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Highlights

¢ A novel multilevel optimization method applicable to problems modeled as bipartite networks. To the extent of
our knowledge, the proposal is the first for bipartite network.

The method has the capability of handling layers independently while executing the multilevel process.

The implementation of the multilevel framework incorporates two novel efficient matching algorithms, as well
as novel contracting and uncoarsening algorithms.

Applications of the general-purpose method to solve two problems: community detection, in which,the method
is employed to scale a known algorithm, and dimensionality reduction, in which it is employed to define a novel
algorithm.

A comprehensive experimental evaluation of the proposed solution on real and synthetic bipartite networks that
demonstrates it scales the original algorithm and preserves solution quality.

A test case on dimensionality reduction in text classification, with promising results’in terms of runtime and
accuracy, is presented.

A discussion on the underlying features of the framework and its{applicability to solving various practical
network problems are presented.
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Abstract

Multilevel approaches aim at reducing the cost of a target algorithm oyer a given network by applying it to a coarsened (or
reduced) version of the original network. They have been successfully employed in a variety of problems, most notably community
detection. However, current solutions are not directly applicable to bipartite networks and the literature lacks studies that illustrate
their application for solving multilevel optimization problems. in such networks. This article addresses this gap and introduces
a multilevel optimization approach for bipartite networks and the implementation of a general multilevel framework including
novel algorithms for coarsening and uncorsening, appli¢able to a yariety of problems. We analyze how the proposed multilevel
strategy affects the topological features of bipartite networks,and show that a controlled coarsening strategy can preserve properties
such as degree and clustering coefficient centralitiess; The applicability of the general framework is illustrated in two optimization
problems, one for solving the Barber’s modulafity for'.community detection and the second for dimensionality reduction in text
classification. We show that the solutions thus obtained are statistically equivalent, regarding accuracy, to those of conventional
approaches, whilst requiring considerably/ower execution times.

© 2017 Published by Elsevier Ltd.

Keywords: Complex Networks; Bipartite Networks, Combinatorial Optimization, Meta-heuristic, Multilevel Optimization,
Large-scale Networks

1. Introduction

Bipartite networks comprise a particular class of network models in which the set of vertices is split into two dis-
joint subsets, with edges connecting vertices placed in different sets. Also known as two-layer networks, they provide
a powerful tepresentation of relationships in many real-world systems, including document-word [45], protein-ligand
[19], actor-movie [64], georeferenced user-location [63] and paper co-authorship or citation networks [38]. Bipar-
tite network models have been widely employed in hard combinatorial optimization problems that require finding a
minimum_(or maximum) cost, wherein the number of possible states is finite and usually exponential. Many such
problems, e.g., biclique, matching, vertex cover, community structure, traveling salesman and network coloring [2]
have proven to be NP-complete or NP-hard.

*Corresponding author
Email addresses: alanvalejo@gmail.com (Alan Valejo), cristina@icmc.usp.br (Maria Cristina Ferreira de Oliveira),
geraldoprfilho@gmail.com (Geraldo P. R. Filho), alneu@icmc.usp.br (Alneu de Andrade Lopes)
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Multilevel techniques are being investigated as a global strategy to handle decision-making and optimization prob-
lems in a variety of application domains. We refer the reader interested in applications to management problems to
recent literature on the topic [67, 18, 34]. In this paper we investigate the multilevel strategy to handle computa-
tionally expensive optimization problems in bipartite networks. In this context, the approach consists of iteratively
coarsening an original network into a hierarchy of smaller sized approximations. A starting solution is obtained in the
coarsest network and successively projected back and refined over the inverse sequence of coarsened networks, until
the original one. Previous studies demonstrated the strategy enables running computationally expensive algorithms
on large networks with no significant loss in solution quality [10, 22, 50, 41, 53, 54, 32]. Sciences [58].and Walshaw
[59] argued over the relevance and feasibility of the multilevel strategy for solving combinatorial optimization prob-
lems. Empirical evidence has been shown by Walshaw [59] that the coarsening process filters the solution space by
gradually removing irrelevant high-cost solutions and drastically reducing the search space, and hence, optimization
convergence times.

Multilevel algorithms have been applied to many classic network problems, including network coloring [55], trav-
eling salesman [57], network drawing [55], network partitioning [8] and computation' of centrality measures [11].
However, current multilevel approaches are not directly applicable to bipartite networks and, to the best of our knowl-
edge, the multilevel strategy has not been considered in this context.

We address this gap and introduce a novel multilevel optimization approachrapplicable to bipartite networks. Fur-
thermore, we describe an implementation of this approach as a general-purpose multilevel framework that incorporates
two novel efficient matching algorithms, as well as novel contracting and tincoarsening algorithms.

In order to illustrate its potential, we employed the framework to handle two distinct problems defined in bipartite
networks, namely community detection and dimensionality reduction. In the community detection problem, tests
on a large set of synthetic networks demonstrated that, combined. with'a proper local search strategy, it yields good
speedups and preserves solution quality. When employed to perform dimensionality reduction in text classification
it yielded encouraging results in terms of both runtime andwaccuracy as compared with a standard dimensionality
reduction technique.

The remainder of the paper is organized as follows:)Section 2 reviews some basic concepts on networks and
provides an overview of the standard multilevel approach, Section 3 discusses previous work and application of mul-
tilevel strategies on combinatorial optimization problems. Section 4 introduces a multilevel formulation for bipartite
networks and its implementation. Section 5_reports our empirical results, which include (i) an analysis of how the
multilevel representation impacts the topological features of a real bipartite network; (ii) an empirical study of instan-
tiating the framework to solve the community,detection problem on a large synthetic test suite; and (iii) an empirical
study of its application to dimensionality reduction in text classification. Section 6 briefly discusses how the general
framework can be tuned for application in other types of problems. Finally, Section 7 summarizes our findings and
discusses future work.

2. Background

2.1. Basic concepts

Let G = (V,E, 0, w) be‘an undirected weighted network, where V = {1,...,n} denotes the set of vertices and
E C VxV denotes the set of edges, such that (v,u) = {(u,v) = (v,u) | u,v € V}. Let n = |V| be the total number of
vertices and’'m = |E|'be the total number of edges, where operator “|.|” stands for the cardinality of a set. The weight
of an edge (&, v) is represented by w(u, v) with w : VxV — R* and the weight of a vertex v is represented by o (v) with
o: V=R

A network' G = (V, E, 0, w) is bipartite (two-layer network) if V is partitioned into two sets V| and V,, such that
ViNnV,=0and E C V| x V,. Hereafter, each vertex subset is called a layer. A bipartite network thus has two layers
so that vertices in the same layer are not connected.

The degree of a vertex v € V, denoted «,, is given by the total weight of its adjacent edges, i.e. k, = > ,cy WV, u).
The h-hop neighborhood of v, denoted I',(v), is formally defined as the vertices in set [',(v) = {u | there is a path of
length h between v and u}. Thus, the 1-hop neighborhood of v, I'j(v), is the set of vertices adjacent to v; the 2-hop
neighborhood, I';(v), is the set of vertices 2-hops away from v, and so forth.

A similarity score S (u, v) can be computed from a pair of vertices u# and v. A fundamental structural similarity
function between a pair of vertices is given by the number of common neighbors, defined as S.,(u,v) = [A(u,v)|,
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Au,v) = {T'1(w) NT1(v)}. Alternatively, a weighted common neighbors similarity function can be defined by equa-
tion 1, where the term log(1 + s(z)) is used to prevent negative scores [35].

Swaly = 3 LLDECWD ) S ) M

zeA(u,v) lOg(l + S(Z)) zell 1 (u)

The local clustering coefficient of a vertex is given by the probability of its neighbors being connected [64, 39].
This statistics is closely related to transitivity, which measures the relative frequency of triangles in the vertex neigh-
borhood. The clustering coefficient is defined by equation 2:

2tr(v)
_—— 2
ICyMIAC ()= 1)
where tr(u) denotes the number of edges (v,z) € E, such that v,z € I'j(«#) and cc relies on the enumeration of the

triangles in the network. However, as triangles do not occur in bipartite networks this“definition-is not valid. An

equivalent metrics for bipartite graphs was introduced by Latapy et al. [33], defined in“equation:3; which captures the
overlap between vertex neighborhoods in the same layer.

cc(v) =

L@ Seerwen(hug .
Iy () UT, ()] T

2.2. General-purpose multilevel optimization

cep(v,u) =

A multilevel optimization is formally defined as a meta-heuristics that=Combines different heuristics to guide,
modify and possibly fix a solution obtained from a target algorithms(or operations of the subordinate heuristics,
local search or global search) and refines this solution over multiple iterations. It operates in three phases, namely
coarsening, solution finding and uncoarsening. In the coarsening phase, the network size is successively reduced to
obtain coarser network representations; in the solution finding'phase a starting solution is obtained applying the target
algorithm in the coarsest representation; in the uncoarsening phase, the starting solution is successively projected back
to the intermediate networks and refined, until obtaining the final solution.

Figure 1 illustrates such a process, considering an,initial network Gy (in which the original problem instance is
defined), where G denotes the coarsest network, obtained after L coarsening steps (levels), S, denotes the starting
solution obtained in G, and S denotes the final refined solution obtained in Gy.

coarsening uncoarsening and refining
' A
: .
: ;
] ;
v original network G, final solution S, K
5 )
\ ;
s E
\ /
. % K
hierarchy of .
- * coarsened networks mtermed1ate solutions K
coarsening K
s {GLI’GLZ"' Ll’ L25 1} R
\“ '0‘
0.~ 'O.
coarsest network G starting solution S,  ,.**

S. .-

Figure 1. Phases of a multilevel optimization process: coarsening, solution finding and uncoarsening.

Coarsening

The coarsening phase constructs a hierarchy of coarsened networks G; from the initial network Gy, yielding inter-
mediate network approximations on multiple levels-of-detail. The process requires two algorithms, namely matching,
which defines which vertices will be merged, and contracting, which builds the reduced representation, given the
matching. Let G; = (V}, Ej, 0, wy) be the network model coarsened at level /, with |Vy| > [Vi]| > ... > |V]|.
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Coarsening starts with the matching step. According to some given restriction, in general, pairs of vertices are
selected for matching, producing a set of unordered pairs called vertex matching, independent edge set or simply
matching. Formally, a matching M consists of a set of pairwise non-adjacent edges. Heavy-edge matching is a
popular algorithm for this purpose, which attempts to find a matching of maximal weight [25].

At any level, the coarsening of a network must preserve its topological features, implying that vertex and edge
weights of the reduced network must reflect the connectivity of its parent. This will be guaranteed by a proper choice
of matching strategy, which is a key component of effective multilevel optimizations. A matching strategy inadequate
to support the solution finding phase will impair the quality of the solution derived by a multilevel algorithm and its
performance.

Once the matching is defined, a contracting algorithm constructs the coarsened network, by joining mateched vertex
pairs into a single super-vertex (sV). A child network G, will inherit the non-joined vertices froim it$ parent. In order
for G4 to be a good proxy to its parent, given a super-vertex sV = {v,u} € V;, its weight gi(sV) is.computed as the
sum of weights o(v) and o(u), {u, v} € V;. Furthermore, the edges incident to vertices {u, v} € Vpare’joined to obtain
the so-called super-edges incident to sV.

Solution finding

This phase employs the target algorithm to solve the problem on the smallest network G;. Let S be the set of all
possible solutions in the coarsest problem instance. Given an objective (cost)function f : S — R (or N) that assigns
a cost to each solution in S, the aim is to find a state s € § with minimum\(or maximum) cost. For instance, in the
traveling salesman problem f(s) expresses the length of tour s, wherea$ in a network community detection problem it
denotes some measure of community quality. Since the coarsest network'is possibly very small, it becomes feasible
to employ computationally expensive target algorithms to find astarting\solution [22].

Uncoarsening and refinement

The uncoarsening (also known as solution projection) phase ‘successively transfers the solution available at a
current level to the upper level in the hierarchy, i.e., the solution obtained in the coarsest network Gy is successively
projected through intermediate networks G;_;, G_syws., G Up to the original network Gy.

Solution S; is constructed from S, simply by“assigning vertices {u,v} € V; to the same set of their parent
sV € V1. Although S is a local minima of+f“in G, this may not be the case of solution S;_;, derived for the upper
level G;_;, with respect to G;. Therefore,4 refinement heuristics can be applied to avoid local minima and improve
solution quality. Local operations can move the solution towards a lower cost neighboring solution in the search space;
for instance, in a community detection problem vertices can be moved between adjacent communities to improve a
target quality measure.

3. Related Work

Early studies of multilevel optimization were mostly designed to speed up the recursive bisection problem, as
its high computatienal cost prevents wider applicability [6]. One of the first theoretical analysis was presented by
Karypis and Kumar [22], who demonstrated multilevel approaches can find high-quality communities in a variety
of networks,Iiater;, Karypis and Kumar [25] introduced the now widely adopted matching algorithms HEM (Heavy
Edge Matching), LEM (Light Edge Matching) and MCH (Modified Edge Matching). Other studies relevant for the
development.and expansion of the multilevel approach were conducted by Walshaw and Cross [60], who presented
a theoretical multilevel formulation of the Kernighan-Lin method for mesh partitioning, and by Korosec et al. [29],
who intreduced a new multilevel colony optimization applicable to several optimization problems. Sciences [58] and
Walshaw[59] provided compelling evidence the multilevel framework is an extremely useful addition to combinatorial
optimization toolkits, although it can not be considered a panacea.

Previous work on multilevel optimization in complex networks can be broadly organized into four categories.
A first category encompasses studies that explore features of network domains; e.g., Abou-Rjeili and Karypis [1]
studied scale-free networks (with power-law degree distribution), Oliveira and Seok [43] designed a multilevel spectral
approach that explores features of biological networks (protein complexes) and Valejo et al. [53] considered properties
of social networks, such as high transitivity and assortativity. A second group comprises contributions focused on
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scalability, e.g., investigating parallel and distributed paradigms that improve the performance of the coarsening and
refinement phases [5, 23, 26, 24, 61, 47, 3, 52, 51, 16, 49, 62, 31, 32]. A third category of studies is concerned with
the optimization of a target objective function, e.g., several contributions focused on improvements in modularity
[40, 14,48, 65,41, 46, 15, 32]. Finally, there are significant contributions in applications, including (and not limited to)
graph coloring [56], traveling salesman problem [57], graph drawing [55], biomedical feature selection [42], covering
design [12], DNA sequencing [9], vehicle routing [44], semi-supervised learning [66], partitioning or community
detection [8] and computation of centrality measures [11].

We are not aware of any previous effort concerned with the usage of multilevel strategies to solvesoptimization
problems in bipartite networks, despite the relevance of this kind of network to real-world modeling problems. Current
multilevel methods cannot be directly applied in bipartite models without adaptations, e.g., they do not consider
vertex types, whereas the layers in a bipartite network usually represent distinct types of entitiesithat must be handled
independently. For the sake of illustration, suppose a text document collection modeled as a document-word bipartite
network. For a start, matching vertices that represent words and vertices that represent documents (i.e., matching of
vertices of different layers) would not be meaningful in most application scenarios. Mor€over, as the number of words
is typically much higher, coarsening the word layer may be sufficient to reduce the asymptotic convergence of a target
algorithm.

4. A multilevel approach in bipartite networks

This section introduces a multilevel optimization framework designed to handle bipartite networks. Bearing in
mind the previous discussion, we have defined two restrictions that'establish’the major distinction between current
multilevel methods and the one proposed here:

1. Vertices are only allowed to match their set of two-hop,neighbors.
2. The matching algorithm must operate on vertices of the samelayer.

Such restrictions support cost-effective implementations, of multilevel strategies in bipartite networks. From the
definitions of bipartite networks and two-hop neighborhoods, the first restriction implies adjacent vertices are not
matched. Furthermore, vertices can only match others in their two-hop neighborhood set, rather than any non-adjacent
vertex. Considering, for instance, the network in Figure 2, vertex u; can match vertices u, and u3, which are non-
adjacent and are in I'>(u;).

Uy U9 us

e

]
U1 (%]

Figure 2"Example of a bipartite network with V| = {uy, up, u3, ua, us} and Vo = {vy,va,v3, va}.

The first restriction alone does not enforce independent handling of layers, which is guaranteed by the second
restriction, which states layers (either one of them or both) will be processed independently in the coarsening phase.
Therefore, the'coarsening will not match vertices of different kinds and distinct coarsening and refinement algorithms,
or distinct parameterizations of the same algorithm may be adopted in processing each layer. Such a restriction also
favors the adoption of distributed or parallel processing strategies.

Algorithm 4.1 summarizes the general multilevel optimization framework for bipartite networks (M Ob). Similarly
to the standard multilevel approach, it comprises the phases of coarsening (lines 1-4), solution finding (line 6) and
uncoarsening (lines 7-9). It takes as inputs the initial bipartite network G = (V| U V,, E, 0, w), and for each layer a
maximum number of coarsening levels L and a layer reduction factor r f.

The coarsening is applied to each layer (line 1), level by level until the desired reduction factor is attained, by
calls to a matching algorithm (line 3) and a contracting algorithm (line 4). The matching algorithm considers the
above restrictions in selecting the vertex pairs to produce the list of independent edges (line 3). The reduction factor
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(rf € [0,0.5]) is multiplied by the number of vertices to determine the maximum matching number. If rf = 0.5
(the maximum reduction factor), each coarsening iteration will (potentially) reduce the number of vertices by a factor
of two, yielding a logarithmic decrease in network size along the process. This is not guaranteed if the network
is disconnected or highly sparse, since in this case there may be an insufficient number of edges. The call to the
contracting algorithm in the next step (line 4) is responsible for creating the coarsened bipartite network, in which any
matched vertex pairs have been merged into super-vertices.

Algorithm 4.1: M Ob: multilevel optimization framework for bipartite networks.

Input:
bipartite network :G=(V,E,o,w)
maximal number of levels carrayL={L; | L;€[0,n] CZ}with1 < |L| < 2
reduction factor for each layer carray rf = {rf; | rf; € (0,0.5] c R} with 1 <{rfjp< 2
layers to be coarsened : array layers = {i | i € {1,2} c Z} with | <layers|<2
Output:
solution : S

1 for i € layers do

2 while [ < L; or layer i is not as small as desired do
3 M « matching(G,, i, rf;);
4 Gi41 « contracting(G;, M);
5 increment /;
6 S; « target_algorithm(G);
7 while [ # 0 do
8 S,;_1 « uncoarsening(G,_;, G;, S));
9 S;-1 « refining(G—1, Si-1);
10 decrement /;
Return: S

The target algorithm is then executed.in the coarsest network G to obtain a starting solution S, (line 6). Finally,
in the subsequent uncoarsening phasethis solution is projected back, up to Gy, through the space of intermediate
solutions S;_1, S -2, ...,5 1,5 ¢ (lines7=10), possibly refining the solutions at each level (line 9). Although we do not
investigate refinement algorithmsdn this'work, the rationale is to apply a local search strategy to improve the current
solution, i.e., algorithms should explore small regions of the solution space, in order to reduce impact on performance
and scalability. We do introduce novel algorithms for matching, contracting and uncoarsening.

4.1. Matching in bipartitenetworks

We propose a straightforward matching algorithm called random greedy matching for bipartite networks (RGMb),
described in Algorithm 4.2, where S (u, v) denotes a similarity function.

A vertex.a"is picked randomly (Line 4) at each iteration, and as long as it has not yet been matched, one of its
unmatched/two-hop neighbors v so that S (#, v) is maximal is chosen (Line 5). Vertices u# and v are marked as matched
and removedfromthe list of unmatched vertices (Line 7). The process iterates until no more vertices can be eliminated
from theilist. For unweighted edges, a random neighbor is selected for matching, otherwise, the heaviest adjacent edge
is selected.

One may consider different similarity functions, e.g., common neighbors similarity S, or weighted common
neighbors similarity S,,.,. For illustration, consider a graph G = (V| U V,, E), shown in Figure 3, with V| =
{ur, up, us, ug, us} and Vo = {vy,vo,v3,va, vs}, I'a(u2) = {uy, us, us} and uy, u,, uz and uy unmatched. Suppose vertex u,
has been randomly chosen for matching. Adopting S, as the similarity function, then S ., (uz, u1) = 2, S . (2, u3) = 3
and S ., (uz, us) = 1, therefore, pair {u;, u3} would be included in the matching, as illustrated in Figure 3(a). Alterna-
tively, for a choice of S, as similarity function, S ¢, (41, u2) = 11, Sen(uy,u3) = 7 and S ¢, (42, us) = 2.5 and pair
{u1, up} would be included, as illustrated in Figure 3(b).
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Algorithm 4.2: RGMb: random greedy matching for bipartite networks.

Input:
bipartite network :G=(V,E,o,w)
selected layer 1 1e{l,2}
reduction factor :rfe(0,05]cR
Output:
matching : array of tuples M = {(u,v) | u,v € V}

1 matching M « 0;

2 merge count mc « rf = |V[;

3 while mc > 0 do

4 randomly select a vertex u € V;

5 select v € I';(u) of maximal S(u, v);
6 M« MU (u,v);

7 remove u and v from V;;

8 decrement mc;

Return: M

CE\ : 5 CE
L

(b)

v1 V2

Figure 3. Bipartite network, such that V| = {uy, uz, u3, us, us} and\Vo =H{v1, v, v3, v4}; (a) pairs {u2, u3} included in the matching; (b) pairs {u;, us}
included in the matching.

Algorithm RGMb does not ensure an optimal choice over all possible matchings. An alternative strategy would
choose from a list of vertex pairs sorted in decreasing order of similarity scores, which may be kept in an appropriate
data structure, e.g., a heap or a priority queue. An alternative algorithm that implements this strategy is called greedy
sorted matching for bipartite networks (GMb) (Algorithm 4.3): it selects the best possible match for a vertex from its
two-hop neighborhood (ling’4).

GMD constructs a priority/queue of potential matches ranked by similarity (Lines 3-5) and uses it to retrieve
optimal matching choiCes (Line 8). In case of a tie, it makes a random choice, in order to favor further exploration of
the solution space over multiple iterations. If a vertex is selected that has already been matched, it is skipped. GMb,
albeit slower than its random search counterpart RGMb, is more robust and yields better performance (see Section 5).

For illustration, consider the graph G = (V| U V,, E) depicted in Figure 4, with V| = {u;, up, us, us,us} and
Vo = {v1, v, v3,v4, V5}. Suppose the matching is being performed on layer V;. Adopting the S, similarity, pairs
{uz, u3} and {uy, us) would be included in the matching, as illustrated in Figure 4(a). Alternatively, for a choice of S,
similatity, pairs {u;, u»} and {uy4, us} would be included, as shown in Figure 4(b).

Variations of the general matching algorithm can be obtained depending on the combined choices of matching
strategy ‘and similarity function S (u,v). We report four variants, namely RGMb,, and RGMb,,, for a choice of
random matching with, respectively, S, and S, similarity; GMb,, and GMb,,,,, for the equivalent combinations
with greedy matching.

4.2. Contracting in bipartite networks

Algorithm 4.4 (Cb, contracting of a bipartite network from a matching) describes how to create a coarsened
bipartite network from a matching M. It takes as input a bipartite network G; and a corresponding matching M. First,
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Algorithm 4.3: GMb: greedy matching for bipartite networks.

Input:
bipartite network :G=(\V,E, o,w)
selected layer e {l,2}
reduction factor :rfe(0,05]cR
Output:
matching : array of tuples M = {(u,v) | u,v € V}

1 matching M « 0;

2 Q « max priority queue;

3 forall the u € V, do

4 select v € I';(u) of maximal S(u, v);

5 L insert (u, v) into Q with priority S(u, v);

6 merge count mc « rf = |V|;

7 while mc > 0 do

8 (u,v) « remove from Q;
9 if u and v unmatched then
10 LM<—MU(u,v);

11 decrement mc;

Return: m

U1 (%) U3 (% (%) U1 (%) U3 (2] (%)
(a) (b)

Figure 4. Bipartite network, such that V| = {u14u2, u3, us,usd and Vo = {v1,v2,v3,v4}; (a) pairs {uz, u3} and {ug, us} included in the matching; (b)
pairs {u1,uz} and {u4, us} included in the matching,

vertex pairs {u, v} € M are mapped into-a successor vector (lines 5-6) and joined into a single super-vertex sV € G4
(lines 4-9). The successorvector will be accessed in the uncoarsening phase to assign pair {u, v} € G4 to the same
subset of its super-verteéx sV. ‘Any vertices not included in M are inherited by Gy, (line 10). After the mapping,
adjacent edges in E; are joined ‘and added to E;;; (lines 11-18), i.e., each pair (u,v) € E; holds its successors (w, 2)
and if edge (w, z)salready exdsts in E;.; its weight is increased by w;(u, v) (lines 15-16); otherwise, a new edge (w, 2)
with weight w,(u,v) is inserted into E;,; (lines 17-18).

Figure 5 illustrates”the contracting process. Considering, for instance, the previous example, in which pairs
{u2, us} and {u4, us} have been included in the matching, as illustrated in Figure 5(a), the resulting coarsened network
is depicted in'Figure 5(b).

The capability of handling layers with distinct parameter settings (rf and L) and coarsening algorithms is a com-
pelling feature of the proposed framework. This is advantageous in many situations, since layers in many real network
models are highly unbalanced in size, as in the already mentioned document-word networks. Coarsening just one of
the layers is also a useful feature, for example, in dimensionality reduction problems, e.g., to reduce the space of
words in document-word networks, as illustrated in Section 5.3.
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Algorithm 4.4: Cb: Contracting of a bipartite network from a matching

Input:

bipartite network G = (VLB o, w)

matching : array of tuples M = {(u,v) | u,v € V}
Output:

coarsened bipartite network G = Vi, B, 01, wis )

1nee1;

2 sucessor « 0;

3 G = (Vie1, Erp1, 041, wig) < empty bipartite network;
4 forall the (1,v) € M do

5 sucessor[u] « n;

6 sucessor[v] « n;

7 add new super-vertex sV = {u, v} to Vy;; with id n;

8 0141(v) & o(u) + o(v);

9 increment n;

10 Vertices not merged are inherited by Gy, 1;
11 forall the (v, u) € E; do

12 w <« sucessor[u];

13 z < sucessor[v];

14 if w # z or they are not super-vertices in E;| then
15 if (w,z) € E;;; then

16 | Eni — 0w, 2) + wi(u, v);

17 else

18 L E;.1 < new edge (w, z) with weight wj(u, v);

Return: Gy = (Vig1, Eipr)

u;  U2U3  UqUs

AN
/57?\’\

LEERURNA S

U3 V4 Us

U1 (%] U3 Uy Us
(a) (b)

Figure 5. Contracting of a-layerwith' the GMb,., matching algorithm: (a) selected matching in original bipartite network; (b) contracting process
with newly formed super-vertices and modified edges highlighted.

4.3. Uncoarsening algorithm

Thessolution finding phase executes the target algorithm to obtain a starting solution S ;. The representation of
S 1 depends on the problem being handled. In a community detection problem, it is described as a partitioning of the
vertex set into non-empty partitions P, with UP;, = S, P, C V. Each iteration of the uncoarsening phase projects the
current solution, obtained in network G, to network G,_; as described in Algorithm 4.5 Ub (uncoarsening of bipartite
networks). The rationale is, for each vertex u € V;_; in network G;_; (line 2), to obtain its corresponding successor
vertex w € V; (line 3) and assign vertex u to its partition (lines 4-5). An implementation can keep the successor vector
as a global variable, or it may be provided as a network attribute.

As discussed later (Section 6), the algorithm can be adapted with little effort to handle other types of problems and
representations, e.g., in link prediction, S would be a set of predicted edges E, ¢ E. In some problems the solution

10
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finding and uncoarsening phases are omitted, e.g., in dimension reduction the coarsest bipartite network is itself the
final solution (see Section 5.3).

Algorithm 4.5: Ub: Uncoarsening of bipartite networks.

Input:
bipartite network G = (VoL BEnn o, winr)
bipartite network :Gr= (VLB o, )
solution S;, S ={P1,P,,..., P}
Output:
projected solution 1S

1 new solution S;_; « 0;

2 forall the u € V,_; do

3 w < successor|u];

4 P; « get_partition(w) withi € {1,...,k};
5 assign u to P;;

Return: S;_;

4.4. Computational complexity

Consider the multilevel strategy applied to both layers of a_network. Computing a matching requires, for each
selected vertex u, to find its A-hop neighborhood I';, (), which takes O(n{k)h) time, where (x) is the average network
degree and h specifies the number of distance hops. Most real networks are sparse, i.e., (k) < n and m ~ n. This
study only considers two-hop neighborhoods (4 = 2), which leads to notable computational savings, since I'; can be
reached in nearly linear time. Appropriate data structures and parallelism can be employed to maximize the efficiency
of the matching step [21, 27, 28]. The subsequent contracting,step relies directly on the matching and can be very fast
in sparse networks. A coarsened network can be mapped-and built in time O(|E|), since the process is iterated over all
edges of its parent network.

If the coarsening parameter is set to itsdmaximum value (rf = 0.5), at each iteration the current network size will
be reduced at most by a factor of two relative,to its parent. In this case, given 1 < L < n, the coarsening steps would
produce networks of sizes (n,7/2,.. .4%/n),/yielding a reduction factor O(log,(n)) over the L iterations. For instance,
departing from a network with n =100 vertices, rf = 0.5 and L = 2, potentially 50 vertex pairs will be merged in
the first iteration (from Gy to G7)and 25 in the second (from G, to G,), a reduction factor of 4. In most real-world
problems, such a reduction factor would suffice to produce a manageable model to run the optimization algorithm. As
the cost of coarsening decteases drastically at each level, the number of levels L may be neglected in the estimation
of the computational cost.

The complexity 0f the solution finding phase is determined by the target algorithm. If T, is the cost of the target
algorithm on a bipartite network with n vertices, and T, is the cost to obtain the starting solution, it is not too difficult
to show that T, = T}, /(2%). Insofar as the hierarchy of approximations produced by coarsening, L = 1 yields (n,/2),
L =2 yields'(n, "/2,%/4); L = 3 yields (n, #/2,7%/4,7/8) and so on. Hence, the number of vertices in the coarsest network is
approximately #/(2t) and therefore T';; = Tw/(2%). Parameter L can thus be chosen to control the cost deemed acceptable
to obtain an initial solution.

As'an_illustration, consider a network with n = 100 vertices and two target algorithms, X and Y with Ty = O(n)
and Ty & O(n?), hence, Tx = O(100), Ty = 0O(10,000) and Ty = VTy. Consequently, if one wishes to execute
algorithm Y on a network with n = 10, 000 with a runtime similar to that of algorithm X, the network size should be
reduced to +/n = 100, which requires setting L ~ 7 and rf = 0.5. Of course, the asymptotic complexity of algorithm
Y remains quadratic, but the coarsening allows its execution with a runtime equivalent to the linear one.

Analogous to the solution finding phase, the complexity of the uncoarsening phase depends on the target problem
(target algorithm), and also on the choice of refinement algorithm, if one is used. In problems such as community
detection and classification, it is not necessary to project the solution along the intermediate levels, rather it can be
projected directly to the original network, since successors have been stored in an array (or other data structure). In

11
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these cases, this phase as implemented in Algorithm 4.5 would have linear cost in the number of vertices, O(n). As
we do not investigate refinement algorithms, an analysis of their asymptotic complexity is suppressed.

5. Experimental Results and Analysis
We assessed the proposed framework guided by the following research questions:

1. How does coarsening affect a network’s topological features at each level?

2. Can the framework improve the efficiency of optimization algorithms without incurring significant losses in the
solution quality?

3. How does the framework impact on the scalability of the local search strategy?

4. To which extent can it enable the running of high-cost algorithms on large networks?

5. Is it sufficiently general for handling different combinatorial optimization problems?

We conducted three experimental studies to find answers to the questions. A first.study investigated the impact
of the coarsening process on the topological properties of a well-known author-paper network. In a second study, the
framework was employed in the context of community detection, which is aprototypical application of multilevel
strategies. Finally, in a third study, it was employed in dimension reduction in. a text classification scenario.

The experiments were executed in a Linux machine with 8-core processor with 3.7 GHz CPU and 64 GB main
memory. The framework' was implemented in Python with igraph library>. We report average values obtained from
30 executions for algorithms that rely on random strategies.

5.1. Analysis of topological properties

We considered the scientific collaboration network Cond-Mat?, which describes co-authorships of preprints posted
from 1995 to 1999 in the Condensed Matter section of the arXivrepository, to address the first research question. It has
38,742 vertices (representing authors and papers) and 58,595 edges (co-authorship relations) (additional information
can be found elsewhere [36, 37]). Our interest wasyto ‘'observe how a progressive coarsening affects the intrinsic
topological properties of a network.

The Cond-Mat network has been extensivelypanalyzed and is known to have characteristic features regarding de-
gree distribution and clustering coeflicients; as depicted in Figure 6. According to Figure 6(a), the degree distribution
follows a power-law relationship characteristic.of scale-free networks, with a vast majority of low-degree vertices and
a few vertices of very high-degree, i€y the so-called “hubs”.

e R RRAR . T
T S 1F E
=103, e £ € | ]
(5] - .|
g0 . S 01f .
S 3 s
- | = °
1007\ Ll B wravdihdll © T AR RETTI RRR
10* 102 1 10 100
Number of vertices Degree [d]

(a) (b)

Figure 6.\Scale=free properties of the Cond-Mat bipartite network. (a): histogram of degree distribution; (b): histogram of two-mode local clustering
coeflicient!

An inverse relation between vertex clustering coefficients and vertex degrees is also evident in Figure 6(b). This is
a particular feature of this network: the hubs, i.e., authors with many collaborators, have low-clustered neighborhoods

lavailable from https://github.com/alanvalejo/mob
2available from http://igraph.org/python/
3available from https://toreopsahl.com/datasets/#newman2001
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and they tend to interact with collaborators from distinct groups, who are not usually collaborators themselves. In
contrast, authors with few collaborators have highly-clustered neighborhoods, i.e., they often interact within smaller
and more restrict research groups whose members also collaborate with each other.

We investigated how the scale-free properties of degree distribution and two-mode clustering coefficient are af-
fected as the network is progressively coarsened by matching algorithms RGMb and GMb, with input parameters set
as L = 10 and rf = 0.5. Figure 7 shows the reduction factor on |V| = n and |E| = m at each level of the coarsen-
ing hierarchy, i.e., starting from the original network (level 0) to the coarsest one (level 10). The curves depict the
percentages of remaining vertices (left) and edges (right) relative to the initial numbers.

104 -10*
4 T 1T T T 71 1T 1T 1] T T T T T T T T 17
= 100% original size g 6 |~ ¢100% original size N
% [y
S 3 . 2
£ 60% of the original si RS
5] bU70 ol the original size 2 56% of the original size
> 9| B “
s -
5 g o .
2 1 = g
El 3
z “ ol |
0 | - |

Figure 7. Percentages of remaining vertices (left) and edges (right) in the'networks along the coarsening hierarchy.

Figures 8 and 9 show curves for degree distribution and clustering coefficient, respectively, in each coarsened
network, from levels 1 to 10 (the top two rows refer to RG Mb and the-bottom two rows refer to GMb). Both algorithms
yielded very similar distributions of degree and clusteting coefficient, which suggests the random exploration of
the solution space adopted by RGMb has no strong impaction the topological features of intermediate networks, in
comparison with GMb.

The characteristic behavior of degree distribution observed in the original network is reasonably preserved in the
coarsened models down to level 3, i.e., coarsened networks at levels 1, 2 and 3 still contain few hubs and many
low-degree vertices, a behavior that gradually changes from level 4 onwards.
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Figure 8. Degree distribution of the networks at the 10 levels of the coarsening hierarchy (rf = 0.5). Top graphs refer to coarsening with RGMb
(random strategy) and bottom graphs refer to coarsening with GMb.

Particularly from level 8, vertex degrees become more homogeneous, until the original topological features have
been completely lost in the final network at level 10. A similar pattern is observed in the clustering coefficient, i.e.,
13
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again, the original behavior of neighborhoods of hub authors is preserved up to level 3. From level 5 onwards, most
vertices converge to lower clustering coefficients and the network’s characteristic behavior is completely lost from
level 8.

At the initial coarsening levels (1, 2 and 3) only vertices with many two-hop common neighbors can compose a
matching. The newly formed super-vertices thus preserve the neighborhood properties of their predecessors, hence,
the dominant topological properties of the parent network. In other words, it is likely that authors matched at the
early coarsening levels indeed have many common collaborators. However, at later levels, authors with few common
collaborators may be forced to join, with corrupts the original topological relations in the network. Notice the sizes
of networks at levels 9 and 10 were reduced to nearly 10% of the original network (see Figure 7){which implies
the coarsest networks are mostly formed by heavy-weight super-vertices (> o (sV)) sparsely connected. Such super-
vertices of low-degree form clustered structures with few triangles.
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Figure 9. Two-mode local clustering coefficient of the networks atythe 10 levels of the coarsening hierarchy (rf = 0.5). Top graphs refer to
coarsening with RGMb (random strategy) and bottom graphs refer to'coarsening with GMb.

Results from this analysis indicate.a limited.reduction of an initial network, up to two or three levels, can preserve
its relevant topological features. Fufthermore, it is evident that choosing the appropriate coarsening level is critical,
and depends on properties of thetarget application and dataset. Establishing a suitable trade-off between accuracy
and runtime may require empirical verification in each case. This inherent limitation can be associated to the well-
known overfitting/underfitting problem; however, the coarsening phase in our multilevel process “generalizes” the data
instead of an objective function. This may explain why, in some cases, better solutions were obtained on the coarsened
networks. In general,£€xtensive coarsening reduces execution times of a target algorithm, but it can lead to excessive
generalization of the.data with significant degradation of topological features, and possibly algorithm accuracy. In
contrast, limited coarsening preserves topological features and accuracy, at the expense of higher execution times.

5.2. Performance in benchmark networks for community detection

Researcheefforts on multilevel optimization have been strongly motivated by community detection (or graph parti-
tioning)"problems, which makes this a benchmark problem. Algorithms for community detection in networks split the
vertices\ifito disjoint groups (or communities), so as to minimize the number of edges between distinct communities
[17]. Barber’s modularity optimization [4] is often employed to identify community structures in bipartite networks.
Formally, it quantifies the extent of communities formed in both layers relative to a null bipartite network model.
Beckett [7] introduced the LPAwb+ algorithm*, which maximizes Barber’s modularity through label propagation
in weighted bipartite networks and showed it has competitive performance compared with state-of-the-art methods.
However, it is a computationally costly algorithm and becomes unfeasible in large-scale networks.

“4available in https://github.com/sjbeckett/weighted-modularity-LPAwbPLUS.
14
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In order to address the second research question, the MOb framework was tested considering Beckett’s algorithm
LPAwb+ as a target algorithm. Therefore, MOb (Algorithm 4.1) performs the coarsening, runs LPAwb+ to find
the community structure in the coarsest network, and projects the solution to obtain the community structure in the
original network. Our goal was to investigate whether M Ob can yield solutions statistically equivalent in quality to
the standard LPAwb+, whilst increasing its scalability. Results are compared with those obtained with the standard
LPAwb+, used as baseline.

We investigated the performance of the four instances of MOb, listed in Table 1. They were executed with
parameter settings 7f = 0.5 and L = [1,2, 3] in a set of 15 synthetic weighted bipartite networks, identified as R1-R15
(hereafter each M Ob instance is referred to by its name).

Coarsening
Matching | Contracting

MOb-RGMb,,, |RGMb with S,
MOb-RGMb,,e, | RGMb with S e,
MOb-GMb., |GMbwithS,,
MOb-GMb,,., |GMb with S,

Algorithm Solution finding | Uncoarsening

Cb LPAwWb+ Ub

Table 1. MOD applied to target algorithm LPAwb+ (for the community detection problem): there are two choices of matching algorithm (RGMb
and GMb) employed with two choices of similarity function (S, and S ,c,). All MOb algorithms were executed with rf = 0.5 and L = [1,2,3].

Synthetic networks were obtained with the community model déseribed in [7], which creates unbalanced and
randomly positioned community structures. Networks of sizes n = |Vyu V,| were generated within the range
[1,000; 15,000] at increments of 1,000 and the number of communities was set to 0.01 * n. Edge weights were
randomly assigned from a skewed negative binomial distribution and noise was introduced in the connection patterns
by reconnecting a percentage of the edges between and within communities.

Performance was measured in terms of accuracy, by.means$ of the NMI (normalized mutual information), which
compares the solution found by a selected algorithm with the baseline [30], we also measured execution times. Table
2 shows the NMI accuracy values in the 15 networks."The highest values are in bold and values equal to or higher than
baseline LPAwb+ are highlighted with a gray background. The best performances were achieved by MOb-GMb,,
with one level of coarsening (L = 1) on 11 out ofithe 15 networks. Baseline LPAwb+ yielded the best performance in
three networks, whereas MOb-RGMb,, with L = 3 yielded the worst results.

Algorithm Dataset
Name [Levels[L]| R1[ R2[ R3]/ R4] R5] R6[ R7] R8] R9| RIO[ RII[ RI2[ RI3] RI4] RI5
LPAwb+ \ 0]0.9180.926]0.983]0.9720.964 [ 0.990 [ 0.984 [ 0.999 ] 0.999 [ 0.985 [ 0.989 [ 0.996 | 0.995 [ 0.987[ 0.992 |
MOb-RGMb.y 1]0.984 [0.985 [ 0.983 [ 0.988 [ 0.990 [ 0.991 [ 0.992 [ 0.991 [ 0.991 [0.992 [0.992 [ 0.992 [ 0.991 [ 0.991 | 0.992
MOb-RGMb,, 2/10.952 | 0.968 | 0.963 | 0.977 | 0.977 | 0.976 | 0.978 | 0.976 | 0.978 | 0.977 | 0.979 | 0.981 | 0.982 | 0.982 | 0.980
MOb-RGMb,, 3101866 | 0910 | 0.923 | 0.936 | 0.943 | 0.944 | 0.952 | 0.954 | 0.950 | 0.957 | 0.954 | 0.957 [ 0.956 | 0.955 | 0.957
MOb-RGMbyyen 110.982[0.988 [0.986 [ 0.988 [0.990 [ 0.990 [ 0.991 [ 0.987 [ 0.992 [0.992 [ 0.991 [ 0.991 [ 0.992 [ 0.992 [ 0.992
MOb-RGMbyyen 210.942 | 0.960 | 0.966 | 0.968 | 0.974 | 0.973 | 0.978 | 0.978 | 0.977 | 0.978 | 0.977 | 0.977 [ 0.979 | 0.979 | 0.978
MOb-RGMbyi 3'10.905 | 0.922 | 0.948 | 0.954 | 0.954 | 0.951 | 0.953 | 0.951 | 0.960 | 0.959 | 0.958 | 0.961 | 0.959 | 0.961 | 0.960
MOb-GMby, 1]0.994 [0.993 [ 0.993 [ 0.995 [ 0.996 | 0.996 | 0.995 | 0.993 [ 0.994 [ 0.995 [ 0.995 | 0.995 | 0.996 | 0.995 | 0.996
MOb-GMb,, 210.981 | 0.986 | 0.982 | 0.983 | 0.988 | 0.987 | 0.988 | 0.987 | 0.988 | 0.988 | 0.988 | 0.988 | 0.988 | 0.990 | 0.990
MOb GMbe, 310.901 | 0.934 | 0.963 | 0.966 | 0.971 | 0.968 | 0.973 | 0.974 | 0.974 | 0.975 | 0.972 | 0.975 | 0.976 | 0.975 | 0.977
MOb-GMbyyer 110.990 [0.989 [0.992 [0.992 [0.995 [ 0.993 [ 0.992 [ 0.992 [ 0.993 [ 0.994 [ 0.995 [ 0.995 | 0.995 | 0.994 | 0.994
MOb-GMb,y 20.969 | 0.985 | 0.985 | 0.979 | 0.988 | 0.985 | 0.987 | 0.985 | 0.987 | 0.987 | 0.989 | 0.988 | 0.988 | 0.989 | 0.989
MOb-GMbyyen 310.965|0.973 | 0.973 | 0.972 | 0.975 | 0.979 | 0.977 | 0.977 | 0.978 | 0.977 | 0.978 | 0.980 | 0.978 | 0.979 | 0.979

Table 2. NMI accuracy values of all MOb instances and baseline LPAwb+ in 15 synthetic networks. The values are average results over 30
executions. The highest accuracy values are in bold and values equal to or higher than the baseline (LPAwb+) are highlighted (gray background).

Limited coarsening levels (mainly L = 1) yielded higher accuracy values, reinforcing that a controlled coarsening
can filter the solution space by joining promising vertex pairs and removing irrelevant high-cost solutions, while
15
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preserving important topological features. In contrast, accuracy deteriorated with more extensive coarsening (L = 3),
which does not necessarily preserve the original topological properties and is likely to blur the boundaries between
adjacent communities. The effect of parameter L depends on network size, i.e.; differences in algorithm accuracy
are likely to decrease as the network sizes increase, hinting that higher values of L might be successfully adopted in
handling larger networks.

Although LPAwb+ achieved the best performance in three networks out of the fifteen, the corresponding accuracy
values attained by the M Ob instances are very close for these networks. Indeed, in these specific cases accuracy values
differ up to 0.006 in R8, up to 0.005 in RY and up to 0.001 in R12. Interestingly, all MOb instances yielded similar
accuracy values and more stable results than the standard LPAwb+. The accuracy values obtained withh MOb-GMb.,
and L = 1, for instance, are within the range [0.994,0.996], whereas for the standard LPAwb+ they are,within the
range [0.918,0.999], as shown in Figures 10 and 11.

Figure 10 depicts the averages and standard deviations of the accuracy values, whereas Figure 11 shows the
dispersion of their distribution and outliers, considering in both cases the alternative settings of parameter L. The bar
plots in Figure 10(a) reveal superior performance and stability of the four M Ob instances when L= 1, confirmed by
their higher average accuracies and narrower standard deviations. When L = 2, only MOb-GMb., and MOb-GMb,,,
yielded a slightly superior solution in comparison to LPAwb+. For L = 3, LPAwb+ yielded better results than any
MOb instance, a consequence of the extensive network reduction.
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I sy o1 A8 ; T
. i o~ P9 0 o~ i P9
E E ' E [ S
“ 0.96 “ 0.96 0 0.96 O o
N X N N N N X & N N\ N
AR RN & O o K o & o B o
AN D N AN AN AN
RUF QIR Sl P & RUESPCINaNC
O o W0 O OO o O o w0 O
A 3 B 3 A 3
@@ L= by L=2 (¢) L=3

Figure 10. Averages and standard deviations of the, NMI accuracy values obtained with LPAwb+ and four MOb instances in three settings of
parameter L (number of levels). (a) L = 1, LO(b) L= 2 and 10(c) L = 3.

The box plots in Figure 11(a) reveal that for L = 1 all MOb instances yielded accuracy values within a narrower
distribution and higher averages than LPAwb+.
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Figure 11. Shape distribution, variability, and median of the accuracy values yielded by LPAwb+ and the four instances of M Ob considering three
settings of parameter L. (a) L = 1, 10(b) L = 2 and 10(c) L = 3.
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We can conclude MOb instances yielded, in general, higher accuracy and improved stability in comparison to
LPAwb+. In summary, the experimental evidence regarding solution quality (average, standard deviation and dis-
persion of the accuracy values) suggests the multilevel framework stabilizes and improves the performance of the
algorithm.

A Nemenyi post-hoc test [13] was applied to the results in Table 2 to verify statistical differences in the algorithms
performances and the results are shown in Figure 12 for (a) L = 1, (b) L = 2 and (¢) L = 3. The critical difference
(CD) is indicated at the top of each diagram and the algorithms’ average ranks are placed on the horizontal axes,
with the best ranked algorithms to the left. A black line connects algorithms if no significant difference has been
detected among them. According to the the Nemenyi statistics, the critical value for comparing the mean-ranking of
two different algorithms at 95 percentile is 1.58.

Let us consider the outcome of the post-hoc test for L = 1, i.e., when the number of verti¢es n is reduced by a
factor of two, shown in Figure 12(a). MOb-GM B,,, was ranked best, followed by M Ob-G M by, and M Ob-RGMb,,.,,
and then LPAwb+. Furthermore, MOb-GMB,,,, MOb-GMb,,., and MOb-RGMb.,,.,, presented statistically significant
differences compared with standard LPAwb+. Interestingly, for L = 2 (Figure 12(b)), MOb-GMB,, and MOb-
GMb,,., remain ranked first, however, no statistically significant difference was observed in relation to LPAwb+.
Finally, for L = 3 (Figure 12(c)), LPAwb+ was ranked first, with no statistically significant difference observed in
relation to MOb-GMb,,, or MOb-GMb,,.,. However, parameter settings L = 3rand zf =.0.5 implied, in this case, in
reducing the original size by a factor of 75%, which explains the poor performaneeof all M Ob instances.

cD cD CcD
— — —
1 2 3 45 1 2 3 4 5 1 23 45
MOb-GMby,, j_ —— LPAwb + MOb-GMb, j { MOb-RGMbcp LPAWb + — MOb-RGMb.,
MOb-GMbycn —— MOb-RGMbycn MOb-GMbycp L MOb-RGMb,, MOb-GMbycn MOb-RGMbcp
MOb-RGMb, —— LPAWD + MOb-GMb.,,
(ay L=1 byL=2 (c)L=3

Figure 12. Nemenyi post-hoc test for LPAwb+ and the four M Ob instances.

We also assessed the scalability of‘the,M Ob instances to investigate the third and fourth research questions. Their
performance was analyzed considering,each individual network and the total time spent in the experiments. Table 3
shows the absolute execution times,(in seconds) on each network - values refer to the average times from 30 executions
of each scenario.

Algorithm Dataset sum

Name [Levels [L] [RT| R2] R3] R4] R5] R6] R7] R8] RO[ RIO] RII] RI2] RI3] RI4] RI5
LPAwb+ [ 0] 14] 96308 904[2.782[2,800[ 7.146]15.925[39,197[ 56,119 66,729 [ 75990 | 97,392]224,032[302,442] 891,875
MOb-RGMb, 1] 2] 31] 77] 160] 328] 616 1,106] 1.787] 4,148 5.386] 8.108[ 10242 15235] 23,174] 70,410
MOb-RGMb, 2| 1) 3| 8| 19| 42| 77| 154| 267| 428| 1,081 1296| 1989| 2372| 3559| 5283| 16,577
MOb-RGMbe 3| 1| 4] 7] 14| 25| 49| 86| 142| 304| 389 586| 694| 940| 1310| 4552
MOb-RGMb,f, 1] 3] 1] 34] 79[ 174] 322] 643 1.424] 1715] 4192 5335 8582[ 9355 15.121] 22.535] 69,525
MOb-RGMb,ye 2| 1| 4| 9| 24| 44| 101| 165 282| 460| 1,049| 1399| 1911| 2245 3281| 4866| 15840
MOb-RGMb,cn 3] 1] 3] 6] 11| 18] 33| 59| 91| 139| 323 396| 52| 713 1,056| 1381| 4751
MOb-GMbg, 1] 2] 13] 33] 78] 165[ 329] 623[ LI11] 2680] 4,145[ 5561] 6.705] 9.091[ 18136 24,732] 73,402
MOb-GMby, 2| 1| 5| 11| 24| 46| 84| 168 298| 721| 1,088 1492| 1,657| 2455| 4013| 5555| 17,619
MOb-GMb, 3] 1] 3] 6] 13| 22| 34| 62| 90| 239| 332| 471 481 672 1180| 1596| 5204
MOb-GMbyc 1] 3] 13] 30] 83] 180[ 338] 688 1.135] 2.864] 4.392] 5819 6317] 8932[ 19.016] 25.674] 75493
MOb-GMb,, 2| 3| 8| 15| 32| 55| 96| 187| 326| 744| L,100| 1447| 1719| 2345 4050| 4.574| 16,700
MOb-GMbyan 3] 3] 7] 12] 20| 31| 45| 80| 17| 287| 392| 469| 536 745| 1233| 1380| 5357

sum [36]178[514]1,371[3,733[4,613[ 10,639 ] 22,257 [ 51,403 [ 78,664 [ 96,189 [ 115,104 | 147,253 | 310,853 [ 424,502 [ 1,267,307

Table 3. Absolute runtime (seconds) of LPAwb+ and four M Ob instances on each network.
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The longest execution time of standard LPAwb+ was 302,442 seconds (time to process the largest network) and
the shortest was 14 seconds (time to process the smallest one). MOb-GMb,,.,, was the most expensive M Ob instance,
consuming (L = 1) 25,674 seconds on the largest network and 3 seconds on the smallest one. Therefore, regarding its
maximum and minimum execution times, respectively, MOb-GMb,,, run 11.8 to 4.6 times faster than the standard
LAPwb+. The maximum and minimum running times of the least expensive MOb instance, MOb-RGMb,,, (L = 3),
were 1,310 seconds and 1 second, respectively. Therefore, MOb-RGMb,,, run 230 to 14 times faster than LA Pwb+.

The analysis in Section 5.1 revealed that a network coarsened at level 3 has roughly 25% of its original size. Let
us consider, for example, network R15 (n = 15,000): we know it has been reduced to 3,750 vertices at level 3 and
algorithm M Ob-RGMb.,,, processed it in 1,310 seconds (see Table 3). This is close to the execution time of standard
LPAwb+ on network R4 (of size n = 4,000, similar to the size of R15 coarsened at level 3), i.e.,.904 seconds. As
MOb-RGMb,, executes the coarsening/uncoarsening steps, the actual time spent running LPAwb+ to find the solution
is roughly similar in both cases, but MOb-RGMb.,,, is handling a network nearly four times larger.

The total time spent running the experiments was 1,267.307 seconds, or nearly 352 hours. Figure 13 shows the
contribution of each algorithm to the total time, considering both absolute values (seconds) (a) and relative values
(percentages) (b).

In the best case, the M Ob instances reduced execution time from 891,875 seconds (nearly/208.8 hours) required by
the standard LPAwb+ to 4,552.4 seconds (1.26 hours), which implies LPAwb+.was,nearly 195 times slower than its
MOb instantiations. Executing LPAwb+ consumed over 70% of the time spent.insthe experiments, whereas roughly
6% of the time was spent running the M Ob instances.

2
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:“:N Sg—« giv« g)"gl\ 5 20% © = o ©
5 0 o - -0 S - (] — s
2-10 SeB g5t g8 £g8 - SR8 Z8% 583 289
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A\ K8 » » W
(a) Runtime (seconds) (b) Runtime (percentage)

Figure 13. Contribution of each algorithm tothe total time of the experiments: absolute values (seconds) (a) and percentages (b), 100% runtime
corresponds to 1.127.300 seconds«Each bar refers to a MOb instance executed with a particular setting of parameter L = [1, 2, 3], with the specific
execution time and standard deviations’shown on top in (a) and relative percent times shown on top in (b).

Finally, we assessed the impact of each phase (coarsening, target algorithm on coarsest network and uncoarsening)
on the execution time of the/multilevel process; we analyzed algorithm behavior separately on each network and then
in relation to the 'total time of the experiments.

The relative contributions of each multilevel phase for each network are shown in Figure 14 (for legibility, we
show bars for 12 out of the 15 networks). On the smallest network (n = 1, 000) the coarsening phase consumed nearly
52% of the total*€xecution time and the local search step consumed nearly 45%. On the other hand, as the networks
increase, the'time spent on the coarsening relative to the solution finding gradually decreases. On the larger networks,
the coarsening phase consumed roughly 1% of the total execution time, in contrast to roughly 99% of the solution
finding phase. The time spent on the uncoarsening phase was negligible.

Figure 15 shows the relative contribution of each multilevel phase to the total time of the experiments. In gen-
eral, the coarsening phase consumed less than 1% of the total execution time, the solution finding phase (executing
LPAwb+) consumed over 99%, and the time spent in the uncoarsening phase was negligible. These results indicate
coarsening and uncoarsening exerted no significant influence on the scalability of the multilevel process and provide
empirical evidence the multilevel strategy is a promising approach to scale network optimization algorithms.

From this empirical investigation we conclude: (i) the proposed M Ob approach yielded more accurate and stable
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Figure 15. Average relative contribution (percentage of execution time) of each stage of MOD in all 15 networks.

results compared to the standard LPAwb+; (ii) although solution quality degrades as the network is progressively
coarsened, runtime drops drastically at each-additional coarsening level; hence, a successful solution requires estab-
lishing a suitable trade-off between accuraCy and execution time.

5.3. A test case on dimensionality reduction

We illustrate how M Ob framework can,be adapted to perform dimensionality reduction in the context of text clas-
sification, having the k-Nearest Neighbor classifier (kN N) as the target algorithm, in order to exemplify its application
in a different kind of optimization problem.

Documents are often‘represented, in text classification tasks, as multidimensional feature vectors, in which each
dimension maps a particularterm. As the dimensionality of the representation space has strong impact in classification
performance, such-tasks are often preceded by a dimension reduction step. Specifically, a kNN classifier that employs
a naive search strategy has time complexity O(ndk) for a fixed k, where n is the cardinality of the training set and d
denotes the dimensionality of the document representation.

Alternatively, a,document corpus can be represented as a bipartite network G = (V, U V,), E, 0, w), where V| =
{di,...,d,} is the set of documents and V, = {7{,...,%} is the set of terms. An edge (u,v) exists if term 7, occurs
in document d,, and the term’s frequency determines the corresponding edge weight w(u,v). Such a network is
represented as a bi-adjacency matrix A, where r = |Vi|, s = |V»| and A,,, = w(u,v) if (u,v) € E. Dimensionality
reductionyis aimed at obtaining a lower dimensional matrix A/, ,, with 7" = rand s’ << s.

The proposed solution is described in Algorithm 5.1, multilevel dimensionality reduction (Mdr), which only re-
quires a coarsening phase (lines 1-3). It takes as inputs the initial bipartite network G, the term layer ¢, to be coarsened,
the desired maximum number of levels L and reduction factor rf, and returns the bi-adjacency matrix of the coarsest
network (line 4).

We adopted RGMb,,, as the contracting algorithm in the Mdr implementation, and used Mdr in combination with
a kNN classifier, assuming k = 3 and the Euclidean distance as similarity measure, hereafter referred to as Mdr-kNN.
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The results obtained considering a reduction factor »f = 0.5 and L varying in the range [1,2, 3,4,5,6,7,8,9, 10] were
compared to an equivalent kNN setting that employed PCA (Principal Components Analysis) [20] for dimensionality
reduction (PCA-kNN). The complexity of PCA is O(d’n + d*), where n denotes the number of samples and d the data

476 dimensionality.

474

Algorithm 5.1: Mdr: multilevel dimensionality reduction.

Input:
bipartite network :G=(\V,E,ow)
term layer 1 e{l,2}
maximal number of levels for term layer :Le[0,n]CcZ
reduction factor for term layer :rfe0,05]cR
Output:
low-dimensional bi-adjacency matrix A

1 while [ < L or layer [ is as small as desired do
2 M « matching(G,, #, rf);
3 Gi+1 < contracting(G;, M);

4 matrix A’ « bi-adjacency matrix of Gy;

Return: A’

Implementations Mdr-kNN and PCA-kNN were used to classify thirteen real document-term networks available
from the literature, described in Table 4, considering a cross-validation with permutation testing and ten-fold cross-
validation to estimate classification error. The training set,was randomly split into ten equal-sized subsets, so the
classification model was trained in nine subsets and tested on\the femaining one.

478

480

l cstr l oh0 l oh5 l 0h10 ‘syskillwebertl opinosiil classic4 ‘hitech‘ industry l irish l lals l enron l acm l
Documents| 299 1,003 918 1,050 334 6,457 7,095 |2,301| 8817 1,660 | 3,204 [13,199| 3,493
Terms 1,726 | 3,183 | 3,013 | 3,239 4,340 2,693 7,749 10,000 10,000 8,659 |10,000(10,000{ 10,000
Web pages |Sentiment|Scientific| News | Web page|Sentiment| News |E-mail | Scientific

Domain Scientific|Medical | Medical | Medical

Table 4. Properties of text collections considered.

Figure 16 shows the performance of the Mdr-kNN classifier as a function of the number of levels in the coarsening
hierarchy, where L = 0O refers‘to classification with no dimensionality reduction. Figures 16(a), (b) and (c) show

482
accuracy, dimensionality of-the tepresentation (number of terms) and execution times, respectively.

syskillwebert —e— classic4 -+- hitech -+ - industry —e—irish = lals —e—enron

——0h0 —=— 0hb —e— 0h10 ——acm cstr -e-opinosis
100 1-10* 1 107 fe ]
— E = 10
=80 2 8-10° I
3 = 500 | =10
= 60 e g 10% )
8 £ 3.103 ] k= F
< 3 510 & 10t}
40 1-10° 1 100 | —h
012345678910 0123456738910
Levels Levels
(b) (c)

Figure 16. Performance (accuracy values) of the Mdr-kNN classifier. L = 0 corresponds to classification with no dimension reduction applied.

A moderate decrease in accuracy values is observed up to level L = 5. In general, accuracy is stable at the early
coarsening levels, which suggests the first coarsening iterations have limited impact in solution quality, as it is more
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likely that highly correlated terms are being matched. Figure 16(a) shows accuracies up to level 5. Moreover, since
from level 5 onwards the coarsening yields no significant reduction in the number of terms it may be interrupted at this
point. Also, a sharp reduction in execution times is observed only up to this level. We remind the analysis presented
in Section 5.1, which showed a network coarsened at level 5 has roughly 15% its original size.

We compared the classification accuracies of kNN without dimension reduction and Mdr-kNN (with coarsening
at L = [1,3,5]) and those of PCA-kNN (with equivalent dimensionality reduction). The results are shown in Table 5.
The highest accuracy values are shown in bold and values equivalent or superior to baseline kNN are shown with a
gray background. Mdr-kNN achieved the best performance in five out of the thirteen networks; PCA-kN4 performed
best in seven networks and standard kNN performed best in only one of them.

Dataset kNN L=1 L=3 L=5

MdrkNN | PCA-kNN Mdr-kNN | PCA-kNN Mdr-kNN |  PCA=kNN
cstr 8244 +8.09|82.71 +804|7586 +7.15]80.10 +6.10[79.31 +2.02[7830 +3.20786.21 +7.10
oh0 78.72 +6.84 | 81.15 +331[85.00 +398[7895 +2.02[76.00 +431[7590 +3:32]76.00 ,+620
oh5 8027 +5.09|78.83 +3.73]76.92 +4.31|76.88 +4.17|8L32 =3.11[69.27 £3.89[74.36/+535
oh10 60.62 +5.75]66.92 +4.95(7524 +421|64.54 +5.04[72.38 +£3.29 6438 +2.16]73.33 +4.23
opinosis 4725 +£232[42.18 +142[43.57 +£1.20[4590 +4.92[55.19 +8.15[3598 +3.06[49.15 +5.78
syskillwebert | 77.80 +8.70 | 87.91 +6.57 | 87.88 +5.14 | 7591 +3.65[75.06 +6.45[80.23 +2.12]78.00 +5.65
acm 5237 +2.54|52.96 +2.26|5444 +2.62[5523 +3.15[53.00 +298]49.98 +1187[49.10 +4.87
hitech 59.57 +3.55[70.00 +2.59[6435 +3.24|61.74 +2.34[66.10 +3.10]69.90 +2.55]66.90 +3.50
industry 62.66 +5.60 | 71.62 +3.05[66.86 +1.98|71.50 +6.12[78.30 +4.12[72.89 +3347520 +4.32
irish 59.04 +4.28|63.86 +2.34[57.83 +43258.23 +3.87[56.90 £4.0763.91 =+5.12]63.10 +598
lals 74.38 +6.74 | 81.25 +4.10 83.75 +520[80.00 +4.12[82.12 +223[80.94 +4.80]8230 +4.76
classic4 94.39 +6.04]93.82 +255[93.51 +3.15[89.72 +4.01]75.87, +2.6887.00 £3.12|91.90 +3.28
enron 46.40 +5.18[52.16 +5.09]47.76 +2.98|53.89 +2.90[55.00 +3.77 [61.00 =+2.14|60.10 +6.12

Table 5. Accuracy values obtained with standard kNN, Mdr-kNN and PCA-kNN%, The highest accuracy values are shown in bold and values
equivalent or superior to the baseline kNN are highlighted in gray.

A Nemenyi post-hoc test was applied to the results'inyTable 5 in order to detect statistical differences among the
algorithms. Demsar post-hoc test requires each algerithm and dataset to be independent, therefore, we perform the
dimensionality reduction at each level separately. The results are shown in Figure 17 for (a) L = 1, (b) L = 2 and
(c) L = 3. According to Nemenyi statistics, in-all diagrams, the critical value for comparing the mean-ranking of two
different algorithms at 95 percentile is 0.92{ No significant difference was observed between the algorithms, therefore,
they are connected by a bold line in each diagram. Albeit differences are not significant, Figure 17(a) shows Mdr-
kNN was ranked best for L = 1, wheteasfor\L)= 2 and L = 3 PCA-kNN was ranked best (Figures 17(b) and 17(c)).
Therefore, Mdr-kNN proved competitive.interms of accuracy, in comparison to PCA-kNN and baseline kNN.

CD CD CD
P P P
1 2 3 1 2 3 1 2 3
L 1 L 1 L 1 1
Mdr+kNN —— L kNN  PCA+kNN kNN  PCA+KkNN kNN
PCA+kNN — Mdr+kNN ——— Mdr+kNN
(a) L= (b)y L=3 (c)L=5

Figure 17. Nemenyispost-hoc test for kNN and its variant with Mdr and PCA for dimensionality reduction in three settings of parameter L. (a)
L=1,(b)E=3and(c)L=5.

This ecase study has been presented as a preliminary investigation on the feasibility of extending the proposed
multilevel framework to other combinatorial problems beyond community detection. The Mdr algorithm deserves
further consideration and could incorporate additional capabilities, e.g., it would be convenient to reduce the feature
space to a target dimensionality, rather than by a given reduction factor. Furthermore, the coarsening algorithm
could take into account intrinsic characteristics of specific kinds of document-term networks by means of customized
matching algorithms. Moreover, Mdr can be employed in connection with other classification algorithms.
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6. The application of MOb to other combinatorial optimization problems

It is relatively straightforward to apply M Ob to several combinatorial optimization problems beyond community
detection. For instance, in Section 5.3 we illustrated its application to handle a dimensionality reduction problem over
a bipartite network in which the two vertex layers represent objects and features, respectively. In this context, only
the feature layer was coarsened and the reduced feature space is given directly by the adjacency matrix of the coarsest
network. Likewise, it can be easily instantiated to handle overlapping or fuzzy community detection or classification
problems.

In overlapping community detection, for each decomposed sV € Vi, its original vertices {u, v} €4, are assigned
to the same set of communities as the corresponding super-vertex. If the coarsened network has a fuzzy structure, the
strength of a vertex’ pertinence to a community will be equal to that of its super-vertex. Similarly, in a classification
problem original vertices {u, v} € V; should be assigned to the same class of their super-vertex. Therefore, instantiating
the framework to handle either problem would require just minor modifications in the projection-algorithm (Algorithm
4.5).

MOb might also be useful to support interactive visualization of large-scale bipartite networks, by means of
navigation over a hierarchy of coarsened networks, which would demand a data structure to’keep these intermediate
networks.

Instantiation to other scenarios is not necessarily as straightforward, and fmay require further modifications in the
proposed algorithms. For example, in the edge clustering problem (alse'called link communities) the contracting
algorithm used in coarsening phase would require adjustments. Whereas in community detection a vertex inherits the
same group assignment of its super-vertex, here each edge must inherit the:.connections from its super-edge. Therefore,
an edge e € E;; incident to sy € Vi1 must refer to the edges incident'to vertices {u, v} € V. Algorithm 4.4 does not
implement this function; however, it could be done by keeping an.additional data structure similar to the successor
vector.

Another possible application is in link prediction or recommendation problems, albeit this poses a more complex
scenario for generalization. Link prediction methods rely on'similarity between vertices, since similar vertices are
likely to share common links. However, such information isinot explicitly given for the super-vertices in a coarsened
bipartite network. Nonetheless, the framework could beé:employed to reduce the number of required operations, i.e.
super-vertices might be created grouping vertices with'shared A4-hop neighbors, thus filtering the search space. Link
prediction could be performed in the uncoarsening phase through the decomposed super-vertices, and the solution
finding and uncoarsening phases would be executed simultaneously.

As a final consideration, the matchingalgorithm used for coarsening should be carefully designed to incorporate
the specific characteristics of each,problem and context.

7. Conclusion and further'research

Inspired by the potential of\general-purpose multilevel strategies to scale optimization algorithms we have in-
troduced algorithms, of‘a‘novel multilevel optimization framework (MOD) for bipartite networks, and illustrated its
application on two combinatorial optimization problems. Our framework accounts for the specificities of bipartite
networks and provides a ,powerful tool for handling a variety of problems.

We investigated three empirical scenarios to illustrate strengths and limitations of the proposed M Ob framework.
A first study has shown that a controlled coarsening preserves relevant topological features of a network. A second
study \described=an application in community detection, showing that MOb combined with a proper local search
strategy, can'drastically improve speedup of a classic community detection algorithm while preserving solution quality.
Finally, in a third study we considered text classification to illustrate how the general framework can be instantiated
to handle different combinatorial optimization problems.

Our results provide compelling evidence that M Ob offers a competitive approach to scale existing methods while
preserving solution quality, and reinforce its usefulness for handling combinatorial optimization problems in large
bipartite networks. Furthermore, the framework is flexible and can be adjusted to incorporate alternative and novel
coarsening methods targeted at specific applications. We also discuss some general guidelines for future applications
of combinatorial problems, such as link prediction, edge clustering, and interactive graph visualization.
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Identifying the level of coarsening that will yield a suitable trade-off between accuracy and execution times is a
critical issue in applying the proposed multilevel strategy. Currently, this is done by means of empirical investigation
in each application problem and dataset, but it certainly deserves further investigation.

We also plan as future work to extend the framework to handle problems defined in heterogeneous networks,
where edges connect vertices of multiple types. It would be applicable, e.g., to document-word networks indicat-
ing associations of the type document-word, word-word, and document-document; or networks describing relations
between words, documents and authors. We are also interested in investigating distributed or parallel paradigms, as
well as in application of MOb to supervised and unsupervised classification tasks. An implementation of the general
framework is currently available and can be downloaded from https://github.com/alanvalejo/mob.
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