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Highlights

• A novel multilevel optimization method applicable to problems modeled as bipartite networks. To the extent of
our knowledge, the proposal is the first for bipartite network.

• The method has the capability of handling layers independently while executing the multilevel process.

• The implementation of the multilevel framework incorporates two novel efficient matching algorithms, as well
as novel contracting and uncoarsening algorithms.

• Applications of the general-purpose method to solve two problems: community detection, in which the method
is employed to scale a known algorithm, and dimensionality reduction, in which it is employed to define a novel
algorithm.

• A comprehensive experimental evaluation of the proposed solution on real and synthetic bipartite networks that
demonstrates it scales the original algorithm and preserves solution quality.

• A test case on dimensionality reduction in text classification, with promising results in terms of runtime and
accuracy, is presented.

• A discussion on the underlying features of the framework and its applicability to solving various practical
network problems are presented.
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Abstract

Multilevel approaches aim at reducing the cost of a target algorithm over a given network by applying it to a coarsened (or
reduced) version of the original network. They have been successfully employed in a variety of problems, most notably community
detection. However, current solutions are not directly applicable to bipartite networks and the literature lacks studies that illustrate
their application for solving multilevel optimization problems in such networks. This article addresses this gap and introduces
a multilevel optimization approach for bipartite networks and the implementation of a general multilevel framework including
novel algorithms for coarsening and uncorsening, applicable to a variety of problems. We analyze how the proposed multilevel
strategy affects the topological features of bipartite networks and show that a controlled coarsening strategy can preserve properties
such as degree and clustering coefficient centralities. The applicability of the general framework is illustrated in two optimization
problems, one for solving the Barber’s modularity for community detection and the second for dimensionality reduction in text
classification. We show that the solutions thus obtained are statistically equivalent, regarding accuracy, to those of conventional
approaches, whilst requiring considerably lower execution times.

c© 2017 Published by Elsevier Ltd.

Keywords: Complex Networks, Bipartite Networks, Combinatorial Optimization, Meta-heuristic, Multilevel Optimization,
Large-scale Networks

1. Introduction

Bipartite networks comprise a particular class of network models in which the set of vertices is split into two dis-2

joint subsets, with edges connecting vertices placed in different sets. Also known as two-layer networks, they provide
a powerful representation of relationships in many real-world systems, including document-word [45], protein-ligand4

[19], actor-movie [64], georeferenced user-location [63] and paper co-authorship or citation networks [38]. Bipar-
tite network models have been widely employed in hard combinatorial optimization problems that require finding a6

minimum (or maximum) cost, wherein the number of possible states is finite and usually exponential. Many such
problems, e.g., biclique, matching, vertex cover, community structure, traveling salesman and network coloring [2]8

have proven to be NP-complete or NP-hard.

∗Corresponding author
Email addresses: alanvalejo@gmail.com (Alan Valejo), cristina@icmc.usp.br (Maria Cristina Ferreira de Oliveira),
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Multilevel techniques are being investigated as a global strategy to handle decision-making and optimization prob-10

lems in a variety of application domains. We refer the reader interested in applications to management problems to
recent literature on the topic [67, 18, 34]. In this paper we investigate the multilevel strategy to handle computa-12

tionally expensive optimization problems in bipartite networks. In this context, the approach consists of iteratively
coarsening an original network into a hierarchy of smaller sized approximations. A starting solution is obtained in the14

coarsest network and successively projected back and refined over the inverse sequence of coarsened networks, until
the original one. Previous studies demonstrated the strategy enables running computationally expensive algorithms16

on large networks with no significant loss in solution quality [10, 22, 50, 41, 53, 54, 32]. Sciences [58] and Walshaw
[59] argued over the relevance and feasibility of the multilevel strategy for solving combinatorial optimization prob-18

lems. Empirical evidence has been shown by Walshaw [59] that the coarsening process filters the solution space by
gradually removing irrelevant high-cost solutions and drastically reducing the search space, and hence, optimization20

convergence times.
Multilevel algorithms have been applied to many classic network problems, including network coloring [55], trav-22

eling salesman [57], network drawing [55], network partitioning [8] and computation of centrality measures [11].
However, current multilevel approaches are not directly applicable to bipartite networks and, to the best of our knowl-24

edge, the multilevel strategy has not been considered in this context.
We address this gap and introduce a novel multilevel optimization approach applicable to bipartite networks. Fur-26

thermore, we describe an implementation of this approach as a general-purpose multilevel framework that incorporates
two novel efficient matching algorithms, as well as novel contracting and uncoarsening algorithms.28

In order to illustrate its potential, we employed the framework to handle two distinct problems defined in bipartite
networks, namely community detection and dimensionality reduction. In the community detection problem, tests30

on a large set of synthetic networks demonstrated that, combined with a proper local search strategy, it yields good
speedups and preserves solution quality. When employed to perform dimensionality reduction in text classification32

it yielded encouraging results in terms of both runtime and accuracy as compared with a standard dimensionality
reduction technique.34

The remainder of the paper is organized as follows: Section 2 reviews some basic concepts on networks and
provides an overview of the standard multilevel approach. Section 3 discusses previous work and application of mul-36

tilevel strategies on combinatorial optimization problems. Section 4 introduces a multilevel formulation for bipartite
networks and its implementation. Section 5 reports our empirical results, which include (i) an analysis of how the38

multilevel representation impacts the topological features of a real bipartite network; (ii) an empirical study of instan-
tiating the framework to solve the community detection problem on a large synthetic test suite; and (iii) an empirical40

study of its application to dimensionality reduction in text classification. Section 6 briefly discusses how the general
framework can be tuned for application in other types of problems. Finally, Section 7 summarizes our findings and42

discusses future work.

2. Background44

2.1. Basic concepts
Let G = (V, E, σ, ω) be an undirected weighted network, where V = {1, . . . , n} denotes the set of vertices and46

E ⊆ V x V denotes the set of edges, such that (v, u) = {(u, v) = (v, u) | u, v ∈ V}. Let n = |V | be the total number of
vertices and m = |E| be the total number of edges, where operator “|.|” stands for the cardinality of a set. The weight48

of an edge (u, v) is represented by ω(u, v) with ω : VxV → R∗ and the weight of a vertex v is represented by σ(v) with
σ : V → R∗.50

A network G = (V, E, σ, ω) is bipartite (two-layer network) if V is partitioned into two sets V1 and V2, such that
V1 ∩ V2 = ∅ and E ⊆ V1 x V2. Hereafter, each vertex subset is called a layer. A bipartite network thus has two layers52

so that vertices in the same layer are not connected.
The degree of a vertex v ∈ V , denoted κv, is given by the total weight of its adjacent edges, i.e. κv =

∑
u∈V w(v, u).54

The h-hop neighborhood of v, denoted Γh(v), is formally defined as the vertices in set Γh(v) = {u | there is a path of
length h between v and u}. Thus, the 1-hop neighborhood of v, Γ1(v), is the set of vertices adjacent to v; the 2-hop56

neighborhood, Γ2(v), is the set of vertices 2-hops away from v, and so forth.
A similarity score S (u, v) can be computed from a pair of vertices u and v. A fundamental structural similarity58

function between a pair of vertices is given by the number of common neighbors, defined as S cn(u, v) = |Λ(u, v)|,
3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A. Valejo et al. / Knowledge-Based Systems 00 (2018) 1–25 4

Λ(u, v) = {Γ1(u) ∩ Γ1(v)}. Alternatively, a weighted common neighbors similarity function can be defined by equa-60

tion 1, where the term log(1 + s(z)) is used to prevent negative scores [35].

S wcn(u, v) =
∑

z∈Λ(u,v)

ω(u, z) + ω(v, z)
log(1 + s(z))

s(u) =
∑

z∈Γ1(u)

ω(u, z) (1)

The local clustering coefficient of a vertex is given by the probability of its neighbors being connected [64, 39].62

This statistics is closely related to transitivity, which measures the relative frequency of triangles in the vertex neigh-
borhood. The clustering coefficient is defined by equation 2:64

cc(v) =
2tr(v)

|Γ1(v)|(|Γ1(v)| − 1)
, (2)

where tr(u) denotes the number of edges (v, z) ∈ E, such that v, z ∈ Γ1(u) and cc relies on the enumeration of the
triangles in the network. However, as triangles do not occur in bipartite networks this definition is not valid. An66

equivalent metrics for bipartite graphs was introduced by Latapy et al. [33], defined in equation 3, which captures the
overlap between vertex neighborhoods in the same layer.68

ccb(v, u) =
|Γ1(u) ∩ Γ1(v)|
|Γ1(u) ∪ Γ1(v)| ccb(v) =

∑
v∈Γ2(u) ccb(v, u)

|Γ2(u)| , (3)

2.2. General-purpose multilevel optimization

A multilevel optimization is formally defined as a meta-heuristics that combines different heuristics to guide,70

modify and possibly fix a solution obtained from a target algorithm (or operations of the subordinate heuristics,
local search or global search) and refines this solution over multiple iterations. It operates in three phases, namely72

coarsening, solution finding and uncoarsening. In the coarsening phase, the network size is successively reduced to
obtain coarser network representations; in the solution finding phase a starting solution is obtained applying the target74

algorithm in the coarsest representation; in the uncoarsening phase, the starting solution is successively projected back
to the intermediate networks and refined, until obtaining the final solution.76

Figure 1 illustrates such a process, considering an initial network G0 (in which the original problem instance is
defined), where GL denotes the coarsest network obtained after L coarsening steps (levels), S L denotes the starting78

solution obtained in GL, and S 0 denotes the final refined solution obtained in G0.

...

...

...

coarsening uncoarsening and refining 

solution finding

...

final solution 0S

hierarchy of
coarsening

original network 0G

coarsened networks
{      ,       , ... ,    }L-2GL-1G 1G

intermediate solutions
{      ,       , ... ,    }1SL-1S L-2S

starting solution LScoarsest network LG

Figure 1. Phases of a multilevel optimization process: coarsening, solution finding and uncoarsening.

Coarsening80

The coarsening phase constructs a hierarchy of coarsened networks Gl from the initial network G0, yielding inter-
mediate network approximations on multiple levels-of-detail. The process requires two algorithms, namely matching,82

which defines which vertices will be merged, and contracting, which builds the reduced representation, given the
matching. Let Gl = (Vl, El, σl, ωl) be the network model coarsened at level l, with |V0| > |V1| > ... > |Vl|.84
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Coarsening starts with the matching step. According to some given restriction, in general, pairs of vertices are
selected for matching, producing a set of unordered pairs called vertex matching, independent edge set or simply86

matching. Formally, a matching M consists of a set of pairwise non-adjacent edges. Heavy-edge matching is a
popular algorithm for this purpose, which attempts to find a matching of maximal weight [25].88

At any level, the coarsening of a network must preserve its topological features, implying that vertex and edge
weights of the reduced network must reflect the connectivity of its parent. This will be guaranteed by a proper choice90

of matching strategy, which is a key component of effective multilevel optimizations. A matching strategy inadequate
to support the solution finding phase will impair the quality of the solution derived by a multilevel algorithm and its92

performance.
Once the matching is defined, a contracting algorithm constructs the coarsened network, by joining matched vertex94

pairs into a single super-vertex (sV). A child network Gl+1 will inherit the non-joined vertices from its parent. In order
for Gi+1 to be a good proxy to its parent, given a super-vertex sV = {v, u} ∈ Vi+1 its weight σ(sV) is computed as the96

sum of weights σ(v) and σ(u), {u, v} ∈ Vi. Furthermore, the edges incident to vertices {u, v} ∈ Vi are joined to obtain
the so-called super-edges incident to sV .98

Solution finding
This phase employs the target algorithm to solve the problem on the smallest network Gl. Let S be the set of all100

possible solutions in the coarsest problem instance. Given an objective (cost) function f : S → R (or N) that assigns
a cost to each solution in S , the aim is to find a state s ∈ S with minimum (or maximum) cost. For instance, in the102

traveling salesman problem f (s) expresses the length of tour s, whereas in a network community detection problem it
denotes some measure of community quality. Since the coarsest network is possibly very small, it becomes feasible104

to employ computationally expensive target algorithms to find a starting solution [22].

Uncoarsening and refinement106

The uncoarsening (also known as solution projection) phase successively transfers the solution available at a
current level to the upper level in the hierarchy, i.e., the solution obtained in the coarsest network Gl is successively108

projected through intermediate networks Gl−1,Gl−2, . . . ,G1 up to the original network G0.
Solution S l is constructed from S l+1 simply by assigning vertices {u, v} ∈ Vl to the same set of their parent110

sV ∈ Vl+1. Although S l is a local minima of f in Gl, this may not be the case of solution S l−1, derived for the upper
level Gl−1, with respect to Gi. Therefore, a refinement heuristics can be applied to avoid local minima and improve112

solution quality. Local operations can move the solution towards a lower cost neighboring solution in the search space;
for instance, in a community detection problem vertices can be moved between adjacent communities to improve a114

target quality measure.

3. Related Work116

Early studies of multilevel optimization were mostly designed to speed up the recursive bisection problem, as
its high computational cost prevents wider applicability [6]. One of the first theoretical analysis was presented by118

Karypis and Kumar [22], who demonstrated multilevel approaches can find high-quality communities in a variety
of networks. Later, Karypis and Kumar [25] introduced the now widely adopted matching algorithms HEM (Heavy120

Edge Matching), LEM (Light Edge Matching) and MCH (Modified Edge Matching). Other studies relevant for the
development and expansion of the multilevel approach were conducted by Walshaw and Cross [60], who presented122

a theoretical multilevel formulation of the Kernighan-Lin method for mesh partitioning, and by Korosec et al. [29],
who introduced a new multilevel colony optimization applicable to several optimization problems. Sciences [58] and124

Walshaw [59] provided compelling evidence the multilevel framework is an extremely useful addition to combinatorial
optimization toolkits, although it can not be considered a panacea.126

Previous work on multilevel optimization in complex networks can be broadly organized into four categories.
A first category encompasses studies that explore features of network domains; e.g., Abou-Rjeili and Karypis [1]128

studied scale-free networks (with power-law degree distribution), Oliveira and Seok [43] designed a multilevel spectral
approach that explores features of biological networks (protein complexes) and Valejo et al. [53] considered properties130

of social networks, such as high transitivity and assortativity. A second group comprises contributions focused on

5
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scalability, e.g., investigating parallel and distributed paradigms that improve the performance of the coarsening and132

refinement phases [5, 23, 26, 24, 61, 47, 3, 52, 51, 16, 49, 62, 31, 32]. A third category of studies is concerned with
the optimization of a target objective function, e.g., several contributions focused on improvements in modularity134

[40, 14, 48, 65, 41, 46, 15, 32]. Finally, there are significant contributions in applications, including (and not limited to)
graph coloring [56], traveling salesman problem [57], graph drawing [55], biomedical feature selection [42], covering136

design [12], DNA sequencing [9], vehicle routing [44], semi-supervised learning [66], partitioning or community
detection [8] and computation of centrality measures [11].138

We are not aware of any previous effort concerned with the usage of multilevel strategies to solve optimization
problems in bipartite networks, despite the relevance of this kind of network to real-world modeling problems. Current140

multilevel methods cannot be directly applied in bipartite models without adaptations, e.g., they do not consider
vertex types, whereas the layers in a bipartite network usually represent distinct types of entities that must be handled142

independently. For the sake of illustration, suppose a text document collection modeled as a document-word bipartite
network. For a start, matching vertices that represent words and vertices that represent documents (i.e., matching of144

vertices of different layers) would not be meaningful in most application scenarios. Moreover, as the number of words
is typically much higher, coarsening the word layer may be sufficient to reduce the asymptotic convergence of a target146

algorithm.

4. A multilevel approach in bipartite networks148

This section introduces a multilevel optimization framework designed to handle bipartite networks. Bearing in
mind the previous discussion, we have defined two restrictions that establish the major distinction between current150

multilevel methods and the one proposed here:

1. Vertices are only allowed to match their set of two-hop neighbors.152

2. The matching algorithm must operate on vertices of the same layer.

Such restrictions support cost-effective implementations of multilevel strategies in bipartite networks. From the154

definitions of bipartite networks and two-hop neighborhoods, the first restriction implies adjacent vertices are not
matched. Furthermore, vertices can only match others in their two-hop neighborhood set, rather than any non-adjacent156

vertex. Considering, for instance, the network in Figure 2, vertex u1 can match vertices u2 and u3, which are non-
adjacent and are in Γ2(u1).158

u1 u2 u3 u4 u5

v1 v2 v3 v4 v5

Figure 2. Example of a bipartite network with V1 = {u1, u2, u3, u4, u5} and V2 = {v1, v2, v3, v4}.

The first restriction alone does not enforce independent handling of layers, which is guaranteed by the second
restriction, which states layers (either one of them or both) will be processed independently in the coarsening phase.160

Therefore, the coarsening will not match vertices of different kinds and distinct coarsening and refinement algorithms,
or distinct parameterizations of the same algorithm may be adopted in processing each layer. Such a restriction also162

favors the adoption of distributed or parallel processing strategies.
Algorithm 4.1 summarizes the general multilevel optimization framework for bipartite networks (MOb). Similarly164

to the standard multilevel approach, it comprises the phases of coarsening (lines 1-4), solution finding (line 6) and
uncoarsening (lines 7-9). It takes as inputs the initial bipartite network G = (V1 ∪ V2, E, σ, ω), and for each layer a166

maximum number of coarsening levels L and a layer reduction factor r f .
The coarsening is applied to each layer (line 1), level by level until the desired reduction factor is attained, by168

calls to a matching algorithm (line 3) and a contracting algorithm (line 4). The matching algorithm considers the
above restrictions in selecting the vertex pairs to produce the list of independent edges (line 3). The reduction factor170
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(r f ∈ [0, 0.5]) is multiplied by the number of vertices to determine the maximum matching number. If r f = 0.5
(the maximum reduction factor), each coarsening iteration will (potentially) reduce the number of vertices by a factor172

of two, yielding a logarithmic decrease in network size along the process. This is not guaranteed if the network
is disconnected or highly sparse, since in this case there may be an insufficient number of edges. The call to the174

contracting algorithm in the next step (line 4) is responsible for creating the coarsened bipartite network, in which any
matched vertex pairs have been merged into super-vertices.176

Algorithm 4.1: MOb: multilevel optimization framework for bipartite networks.
Input:

bipartite network : G = (V,E, σ, ω)
maximal number of levels : array L = {Li | Li ∈ [0, n] ⊂ Z} with 1 ≤ |L| ≤ 2
reduction factor for each layer : array rf = {r fi | r fi ∈ (0, 0.5] ⊂ R} with 1 ≤ |rf| ≤ 2
layers to be coarsened : array layers = {i | i ∈ {1, 2} ⊂ Z} with 1 ≤ |layers| ≤ 2

Output:
solution : S

1 for i ∈ layers do
2 while l ≤ Li or layer i is not as small as desired do
3 M← matching(Gl, i, rfi);
4 Gl+1 ← contracting(Gl, M);
5 increment l;

6 Sl ← target_algorithm(Gl);
7 while l , 0 do
8 Sl−1 ← uncoarsening(Gl−1, Gl, Sl);
9 Sl−1 ← refining(Gl−1, Sl−1);

10 decrement l;

Return: S

The target algorithm is then executed in the coarsest network Gl to obtain a starting solution S l (line 6). Finally,
in the subsequent uncoarsening phase this solution is projected back, up to G0, through the space of intermediate178

solutions S l−1, S l−2, ..., S 1, S 0 (lines 7-10), possibly refining the solutions at each level (line 9). Although we do not
investigate refinement algorithms in this work, the rationale is to apply a local search strategy to improve the current180

solution, i.e., algorithms should explore small regions of the solution space, in order to reduce impact on performance
and scalability. We do introduce novel algorithms for matching, contracting and uncoarsening.182

4.1. Matching in bipartite networks

We propose a straightforward matching algorithm called random greedy matching for bipartite networks (RGMb),184

described in Algorithm 4.2, where S (u, v) denotes a similarity function.
A vertex u is picked randomly (Line 4) at each iteration, and as long as it has not yet been matched, one of its186

unmatched two-hop neighbors v so that S (u, v) is maximal is chosen (Line 5). Vertices u and v are marked as matched
and removed from the list of unmatched vertices (Line 7). The process iterates until no more vertices can be eliminated188

from the list. For unweighted edges, a random neighbor is selected for matching, otherwise, the heaviest adjacent edge
is selected.190

One may consider different similarity functions, e.g., common neighbors similarity S cn or weighted common
neighbors similarity S wcn. For illustration, consider a graph G = (V1 ∪ V2, E), shown in Figure 3, with V1 =192

{u1, u2, u3, u4, u5} and V2 = {v1, v2, v3, v4, v5}, Γ2(u2) = {u1, u3, u4} and u1, u2, u3 and u4 unmatched. Suppose vertex u2

has been randomly chosen for matching. Adopting S cn as the similarity function, then S cn(u2, u1) = 2, S cn(u2, u3) = 3194

and S cn(u2, u4) = 1, therefore, pair {u2, u3} would be included in the matching, as illustrated in Figure 3(a). Alterna-
tively, for a choice of S wcn as similarity function, S wcn(u1, u2) = 11, S wcn(u1, u3) = 7 and S wcn(u2, u4) = 2.5 and pair196

{u1, u2} would be included, as illustrated in Figure 3(b).

7
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Algorithm 4.2: RGMb: random greedy matching for bipartite networks.
Input:

bipartite network : G = (V,E, σ, ω)
selected layer : l ∈ {1, 2}
reduction factor : r f ∈ (0, 0.5] ⊂ R

Output:
matching : array of tuples M = {(u, v) | u, v ∈ V}

1 matching M← ∅;
2 merge count mc← r f ∗ |V|;
3 while mc > 0 do
4 randomly select a vertex u ∈ Vl;
5 select v ∈ Γ2(u) of maximal S(u, v);
6 M← M ∪ (u, v);
7 remove u and v from Vl;
8 decrement mc;

Return: M

u1 u3 u4u2 u5

v1 v2 v3 v4 v5

5

6 5

6

1

11
1

5 4

9

9

(a)

u1 u3 u4u2 u5

v1 v2 v3 v4 v5

5

6 5

6

1

11
1

5 4

9

9

(b)

Figure 3. Bipartite network, such that V1 = {u1, u2, u3, u4, u5} and V2 = {v1, v2, v3, v4}; (a) pairs {u2, u3} included in the matching; (b) pairs {u1, u2}
included in the matching.

Algorithm RGMb does not ensure an optimal choice over all possible matchings. An alternative strategy would198

choose from a list of vertex pairs sorted in decreasing order of similarity scores, which may be kept in an appropriate
data structure, e.g., a heap or a priority queue. An alternative algorithm that implements this strategy is called greedy200

sorted matching for bipartite networks (GMb) (Algorithm 4.3): it selects the best possible match for a vertex from its
two-hop neighborhood (line 4).202

GMb constructs a priority queue of potential matches ranked by similarity (Lines 3-5) and uses it to retrieve
optimal matching choices (Line 8). In case of a tie, it makes a random choice, in order to favor further exploration of204

the solution space over multiple iterations. If a vertex is selected that has already been matched, it is skipped. GMb,
albeit slower than its random search counterpart RGMb, is more robust and yields better performance (see Section 5).206

For illustration, consider the graph G = (V1 ∪ V2, E) depicted in Figure 4, with V1 = {u1, u2, u3, u4, u5} and
V2 = {v1, v2, v3, v4, v5}. Suppose the matching is being performed on layer V1. Adopting the S cn similarity, pairs208

{u2, u3} and {u4, u5} would be included in the matching, as illustrated in Figure 4(a). Alternatively, for a choice of S wcn

similarity, pairs {u1, u2} and {u4, u5} would be included, as shown in Figure 4(b).210

Variations of the general matching algorithm can be obtained depending on the combined choices of matching
strategy and similarity function S (u, v). We report four variants, namely RGMbcn and RGMbwcn for a choice of212

random matching with, respectively, S cn and S wcn similarity; GMbcn and GMbwcn for the equivalent combinations
with greedy matching.214

4.2. Contracting in bipartite networks

Algorithm 4.4 (Cb, contracting of a bipartite network from a matching) describes how to create a coarsened216

bipartite network from a matching M. It takes as input a bipartite network Gl and a corresponding matching M. First,

8
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Algorithm 4.3: GMb: greedy matching for bipartite networks.
Input:

bipartite network : G = (V,E, σ, ω)
selected layer : l ∈ {1, 2}
reduction factor : r f ∈ (0, 0.5] ⊂ R

Output:
matching : array of tuples M = {(u, v) | u, v ∈ V}

1 matching M← ∅;
2 Q← max priority queue;
3 forall the u ∈ Vl do
4 select v ∈ Γ2(u) of maximal S(u, v);
5 insert (u, v) into Q with priority S(u, v);

6 merge count mc← r f ∗ |V|;
7 while mc > 0 do
8 (u, v)← remove from Q;
9 if u and v unmatched then

10 M← M ∪ (u, v);

11 decrement mc;

Return: m
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1

5 4
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Figure 4. Bipartite network, such that V1 = {u1, u2, u3, u4, u5} and V2 = {v1, v2, v3, v4}; (a) pairs {u2, u3} and {u4, u5} included in the matching; (b)
pairs {u1, u2} and {u4, u5} included in the matching.

vertex pairs {u, v} ∈ M are mapped into a successor vector (lines 5-6) and joined into a single super-vertex sV ∈ Gl+1218

(lines 4-9). The successor vector will be accessed in the uncoarsening phase to assign pair {u, v} ∈ Gl+1 to the same
subset of its super-vertex sV . Any vertices not included in M are inherited by Gl+1 (line 10). After the mapping,220

adjacent edges in El are joined and added to El+1 (lines 11-18), i.e., each pair (u, v) ∈ El holds its successors (w, z)
and if edge (w, z) already exists in El+1 its weight is increased by ωl(u, v) (lines 15-16); otherwise, a new edge (w, z)222

with weight ωl(u, v) is inserted into El+1 (lines 17-18).
Figure 5 illustrates the contracting process. Considering, for instance, the previous example, in which pairs224

{u2, u3} and {u4, u5} have been included in the matching, as illustrated in Figure 5(a), the resulting coarsened network
is depicted in Figure 5(b).226

The capability of handling layers with distinct parameter settings (r f and L) and coarsening algorithms is a com-
pelling feature of the proposed framework. This is advantageous in many situations, since layers in many real network228

models are highly unbalanced in size, as in the already mentioned document-word networks. Coarsening just one of
the layers is also a useful feature, for example, in dimensionality reduction problems, e.g., to reduce the space of230

words in document-word networks, as illustrated in Section 5.3.
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Algorithm 4.4: Cb: Contracting of a bipartite network from a matching
Input:

bipartite network : Gl = (Vl,El, σl, ωl)
matching : array of tuples M = {(u, v) | u, v ∈ V}

Output:
coarsened bipartite network : Gl+1 = (Vl+1,El+1, σl+1, ωl+1)

1 n← 1;
2 sucessor← ∅;
3 Gl+1 = (Vl+1,El+1, σl+1, ωl+1)← empty bipartite network;
4 forall the (u, v) ∈ M do
5 sucessor[u]← n;
6 sucessor[v]← n;
7 add new super-vertex sV = {u, v} to Vl+1 with id n;
8 σl+1(v)← σl(u) + σl(v);
9 increment n;

10 Vertices not merged are inherited by Gl+1;
11 forall the (v, u) ∈ El do
12 w← sucessor[u];
13 z← sucessor[v];
14 if w , z or they are not super-vertices in El+1 then
15 if (w, z) ∈ El+1 then
16 El+1 ← ωl+1(w, z) + ωl(u, v);

17 else
18 El+1 ← new edge (w, z) with weight ωl(u, v);

Return: Gl+1 = (Vl+1,El+1)

232
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(b)

Figure 5. Contracting of a layer with the GMbcn matching algorithm: (a) selected matching in original bipartite network; (b) contracting process
with newly formed super-vertices and modified edges highlighted.

4.3. Uncoarsening algorithm

The solution finding phase executes the target algorithm to obtain a starting solution S L. The representation of234

S L depends on the problem being handled. In a community detection problem, it is described as a partitioning of the
vertex set into non-empty partitions Pk with ∪Pk = S L, Pk ⊆ VL. Each iteration of the uncoarsening phase projects the236

current solution, obtained in network Gl, to network Gl−1 as described in Algorithm 4.5 Ub (uncoarsening of bipartite
networks). The rationale is, for each vertex u ∈ Vl−1 in network Gl−1 (line 2), to obtain its corresponding successor238

vertex w ∈ Vl (line 3) and assign vertex u to its partition (lines 4-5). An implementation can keep the successor vector
as a global variable, or it may be provided as a network attribute.240

As discussed later (Section 6), the algorithm can be adapted with little effort to handle other types of problems and
representations, e.g., in link prediction, S would be a set of predicted edges Ep < E. In some problems the solution242
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finding and uncoarsening phases are omitted, e.g., in dimension reduction the coarsest bipartite network is itself the
final solution (see Section 5.3).244

Algorithm 4.5: Ub: Uncoarsening of bipartite networks.
Input:

bipartite network : Gl−1 = (Vl−1,El−1, σl−1, ωl−1)
bipartite network : Gl = (Vl,El, σl, ωl)
solution SL : SL = {P1, P2, . . . , Pk}

Output:
projected solution : SL−1

1 new solution SL−1 ← ∅;
2 forall the u ∈ Vl−1 do
3 w← successor[u];
4 Pi ← get_partition(w) with i ∈ {1, . . . , k};
5 assign u to Pi;

Return: S L−1

4.4. Computational complexity

Consider the multilevel strategy applied to both layers of a network. Computing a matching requires, for each246

selected vertex u, to find its h-hop neighborhood Γh(u), which takes O(n〈κ〉h) time, where 〈κ〉 is the average network
degree and h specifies the number of distance hops. Most real networks are sparse, i.e., 〈κ〉 � n and m ≈ n. This248

study only considers two-hop neighborhoods (h = 2), which leads to notable computational savings, since Γ2 can be
reached in nearly linear time. Appropriate data structures and parallelism can be employed to maximize the efficiency250

of the matching step [21, 27, 28]. The subsequent contracting step relies directly on the matching and can be very fast
in sparse networks. A coarsened network can be mapped and built in time O(|E|), since the process is iterated over all252

edges of its parent network.
If the coarsening parameter is set to its maximum value (r f = 0.5), at each iteration the current network size will254

be reduced at most by a factor of two relative to its parent. In this case, given 1 < L < n, the coarsening steps would
produce networks of sizes (n, n/2, . . . , n/n), yielding a reduction factor O(log2(n)) over the L iterations. For instance,256

departing from a network with n = 100 vertices, r f = 0.5 and L = 2, potentially 50 vertex pairs will be merged in
the first iteration (from G0 to G1) and 25 in the second (from G1 to G2), a reduction factor of 4. In most real-world258

problems, such a reduction factor would suffice to produce a manageable model to run the optimization algorithm. As
the cost of coarsening decreases drastically at each level, the number of levels L may be neglected in the estimation260

of the computational cost.
The complexity of the solution finding phase is determined by the target algorithm. If Ttg is the cost of the target262

algorithm on a bipartite network with n vertices, and Tss is the cost to obtain the starting solution, it is not too difficult
to show that Tss = Ttg/(2L). Insofar as the hierarchy of approximations produced by coarsening, L = 1 yields (n, n/2),264

L = 2 yields (n, n/2, n/4), L = 3 yields (n, n/2, n/4, n/8) and so on. Hence, the number of vertices in the coarsest network is
approximately n/(2L) and therefore Tss = Ttg/(2L). Parameter L can thus be chosen to control the cost deemed acceptable266

to obtain an initial solution.
As an illustration, consider a network with n = 100 vertices and two target algorithms, X and Y with TX = O(n)268

and TY = O(n2), hence, TX = O(100), TY = O(10, 000) and TX =
√

TY . Consequently, if one wishes to execute
algorithm Y on a network with n = 10, 000 with a runtime similar to that of algorithm X, the network size should be270

reduced to
√

n = 100, which requires setting L ≈ 7 and r f = 0.5. Of course, the asymptotic complexity of algorithm
Y remains quadratic, but the coarsening allows its execution with a runtime equivalent to the linear one.272

Analogous to the solution finding phase, the complexity of the uncoarsening phase depends on the target problem
(target algorithm), and also on the choice of refinement algorithm, if one is used. In problems such as community274

detection and classification, it is not necessary to project the solution along the intermediate levels, rather it can be
projected directly to the original network, since successors have been stored in an array (or other data structure). In276
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these cases, this phase as implemented in Algorithm 4.5 would have linear cost in the number of vertices, O(n). As
we do not investigate refinement algorithms, an analysis of their asymptotic complexity is suppressed.278

5. Experimental Results and Analysis

We assessed the proposed framework guided by the following research questions:280

1. How does coarsening affect a network’s topological features at each level?
2. Can the framework improve the efficiency of optimization algorithms without incurring significant losses in the282

solution quality?
3. How does the framework impact on the scalability of the local search strategy?284

4. To which extent can it enable the running of high-cost algorithms on large networks?
5. Is it sufficiently general for handling different combinatorial optimization problems?286

We conducted three experimental studies to find answers to the questions. A first study investigated the impact
of the coarsening process on the topological properties of a well-known author-paper network. In a second study, the288

framework was employed in the context of community detection, which is a prototypical application of multilevel
strategies. Finally, in a third study, it was employed in dimension reduction in a text classification scenario.290

The experiments were executed in a Linux machine with 8-core processor with 3.7 GHz CPU and 64 GB main
memory. The framework1 was implemented in Python with igraph library2. We report average values obtained from292

30 executions for algorithms that rely on random strategies.

5.1. Analysis of topological properties294

We considered the scientific collaboration network Cond-Mat3, which describes co-authorships of preprints posted
from 1995 to 1999 in the Condensed Matter section of the arXiv repository, to address the first research question. It has296

38,742 vertices (representing authors and papers) and 58,595 edges (co-authorship relations) (additional information
can be found elsewhere [36, 37]). Our interest was to observe how a progressive coarsening affects the intrinsic298

topological properties of a network.
The Cond-Mat network has been extensively analyzed and is known to have characteristic features regarding de-300

gree distribution and clustering coefficients, as depicted in Figure 6. According to Figure 6(a), the degree distribution
follows a power-law relationship characteristic of scale-free networks, with a vast majority of low-degree vertices and302

a few vertices of very high-degree, i.e., the so-called “hubs”.
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Figure 6. Scale-free properties of the Cond-Mat bipartite network. (a): histogram of degree distribution; (b): histogram of two-mode local clustering
coefficient.

An inverse relation between vertex clustering coefficients and vertex degrees is also evident in Figure 6(b). This is304

a particular feature of this network: the hubs, i.e., authors with many collaborators, have low-clustered neighborhoods

1available from https://github.com/alanvalejo/mob
2available from http://igraph.org/python/
3available from https://toreopsahl.com/datasets/#newman2001
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and they tend to interact with collaborators from distinct groups, who are not usually collaborators themselves. In306

contrast, authors with few collaborators have highly-clustered neighborhoods, i.e., they often interact within smaller
and more restrict research groups whose members also collaborate with each other.308

We investigated how the scale-free properties of degree distribution and two-mode clustering coefficient are af-
fected as the network is progressively coarsened by matching algorithms RGMb and GMb, with input parameters set310

as L = 10 and r f = 0.5. Figure 7 shows the reduction factor on |V | = n and |E| = m at each level of the coarsen-
ing hierarchy, i.e., starting from the original network (level 0) to the coarsest one (level 10). The curves depict the312

percentages of remaining vertices (left) and edges (right) relative to the initial numbers.
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Figure 7. Percentages of remaining vertices (left) and edges (right) in the networks along the coarsening hierarchy.

Figures 8 and 9 show curves for degree distribution and clustering coefficient, respectively, in each coarsened314

network, from levels 1 to 10 (the top two rows refer to RGMb and the bottom two rows refer to GMb). Both algorithms
yielded very similar distributions of degree and clustering coefficient, which suggests the random exploration of316

the solution space adopted by RGMb has no strong impact on the topological features of intermediate networks, in
comparison with GMb.318

The characteristic behavior of degree distribution observed in the original network is reasonably preserved in the
coarsened models down to level 3, i.e., coarsened networks at levels 1, 2 and 3 still contain few hubs and many320

low-degree vertices, a behavior that gradually changes from level 4 onwards.
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Figure 8. Degree distribution of the networks at the 10 levels of the coarsening hierarchy (r f = 0.5). Top graphs refer to coarsening with RGMb
(random strategy) and bottom graphs refer to coarsening with GMb.

Particularly from level 8, vertex degrees become more homogeneous, until the original topological features have322

been completely lost in the final network at level 10. A similar pattern is observed in the clustering coefficient, i.e.,
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again, the original behavior of neighborhoods of hub authors is preserved up to level 3. From level 5 onwards, most324

vertices converge to lower clustering coefficients and the network’s characteristic behavior is completely lost from
level 8.326

At the initial coarsening levels (1, 2 and 3) only vertices with many two-hop common neighbors can compose a
matching. The newly formed super-vertices thus preserve the neighborhood properties of their predecessors, hence,328

the dominant topological properties of the parent network. In other words, it is likely that authors matched at the
early coarsening levels indeed have many common collaborators. However, at later levels, authors with few common330

collaborators may be forced to join, with corrupts the original topological relations in the network. Notice the sizes
of networks at levels 9 and 10 were reduced to nearly 10% of the original network (see Figure 7), which implies332

the coarsest networks are mostly formed by heavy-weight super-vertices (� σ(sV)) sparsely connected. Such super-
vertices of low-degree form clustered structures with few triangles.334
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Figure 9. Two-mode local clustering coefficient of the networks at the 10 levels of the coarsening hierarchy (r f = 0.5). Top graphs refer to
coarsening with RGMb (random strategy) and bottom graphs refer to coarsening with GMb.

Results from this analysis indicate a limited reduction of an initial network, up to two or three levels, can preserve
its relevant topological features. Furthermore, it is evident that choosing the appropriate coarsening level is critical,336

and depends on properties of the target application and dataset. Establishing a suitable trade-off between accuracy
and runtime may require empirical verification in each case. This inherent limitation can be associated to the well-338

known overfitting/underfitting problem; however, the coarsening phase in our multilevel process “generalizes” the data
instead of an objective function. This may explain why, in some cases, better solutions were obtained on the coarsened340

networks. In general, extensive coarsening reduces execution times of a target algorithm, but it can lead to excessive
generalization of the data with significant degradation of topological features, and possibly algorithm accuracy. In342

contrast, limited coarsening preserves topological features and accuracy, at the expense of higher execution times.

5.2. Performance in benchmark networks for community detection344

Research efforts on multilevel optimization have been strongly motivated by community detection (or graph parti-
tioning) problems, which makes this a benchmark problem. Algorithms for community detection in networks split the346

vertices into disjoint groups (or communities), so as to minimize the number of edges between distinct communities
[17]. Barber’s modularity optimization [4] is often employed to identify community structures in bipartite networks.348

Formally, it quantifies the extent of communities formed in both layers relative to a null bipartite network model.
Beckett [7] introduced the LPAwb+ algorithm4, which maximizes Barber’s modularity through label propagation350

in weighted bipartite networks and showed it has competitive performance compared with state-of-the-art methods.
However, it is a computationally costly algorithm and becomes unfeasible in large-scale networks.352

4available in https://github.com/sjbeckett/weighted-modularity-LPAwbPLUS.
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In order to address the second research question, the MOb framework was tested considering Beckett’s algorithm
LPAwb+ as a target algorithm. Therefore, MOb (Algorithm 4.1) performs the coarsening, runs LPAwb+ to find354

the community structure in the coarsest network, and projects the solution to obtain the community structure in the
original network. Our goal was to investigate whether MOb can yield solutions statistically equivalent in quality to356

the standard LPAwb+, whilst increasing its scalability. Results are compared with those obtained with the standard
LPAwb+, used as baseline.358

We investigated the performance of the four instances of MOb, listed in Table 1. They were executed with
parameter settings r f = 0.5 and L = [1, 2, 3] in a set of 15 synthetic weighted bipartite networks, identified as R1-R15360

(hereafter each MOb instance is referred to by its name).

Algorithm
Coarsening

Solution finding Uncoarsening
Matching Contracting

MOb-RGMbcn RGMb with S cn

Cb LPAwb+ Ub
MOb-RGMbwcn RGMb with S wcn

MOb-GMbcn GMb with S cn

MOb-GMbwcn GMb with S wcn

Table 1. MOb applied to target algorithm LPAwb+ (for the community detection problem): there are two choices of matching algorithm (RGMb
and GMb) employed with two choices of similarity function (S cn and S wcn). All MOb algorithms were executed with r f = 0.5 and L = [1, 2, 3].

Synthetic networks were obtained with the community model described in [7], which creates unbalanced and362

randomly positioned community structures. Networks of sizes n = |V1 + V2| were generated within the range
[1, 000; 15, 000] at increments of 1, 000 and the number of communities was set to 0.01 ∗ n. Edge weights were364

randomly assigned from a skewed negative binomial distribution and noise was introduced in the connection patterns
by reconnecting a percentage of the edges between and within communities.366

Performance was measured in terms of accuracy, by means of the NMI (normalized mutual information), which
compares the solution found by a selected algorithm with the baseline [30], we also measured execution times. Table368

2 shows the NMI accuracy values in the 15 networks. The highest values are in bold and values equal to or higher than
baseline LPAwb+ are highlighted with a gray background. The best performances were achieved by MOb-GMbcn370

with one level of coarsening (L = 1) on 11 out of the 15 networks. Baseline LPAwb+ yielded the best performance in
three networks, whereas MOb-RGMbcn with L = 3 yielded the worst results.372

Algorithm Dataset

Name Levels [L] R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

LPAwb+ 0 0.918 0.926 0.983 0.972 0.964 0.990 0.984 0.999 0.999 0.985 0.989 0.996 0.995 0.987 0.992

MOb-RGMbcn 1 0.984 0.985 0.983 0.988 0.990 0.991 0.992 0.991 0.991 0.992 0.992 0.992 0.991 0.991 0.992

MOb-RGMbcn 2 0.952 0.968 0.963 0.977 0.977 0.976 0.978 0.976 0.978 0.977 0.979 0.981 0.982 0.982 0.980

MOb-RGMbcn 3 0.866 0.910 0.923 0.936 0.943 0.944 0.952 0.954 0.950 0.957 0.954 0.957 0.956 0.955 0.957

MOb-RGMbwcn 1 0.982 0.988 0.986 0.988 0.990 0.990 0.991 0.987 0.992 0.992 0.991 0.991 0.992 0.992 0.992

MOb-RGMbwcn 2 0.942 0.960 0.966 0.968 0.974 0.973 0.978 0.978 0.977 0.978 0.977 0.977 0.979 0.979 0.978

MOb-RGMbwcn 3 0.905 0.922 0.948 0.954 0.954 0.951 0.953 0.951 0.960 0.959 0.958 0.961 0.959 0.961 0.960

MOb-GMbcn 1 0.994 0.993 0.993 0.995 0.996 0.996 0.995 0.993 0.994 0.995 0.995 0.995 0.996 0.995 0.996
MOb-GMbcn 2 0.981 0.986 0.982 0.983 0.988 0.987 0.988 0.987 0.988 0.988 0.988 0.988 0.988 0.990 0.990

MOb-GMbcn 3 0.901 0.934 0.963 0.966 0.971 0.968 0.973 0.974 0.974 0.975 0.972 0.975 0.976 0.975 0.977

MOb-GMbwcn 1 0.990 0.989 0.992 0.992 0.995 0.993 0.992 0.992 0.993 0.994 0.995 0.995 0.995 0.994 0.994

MOb-GMbwcn 2 0.969 0.985 0.985 0.979 0.988 0.985 0.987 0.985 0.987 0.987 0.989 0.988 0.988 0.989 0.989

MOb-GMbwcn 3 0.965 0.973 0.973 0.972 0.975 0.979 0.977 0.977 0.978 0.977 0.978 0.980 0.978 0.979 0.979

Table 2. NMI accuracy values of all MOb instances and baseline LPAwb+ in 15 synthetic networks. The values are average results over 30
executions. The highest accuracy values are in bold and values equal to or higher than the baseline (LPAwb+) are highlighted (gray background).

Limited coarsening levels (mainly L = 1) yielded higher accuracy values, reinforcing that a controlled coarsening
can filter the solution space by joining promising vertex pairs and removing irrelevant high-cost solutions, while374
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preserving important topological features. In contrast, accuracy deteriorated with more extensive coarsening (L = 3),
which does not necessarily preserve the original topological properties and is likely to blur the boundaries between376

adjacent communities. The effect of parameter L depends on network size, i.e.; differences in algorithm accuracy
are likely to decrease as the network sizes increase, hinting that higher values of L might be successfully adopted in378

handling larger networks.
Although LPAwb+ achieved the best performance in three networks out of the fifteen, the corresponding accuracy380

values attained by the MOb instances are very close for these networks. Indeed, in these specific cases accuracy values
differ up to 0.006 in R8, up to 0.005 in R9 and up to 0.001 in R12. Interestingly, all MOb instances yielded similar382

accuracy values and more stable results than the standard LPAwb+. The accuracy values obtained with MOb-GMbcn

and L = 1, for instance, are within the range [0.994, 0.996], whereas for the standard LPAwb+ they are within the384

range [0.918, 0.999], as shown in Figures 10 and 11.
Figure 10 depicts the averages and standard deviations of the accuracy values, whereas Figure 11 shows the386

dispersion of their distribution and outliers, considering in both cases the alternative settings of parameter L. The bar
plots in Figure 10(a) reveal superior performance and stability of the four MOb instances when L = 1, confirmed by388

their higher average accuracies and narrower standard deviations. When L = 2, only MOb-GMbcn and MOb-GMbwcn

yielded a slightly superior solution in comparison to LPAwb+. For L = 3, LPAwb+ yielded better results than any390

MOb instance, a consequence of the extensive network reduction.
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Figure 10. Averages and standard deviations of the NMI accuracy values obtained with LPAwb+ and four MOb instances in three settings of
parameter L (number of levels). (a) L = 1, 10(b) L = 2 and 10(c) L = 3.

The box plots in Figure 11(a) reveal that for L = 1 all MOb instances yielded accuracy values within a narrower392

distribution and higher averages than LPAwb+.
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Figure 11. Shape distribution, variability, and median of the accuracy values yielded by LPAwb+ and the four instances of MOb considering three
settings of parameter L. (a) L = 1, 10(b) L = 2 and 10(c) L = 3.
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We can conclude MOb instances yielded, in general, higher accuracy and improved stability in comparison to394

LPAwb+. In summary, the experimental evidence regarding solution quality (average, standard deviation and dis-
persion of the accuracy values) suggests the multilevel framework stabilizes and improves the performance of the396

algorithm.
A Nemenyi post-hoc test [13] was applied to the results in Table 2 to verify statistical differences in the algorithms398

performances and the results are shown in Figure 12 for (a) L = 1, (b) L = 2 and (c) L = 3. The critical difference
(CD) is indicated at the top of each diagram and the algorithms’ average ranks are placed on the horizontal axes,400

with the best ranked algorithms to the left. A black line connects algorithms if no significant difference has been
detected among them. According to the the Nemenyi statistics, the critical value for comparing the mean-ranking of402

two different algorithms at 95 percentile is 1.58.
Let us consider the outcome of the post-hoc test for L = 1, i.e., when the number of vertices n is reduced by a404

factor of two, shown in Figure 12(a). MOb-GMBcn was ranked best, followed by MOb-GMbwcn and MOb-RGMbwcn

and then LPAwb+. Furthermore, MOb-GMBcn, MOb-GMbwcn and MOb-RGMbwcn presented statistically significant406

differences compared with standard LPAwb+. Interestingly, for L = 2 (Figure 12(b)), MOb-GMBcn and MOb-
GMbwcn remain ranked first, however, no statistically significant difference was observed in relation to LPAwb+.408

Finally, for L = 3 (Figure 12(c)), LPAwb+ was ranked first, with no statistically significant difference observed in
relation to MOb-GMbcn or MOb-GMbwcn. However, parameter settings L = 3 and r f = 0.5 implied, in this case, in410

reducing the original size by a factor of 75%, which explains the poor performance of all MOb instances.

1 2 3 4 5

MOb-GMbcn

MOb-GMbwcn

MOb-RGMbcn

MOb-RGMbwcn

LPAwb +

CD

(a) L = 1

1 2 3 4 5

MOb-GMbcn

MOb-GMbwcn

LPAwb +
MOb-RGMbcn

MOb-RGMbwcn

CD

(b) L = 2

1 2 3 4 5

LPAwb +
MOb-GMbwcn

MOb-GMbcn

MOb-RGMbwcn

MOb-RGMbcn

CD

(c) L = 3

Figure 12. Nemenyi post-hoc test for LPAwb+ and the four MOb instances.

We also assessed the scalability of the MOb instances to investigate the third and fourth research questions. Their412

performance was analyzed considering each individual network and the total time spent in the experiments. Table 3
shows the absolute execution times (in seconds) on each network - values refer to the average times from 30 executions414

of each scenario.

Algorithm Dataset
sum

Name Levels [L] R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

LPAwb+ 0 14 96 308 904 2,782 2,800 7,146 15,925 39,197 56,119 66,729 75,990 97,392 224,032 302,442 891,875

MOb-RGMbcn 1 2 10 31 77 160 328 616 1,106 1,787 4,148 5,386 8,108 10,242 15,235 23,174 70,410
MOb-RGMbcn 2 1 3 8 19 42 77 154 267 428 1,081 1,296 1,989 2,372 3,559 5,283 16,577
MOb-RGMbcn 3 1 1 4 7 14 25 49 86 142 304 389 586 694 940 1,310 4,552

MOb-RGMbwcn 1 3 11 34 79 174 322 643 1,424 1,715 4,192 5,335 8,582 9,355 15,121 22,535 69,525
MOb-RGMbwcn 2 1 4 9 24 44 101 165 282 460 1,049 1,399 1,911 2,245 3,281 4,866 15,840
MOb-RGMbwcn 3 1 3 6 11 18 33 59 91 139 323 396 522 713 1,056 1,381 4,751

MOb-GMbcn 1 2 13 33 78 165 329 623 1,111 2,680 4,145 5,561 6,705 9,091 18,136 24,732 73,402
MOb-GMbcn 2 1 5 11 24 46 84 168 298 721 1,088 1,492 1,657 2,455 4,013 5,555 17,619
MOb-GMbcn 3 1 3 6 13 22 34 62 90 239 332 471 481 672 1,180 1,596 5,204

MOb-GMbwcn 1 3 13 39 83 180 338 688 1,135 2,864 4,392 5,819 6,317 8,932 19,016 25,674 75,493
MOb-GMbwcn 2 3 8 15 32 55 96 187 326 744 1,100 1,447 1,719 2,345 4,050 4,574 16,700
MOb-GMbwcn 3 3 7 12 20 31 45 80 117 287 392 469 536 745 1,233 1,380 5,357

sum 36 178 514 1,371 3,733 4,613 10,639 22,257 51,403 78,664 96,189 115,104 147,253 310,853 424,502 1,267,307

Table 3. Absolute runtime (seconds) of LPAwb+ and four MOb instances on each network.
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The longest execution time of standard LPAwb+ was 302,442 seconds (time to process the largest network) and416

the shortest was 14 seconds (time to process the smallest one). MOb-GMbwcn was the most expensive MOb instance,
consuming (L = 1) 25,674 seconds on the largest network and 3 seconds on the smallest one. Therefore, regarding its418

maximum and minimum execution times, respectively, MOb-GMbwcn run 11.8 to 4.6 times faster than the standard
LAPwb+. The maximum and minimum running times of the least expensive MOb instance, MOb-RGMbcn (L = 3),420

were 1,310 seconds and 1 second, respectively. Therefore, MOb-RGMbcn run 230 to 14 times faster than LAPwb+.
The analysis in Section 5.1 revealed that a network coarsened at level 3 has roughly 25% of its original size. Let422

us consider, for example, network R15 (n = 15, 000): we know it has been reduced to 3,750 vertices at level 3 and
algorithm MOb-RGMbcn processed it in 1,310 seconds (see Table 3). This is close to the execution time of standard424

LPAwb+ on network R4 (of size n = 4, 000, similar to the size of R15 coarsened at level 3), i.e., 904 seconds. As
MOb-RGMbcn executes the coarsening/uncoarsening steps, the actual time spent running LPAwb+ to find the solution426

is roughly similar in both cases, but MOb-RGMbcn is handling a network nearly four times larger.
The total time spent running the experiments was 1,267.307 seconds, or nearly 352 hours. Figure 13 shows the428

contribution of each algorithm to the total time, considering both absolute values (seconds) (a) and relative values
(percentages) (b).430

In the best case, the MOb instances reduced execution time from 891,875 seconds (nearly 208.8 hours) required by
the standard LPAwb+ to 4,552.4 seconds (1.26 hours), which implies LPAwb+ was nearly 195 times slower than its432

MOb instantiations. Executing LPAwb+ consumed over 70% of the time spent in the experiments, whereas roughly
6% of the time was spent running the MOb instances.434
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Figure 13. Contribution of each algorithm to the total time of the experiments: absolute values (seconds) (a) and percentages (b), 100% runtime
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Finally, we assessed the impact of each phase (coarsening, target algorithm on coarsest network and uncoarsening)
on the execution time of the multilevel process; we analyzed algorithm behavior separately on each network and then436

in relation to the total time of the experiments.
The relative contributions of each multilevel phase for each network are shown in Figure 14 (for legibility, we438

show bars for 12 out of the 15 networks). On the smallest network (n = 1, 000) the coarsening phase consumed nearly
52% of the total execution time and the local search step consumed nearly 45%. On the other hand, as the networks440

increase, the time spent on the coarsening relative to the solution finding gradually decreases. On the larger networks,
the coarsening phase consumed roughly 1% of the total execution time, in contrast to roughly 99% of the solution442

finding phase. The time spent on the uncoarsening phase was negligible.
Figure 15 shows the relative contribution of each multilevel phase to the total time of the experiments. In gen-444

eral, the coarsening phase consumed less than 1% of the total execution time, the solution finding phase (executing
LPAwb+) consumed over 99%, and the time spent in the uncoarsening phase was negligible. These results indicate446

coarsening and uncoarsening exerted no significant influence on the scalability of the multilevel process and provide
empirical evidence the multilevel strategy is a promising approach to scale network optimization algorithms.448

From this empirical investigation we conclude: (i) the proposed MOb approach yielded more accurate and stable
18
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Figure 14. Relative contribution (percentage) of each multilevel phase to the execution time, on different network sizes n (from 1,000 for R1 to
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results compared to the standard LPAwb+; (ii) although solution quality degrades as the network is progressively450

coarsened, runtime drops drastically at each additional coarsening level; hence, a successful solution requires estab-
lishing a suitable trade-off between accuracy and execution time.452

5.3. A test case on dimensionality reduction

We illustrate how MOb framework can be adapted to perform dimensionality reduction in the context of text clas-454

sification, having the k-Nearest Neighbor classifier (kNN) as the target algorithm, in order to exemplify its application
in a different kind of optimization problem.456

Documents are often represented, in text classification tasks, as multidimensional feature vectors, in which each
dimension maps a particular term. As the dimensionality of the representation space has strong impact in classification458

performance, such tasks are often preceded by a dimension reduction step. Specifically, a kNN classifier that employs
a naïve search strategy has time complexity O(ndk) for a fixed k, where n is the cardinality of the training set and d460

denotes the dimensionality of the document representation.
Alternatively, a document corpus can be represented as a bipartite network G = ((V1 ∪ V2), E, σ, ω), where V1 =462

{d1, . . . , dr} is the set of documents and V2 = {t1, . . . , ts} is the set of terms. An edge (u, v) exists if term tu occurs
in document dv, and the term’s frequency determines the corresponding edge weight w(u, v). Such a network is464

represented as a bi-adjacency matrix Arxs, where r = |V1|, s = |V2| and Au,v = w(u, v) if (u, v) ∈ E. Dimensionality
reduction is aimed at obtaining a lower dimensional matrix A′r′xs′ , with r′ = r and s′ << s.466

The proposed solution is described in Algorithm 5.1, multilevel dimensionality reduction (Mdr), which only re-
quires a coarsening phase (lines 1-3). It takes as inputs the initial bipartite network G, the term layer tl to be coarsened,468

the desired maximum number of levels L and reduction factor r f , and returns the bi-adjacency matrix of the coarsest
network (line 4).470

We adopted RGMbcn as the contracting algorithm in the Mdr implementation, and used Mdr in combination with
a kNN classifier, assuming k = 3 and the Euclidean distance as similarity measure, hereafter referred to as Mdr-kNN.472
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The results obtained considering a reduction factor r f = 0.5 and L varying in the range [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] were
compared to an equivalent kNN setting that employed PCA (Principal Components Analysis) [20] for dimensionality474

reduction (PCA-kNN). The complexity of PCA is O(d2n + d3), where n denotes the number of samples and d the data
dimensionality.476

Algorithm 5.1: Mdr: multilevel dimensionality reduction.
Input:

bipartite network : G = (V,E, σ, ω)
term layer : tl ∈ {1, 2}
maximal number of levels for term layer : L ∈ [0, n] ⊂ Z
reduction factor for term layer : rf ∈ (0, 0.5] ⊂ R

Output:
low-dimensional bi-adjacency matrix : A’

1 while l ≤ L or layer l is as small as desired do
2 M← matching(Gl, tl, rf);
3 Gl+1 ← contracting(Gl, M);

4 matrix A’← bi-adjacency matrix of Gl;

Return: A’

Implementations Mdr-kNN and PCA-kNN were used to classify thirteen real document-term networks available
from the literature, described in Table 4, considering a cross-validation with permutation testing and ten-fold cross-478

validation to estimate classification error. The training set was randomly split into ten equal-sized subsets, so the
classification model was trained in nine subsets and tested on the remaining one.480

cstr oh0 oh5 0h10 syskillwebert opinosis classic4 hitech industry irish la1s enron acm

Documents 299 1,003 918 1,050 334 6,457 7,095 2,301 8,817 1,660 3,204 13,199 3,493

Terms 1,726 3,183 3,013 3,239 4,340 2,693 7,749 10,000 10,000 8,659 10,000 10,000 10,000

Domain Scientific Medical Medical Medical Web pages Sentiment Scientific News Web page Sentiment News E-mail Scientific

Table 4. Properties of text collections considered.

Figure 16 shows the performance of the Mdr-kNN classifier as a function of the number of levels in the coarsening
hierarchy, where L = 0 refers to classification with no dimensionality reduction. Figures 16(a), (b) and (c) show482

accuracy, dimensionality of the representation (number of terms) and execution times, respectively.
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Figure 16. Performance (accuracy values) of the Mdr-kNN classifier. L = 0 corresponds to classification with no dimension reduction applied.

A moderate decrease in accuracy values is observed up to level L = 5. In general, accuracy is stable at the early484

coarsening levels, which suggests the first coarsening iterations have limited impact in solution quality, as it is more
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likely that highly correlated terms are being matched. Figure 16(a) shows accuracies up to level 5. Moreover, since486

from level 5 onwards the coarsening yields no significant reduction in the number of terms it may be interrupted at this
point. Also, a sharp reduction in execution times is observed only up to this level. We remind the analysis presented488

in Section 5.1, which showed a network coarsened at level 5 has roughly 15% its original size.
We compared the classification accuracies of kNN without dimension reduction and Mdr-kNN (with coarsening490

at L = [1, 3, 5]) and those of PCA-kNN (with equivalent dimensionality reduction). The results are shown in Table 5.
The highest accuracy values are shown in bold and values equivalent or superior to baseline kNN are shown with a492

gray background. Mdr-kNN achieved the best performance in five out of the thirteen networks; PCA-kNN performed
best in seven networks and standard kNN performed best in only one of them.494

Dataset kNN
L = 1 L = 3 L = 5

MdrkNN PCA-kNN Mdr-kNN PCA-kNN Mdr-kNN PCA-kNN

cstr 82.44 ± 8.09 82.71 ± 8.04 75.86 ± 7.15 80.10 ± 6.10 79.31 ± 2.02 78.30 ± 3.20 86.21 ± 7.10
oh0 78.72 ± 6.84 81.15 ± 3.31 85.00 ± 3.98 78.95 ± 2.02 76.00 ± 4.31 75.90 ± 3.32 76.00 ± 6.20
oh5 80.27 ± 5.09 78.83 ± 3.73 76.92 ± 4.31 76.88 ± 4.17 81.32 ± 3.11 69.27 ± 3.89 74.36 ± 5.35
oh10 60.62 ± 5.75 66.92 ± 4.95 75.24 ± 4.21 64.54 ± 5.04 72.38 ± 3.29 64.38 ± 2.16 73.33 ± 4.23
opinosis 47.25 ± 2.32 42.18 ± 1.42 43.57 ± 1.20 45.90 ± 4.92 55.19 ± 8.15 35.98 ± 3.06 49.15 ± 5.78
syskillwebert 77.80 ± 8.70 87.91 ± 6.57 87.88 ± 5.14 75.91 ± 3.65 75.06 ± 6.45 80.23 ± 2.12 78.00 ± 5.65
acm 52.37 ± 2.54 52.96 ± 2.26 54.44 ± 2.62 55.23 ± 3.15 53.00 ± 2.98 49.98 ± 1.87 49.10 ± 4.87
hitech 59.57 ± 3.55 70.00 ± 2.59 64.35 ± 3.24 61.74 ± 2.34 66.10 ± 3.10 69.90 ± 2.55 66.90 ± 3.50
industry 62.66 ± 5.60 71.62 ± 3.05 66.86 ± 1.98 71.50 ± 6.12 78.30 ± 4.12 72.89 ± 3.34 75.20 ± 4.32
irish 59.04 ± 4.28 63.86 ± 2.34 57.83 ± 4.32 58.23 ± 3.87 56.90 ± 4.07 63.91 ± 5.12 63.10 ± 5.98
la1s 74.38 ± 6.74 81.25 ± 4.10 83.75 ± 5.20 80.00 ± 4.12 82.12 ± 2.23 80.94 ± 4.80 82.30 ± 4.76
classic4 94.39 ± 6.04 93.82 ± 2.55 93.51 ± 3.15 89.72 ± 4.01 75.87 ± 2.68 87.00 ± 3.12 91.90 ± 3.28
enron 46.40 ± 5.18 52.16 ± 5.09 47.76 ± 2.98 53.89 ± 2.90 55.00 ± 3.77 61.00 ± 2.14 60.10 ± 6.12

Table 5. Accuracy values obtained with standard kNN, Mdr-kNN and PCA-kNN. The highest accuracy values are shown in bold and values
equivalent or superior to the baseline kNN are highlighted in gray.

A Nemenyi post-hoc test was applied to the results in Table 5 in order to detect statistical differences among the
algorithms. Demsar post-hoc test requires each algorithm and dataset to be independent, therefore, we perform the496

dimensionality reduction at each level separately. The results are shown in Figure 17 for (a) L = 1, (b) L = 2 and
(c) L = 3. According to Nemenyi statistics, in all diagrams, the critical value for comparing the mean-ranking of two498

different algorithms at 95 percentile is 0.92. No significant difference was observed between the algorithms, therefore,
they are connected by a bold line in each diagram. Albeit differences are not significant, Figure 17(a) shows Mdr-500

kNN was ranked best for L = 1, whereas for L = 2 and L = 3 PCA-kNN was ranked best (Figures 17(b) and 17(c)).
Therefore, Mdr-kNN proved competitive in terms of accuracy, in comparison to PCA-kNN and baseline kNN.502
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Figure 17. Nemenyi post-hoc test for kNN and its variant with Mdr and PCA for dimensionality reduction in three settings of parameter L. (a)
L = 1, (b) L = 3 and (c) L = 5.

This case study has been presented as a preliminary investigation on the feasibility of extending the proposed
multilevel framework to other combinatorial problems beyond community detection. The Mdr algorithm deserves504

further consideration and could incorporate additional capabilities, e.g., it would be convenient to reduce the feature
space to a target dimensionality, rather than by a given reduction factor. Furthermore, the coarsening algorithm506

could take into account intrinsic characteristics of specific kinds of document-term networks by means of customized
matching algorithms. Moreover, Mdr can be employed in connection with other classification algorithms.508
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6. The application of MOb to other combinatorial optimization problems

It is relatively straightforward to apply MOb to several combinatorial optimization problems beyond community510

detection. For instance, in Section 5.3 we illustrated its application to handle a dimensionality reduction problem over
a bipartite network in which the two vertex layers represent objects and features, respectively. In this context, only512

the feature layer was coarsened and the reduced feature space is given directly by the adjacency matrix of the coarsest
network. Likewise, it can be easily instantiated to handle overlapping or fuzzy community detection or classification514

problems.
In overlapping community detection, for each decomposed sV ∈ Vl+1, its original vertices {u, v} ∈ Vl are assigned516

to the same set of communities as the corresponding super-vertex. If the coarsened network has a fuzzy structure, the
strength of a vertex’ pertinence to a community will be equal to that of its super-vertex. Similarly, in a classification518

problem original vertices {u, v} ∈ Vi should be assigned to the same class of their super-vertex. Therefore, instantiating
the framework to handle either problem would require just minor modifications in the projection algorithm (Algorithm520

4.5).
MOb might also be useful to support interactive visualization of large-scale bipartite networks, by means of522

navigation over a hierarchy of coarsened networks, which would demand a data structure to keep these intermediate
networks.524

Instantiation to other scenarios is not necessarily as straightforward, and may require further modifications in the
proposed algorithms. For example, in the edge clustering problem (also called link communities) the contracting526

algorithm used in coarsening phase would require adjustments. Whereas in community detection a vertex inherits the
same group assignment of its super-vertex, here each edge must inherit the connections from its super-edge. Therefore,528

an edge e ∈ El+1 incident to sV ∈ Vl+1 must refer to the edges incident to vertices {u, v} ∈ Vl. Algorithm 4.4 does not
implement this function; however, it could be done by keeping an additional data structure similar to the successor530

vector.
Another possible application is in link prediction or recommendation problems, albeit this poses a more complex532

scenario for generalization. Link prediction methods rely on similarity between vertices, since similar vertices are
likely to share common links. However, such information is not explicitly given for the super-vertices in a coarsened534

bipartite network. Nonetheless, the framework could be employed to reduce the number of required operations, i.e.
super-vertices might be created grouping vertices with shared h-hop neighbors, thus filtering the search space. Link536

prediction could be performed in the uncoarsening phase through the decomposed super-vertices, and the solution
finding and uncoarsening phases would be executed simultaneously.538

As a final consideration, the matching algorithm used for coarsening should be carefully designed to incorporate
the specific characteristics of each problem and context.540

7. Conclusion and further research

Inspired by the potential of general-purpose multilevel strategies to scale optimization algorithms we have in-542

troduced algorithms of a novel multilevel optimization framework (MOb) for bipartite networks, and illustrated its
application on two combinatorial optimization problems. Our framework accounts for the specificities of bipartite544

networks and provides a powerful tool for handling a variety of problems.
We investigated three empirical scenarios to illustrate strengths and limitations of the proposed MOb framework.546

A first study has shown that a controlled coarsening preserves relevant topological features of a network. A second
study described an application in community detection, showing that MOb combined with a proper local search548

strategy can drastically improve speedup of a classic community detection algorithm while preserving solution quality.
Finally, in a third study we considered text classification to illustrate how the general framework can be instantiated550

to handle different combinatorial optimization problems.
Our results provide compelling evidence that MOb offers a competitive approach to scale existing methods while552

preserving solution quality, and reinforce its usefulness for handling combinatorial optimization problems in large
bipartite networks. Furthermore, the framework is flexible and can be adjusted to incorporate alternative and novel554

coarsening methods targeted at specific applications. We also discuss some general guidelines for future applications
of combinatorial problems, such as link prediction, edge clustering, and interactive graph visualization.556
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Identifying the level of coarsening that will yield a suitable trade-off between accuracy and execution times is a
critical issue in applying the proposed multilevel strategy. Currently, this is done by means of empirical investigation558

in each application problem and dataset, but it certainly deserves further investigation.
We also plan as future work to extend the framework to handle problems defined in heterogeneous networks,560

where edges connect vertices of multiple types. It would be applicable, e.g., to document-word networks indicat-
ing associations of the type document-word, word-word, and document-document; or networks describing relations562

between words, documents and authors. We are also interested in investigating distributed or parallel paradigms, as
well as in application of MOb to supervised and unsupervised classification tasks. An implementation of the general564

framework is currently available and can be downloaded from https://github.com/alanvalejo/mob.
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