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Abstract The quantum chemical calculations are executed for a series of designed carbazole-based

oligothiophene systems (CPTR1 and CPTD2-CPTD8) having D1-p1-D2-p2-A architecture. The

effect of addition of p-linkers on designed architecture for the electronic and non-linear optical

response was examined at M06/6-311G(d,p) level of theory. The frontier molecular orbitals

(FMOs), density of states (DOS), natural population analysis (NPA), UV–Vis and transition den-

sity matrix (TDM) and non-linear optical (NLO) analyses were utilized in order to comprehend key

electronic and non-linear optical response. All the designed molecules exhibited a lower energy gap

(ELUMO-EHOMO) as 2.434–2.780 eV, as compared to the CPTR1 (2.875 eV). Among all the deriva-

tives, CPTD8 exhibited the highest dipole polarizability hai and second hyperpolarizability (ctot) as
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2.946 � 10-22 esu and 41.372 � 10-33 esu, respectively. Dipole moment (m) and first hyperpolarizabil-

ity (btot) of CPTD8 were found to be as 3.478 D and 118.886 � 10-29 esu, correspondingly. The sec-

ond hyperpolarizability (ctot) of CPTD8 was observed to be �6.4 �4.0 �2.5 �1.8 �1.4 �1.3 and

�1.1 times higher in comparison to CPTR1 and CPTD2-CPTD7, respectively. It is concluded that

carbazole-based oligothiophene might be used as a potential material in optoelectronic devices.

� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In the current era, non-linear optical (NLO) chromophores are
designated as substantial materials owing to remarkable opto-

electronic characteristics [1,2]. Advanced NLO materials inno-
vation has significantly improved research area through the
experimental and theoretical approaches [3,4]. The NLO based

compounds are remarkable as a result of extensive advantages
in telecommunication, optoelectronic devices, photonic tools,
therapeutic testing, photoelectric materials and phosphores-

cent sensors [5]. The NLO active material is thoroughly based
on the electronic characteristics of a molecule and the charac-
teristics should be evaluated to examine the optical potential of
the molecules [6].

In recent years, many scientific efforts have been made to
explore various NLO substances involving synthetic resins,
molecular dyes, organic and inorganic semiconductor diodes

[7,8]. The organic compounds are selected over the other mate-
rials owing to their small dielectric constant, low cost, high
photoelectric coefficients, accessibility, conjugated p-bonding
system and easy electronic displacement [8,9]. In current ages,
non-fullerene acceptors (NFAs) based compounds have
acquired great consideration in the enhancement of organic

optical response because of their powerful electron transfer
capabilities [10]. NLO response also depends upon an intra-
molecular charge transfer (ICT) [11]. The development of
ICT is entailed by donor-p-acceptor framework [12] of NLO

substances manifesting ‘‘push–pull” system. The first hyperpo-
larizability (btot) explained by the NLO analysis relates to ICT,
taking place from donor towards acceptor via p-conjugation
[13]. In this way, the organic compounds exhibit non-linear
optical properties because of the D-p-A architecture extended
conjugation [14,15]. The conjugated polymers have quick

response times and substantial nonlinear optical characteristics
because of the existence of delocalized p-electron system
[16,17]. Among these, polythiophenes are a versatile class of

conjugated polymers that are attracting consideration from
scientists attributed to ability of systematic structural alter-
ation at molecular level [18]. In the literature, there was no
work over the oligothiophene carbazole donor based materials

in non-linear optical field. So, these molecules possessing var-
ious numbers of thiophene rings are developed from synthe-
sized molecule (QL1) [19] and their structure–property

relationship was explored (Scheme 1).
In the current work, eight novel oligothiophene carbazole

donor based compounds (CPTR1 and CPTD2-CPTD8) are

analyzed computationally such as frontier molecular orbital
(FMO), molecular electrostatic potential (MEP), transition
density matrix (TDM), density of states (DOS) and non-
linear optical (NLO) investigations. This is the first compre-

hensive theoretical study of azacycle-based oligothiophenes,
which can be a prerequisite for developing new and better
organic NLO materials.

2. Materials and methods

A new D1-p1-D2-p2-A configured azacyclic donor-based com-
pound named as (E-)-3-(5-(8-(9H-carbazole-9-yl)phenyl)thio

phen-2-yl)-2,3-dimethylquinoxalin-5-yl)thiophen-2-yl)-2-cya
noacrylic acid and abbreviated as CPTR1 was fabricated by
structural modulation of a synthesized molecule (QL1) [19]

and optimized for selecting suitable functional for computa-
tional study. The structural alteration for designing reference
molecule CPTR1 from well-synthesized compound (QL1) is
exhibited in Fig. 1.

For the geometry optimization of reference chromophore
CPTR1, different DFT functionals including B3LYP [20,21]),
CAM-B3LYP [22]), MPW1PW91 [23],xB97XD [24], M06

[25] and M06-2X [26] with 6-311G(d,p) basis set [27,28] were
utilized. To confirm the successful optimization of geometries,
we checked the vibrational frequencies and absence of any

imaginary frequency confirmed the successful optimization of
our structures. The graphs in Figure S3 and tabulated dated
in Tables S45-52 confirmed that the structures of entitled chro-

mophores were at true minima. TD-DFT [29] based absorp-
tion analysis (kmax) results achieved through optimized
structures of aforesaid functional were found to be as 525.06,
419.37, 572.33, 421.45, 530.86 and 403.21 nm at M06, M06-

2X, B3LYP, CAM-B3LYP, MPW1PW91 and x B97XD,
respectively. All other functionals overestimated kmax magni-
tudes relative to M06 as kmax at M06 functional was best suited

with experimental data (kexp = 486 nm) at the aforementioned
functional (kDFT = 525.06 nm) (Fig. 2). Subsequently, all
other calculations for current study were executed at M06,

because our current investigation as well as certain earlier lit-
erature described M06 efficiency [30,31]. First of all, with the
aid of GaussView 6.0 software, structures of CPTR1 and
CPTD2-CPTD8 molecules were drawn. The output files and

input files of the CPTR1 and CPTD2-CPTD8 were generated
by Gaussian 09 package [32] and GaussView 6.0 [33], respec-
tively. From output files, results were interpreted using Avo-

gadro [34], Chemcraft [35], GaussSum, Argus Labs [36],
PyMOlyze [37] and Multiwfn 3.7. [38] The two broadly utilized
methods to get transfer integrals are; Koopmans’ theorem [39])

and the direct estimation method for the estimation of elec-
tronic features via frontier molecular orbitals (FMOs). [40])
These features are liable to study magnitude of optical

response, successively interlinked to the linear response [41],h
ai and nonlinear responses [42], btot and ctot, which are first
and second hyperpolarizabilities, respectively. Dipole moment
(m) and average polarizability hai were estimated by Eqs. (1)

and (2). While, the first hyperpolarizability (b tot) and second

http://creativecommons.org/licenses/by/4.0/


Scheme 1 A general sketch map of entitled compounds.

Fig. 1 Reference molecule (CPTR1) was obtained using parent molecule (QL1) via replacement of -C6H13 with –CH3 group.

Fig. 2 Comparison of maximum absorption values of CPTR1

between experimental and simulated values at various levels of

theory: B3LYP, CAM-B3LYP, MPW1PW91, WB97XD, M06

and M06-2X at 6-311G (d,p).
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hyperpolarizability (ctot) were calculated by using Eqs. (3) and
(4).

l ¼ l 2½ �x þ l2
y þ l2

z

� �1=2

ð1Þ

hai= (axx + ayy + azz)/3 ð2Þ

btot ¼ b2
x þ b2

y þ b2
z

� �1=2

ð3Þ

Where bx = bxxx+bxyy+bxzz, by = byxx+byyy+byzz and
bz = bzxx+bzyy+bzzz

ctot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2x þ c2y þ c2z

q
ð4Þ

ci ¼
1

15

X
j

ðcijji þ cijij þ ciijjÞi; j ¼ fx; y; zg

Moreover, evaluation of various global reactivity descrip-
tors i.e., ionization potential (IP), global softness (r), electron
affinity (EA), electrophilicity index ðxÞ, chemical potential (l),
electronegativity (X) and global hardness (g) is performed by
Koopman’s theorem and calculated by utilizing the Eqs. (5)–
(11), respectively [39].
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IP = -EHOMO ð5Þ

EA = -ELUMO ð6Þ

X ¼ IPþ EA½ �
2

ð7Þ

g ¼ IP� EA½ �
2

ð8Þ

l ¼ EHOMOþELUMO

2
ð9Þ

r ¼ 1

2g
ð10Þ

x ¼ l2

2g
ð11Þ
3. Results and discussion

We have exploited CPTR1 to fabricate seven further deriva-
tives (CPTD2-CPTD8). This investigated compound was a
fused five-membered azacycle (carbazole) donor-based struc-

ture acting as the first donor (D1) named as 9-phenyl-9H-
carbazole, thiophene ring as first p-spacer (p1), 2,3-
dimethylquinoxaline as a second donor (D2), again the other

thiophene ring is considered to be second p-spacer (p2) and
2-cyanoacrylic acid as the acceptor (A) moiety. Structural
remodeling of CPTR1 was accomplished by introducing one

thiophene unit enhanced step by step in each derivative at p2
region, keeping rest of the structure as same in all the designed
derivatives (CPTD2-CPTD8) and its impact on electronic,

structural and NLO characteristics was explored. The struc-
tural and optimized views of entitle compounds are illustrated
in Figure S1 and Fig. 3, respectively. While cartesian co-
ordinates for entitled structures are presented in Tables S1-

S8 (Supporting Information).

4. Geometric optimization

The structural parameters of CPTR1 and CPTD2-CPTD8

have been simulated at 6-311G(d,p) M06 level of theory using
density functional theory (DFT) approach. Obtained bond

lengths and bond angle values of some specific hetero-atomic
functional groups are discussed and compared with published
literature in order to check the accuracy of implemented com-

putational procedure. The DFT based findings for entitled
molecules are presented in Tables S9-S16 (Supplementary
Information).

For compounds CPTR1 and CPTD2-CPTD8, DFT based
C–C bond lengths in the benzene ring are found to be in the
range 1.382–1.399 Å which is in a close correspondence with
the XRD bond length results for a benzene ring present in

the literature 1.364–1.475 Å [43]. The corresponding values
of bond length for C = O in –COOH functional group is
found to be 1.2 Å by DFT. In the similar way, the C-N bond

lengths in terminal cyano groups of CPTR1 and CPTD2-

CPTD8 are observed to be same in all entitles systems as
1.155 Å. The maximum deviation value for systems: CPTR1

and CPTD2-CPTD8, via DFT based analysis for C–C–C bond
angles in the benzene ring is found in the range 117–121.1�.
This result is found in close concurrence with bond angles
obtained by SC-XRD as 114-124� (Tables S9-S16) [43]. Simi-

larly, for O-C-O in –COOH, DFT computed maximum devia-
tion in bond angles is observed to be 122.9�. In addition, the
C–C-N bond angle deviation calculated via DFT analysis is

observed to be in the range 177.5–178.3. The other findings
for DFT simulated bond lengths and bond angles are pre-
sented in Tables S9-S16 (Supplementary Information).

5. Frontier molecular orbitals (FMOs) investigation

FMO investigation facilitates us to calculate notable quantum

chemistry variables such as chemical stability, electronic char-
acteristics, chemical reactivity and electron transference char-
acteristics of examined molecules. [44]) The achieved energy

difference (Egap = ELUMO-EHOMO) of tailored chromophores
is related to the kinetic and chemical stability. Moreover, the
HOMO-LUMO energies are considered as important physical
properties for determining the molecular electrical transport

properties. [45] Generally, HOMO implies electron donation
capability, while LUMO concentrates on the tendency of elec-
tron acceptance. [46] Compounds with larger energy gaps are

supposed to be less reactive, more stable and, hard, while com-
pounds exhibiting smaller energy gaps are regarded as strongly
polarizable, soft and, unstable molecules; subsequently such

molecules have magnificent NLO response. [47-49] DFT com-
putations are employed at M06/6-311G(d,p) to demonstrate
ELUMO, EHOMO and Egap of CPTR1 and CPTD2-CPTD8,
and their calculated results are shown in Table 1.

Table 1 displayed the calculated HOMO/LUMO energy
gap of CPTR1 as �5.852/-2.977 eV with highest energy gap
(2.875 eV). The larger energy gap found for CPTR1 was might

be because of the reduced conjugation in the system. However,
reduced energy gap of (2.780, 2.674, 2.582 and 2.522 eV) was
noted in the case of compounds, CPTD2, CPTD3, CPTD4

and CPTD5 relative to CPTR1. The observed energy gap
reduction was because of adding three, four, five and six thio-
phene p-linkers in CPTD2, CPTD3, CPTD4 and CPTD5 com-

pounds, respectively. Furthermore, the increment of p-spacers
enhanced the conjugation and resulted in the reduced energy
gap. The energy gap was further decreased to (2.510–
2.434 eV) in derivatives (CPTD6-CPTD8) as compared to

(CPTD2-CPTD5) due to the addition of seven, eight and nine
p-bridges in these compounds. The introduction of more p-
spacers resulted in increased extended conjugation which cre-

ated a strong push–pull system required to get a better NLO
response. The energy gap of the examined chromophores in
descending order is noted as follows: CPTR1 > CPTD2 >

CPTD3 > CPTD4 > CPTD5 > CPTD6 > CPTD7 > CPT

D8. A decrease in band gap value was obtained for currently
investigated chromophores from 2.780 to 2.434 eV through
enhancement of thiophene rigs from 2 to 8 in number. From

literature survey, it is revealed that enhancement of p-bridges
(thiophene rings) significantly decreased the band gap and
improved the charge transference rate [50]. This trend eluci-

dates that, the introduction of additional p-spacers would be
an efficient way to attain remarkable NLO behavior. [47]
The charge density distribution in CPTR1 and CPTD2-

CPTD8 on their corresponding HOMO and LUMO orbitals
is displayed in Fig. 4. Appropriate charge transfer confirms



Fig. 3 Optimized structures of CPTR1 and CPTD2-CPTD8 with natural atomic coloring scheme.

A theoretical approach for exploration of non-linear optical amplification 5
the afore-mentioned compounds to be magnificent NLO con-
stituents. [47,48] In reference molecule (CPTR1), the electronic
cloud for HOMO was found significantly dispersed on the
whole molecule, whereas, for LUMO it was noticeably present
on D1. However, in the tailored chromophores (CPTD2-

CPTD8), the major portion of HOMO charge density was



Table 1 EHOMO, ELUMO and energy gap (ELUMO-EHOMO) of

entitled compounds.

Chromophores EHOMO ELUMO Egap

CPTR1 �5.852 �2.977 2.875

CPTD2 �5.717 �2.937 2.780

CPTD3 �5.605 �2.931 2.674

CPTD4 �5.505 �2.923 2.582

CPTD5 �5.445 �2.923 2.522

CPTD6 �5.434 �2.924 2.510

CPTD7 �5.380 �2.921 2.459

CPTD8 �5.355 �2.921 2.434

Units in eV.

6 I. Shafiq et al.
located over D2 and minutely on the p-spacers. While, for
LUMO, greater quantity of charge existed on terminal accep-

tor (A) part, while a small quantity of electronic cloud was also
seen over the p2-spacer region. The ICT originating from the
donor towards the acceptor unit is illustrated by distribution

between HOMO/LUMO upon compound’s excitation. This
electronic charge reinforcement proved that all the tailored
molecules are proficient NLO active compounds.

6. Global reactivity parameters (GRPs)

DFT methodology is utilized to calculate the global reactivity

descriptors i.e., global softness (r), ionization potential (IP),
electron affinity (EA), electrophilicity index ðxÞ, chemical
potential (l), electronegativity (X) and global hardness (g).

The results achieved from the Equations (6)–(12) are repre-

sented in Table 2. HOMO/LUMO energy values of investi-
gated compounds (CPTR1 and CPTD2-CPTD8) are
indicated by EA and IP. Surely, electron-donating as well as

electron-gaining nature of CPTR1 and CPTD2-CPTD8 can
be determined by electron affinity and ionization potential val-
ues. [51]) Moreover, in our designed chromophores (CPTD2-

CPTD8), the IP (5.355–5.717 eV) was found lower, relative to
the reference molecule CPTR1 (5.852 eV), expressing facile
electron removal and less energy would be needed for polariza-

tion than CPTR1. The descending order of IP values is com-
puted as: CPTR1 > CPTD2 > CPTD3 >

CPTD4>CPTD5> CPTD6>CPTD7>CPTD8. Further-
more, the g values of CPTD2-CPTD8 were observed to be

much lower (1.217–1.390 eV) with greater r values (0.360–
0.411 eV) as compared to CPTR1 (g = 1.438 eV and
r = 0.348 eV) which indicated higher chemical reactivity thus

resulting in improved NLO response of studied compounds.
[52] The decreasing inclination of softness was found as:
CPTD8 > CPTD7 > CPTD6 > CPTD5 > CPTD4 > CP

TD3 > CPTD2 > CPTR1. Moreover, the chemical potential
is a significant element in determining the reactivity and stabil-
ity of the studied compounds. As the l values of derivatives
(CPTD2-CPTD8) were more negative (-4.138 to �4.327 eV

than that of reference; CPTR1 (-4.415 eV), which made them
kinetically less stable, chemically more reactive and highly
polarizable (Table 2). The chemical potential values were in

the descending trend as: CPTD8 > CPTD7 > CPTD6 > CP

TD5> CPTD4 > CPTD3> CPTD2> CPTR1. Compound
CPTD8 displayed a largest amount of electrophilicity index ðxÞ
which confirms its electron captivating nature. The ability of an
atom in a molecule to draw electrons toward itself is known as
electronegativity. A molecule with a less electronegativity may
be more effective as an electron transport medium because it

may offer an easy removal of electrons, making it suitable to
produce a high electron charge transfer. [53] The trend of elec-
tronegativity in CPTR1 > CPTD2 > CPTD3 > CPTD4 >

CPTD5>CPTD6>CPTD7>CPTD8 revealed thatCPTD8

might be better as an electron transport material as compared
to other entitled molecules. On the other hand, electron affinity

is found lowest in CPTD8 as compared to other studied com-
pounds (CPTR1-CPTD7) which indicate that it is a compound
with least accepting nature. [54] Overall, the aforementioned
results demonstrated the larger charge movement tendency of

entitled compounds among their HOMO and LUMO orbitals
consequently resulting in improved polarizability as well as sig-
nificant NLO behavior.

7. Uv–vis analysis

For evaluating the optical characteristics of the parent as well

as designed compounds (CPTR1 and CPTD2-CPTD8), UV/
Vis absorption spectra are assessed in the gas and solvent
phase i.e., dichloromethane via utilizing M06/6-311G(d,p).

UV–Vis study offers valuable computational aspects for
understanding the electronic excitations, [55] contributing con-
figurations and rate of charge shifting phenomenon within the

studied molecules. [56] TD/DFT computed most prominent
values of kmax, excitation energy, orbitals involved in the tran-
sition and oscillator strength are demonstrated in Table 3,
while rest of the results are added in Tables S17-S32 (Support-

ing Information). Current investigation revealed that the con-
jugation with prominent electron withdrawing terminal unit,
hit a large bathochromic shift in UV–Vis absorption spectra.

[57] The investigated complexes with D1-p1-D2-p2-A configura-
tion, having extended p-conjugation showed interesting opto-
electronic results. Higher kmax value and lower transition ener-

gies were detected in all chromophores in dichloromethane as a
solvent phase and tabulated in Table 3 and absorption spectra
of studied compounds (CPTR1 and CPTD2-CPTD8) are dis-

played in Fig. 5.
All the investigated molecules; CPTR1 and CPTD2-

CPTD8, exhibited visible region absorbance in solvent along
with the gas phase. Absorption maxima of all the compounds

was observed in the 537.749–609.704 nm range in dichloro-
methane. CPTD7 compound showed maximum absorbance
in the UV–Vis region, due to the presence of more extended

p-conjugation and gave a kmax highest peak having a value
of 609.704 nm. Reference compound CPTR1 displayed a min-
imum kmax value among all the compounds, having peak value

537.749 nm. Decreasing order of kmax was CPTD7 > CPT

D5 > CPTD8 > CPTD4 > CPTD6 > CPTD3 > CPT

D2 > CPTR1 having values 609.704, 608.268, 604.974,
599.069, 598.664, 584.387, 562.334 and 537.749 nm, respec-

tively. The highest value of transition energy was shown by
the CPTR1 compound (2.306 eV) while the lowest transition
energy contribution was shown by the CPTD7 compound

(2.034 eV). Decreasing transition energy order was found as
follows; CPTR1 > CPTD2 > CPTD3 > CPTD6 > CPT

D4 > CPTD8 > CPTD5 > CPTD7 having values 2.306,

2.205, 2.122, 2.071, 2.069, 2.049, 2.038 and 2.034 eV, respec-
tively. The estimated highest peak of CPTD7 was achieved at



Fig. 4 HOMOs and LUMOs of CPTR1 and CPTD2-CPTD8.
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Fig. 5 UV/Vis absorption spectra of studied compounds (CPTR1 and CPTD2-CPTD8) calculated at M06/6-311G(d,p) functional.

Table 2 Global reactivity descriptor of entitled compounds (CPTR1 and CPTD2-CPTD8).

Comp.

IP

EA X g l x r

CPTR1 5.852 2.977 4.415 1.438 �4.415 6.778 0.348

CPTD2 5.717 2.937 4.327 1.390 �4.327 6.735 0.360

CPTD3 5.605 2.931 4.268 1.337 �4.268 6.812 0.374

CPTD4 5.505 2.923 4.214 1.291 �4.214 6.878 0.387

CPTD5 5.445 2.923 4.184 1.261 �4.184 6.941 0.397

CPTD6 5.434 2.924 4.179 1.255 �4.179 6.958 0.398

CPTD7 5.380 2.921 4.151 1.230 �4.151 7.006 0.407

CPTD8 5.355 2.921 4.138 1.217 �4.138 7.035 0.411

Units in eV.

Table 3 The calculated transition energies (eV), maximum absorption wavelengths (kmax), oscillator strengths (fos) and transition

natures of the designed compounds.

Comp. kmax (nm) E (eV) fos MO contributions

CPTR1 524.997 2.362 1.196 H ! L (90%), H-1 ! L (7%)

CPTD2 543.286 2.282 1.618 H ! L (88%), H-1 ! L (5%), H ! L + 1 (5%)

CPTD3 563.305 2.201 2.004 H ! L (84%), H-1 ! L (3%), H ! L + 1 (9%)

Ga CPTD4 581.454 2.132 2.208 H ! L (76%), H ! L + 1 (16%), H-1 ! L (3%)

CPTD5 581.454 2.093 2.388 H ! L (71%), H ! L + 1 (20%), H-1 ! L (4%)

CPTD6 581.454 2.110 2.523 H ! L (64%), H ! L + 1 (22%), H-1 ! L (7%)

CPTD7 598.115 2.073 2.794 H ! L (60%), H ! L + 1 (23%), H-1 ! L (8%)

CPTD8 598.202 2.073 2.995 H ! L (51%), H-1 ! L (10%), H ! L + 1 (29%)

CPTR1 537.749 2.306 1.533 H ! L (90%), H-1 ! L (7%)

CPTD2 562.334 2.205 1.848 H ! L (89%), H-1 ! L (4%), H ! L + 1(4%)

CPTD3 584.387 2.122 2.157 H ! L (86%), H-1 ! L (4%), H ! L + 1 (8%)

CPTD4 599.069 2.069 2.356 H ! L (78%), H ! L + 1 (13%), H-1 ! L (5%)

S
b

CPTD5 608.268 2.038 2.536 H ! L (73%), H ! L + 1 (15%), H-1 ! L (6%)

CPTD6 598.664 2.071 2.748 H ! L (66%), H-1 ! L (10%), H ! L + 1 (17%)

CPTD7 609.704 2.034 2.999 H ! L (62%), H-1 ! L (12%), H ! L + 1 (17%)

CPTD8 604.974 2.049 3.369 H ! L (51%), H-1 ! L (14%), H ! L + 1 (22%)

MO = molecular orbital, H = HOMO, L = LUMO, fos = oscillator strength, agas, bsolvent.

8 I. Shafiq et al.
609.704 nm with 2.034 eV low transition energy and oscillator
strength (2.999) showing 95%MO-contributions from HOMO

to LUMO. While, calculated minimum peak for the
CPTR1 compound was attained at 537.749 nm with 2.306 eV
transition energy and oscillator strength (1.533) showing

97% MO-contributions from HOMO to LUMO. Generally,
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wavelengths with higher value of oscillations showed stronger
allowed transitions. [58] The kmax values obtained for all enti-
tled chromophores are found red shifted in dichloromethane

while for gaseous phase unique pattern is noticed as kmax

results obtained for CPTD4-CPTD6 are found exactly same
as kmax = 581.545 nm. Similar case was also observed for

CPTD7-CPTD8 (kmax = 598.115 and 598.202 nm respectively)
in gas phase. This might be due to geometrical parameters as in
solvent phase these fabricated molecules may developed inter-

action with solvent molecule while in gas phase these interac-
tion might be not possible and structures get aggregate. This
unique pattern may be opened a door for scientific community
in future. Nevertheless, the absorption maxima were signifi-

cantly influenced by polarity alteration as well as the solvent’s
nature which can be confirmed by a distinct bathochromic
shift in the solvent in comparison to the gas, that is greatly

noticeable in donor–acceptor configured compounds. [59] As
per literature assessment, molecules with lower energy gaps
possess improved absorption properties, consequently higher

HOMO to LUMO charge transference. [60] A decrease in exci-
tation energy was obtained for entitled molecules from 2.306
to 2.049 eV after addition of thiophene rigs from 2 in CPTR1

to 8 in CPTD8. The whole discussion revealed that, a low
energy gap and greater charge transmission is affirmed in com-
pounds with red shift thus, will lead to promising compounds
with excellent NLO response.

8. Natural population analysis (NPA)

The Mulliken population examination is implemented to study

atomic charge transformation, electronegativity equalization
and electrostatic potential on the compounds under analysis.
[61] The charge distribution on an atom substantially influence

the chemical reactivity, dipole moment and electrostatic inter-
faces among the molecules and atoms. Moreover, the electronic
charges perform a substantial part in bonding ability and molec-

ular conformation. [62] Mulliken population analysis of
(CPTR1) and its designed chromophores (CPTD2-CPTD8)
was performed at M06/6-311G(d,p) level of theory using the

DFT approach and the pictographs are displayed in Figure S2.
Natural charges values for all the atoms of the entitled molecules
are tabulated in Tables S37-S44.

This examination also described that the natural charge pop-

ulation on the electronegative atoms like C, O and N was found
to be negative and a positive charge was uniformly distributed
over all the hydrogen, sulfur and carbon atoms as tabulated in

Tables S37-S44 (Supplementary Information). The distribution
of charges depicted that the nitrogen atoms linked to oxygen
atoms in entitled molecules were positively charged, while the

attachment with carbon and hydrogen was accompanied by neg-
ative charges. Furthermore, all the hydrogen atoms possessed a
positive charge. Oxygen atoms bonded with hydrogen and car-
bon atoms were found to bear a negative charge (Tables S37-

S44). The general assessment of Mulliken charges discovered
the unequal charge distribution over the designed chromophores
owing to the carbon, nitrogen and oxygen atoms.

9. Transition density matrix (TDM) analysis

TDM investigation is utilized for determining the type of elec-

tronic transference in CPTR1 as well as CPTD2-CPTD8 in
dichloromethane (DCM) solvent. This aids to acknowledge
the nature of transition, primarily commencing ground elec-
tronic level (S0) towards excited transition level (S1), and com-

munication among donor and acceptor entities attained by
localization of electron-hole. [63] Impact of hydrogen (H)
atom is lost owing to little involvement in transitions. Our

investigated chromophores were distributed into five segments
to describe the TDM results such as; donor 1 (D1), p-spacer 1
(p1), donor 2 (D2), p-spacer 2 (p2) and acceptor (A), respec-

tively, and their heat maps are presented in Fig. 6. TDM pic-
tographs displayed that, in reference molecule (CPTR1)
electronic delocalization occurs on D1, D2 and p1 whereas, in
designed compounds, CPTD2 and CPTD3 the charge is signif-

icantly transferred from D1 to D2 through p1 which facilitates
the charge transfer without any restriction. However, in the
remaining compounds i.e., CPTD4-CPTD8, the charge density

was shifted from D1 to D2 via p1 and p2 in a diagonal pattern.
Binding energy is a significant tool in determining optoelec-

tronic properties of entitled compounds (CPTR1 and CPTD2-

CPTD8). Low binding energy results in the high charge mobil-
ity and larger NLO response. The binding energy of investi-
gated compounds is estimated by subtracting the band gap

energies from excitation energy. [64] Binding energy is calcu-
lated by utilizing Eq. (12).

Eb = EL�H-Eopt ð12Þ
Eopt is the first excitation energy, Eb is the binding energy

and EL-H is the energy gap. [65] Theoretically executed binding
energies are tabulated in Table 4.

Table 4 showed that the binding energy results of all the
compounds (0.575–0.385 eV) were smaller than the reference
(0.839 eV). These findings revealed that, all the compounds

owned a larger tendency of exciton dissociation in the excited
transition state. The decreasing trend of binding energy values:
CPTR1 > CPTD2 > CPTD3 > CPTD4 > CPTD5 > CPT

D6> CPTD7> CPTD8. The binding energy values for inves-
tigated compounds were 0.839, 0.575, 0.552, 0.513, 0.484,
0.439, 0.425 and 0.385 for CPTR1 and CPTD2-CPTD8 com-
pounds. Among all the chromophores, the lowest Eb value

(0.385 eV) was observed in CPTD8 which presented the great-
est charge dissociation and charge transport rate.

10. Density of state (DOS) analysis

DOS investigation is executed for acknowledging the results
achieved by FMOs investigation of entitled compounds

(CPTR1 and CPTD2-CPTD8) at the M06 functional and 6-
31G(d,p) basis set. To illustrate the DOS study, we have
divided the compound into five segments i.e., end-capped

donor 1 (D1), p-spacer 1 (p1), central donor 2 (D2), p-spacer
2 (p2) and peripheral acceptor (A) represented by red, green,
blue, pink and grey lines, respectively as represented in

Fig. 7. DOS uncovered the transport of electrons out of
HOMO to LUMO of the compound. [64] By intruding an
additional p-spacer in the designed chromophores the scatter-
ing of electronic cloud was seen migrated in various patterns

around HOMO and LUMO which can be further explained
by calculating DOS percentages. Herein, D1 displayed elec-
tronic cloud scattering framework as 43.7, 23.4, 13.0, 9.1,

6.2, 5.2, 2.8 and 3.1 % to HOMO, whereas, 1.9, 0.9, 0.4, 0.2,
0.1, 0.0, 0.0 and 0.0 % to LUMO for CPTR1 and CPTD2-



Fig. 6 TDM heat maps of studied compounds (CPTR1 and CPTD2-CPTD8).
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Table 4 Computed exciton binding energy (Eb) of entitled

chromophores (CPTR1 and CPTD2-CPTD8).

Comp. EL-H Eopt Eb

CPTR1 2.875 2.306 0.839

CPTD2 2.780 2.205 0.575

CPTD3 2.674 2.122 0.552

CPTD4 2.582 2.069 0.513

CPTD5 2.522 2.038 0.484

CPTD6 2.510 2.071 0.439

CPTD7 2.459 2.034 0.425

CPTD8 2.434 2.049 0.385

Units in eV.
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CPTD8, respectively. However, p1 supplied 26.2, 24.9, 19.4,
16.1, 12.4, 10.4, 6.9 and 7.0 % charge density to HOMO and
7.7, 3.8, 1.7, 0.8, 0.3, 0.1, 0.1 and 0.0 % charge density to

LUMO for all the studied compounds. Similarly, D2 was
observed donating 17.6, 22.6, 21.6, 19.6, 16.5, 14.1, 10.5 and
10.4 % to HOMO while, 32.6, 16.0, 7.1, 3.1, 1.4, 0.4, 0.2 and
0.1 % electronic charge to LUMO for CPTR1 and CPTD2-

CPTD8, respectively. Likewise, for all the investigated com-
pounds p2 showed charge distribution patterns as 8.5, 25.5,
43.2, 53.6, 63.8, 69.6, 79.2 and 79.1 % for HOMO, whereas,

26.6, 44.2, 53.6, 57.1, 61.6, 59.6, 61.7 and 59.7 % to LUMO.
Moreover, A exhibited electronic charge dissociation as 4.0,
3.5, 2.7, 1.6, 1.2, 0.8, 0.7 and 0.4 % to HOMO and 31.3,

35.1, 37.2, 38.9, 36.6, 39.9, 38.0 and 40.1 % to LUMO for
CPTR1 and CPTD2-CPTD8, respectively. These involvements
favor that different types of transitions could be achieved by

the introduction of additional p-spacers. In DOS diagrams,
negative magnitudes along x-axis determine the valence band
(HOMO) whereas, positive magnitudes indicate the conduc-
tion band (LUMO) and the space among them shows the

energy gap. [66] Therefore, DOS diagrams assist the frontier
molecular orbitals illustrations (see Figs. 4 and 7). Overall,
DOS analysis has disclosed a proficient transference of charge

density and an appreciable amount of charge is moved from
D1 to D2 through p1 and p2 in the designed (CPTD2-

CPTD8) and reference (CPTR1) compound.

11. Non-linear optical (NLO) analysis

Usually, organic compounds show remarkable NLO proper-

ties due to the extended conjugation system i.e., low value of
dielectric constant, inexpensive nature and convenient to use
[67]. Therefore, they are preferably used in different areas like

optical communications, optical modulation and fiber optics.
[68] Moreover, NLO characteristics of organic compounds
are improved by applying appropriate modifying approaches.
[47,69] The NLO response corresponds to calculated values

of linear polarizability hai, first-order hyperpolarizability (btot)
and second-order hyperpolarizability (ctot) for elucidating
structural and electronic properties in addition to energy

gap. [70] In this way, donor and acceptor groups induce linear
and nonlinear behavior of CPTR1 and CPTD2-CPTD8 as
their hai, btot and ctot were computed and tabulated in Tables

S33-S36 (Supporting Information) with main contributing ten-
sors displayed in Table 5.
Among all the derivatives, CPTD3 showed the maximum m
(3.665 D) due to the existence of three strongly electron-
donating thiophene p-linkers which increase the conjugation

and induce the polarity in the molecules [71]. Whereas, dipole
moment values of CPTR1, CPTD2 and CPTD4-CPTD8 were
found to be 3.717, 3.334, 3.365, 3.206, 3.206, 3.248 and 3.478

D, respectively. Overall, dipole moment (m) values found
decreasing in the order of: CPTR1 > CPTD3 > CPTD8 > C

PTD6 > CPTD4 > CPTD2 > CPTD7 > CPTD5. Urea is

used as a standard for the relative investigation of dipole
moment. All the above-mentioned complexes hold high dipole
moment values than urea (1.373 D). The increase in m of all the
designed molecules was found independent of the increase of

p-linkers, however, it depends on the charge degree of separa-
tion among donor and acceptor moieties [72].

A careful analysis of Table 5 showed that the linear behav-

ior was defined by average linear polarizability. Therefore, it is
interesting to study the influence of increasing length of p-
linkers to observe their structural and NLO properties. The

average linear polarizability with its respective tensors con-
stituents has been calculated and values in esu are shown in
Table S34. It exposed that along axx tensor, larger values were
exhibited that directed the polarization along the x-axis. How-
ever, the ayy also participated notably in linear polarizability,
which specified that ICT followed along the y-axis addition-
ally. Among all, CPTD8 showed the highest (2.946 � 10-22

esu) value of average linear polarizability. This might be due
to an increase in electron density because of the presence of
eight thiophene (p-linkers) groups. The electron density was

observed to be enhanced towards acceptor moiety owing to
the increment in the number of thiophene rings at p2 region
as well as due to presence of nitro and cyano substituent mak-

ing it more electron-withdrawing and extending the conjuga-
tion. The descending average linear polarizability values were
seen in the order: CPTD8 > CPTD7 > CPTD6 >

CPTD5 > CPTD4 > CPTD3 > CPTD2 > CPTR1.
The first hyperpolarizability (btot) also explains the NLO

behavior of the compounds. The btot accompanying its con-
tributing tensors was observed at the same level of DFT and

basis set and relevant values are displayed in the Table S35.
Among all the derivatives, CPTD7 showed the highest btot
amplitude (128.124 � 10-29 esu) with a bxxx value of

122.211 � 10-29 esu with seven p-linkers (thiophene) at p2 posi-
tion. There is an efficient relationship established among the
molecular structures and btot values. The btot factor is gener-

ally enhanced due to the substituents connected to the acceptor
group, like nitro (–NO2) and cyano (–CN) taking part in the
molecular nonlinearity. Furthermore, the influence of the
extended conjugated system to btot prevailed with the substitu-

tion [47]. For further clarification, the calculated results of btot
of studied compounds were compared with urea (btot = 0.03
72 � 10-29 esu) which is used as a standard molecule to analyze

the NLO response [73]. The declining trend of btot for all the
designed molecules in esu was found to be:
CPTD7>CPTD5>CPTD6>CPTD8>CPTD4>CPTD3>-

CPTD2 > CPTR1. Among the individual tensor components,
bxxx exhibited the greatest values which entail better intra-
molecular charge transfer along x-axis.

Second hyperpolarizability ctot is an influential factor in the
evaluation of NLO response [74]. The second hyperpolarizabil-
ity values of aforesaid molecules with contributing tensors are
revealed in the Table S36. The highest ctot value has also been



Fig. 7 DOS plots of the studied compounds, CPTR1 and CPTD2-CPTD8.

12 I. Shafiq et al.
recorded in CPTD8 which is 41.371 � 10-33 esu. The ctot of all
the investigated systems in esu falls in the order:

CPTD8>CPTD7>CPTD6>CPTD5>CPTD4>CPTD3>-
CPTD2> CPTR1. Of all the tensors, cx was principal and dis-
played extraordinarily larger values (Table S36). From the

Table S36, CPTD8 exhibited the largest cx value of
40.697 � 10-33 esu among all designed chromophores. This
might be defined as a higher charge shifting course laterally
the x-axis, which indicates the prominent diagonal tensor. It
was concluded from the aforementioned results that electron-

accepting tendency of compounds played a dynamic role and
produced a remarkable nonlinear optical (NLO) response.

In order to check the efficiency of designed chromophores,

a comparative analysis is made between the CPTR1 and
CPTD2-CPTD8 and para-nitroaniline (p-NA), a popular pro-
totypical molecule used as reference for nonlinear optical



Table 5 Computed average linear polarizability, dipole moment, first hyperpolarizability and second-order hyperpolarizability of

CPTR1-CPTD8.

Comp. m � 10-18 hai � 10-22 btot � 10-29 ctot � 10-33

CPTR1 3.717 1.370 69.727 6.417

CPTD2 3.334 1.599 85.921 10.301

CPTD3 3.665 1.842 106.288 16.319

CPTD4 3.365 2.077 116.428 22.821

CPTD5 3.206 2.297 123.700 28.654

CPTD6 3.419 4.357 119.964 30.366

CPTD7 3.248 2.729 128.124 37.447

CPTD8 3.478 2.946 118.886 41.371

m units in D, hai, btot and ctot units in esu
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activity [12]. Interestingly, designed compounds (CPTR1 and
CPTD2-CPTD8) showed 3.55, 4.15, 4.78, 5.39, 5.96, 1.13,

7.08, and 7.64 times greaterhai, respectively, then that of p-
NA [hai = 1.178 � 10-23 esu]. Similarly, <c>, values were
found to be 2.02, 3.24, 5.12, 7.17, 9.00, 9.54, 11.76 and13.00

times greater respectively, than the standard molecule (p-
NA = 3.182 � 10-36 esu). Furthermore, another comparative
study was also done with oligothiophenes based chromophore

(compound 2) repoted by Amna et al. The observation
revealed that the linear polarizability of all the designed deriva-
tives was found to be 3.55, 4.15, 4.78, 5.39, 5.96, 1.13, 7.08, and
7.64 times greater, respectively, than the compound 2 [hai=
38.51 � 10-24 esu]. Furthermore, the second hyperpolarizabil-
ity < ctot > values were also found to be 0.402, 0.687,
1.087, 1.521, 1.91, 2.02, 2.50, and 2.76 times greater than the

Compound 2 [<c>= 5.07 � 10-36 esu]. Interestingly, our
compound showed good behaviour for NLO properties and
can be utilized as efficient opto-electronic materials.

12. Conclusion

In summary, quantum chemical computations were accom-

plished for D1-p1-D2-p2-A architecture molecules (CPTD2-

CPTD8) as designed by structural modeling of CPTR1. The
least energy gap value among all entitled compounds was

found to be 2.434 eV for CPTD8. The energy gaps of entitled
compounds were obtained in descending order:
CPTR1>CPTD2>CPTD3>CPTD4>CPTD5>CPTD6>-
CPTD7 > CPTD8. The designed compound (CPTD8) dis-

played high global softness and least global hardness as
r = 0.411and g = 1.217, respectively, as compared to the ref-
erence compound (CPTR1) with hardness and softness values

as r; 0.348 and g; 1.438, respectively. All the designed mole-
cules imparted a large exciton dissociation rate due to low
binding energy (Eb = 0.575–0.385 eV) as compared with

CPTR1 (Eb = 0.839 eV). Interestingly, an enhanced batho-
chromic shift in the absorption position of entitled compounds
(kmax = 562.334–609.704 nm) was recorded with lower transi-
tion energy (E = 2.034–2.205 eV). DOS and TDM investiga-

tion reinforced FMO investigation as a substantial ICT was
examined from donor moiety towards acceptor unit through
p-spacer. Among all the designed molecules, the lowest Eb

value (0.385 eV) was observed in CPTD8 which presents the
greatest charge dissociation and charge transport rate. Simi-
larly, CPTD8 exhibited the highest linear polarizability hai
and second hyperpolarizability (ctot) as 2.946 � 10-22 and as
41.372 � 10-22 esu. It is concluded that all the designed com-
pounds showed better results with effective NLO response.
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