01 - 02)
We calculate the C? norm of [exp,! — Py, 2, © expy '] o Uy, in the domain R[t]. By

Lemma 3.7, [|d¥,, [|co < 2 and Lip(d¥,,) < K. Call © := exp,} — Py, 4, o exp,!. For
€ > 0 small enough, inside B, we have:

o By (Exp2), [|[0(y)|| < dsas(expy, (y),exp; () < 2d(z1,22) < 2658 ()3 thus
1© 0 Wy, [lco < e2/P (nin2)?.

o By (Exp3), [dO,] = |I7(z2,y) — T(z1,9)| < RKd(z1,22) < ¥/P(mnz)®. Hence
[dO]|co < &3/8(mn2)® and [|d(© o Wy, )llco < 2637 () < /7 (muma)?.

o By (Exp4),

1d8y — dO.|| = |[[r(x2,y) — T(x1,)] — [r(22,2) — (21, 2)]]|
< Rd(zq, 22)d(y, 2)

hence Lip(dO©) < Rd(z1,x2).
o USiIlg that Lip(d(@l o @2)) S ||d@1HCOLip(d@2) + Lip(d@l)Hd@QHQCO, we get that

Lip[d(© o U,,)] < [|dO||coLip(d¥,,) + Lip(dO)||dV¥,, [|Zo
< ﬁgg/ﬁ(m?h)g + 4ﬁ(nl772)4 < 5ﬁ53/ﬁ(nl772)3 < 62/ﬁ(nln2)3-

This implies that |© o U, ||c2 < 3¢%/#(1112), hence
1C3" 0 Py 0© 0 W flez < |C5 I3 (min2)® < 367 ().

Thus [ W} o Uy, — Id||a < 362 (mim2)? + [|C3 | (mme)* < 3628 (muma)? + €%/% (mma)®
<4 P(mmp)? < e(mmp)®. O

Proof of Proposition 7.2. Let 2z € Z, 2/ = ¢'(z) € Z' with |t| < 2p, and assume that
7' ¢ D'. Define Y := \I!y_l oqp o¥,. We will write T as a small perturbation of +Id. For
ease of notation, write p := p® A p* and q := ¢® A ¢*. Start noting that, by Lemma 3.4,
Proposition 3.6(1), and Theorem 6.1(5),

p CP(RAPY(2) | a(z) | a(z’) CPIEDAPM(E) £ [O(FE)+O0(p)]
p*(2)Ap“(z) q(z) q(z')  p(z")Ap*(2') q )

)
q
We have T = (U, 1o W./) o (V' oqp o W.)o (VU ! oW,). By Theorem 6.1(6), we have:

o (¥, 'oW./) = (—1)7Id+ A (v) where o1 € {0,1}, [A1(0)]| < 507" q, and [[dA1]|co <
¢/e on R[10Q(2")].
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o (U7loW,) = (—1)72Id+ Az (v) where o5 € {0,1}, [|A2(0)|| < 507 p, and ||dAz]|co <
¥e on R[10Q(z)].

Assume, for simplicity, that o; = o2 = 0. Applying Remark A.1, we conclude that

\I!;,1 oqp o ¥, can be written in the form (vi,v2) — {61 g} + H, where A,B,H

satisfy Theorem 3.8(2) with p changed to 2p. Assuming for simplicity that ¢ preserves
orientation,” we have AB > 0, hence we can rewrite \Il;,1 oqp o ¥, = £[Id + Az(v)] on
R[10Q(z)], where % is the sign of A, B. Clearly A3(0) = 0. If A, B > 0 then d(A3)o =
A-1 0
0 B-1
same estimate holds if A, B < 0. Using Theorem 3.8(2)(c), we get that ||dAs||co <
€8 — 1+ O(e). Therefore T = £(Id + A;)(Id + A3)(Id + Ay) where:

and so we have [|d(A3)o| = max{|]A — 1],|B — 1|} < €% — 1. The

o |A1(0)]] <507 ¢ and ||dA;]|co = O(e'/?).
o A3(0) =0 and ||dAs|jco < €®” — 1+ O(e) = O(p) + O(e).
o [|A2(0)]| <50 'p and [|dAz|co = O(e'/3).

So T =£(Id + A), where A = Ay + Az(Id + Az) + A1 (Id + A3)(Id + Az). We have:

o [[dA|lco < |dAs||co + 2||dAs]|co + 4]|dA1||co = O(p) + O(e'/?), which implies that
[dYllco <1+ 0(p) +O("?).

o A(0) = Az(0) + Az(A2(0)) + A1(A2(0) + A3z(A2(0))) = 6 + A1(d), where § =
As(0) + A3(A2(0)). Letting a; := ||A;(0)||, b; := Lip(A;), by direct calculation

18] < 1820} + [|A3(A2(0)[| < [[A2(0)[ + [A3(0)[| + Lip(A3)[|A2(0)|| = a2(1 + b3)

and so [|A(0)[] < [I6]] + 1AL (0)]| + Lip(A1)[[d]] < a1 + az(1 + b1)(1 + b3). Since
p < eFOWEHOWIg = [1 + O(p) + O(e'/3)]q, it follows that

JA0)]| <50 g + [1+ O(e?)][1+ O(p) + O(e)]50~ 'p
=[1+0(p) +O(e"/?)257 ¢

Hence || T(0)] < [L+ O(p) + O(e/3)]25- 1.

We now proceed to prove the proposition.

(1) We have T(R[3p]) C T(Bo[%p]) C By (o) [%Llp( )p] C B, where B C R? is the

ball with center 0 and radius ||Y(0)| + %Llp( )p. By the estimates obtained above,

IT(O)] + J5Lip(T)p < [1+ O(p) + O/ g + {1+ O(p) + O}y

3 1If not, we can apply an argument similar to [3].
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<[140(p) + 0550+ J5[1+ O0(p) + O('*))g
= |5+ J5| 1+ 0(0) + O

Since % + % <1,for 0 <e < p<1weget that B C Bylg] C R]q].

(2) Fix z € Z such that 2/ = qp/(z) € Z'. We will show that qp [W*(z, Z)] C V*(<', Z')
(the other case is identical). Write W = qp [W$(2,Z)] and V = V*3(z', Z’). Our goal
is to show that W C V. Let v = {\Ilm p"}nez,w = {\Ilgz’q" tnez such that z = 7(v)
and 2’ = w(w). For n > 0, let Gy = g;f  o---ogi and G}, = g}  o---ogt. By
Theorem 4.5(1), we need to show that Gn[W] C ¥, (R[10Q(y,)]) for all n > 0.

Fix n > 0. If 2/ = ¢'(2), |[t| < 2p, then there is a unique m > 0 such that r,(v) <
rn(w)+t < rpmy1(v). Let Dy, be the disc containing ™ (@) (2"). We claim that G™ oqps =
qp,, © G' wherever these maps are well-defined. To see this, firstly note that these
maps are both of the form ¢ for some continuous function 7. Secondly, we claim that
they coincide at z. Indeed, (G}, 0 qp/)(z) = G (2') = ™ (2’) and (qp, o GI)(z) =
qp, [ @ (2)]. Writing ") (2') = 2/, and ") (2) = 2,,, we have z/, z_gat/(zm)
for t' = rp(w) +t — rm(v) € (0,p], therefore qp, (z2m) = 2,. Hence G [W] = (G}, o
ap)[W*(2,Z)] = (ap, o GM[W*(2,2)] C qp, [W*(¢"®(z2), Z(v ))], where we used
Proposition 7.1(4) in the last inclusion. Since W* (@™ @) (2 ), Z(vm)) C W, (R[1072(pS, A
p)]), part (1) gives that qp, [W*(¢"™®)(2), Z(v,,))] C ¥, (Rlg3 A qn]), and this last
set is contained in ¥, (R[10Q(yn)]).

(3) When M is compact and f is a C1*# surface diffeomorphism, the proof that [z, 2’] 7 is
well-defined is [36, Lemma 10.8], and the proof uses that the change of coordinates from
one Pesin chart to the other is so close to the identity that the representing function of an
s—admissible manifold satisfies properties similar to (AM1)—-(AM3), with the constants
1073, % slightly increased. We can apply the same method, since we showed above that
our change of coordinates T is a small perturbation of the identity. The details can be
easily carried out with the estimates we already obtained above. Similarly, [z, 2']z is
well-defined. It remains to prove that [z, 2]z = qp([z,2]z/). To see this, observe that

the composition qp o qp- is the identity where it is defined, hence
ap([z,2]z) = ap(ap/ [V (2, 2)| NV (2, Z") = V*(2, Z) Nap[V*(<, Z')] = [, 7] 2.
This completes the proof of the proposition. [

Proof of Proposition 7.3. Let Z, Z', Z" such that ZNpl=2:201 7" £ () Z N pl=20201 77 £
(), and assume that 2’ € Z’ such that ¢'(z’) € Z” for some [t| < 2p. We are asked to
show that for every z € Z it holds

2,21z = [2,¢" ()] z-

The idea is the following:



88 J. Buzzi et al. / Advances in Mathematics 479 (2025) 110410

o V¥(z',Z") and V¥ (p'(2"), Z") coincide in a small window.
If Z = Z(V2P") and G is the representing function of V*(z, Z), then [z,2/]; =
Uy (s,G(s)) for some |s| < 3(p° A p").

The precise statements are in the next claims. Write Z’ = Z(‘Ifgs’qu% p =p° Ap" and
q=¢°Nq"*, and let D be the connected components of A with Z C D.

CLAM 1: qp[V¥(2/, Z") NV, (R[4q])] contains W, {(H(t),t) : |t| < ip} for some function
H : [-%p,ip] — R such that H(0) < sp and ||H'[|co < . Furthermore, [z,2/]; =
U, (s,G(s)) for some |s| < p.

CraIM 2: If D” is the connected components of A such that Z” ¢ D", then
apr [V (2, 2) N, (Rl5q))] € V", 2").

Once we prove these claims, the proposition follows: Claim 2 implies that qp[V*(2', Z7)
N \Ily(R[%q])} C qp[V*(2",Z")] and so by Claim 1

{lz.2']2} = V(2. 2) Nap[V" (¢, Z2") N ¥, (R[54))]
C V(2 Z)nap[V* (2", 2")] = {[z,2"] z}.

Proof of Claim 1. With the estimates obtained in the beginning of the proof of Proposi-
tion 7.2, we just need to proceed as in the proof of [36, Lemma 10.8]. We will include the
calculations for completeness. By the proof of Proposition 7.2, Y := ¥ logpo¥, = Id+A
where:

o |ldA|lco < €% — 1+ 0(e'/3) = O(e'/3) + O(p).

o [AWO)] < & [1+0(EY2) +0(p)] .
In particular, [|Aljco < 2 [1+ O(e¥?) + O(p)] p. Write A = (A1, Az), and let F' be
the representing function of V*(2/, Z'), i.e. V¥(2',Z") = U, {(F(t),t) : |[t| < ¢*}. Hence
Ve, 2" Ny (R[3q]) = U, {(F(t),t) : |t| < $¢}, and since qp o ¥, = ¥, o T we have

ap[V" (2, Z") N0y (R[54])] = (P2 0 T){(F(t),1) : |t] < 50}
= U {(F(t) + Au(F(t),1),t + Dao(F (), 1)) « [t] < 503}

We represent the pair inside ¥, above as a graph on the second coordinate. Call 7(t) :=
t+ Ay(F(t),t)). We have:

o |7(0)] = |A2(F(0),0)] < [AF(0),0)]| < AO)]| + [ldA[lco F(O)] < F5[1 +O("/?) +
O(p)lp + [O(e'?) + O(p)110~%q < 5E[1+ O(/%) + O(p)Ip.

o |[T'(t)] =1+ |[dAfoo(1+ ||F’||CO) =1+[0(e?) +0(p))(1 +e) = 1+ O0(e!/*) + O(p)
for every |t| < iq.
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In particular,

7(30) = 30— [82(F(0),0)] > 5a — 55[1+ O(?) + O(p)lp
_ 1/3
> (3000l — 214 0% + 0(p)]) p > S,
for p,e > 0 small, since % — % > % Therefore, the image of 7 : [—%q, %q] — R contains

3Nov&?, we write the first coordinate F'(t) + A1 (F'(¢),t) as a function of 7. Start noting
that, since the derivative of T is positive, it has an inverse 6 : 7[—1¢, 2¢] — [—1¢, 3q]
such that |0/(7())] = |7/(t)|7' = 1+ O(¥/?) + O(p) for every 7(t) € 7[-3q, 1q]. In
particular,

10(0)] = 16(0) = 0(7(0))] < [|6'[|co|7(0)] < 5E[1 + O("?) + O(p)lp < £p.
Defining H : [—%p, %p] — R by
H(r) = F(t) + A1 (F (1), 1) = F(0(7)) + A (F(0(7)), 6(7)),

we have:

o [H(0)| < [F(6(0)] + |A1(F(6(0),0(0))] < [F(O)] + [[F"[|co]0(0)] + [[Allco < 107%g +
elp+ 2 [14+0(EY3) +0(p)] p < 5p.

o 1H'lco < I1Flco ||+ dA o (14 Fllco) o < 26+2[0(/3)+0(p)][1-+¢] =
O(e'/3) + O(p) which is smaller than % for p,e > 0 small.

This proves the first part of Claim 1. For the second part, note that |H(7)| < |H(0)| +
|H'||colr| < %p+ % . %p < %p, thus H : [f%p, %p] — [f%p, %p] is a contraction. We have
[2,2']z = ¥, (¢, G(t)), where t is the unique ¢t € [—p®, p*] such that (¢, G(t)) = (H(7), ).
Necessarily H(G(t)) =t, i.e. t is a fixed point of H o G. Using the admissibility of G and
the above estimates, the restriction of H oG to [f%p, %p] is a contraction into [f%p, %p],
and so it has a unique fixed point in this interval, proving that |¢| < %p. O

Proof of Claim 2. The proof is very similar to the proof of Proposition 4.9. Let us prove
the inclusion for V*. Let V* = V(2”,Z") = V*[u*] with v+ = {T% %} and let
Gn = g5 _,o--ogh. Let U = qpn[V*(z,2') N ¥,(R[4q])]. By Proposition 7.2(1),
U® C U, (Rlg§ N q4]). Now we proceed as in the proof of Proposition 4.9 to get that:

o If n is large enough then G, (U®) C ¥, (R[Q(y»)]): this is exactly Claim 2 in the
proof of Proposition 4.9.
o U® C V*: this is exactly Claim 3 in the proof of Proposition 4.9.

Hence Claim 2 is proved. U
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The proof of the proposition is complete. [
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