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Resumo 
Neste trabalho pretende-se caracterizar a 

condição necessária de localização de deformação 
para modelos constitutivos de dano contínuo, 
através da análise das equações estática e dinâmica 
de equilíbrio do modelo, utilizando-se a condição 
fraca de propagação de Maxwell e a condição forte 
de propagação de Fresnel-Hadamard. A análise 
feita permitirá ligar o problema da localização de 
deformação com o de estacionariedade de ondas de 
aceleração e servirá para determinar uma condição 
necessária de perda de unicidade de solução, 
relativa à singularidade de tensores de localização 
de deformação ou tensores acústicos de dano, 
associados aos modelos constitutivos, elásticos ou 
elastoplásticos, com dano contínuo. A condição 
necessária de perda de unicidade de solução ou de 
elipticidade é feita via análise de bifUrcação de 
solução. Finalmente, explorando tal condição de 
singularidade, uma introdução à análise pós­
bifurcação, relativa à instabilidade da solução em 
deslocamentos, é feita para sistemas isótropos, 
associativos e conservativos em relação à forças, 
baseando-se em resultados encontrados na Teoria 
de BifUrcação. 

Palavras-chave: Localização de Deforma­
ção, Modelos de Dano Contínuo, Pós-Localização 
de Deformação, Teoria de Bifurcação. 

1 Introdução 

Os modelos constitutivos para materiais 
idealizados como meios elásticos com dano e 
elastoplásticos com dano, formulados em [1], [2], 
[16], [17] e [18], por apresentarem, a partir de um 
certo nível de deformação, um regime de 
encruamento negativo, onde o ganho de 
deformação se dá com decréscimo de tensão, 
sugerem um questionamento sobre a estabilidade e 
não-unicidade de resposta. De fato, nesses regimes, 
para uma dada taxa de tensão, podem existir taxas 

de deformação não un1cas. À existência de pontos 
singulares, que caracterizam a perda de unicidade, 
corresponde uma mudança da condição matemática de 
elipticidade da equação diferencial que exprime o 
equilíbrio estático local do meio, ou hiperbolicidade da 
equação que exprime, também em forma local, o 
equilíbrio dinâmico. Por outro lado, deve-se observar 
que as condições matemáticas para unicidade são 
tipicamente atendidas dentro dos limites do regime de 
resposta elástica do material e garantem, ainda, a 
estabilidade de resposta numérica. Neste trabalho 
pretende-se abordar a questão da bifurcação ou perda 
local de unicidade de resposta, caracterizando-se 
matematicamente as condições para a existência de uma 
nova solução estável em deformação, dita localizada, 
diferente daquela homogênea resultante da imposição de 
uma lei de encruamento negativa fixa. A partir da 
bifurcação a resposta homogênea passa a apresentar 
uma natureza instável. Assim, neste estudo, entende-se 
que as deformações localizadas se constituem numa 
bifurcação a partir de uma resposta inicial homogênea. 
A análise de localização aqui conduzida insere-se no 
âmbito das chamadas descontinuidades fracas, nas quais 
admite-se a existência de um salto das deformações 
incrementais em relação à uma superfície definida no 
volume ocupado pelo meio. Apresentam-se, 
inicialmente, algumas relações matemáticas que 
caracterizam a singularidade de uma função em relação 
a um plano. Com recurso aos sólidos lineares de 
comparação, discutem-se tais relações, ditas de 
compatibilidade de Maxwell e de propagação de 
Fresnel-Hadamard, baseando-se em [9] e [20], que 
também permitem estabelecer uma equivalência entre os 
problemas de localização e da estacionariedade da 
propagação de ondas de aceleração. Cabe observar que 
a análise aqui feita, consiste em um estudo da 
localização decorrente da resposta constitutiva do 
material num ponto de um meio contínuo e ilimitado, de 
modo que a influência de condições de contorno não é 
levada em consideração. Do ponto de vista físico, 
mesmo com essas limitações, tal análise pode fornecer 
informações úteis sobre as características dos 
mecanismos de ruptura dos materiais. 
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A condição de perda de unicidade, associada 
à análise de singularidade dos tensores 
constitutivos elástico ou elastoplástico com dano, 
pode ser também relacionada à análise espectral 
de tensores, denominados acústicos. Mas 
matematicamente tal singularidade é uma 
condição necessana de localização, não 
implicando, propriamente, que se tenha 
bifurcação de solução. 

Em um campo de estudo similar, o da análise da 
estabilidade do equilíbrio, a condição de 
singularidade pode estar relacionada a um ponto 
limite, em que o equilíbrio passa a ser instável 
levando a estrutura a uma mudança na sua 
configuração geométrica e readquirindo estabilidade 
na nova configuração. Não há nesse caso a 
bifurcação. No outro caso, quando há instabilidade 
por bifurcação de equilíbrio, a propagação de 
defeitos pode caracterizar globalmente um estado 
limite último da estrutura, onde qualquer incremento 
positivo de carga aplicado pode levá-la ao colapso. 
Logo, a condição de singularidade pode estar 
relacionada não só a pontos de bifurcação, como 
também a pontos denominados limites (inflexão, 
máximos ou mínimos). 

Ainda com relação aos modelos constitutivos em 
estudo, quando a singularidade apresenta-se no 
ponto de mudança do regime de encruamento 
positivo ("hardening") para o de encruamento 
negativo ("softeníng"), a consequente perda da 
condição de elipticidade implica em perda de 
unicidade de solução caracterizando então um ponto 
de bifurcação de solução. A partir desse ponto, o 
trecho de encruamento negativo da resposta do 
material, que implica em ganho de deformação com 
decréscimo de tensão, é instável. Desde que, a 
análise desses modelos é feita em taxas de tensão e 
deformação, a ocorrência de respostas instáveis do 
modelo está associada ao aparecimento de taxa em 
deformação não única relacionada a uma única taxa 
de tensão, o que implica na perda de unicidade de 
solução em deslocamentos ou em deformação para o 
modelo. 

A figura 1 seguinte esboça, para o caso uniaxial, 
um modelo não-linear, o qual ilustra os regimes de 
elasticidade, "hardening" e "softeníng". Nessa 
figura observa-se a instabilidade de solução no 
trecho de encruamento negativo da resposta do 
material. 

Pode-se admitir também que, a partir do ponto 
de bifurcação, dada à instabilidade do regime que 
segue, encontra-se um estado de dano que implica 
localmente em ruptura. Esse ponto passa a 
pertencer a um "plano de fratura" onde as 
deformações se localizam e as subsequentes taxas 
de deformação tomam-se descontínuas em relação 
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a pontos vizinhos que não tenham alcançado esse 
regime. 

A localização caracteriza-se então por um salto da 
deformação no plano de fratura. 

Figura 1 - Modelo uniaxial não-linear relativo à 
plastificação e dano. 

A figura 2, ilustra as deformações, uniforme e 
localizada em um ponto. 

Figura 2 - Localização de deformação em um ponto: 
i) Deformação Uniforme; 
ii) Deformação Localizada. 

A análise pós-singularidade (ou pós-bifurcação) do 
problema de localização, que serve matematicamente 
para se caracterizar a instabilidade de solução em pontos 
limite ou pontos de bifurcação, para sistemas isótropos, 
associativos e conservativos com relação à forças, é 
feita utilizando-se de resultados encontrados na Teoria 
de Bifurcação de acordo com [6], [10] e [11]. É 
importante ressaltar que a proposta de caracterização da 
instabilidade ao nível constitutivo aqui desenvolvida 
restringe-se ao âmbito matemático, não sendo ainda 
possível, no atual estágio de desenvolvimento, especular 
sobre o significado fisico dos resultados obtidos. 

No que segue, pretende-se fazer uma análise de 
bifurcação e pós-bifurcação para os modelos de dano 
contínuo, estudando a condição necessária de perda de 
estabilidade, denominada condição de perda de 
elipticidade ou condição de localização, para 
posteriormente investigar condições suficientes que 
caracterizam os pontos singulares como pontos de 
bifurcação ou pontos limite. 

Inicialmente, na seção 2, faz-se uma análise da 
condição de localização para um meio homogêneo e 

2 
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infinito, explorando-se a solução em 
deslocamentos da equação diferencial que rege o 
equilíbrio estático local. Em seguida, faz-se a 
mesma análise com a equação que rege o equilíbrio 
dinâmico e que permite ligar o problema da 
localização de deformação ao de estacionariedade 
de ondas de aceleração, de acordo com o proposto 
em [4], [5], [8], [9], [19] e [20]. Na seção 3, tendo­
se em vista os modelos constitutivos enfocados 
neste trabalho, a condição de perda de unicidade é 
então associada à singularidade dos tensores de 
localização de deformação, ou acústicos, 
relacionados ao modelos, elástico e elastoplástico, 
com dano. A análise espectral destes tensores 
permite caracterizar a sua singularidade mediante o 
aparecimento de autovalores nulos no caso 
associativo, podendo ser não nulos no caso não­
associativo, no qual pode ocorrer a existência de 
autovalores complexos. Determina-se uma 
condição para se calcular os autovetores associados 
aos autovalores determinados, baseando-se no 
proposto em [8], [19] e [3]. Os autovetores estão 
direcionados com a normal ao plano de localização 
na formulação que emprega a condição de 
equilíbrio estático ou, equivalentemente, com a 
direção de propagação da onda, para problemas 
formulados pela condição de equilíbrio dinâmico. 
Na seção 4, faz-se uma análise pós-singularidade 
relativa à instabilidade de solução, a qual é 
aplicada na seção 5 para sistemas isótropos, 
associativos e conservativos em relação à forças, 
baseando-se em resultados encontrados na Teoria 
de Bifurcação. Finalmente, na seção 6, para o 
tratamento numérico do modelo, faz-se um resumo 
da análise incrementai do problema de localização 
e pós-localização de deformação para os modelos 
de dano contínuo. 

2 Análise da condição necessária de perda de 
unicidade de solução 

2.1 Superfícies singulares 

Considere-se um corpo em um meio contínuo e 
infmito n c V, onde V é o espaço vetorial 
euclideano. Seja uma superficie regular num 
contorno comum entre duas regiões, simbolizadas 
por d, ,{] c n. Seja também lfi(X) um campo de 
valor escalar, vetorial ou tensorial, contínuo no 
interior de d e il e que se aproxima de valores 
limites lfl+ e fi/ quando o ponto x se aproxima de 
um ponto x0 da superficie pelos seus lados positivo 
e negativo, respectivamente. Há, portanto, um salto 

de 1f1 em x0 definido por : [lfl] = lfl+ -ljl- , admitido 

ainda como uma função do ponto na superficie; se 
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[lfl ](x 
0 
)*O a superficie é dita singular com relação a 1f1 

no ponto. 

Lema de Hadamard: seja 1f1 definida e continuamente 
diferenciável no interior de uma região d de contorno 
definido por uma superficie regular an e admita-se que 
1f1 e l71f1 se aproximem de valores limites lfl+ e l71f1+ na 
medida em que se tenda ao contorno por um caminho 
contido no interior de d . Considere-se o conjunto de 
pontos da superficie e admita-se que lfl seja 
diferenciável nesta superficie. Então : 

'-tl(x+ciJq=l.tl(x)+V~,dx p/xaTI (la) 

(1b) 

Do lema decorre que o teorema da diferencial 
total vale para os valores limites quando a superficie é 
atingida por um de seus lados (a rigor ljlnão precisa ser 
defmida do outro lado). De maneira geral o lema pode 
ser aplicado para os dois lados da superficie, de modo 
que: 

(l.c) 

Analogamente ao desenvolvimento anterior, devido 
a [20], pode-se mostrar que são válidas as relações que 
seguem. 

Quando 1f1 fôr um campo escalar, isto é, 1f1: V ~fR, 
então, 

V[ lfl] =[V lf/]; (2.a) 
o que mostra que a derivada tangencial do salto é o salto 
da derivada tangencial; ou, em forma intrínseca, o 
gradiente do salto é o salto do gradiente. 

Quando ao longo do contorno o valor do salto se 
mantiver constante então [ lfll = k, k E \R, e, portanto : 

[lfi'L=[vlf/Yej=ü· (2.b) 

Assim, [v\11] é ortogonal à superficie. Ainda, como 

nesse caso [V lfl] tem a dimensão de um vetor do espaço 

associado, ele pode ser representado na forma: 
[v lf/] = a n onde a é um escalar e n é um versor normal 

à superficie. 
Se 1f1 fôr uma função de valor vetorial, !f/ : V --+ V , 

então: 
[divljl]=div[ljl]; (2.c) 

portanto o salto do divergente é o divergente do salto. 

2.2 Relações constitutivas para o modelo de dano 
contínuo 

Para se fazer a análise da condição necessária de 
perda de unicidade de solução ou condição de 
localização de deformação é necessário relembrar as 
relações do modelo constitutivo encontradas em [1], [2], 
[16], [17] e [18]. A figura 3, vista a seguir esboça o 
comportamento unidimensional do modelo de dano para 
o caso elastoplástico com dano. 

3 
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danificação. As condições de complementaridade e de 
consistência (8a) e (8b) são relacionadas às 
possibilidades de carregamento e de descarregamento, 
respectivamente, permitindo-se levar em conta, 
portanto, a irreversibilidade do processo. A variável 
escalar m ( tiJ) é denominada de variável de dano 
contínuo, tal que, m >O (w > 0), implica na ocorrência 
de dano no processo de carregamento; úJ = O ( tiJ = 0), 
na não ocorrência do mesmo, podendo, de acordo com o 
modelo indicar elasticidade ou elastoplasticidade ou 
elastoplasticidade perfeita. 

Alternativamente, a desigualdade expressa em (5b) 
implica que: 

se g <O => w > w e a= O; 
se g =O => w :s; w e a= w - w >O. 

Adicionalmente, como g = -à - w e g :s; O então -

Figura 3 - Representação unidimensional do w :o; a :0:: O. Em particular, se g = O, então, a=-

modelo elastoplástico com dano. w 

2.2.1 Leis constitutivas puntuais para o modelo 
elástico ou elastoplástico com dano. 

De modo a considerar um processo evolutivo, a 
relação constitutiva válida para qualquer ponto x E 

Q pode ser expressa em taxas na forma : 

(J = E(w) i + E ( w) & = õ- c + õ- d; (3) 

f (e,w) :0:: O; (4) 

w - w :0:: O; (5a) 

g(a,w)=-a-(w-w ):0:: O,a:?:O; (5b) 

ga=Ocomg:S:Oea:?:O; (5c) 

õ- d =- wh(e,w); (6) 

w=- wr(e,w) ; 

f :o; O, tiJ:?: O wf= O; 

(7) 

(8a) 

se f= O então tiJ f = O , f :0:: O. (8b) 

Em particular, na relação (4), a função de valor 
escalar f (&,w), define um critério para caracterizar 
a evolução do dano e a desigualdade (5a,b), a qual 
introduz uma variável de folga a :?: O, impõe uma 
limitação para a energia dissipada, além da qual o 
material perde completamente a resistência. A 
relação (5c) quantifica a dissipatividade através de 
uma relação de complementaridade. Em (6), o 
tensor h(&,w) :?: O, o qual define o tensor de tensão 
õ- d (de ordem 2), é normal, por exemplo, à 
superfície representativa de um potencial de 
dissipação. Por sua vez, em (7), r(&,w) :0:: O é uma 
função de valor escalar que contém, através da 
variável escalar w um registro da história prévia de 

Utilizando-se do fato que à =-w e considerando-se 
a relação (7), esta pode ser expressa de maneira 
equivalente através de: 

tiJ r·1 (e,w) à ; (9) 
O operador rigidez de dano contínuo é definido para 

o caso não associativo por: 

H=H(w)=[E(w)-(h®f,)]se w>O; (10) 
G 

No caso associativo tem-se h(e,w) = f, , assim, a 
relação (10) é expressa por: 

H=H(w)=[E(w)-(f.®f•)]sew >O; (11) 
G 

onde E= E(w) é o operador rigidez tangente dos 
módulos elásticos, com G expresso a seguir: 

G = fw r(e,w) = fw r . (12) 
Uma aplicação numérica do modelo visto nesta 

seção pode ser vista em [ 1] , [ 16] e [ 1 7]. 

2.3 Condição de compatibilidade de MaxweU e o 
Tensor de Localização 

Considere-se em n um meio contínuo homogêneo e 
homogeneamente deformado, submetido a um regime 
quase-estático de taxas de deformação. 

A hipótese cinemática, que está associada à chamada 
forma fraca de localização, consiste em admitir que em 
determinado instante passe a existir um campo vetorial 
ü( x, t) 1 de velocidades, ou taxas de deslocamentos, 

contínuo no meio mas com gradientes descontínuos, 
representados pelo tensor de segunda ordem ['V ü], em 

relação a uma superfície contida no seu interior. Tal 
campo, se existente, está relacionado a uma distribuição 
de deformações claramente diferente daquela homogênea 

1 O argumento t aparece por generalidade mesmo nas 
análises puramente estáticas. 

4 
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em que os gradientes são contínuos em todo o meio 
e que prevalecia até aquele instante. 

A condição de compatibilidade de Maxwell 
estabelece uma representação admissível para [V ü], 
obedecidas determinadas condições. 

No estudo em questão, considere-se, em primeiro 
lugar, que a superfície de singularidade seja plana. 

Admita-se ainda que, a partir de um ponto 
daquela superfície, percorrendo-se qualquer direção 
nela contida, [ ü] se mantenha constante. Nessas 

condições, aplicando-se o Lema de Hadamard tem­
se: 

(13) 

Sendo ej um versor contido no plano da 
descontinuidade, a condição anterior pode ser 
verificada se o tensor [V ü] tiver a seguinte forma 

geral: 
[vü]=r(m ~n) ; (14) 

onde ;r1 é um escalar que quantifica o salto no 

gradiente, n um versor ortogonal ao plano e m um 
versor arbitrário, que define a direção de ü e a 
'natureza' da descontinuidade, conforme se 
apresenta no que segue. 

De fato, substituindo-se a (14) na (13), obtém-se : 
[vü]ej = ~ (m®n)ej 

=r( nr ej) m =O 
(15) 

A forma geral proposta para o [V ü ], explicitada 

na (14), constitui a condição de compatibilidade de 
Maxwell. 

Um campo de taxas de deslocamento que atende 
às condições anteriores de Hadamard e de Maxwell, 
introduzidas pela singularidade, pode ser expresso na 
forma: 

ü(x)=(g®n)x= ~n r x)g se n r x>O (16) 
ü(x)=O se n rx~O 

onde, g =r m e x é o vetor posição do ponto 

genérico com relação ao plano de singularidade, 
também denominado plano de localização. 

Nota-se que este campo de velocidades implica 
em continuidade de seu gradiente somente em cada 
lado do plano, mas não através dele, o que pode 
gerar uma interpretação sobre a natureza do campo 
de deslocamentos resultante. 

Em primeiro lugar, se o vetor g fôr paralelo a n o 
modo de deslocamento introduzido pela localização 
é do tipo separação, por analogia com o modo I da 
Mecânica da Fratura. Na hipótese de g perpendicular 
a n, o modo de deslocamento introduzido é do tipo 
cisalhamento puro (modo li). Finalmente, para g e n 
formando um ângulo qualquer entre si, o modo de 
deslocamento resultante é do tipo misto (modo III) . 

A figura 4, ilustra os modos de deslocamento 

n//~ 
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o< e<~ 

Figura 4 - i) modo I; ii) modo li; iii) modo III. 

A identificação da superfície de singularidade, por 
meio da determinação do seu versor normal n , resulta da 
imposição de uma outra condição : o equilíbrio estático 
entre as partes através do plano de localização. 

Antes de analisar a condição de equilíbrio, é 
importante observar que num regime de 
pequenas deformações a relação de compatibilidade se 
escreve na forma : 

(17) 

Então, na iminência da localização, admitida a 
descontinuidade para o campo dos gradientes de 
velocidades V ü , caracteriza-se uma singularidade para 

o campo de taxas de deformação em relação à 
superfície. 

Por conseguinte, tendo-se em vista a relação 
constitutiva em taxas : ú = H i( u), onde H é o tensor 

constitutivo elástico com dano ou elastoplástico com 
dano, também o campo de taxas de tensão resulta 
descontínuo. É importante observar que na localização 
iminente o tensor constitutivo H permanece, por 
hipótese, contínuo através da superfície de 
descontinuidade, pois a idéia é que haja bifurcação a 
partir de um estado homogêneo; segue daí o conceito de 
sólido linear de comparação. Em resumo : 

( s(u)] = i +(u) -i-(u)=.!_ [Vü+ Vür] *O 
2 

[ú l *o 
(18) 

A condição de equilíbrio estático implica, por outro 
lado, em salto nulo, em relação ao plano de localização, 
do vetor taxa de tensão definido pela relação de Cauchy: 

[i]= [ ú ] n = O; ( 19) 

Levando-se em conta a relação constitutiva, tendo-se 
em vista uma situação de localização iminente: 

[ú]=H[i]=H[Vü], (20) 
e considerando-se a (14), a condição de equilíbrio 
torna-se: 

r H(m®n)n=O (21) 

Explorando-se a simetria menor do tensor 
constitutivo (H ijkl = H ijtk) , uma vez que [ & ] e [i] são 

simétricos, a relação anterior pode ser escrita na forma : 
r H(n®n)m=O. (22) 

5 
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O tensor H { n ()9 n) é denominado tensor de 

localização e depende das propriedades do material, 
do nível de solicitação local e da direção da normal 
ao plano de localização. 

Na hipótese de salto não nulo do gradiente 
de velocidade (r > o) a singularidade do tensor de 

localização garante a verificação da (22). Tal 
singularidade, por sua vez, implica na nulidade do 
seu determinante, o que fornece a relação para a 
determinação do versor normaL Admitir, portanto, 
equilíbrio através da superficie é essencial para a 
determinação de n . 

2.4 Condição de propagação de Fresnel­
Hadamard: relação entre o estacionamento 
de ondas planas e a localização de 
deformação 

Há uma correlação entre a localização de 
deformação e a propagação de ondas planas em 
meios elásticos ou elastoplásticos com dano . De 
fato, é possível mostrar que a condição de 
singularidade do tensor de localização implica em 
estacionamento da frente de onda. 

Imagine-se que uma perturbação local gere, num 
meio homogêneo que ocupa uma região n, uma 
frente de onda que se propaga com velocidade c 
segundo uma direção definida pelo versor n. 
Admita-se ainda, por simplicidade, que a frente de 
onda seja plana, isto é, a direção de propagação é a 
mesma em todos os seus pontos. Assim, a distância 
d de um ponto qualquer do meio à frente de onda é 
determinada pela relação : 

d=xTn-c(t-t0 ); 

onde x é o vetor posição do ponto em relação à 
origem de um sistema adotado como referência 
(usualmente coincidente com a fonte geradora da 
perturbação); t0 é o instante de tempo em que se 
inicia a propagação, normalmente toma-se t

0 
=O . 

De outro modo, pode-se pensar numa 
perturbação genérica formada pela superposição de 
um trem de ondas em número igual a q. Nesse caso, 
a distância medida passa a ser : 

q d = xr q n- c q t = xr N- n t. 

Voltando ao caso anterior, se o ponto x 
considerado localiza-se na frente de onda, verifica-se 
a condição : n r x = c t . A partir dessa última 

condição, pode-se afirmar que num intervalo de 
tempo dt a frente de onda se desloca de uma 
distância dx determinada por : 

nrdx=cdt ou dx=cdtn. (23) 

Considere-se, então, ú(x, t) o campo vetorial 

de taxas de deslocamentos induzido aos pontos do 
meio pela perturbação. Por hipótese, admita-se que 
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tal campo seja contínuo em n, porém com gradiente 
descontínuo através da frente de onda, isto é : 

[ü]= O p N xE!l ; 

[vü]7oOp !V x / xTn=ct. 

A diferencial total do campo de velocidades : 

(24a) 

(24b) 

d ú = Vúdx+ üdt; (25) 

pode ser reescrita numa forma mais conveniente para 
incluir acréscimos dx através da frente de onda. Assim 
sendo, considerando-se também da (24) que, 
d[ ü]= [ dü]= O, segue que: 

[ d ü ] = [V' ü ] dx + ü dt = o . (26) 

Da relação anterior, como [V ú] ;to O, conclui-se que 

ü deve ser descontínuo através da frente de onda: 
[ ü] ;to O. Considerando-se que x esteja contido na frente 

de onda e que dx esteja alinhado com a direção de 
propagação da mesma, substituindo-se a (23) na (26), 
obtém-se: 

c[Vü]n=-[ü] . (27) 

Por um lado, introduzindo-se um versor m tal que: 
[ü]=-am, (a>O), (28) 

a igualdade anterior se verifica se [V' ü] tiver a seguinte 

forma : 

[V' ü] =r { m ® n) c I r =~> o; (29) 
c 

recuperando-se a relação de compatibilidade de 
Maxwell, o que, aliás, evidencia a relação entre o 
problema de propagação de ondas e o de localização. 

Por outro lado, uma forma geral para [V' ü] que 

satisfaça a (27) é dada por : 
c[Vü] =-[ü]®n. (30) 

Realizando-se a operação traço sobre os dois lados 
dessa igualdade e fazendo-se uso da (2c), resulta : 

[ ii] T n 
div[ ü]=--- · (31) 

c 
Essa última relação pode ser generalizada para 

campos tensoriais de ordem superior. Por exemplo, se o 
campo causado pela perturbação é tensorial de segunda 
ordem, como o de tensões, a (31) assume a forma : 

div[u]=_[ú] n. (32) 
c 

No caso dos meios contínuos, ondas que provocam 
um campo de deslocamentos com as características 
descritas pela (24), devem verificar, nos pontos do 
meio, a condição de equilíbrio dinâmico. A imposição 
dessa condição permite a determinação do versor n, 
garantindo, ainda, a existência de um tal tipo de onda. 
Em particular para pontos pertencentes à frente de onda 
aquela condição é dada por : 

di v [ o-] = p [ ii] ; (3 3) 

onde p representa a densidade de massa locaL 
Combinando-se as (30), (32) e (33) e levando-se em 
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conta a relação constitutiva e a simetria menor do 
tensor constitutivo, do mesmo modo como 
desenvolvido no item anterior, resulta que : 

{In (n ® n)- p c 2 li }l[ü]= O; (34) 
onde li é o tensor identidade de segunda ordem. 

Escrevendo-se o salto da aceleração na forma 
[ ü] = -a m, (a > O) , resulta : 

H(n®n)m-y*m=O, (35) 

onde r* = pc2
. 

A (35) é denominada condição de propagação de 
Fresnel-Hadamard e representa um problema de 
autovalor ou problema espectral. 

De uma forma geral são as propriedades 
espectrais do tensor acústico H ( n ® n) que 

definem os regimes de propagação de uma frente de 

onda, sendo p c 2 os seus autovalores e m . os 
I I 

autoversores, correspondentes às chamadas direções 
de polarização. 

Em particular, nota-se que a condição de 
localização expressa pela (22) é recuperada se c fôr 
igual a zero, isto é : a onda estaciona em algum 
instante t. Portanto, sob o ponto de vista da teoria de 
propagação de ondas, a existência de autovalor nulo 
do tensor acústico, ou o surgimento da 
singularidade, implica, pela (35), em estacionamento 
da frente de onda (c=O) e indica localização pela 
(22). 

Entretanto, dependendo de suas caracteristicas, 
pode-se verificar a singularidade do tensor acústico 
com autovalores não-nulos, do tipo complexo, por 
exemplo. Nesse caso, também se considera que há 
localização, pois por um lado a condição 
det[H (n ® n )] =O equivale a atender à (22) e, por 

outro lado, ondas imaginárias, associadas à (35), não 
se propagam. 

Pode-se, então, afirmar, que no problema 
dinâmico, sob um ponto de vista geral, o critério de 
localização associado à singularidade do tensor 
acústico identifica um limite para um regime estável 
de propagação de ondas de aceleração. Em outras 
palavras a singularidade pode ser entendida como 
um indicador da passagem para um regime de 
instabilidade do comportamento do material. 

Naturalmente, se o tensor acústico é positivo 
definido, por exemplo, há estabilidade na 
propagação da perturbação segundo qualquer 
direção; portanto, a possibilidade de instabilidade 
existe quando o tensor não é positivo definido. 

Quando o tensor acústico apresenta-se 
] 

simétrico, todas as raízes (valores de C;-) são reais 

e a verificação da condição de localização resume­
se à procura de autovalores nulos. É o caso dos 
modelos constitutivos elastoplásticos, por exemplo, 
nos quais em decorrência da hipótese de 
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associatividade o tensor constitutivo é simétrico e o 
tensor acústico, conseqüentemente, é também simétrico. 

Por outro lado, se o tensor acústico não é simétrico, 
há a possibilidade de que, atendendo à condição de 
singularidade, apenas um dos autovalores seja real e 
positivo, enquanto que os outros dois resultem 
imaginários. Nesse caso, como já se afirmou, assume-se 
que a um autovalor complexo corresponde, também, a 
localização da perturbação. 

Ainda com relação aos tensores não-simétricos, há 
algo mais a comentar. Admitindo-se conhecida a 
direção de polarização, da condição (35), realizando-se 
o produto interno por m , deriva-se a seguinte forma 
quadrática para a determinação da velocidade de 
propagação correspondente: 

mTH (n®n)m- y*(mT m) = 0; (36) 

Assim, o estacionamento da frente de onda implica 
em: 

mTH(n ® n)m= y*llmll 2 
=0 . (37) 

Note-se também que 
mTH(n®n)m=mr[H(n®n)]'m ; (38) 

de modo que em formas quadráticas envolvendo 
tensores não-simétricos são os autovalores de sua parte 
simétrica que defmem as direções de polarização. Além 
disso, quando aos autovalores aplica-se a desigualdade 
de Bromwich, uma afirmação de que o menor autovalor 
da parte simétrica é menor ou igual ao menor autovalor 
do tensor original, pode levar a conclusões diferentes 
daquelas que seriam obtidas da análise com o tensor 
completo. De fato, o menor autovalor da parte simétrica 
do tensor acústico pode ser nulo, o que indica 
localização, enquanto que o menor autovalor do tensor 
completo apresenta-se positivo. 

Como o tensor acústico e, portanto, a natureza e o 
sinal dos seus autovalores dependem dos regimes de 
solicitação, de deformação, dos desvios de normalidade 
e sobretudo das propriedades constitutivas, a 
localização, ou mesmo a instabilidade material, é 
favorecida por módulos de encruamento negativos nos 
casos de tensores acústicos com simetria, mas também 
pode ocorrer com módulos positivos nos casos não­
simétricos. É o caso dos modelos elastoplásticos não­
associativos, nos quais a localização pode ser detectada 
já no regime de encruamento positivo da resposta 
constitutiva. 

Pode-se afirmar então que, y = p c/ = O, é uma 

condição necessária mas não suficiente para se ter o 
problema de autovalor nulo dado na equação (35). Será 
visto na seção 3.3 que, para o caso não-associativo 
isótropo, em que o tensor H é não- simétrico, podem 
ocorrer autovalores complexos conjugados que 
satisfaçam a condição de perda de elipticidade (35). 

A conclusão que se chega então é: 

7 

1650 



1651 
• ~ Imprimir Sair Menu 

Anais do 3° Congresso Temático de Dinâmica e Controle da SBMAC 

"Em qualquer caso de existência de autovalor nulo, 
na análise das equações (22) e (35), tem-se 
localização, mas pode-se ter localização associada 
a autovalor não nulo, no caso do tensor H ser não­
simétrico". 

Nos modelos elásticos com dano, valendo a 
hipótese de associatividade, a condição de 
localização é verificada para um nível de 
deformação correspondente ao ponto limite de 
encruamento nulo da resposta constitutiva. Porém, 
pode ocorrer que para certas trajetórias de tensões, 
os modos localizados não sejam ativados e a ruptura 
tenha lugar num regime de dano distribuído. 

Uma observação importante é que na análise 
clássica de localização, com modelos constitutivos 
escritos em sua forma local, identifica-se um plano 
de descontinuidade das deformações que pode ser 
interpretado como uma zona de localização de 
largura nula. 

Mas o comportamento real dos materiais 
granulares sugere a existência de localização numa 
banda de largura inicial fmita que progressivamente 
degenera num plano. De fato , o processo de ruptura 
pode ser descrito pelas seguintes etapas : 
i) os primeiros estágios de carregamento, o 

crescimento de microfissuras se dá de modo 
distribuído sobre o volume ; 
ii) a partir de determinado nível, verificadas certas 
condições criticas, a danificação localizada numa 
faixa de largura finita prevalece ; 
iii) com a evolução do processo, a largura da faixa 
em que o dano evolui diminui progressivamente 
tendendo a um plano de fratura. 

Particularmente, nos modelos com dano 
representativos de materiais granulares, as chamadas 
formas regularizadas por meio de gradientes da 
variável de dano, que são alternativas equivalentes a 
uma formulação não-local em deformações, incluem 
naturalmente um comprimento interno relacionado a 
uma largura inicial para a banda de localização, 
coincidente com o comprimento da correspondente 
onda estacionária do estudo de propagação de ondas. 
A análise de localização aplicada a esses modelos 
conduz à identificação da largura de tal banda. 

3 Análise espectral do tensor 
acústico de dano 

Nesta seção pretende-se fazer a análise espectral 
do tensor acústico para modelos associativos e não­
associativos de dano contínuo. 

Para conduzir uma investigação mais detalhada 
dos casos citados é necessário utilizar as relações do 
modelo constitutivo definido na seção 2.2 e 
resultados encontrados em [1], [3], [4], [5] e [8] e 
[ 19]. 
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3.1 Análise Espectral para Lei de Fluxo Associativa 

Voltando à análise espectral, o Tensor Acústico de 
Dano Contínuo é definido, considerando-se lei de fluxo 
associativa e a relação ( 11 ), por: 

Q =H(n®n)= [E(n®n)- _!._ (f.n®f.n)] se dJ>O. (39) 
G 

No caso de modelos associativos de dano contínuo, 
caracterizados por apresentarem o tensor acústico Q 
simétrico, na investigação da (22) ou (35), os 
autovalores relativos ao problema espectral são reais e a 
verificação da condição de localização resume-se à 
procura de autovalores nulos. Uma maneira usual de se 
pesquisar a condição necessária da perda de unicidade 
de solução, consiste no estudo do sinal do determinante 
do tensor acústico de dano Q. Vários autores como [4], 
[5], [8] e [19], entre outros, fizeram tal análise. Nesse 
contexto, aqui será feita essa análise seguindo mais 
diretamente o encontrado em [ 19]. 

Afirma-se, para fazer a análise pretendida, que o 
problema em velocidade analisado nas seções 
anteriores, admite uma única solução homogênea se a 
condição detQ > O está satisfeita para toda direção n. 
Nesse caso, as equações de equilíbrio são ditas elípticas. 
Se detQ < O, o problema se torna instável; então se 
investigará aqui a condição necessária crítica para a 
ocorrência da instabilidade, isto é, a condição necessária 
de perda de elipticidade ou condição de singularidade: 

det Q =O. (40) 
Entretanto, dependendo de suas características, 

pode-se verificar a singularidade do tensor acústico Q, 
para autovalores não-nulos, do tipo complexo,P~ularmente, nos me 
exemplo. Nesse caso, também se considera que há 
localização, pois por um lado a condição 
det [H ( n ~ n )] ~ O equivale a atender à (22) e, por 

outro lado, ondas imaginárias, associadas à (35), não se 
propagam. Este caso será analisado em seções 
posteriores. 

A análise de (40) será feita de uma maneira geral, 
para tensores simétricos (com lei de fluxo de 
plastificação e dano associativa), considerando-se 
sempre o caso de isotropia. No que segue, o estudo se 
inicia por um problema de autovalor generalizado, 
explorado para se analisar a singularidade de Q. 

3.1.1 Análise espectral para o problema 
generalizado associativo 

Para se fazer a análise espectral de Q , considera-se a 
equação (35), agora escrita levando-se em conta a 
definição de Q em (39) . Então, aquela equação é 
equivalente a: 

Qm- y· m= O, (41) 
que é equivalente ao problema de autovalor: 

[Q- y ·12] m = O; (42) 
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onde 12 é o tensor identidade de segunda ordem. 
Se a equação (42) admitir um autovalor nulo 

y; = O, então essa equação espectral pode ser 

escrita, nesse caso por: 
Qm=O, (43) 

a qual, tem solução diferente da trivial (nula) se a 
condição (43) está satisfeita, para n E 9\3 tal que 

11 n 11 = 1. 

Para se analisar ( 41 ), a melhor estratégia não é 
explorar diretamente a equação (43), mas sim a 
seguinte equação: 

Qm- YQEm=O; (44) 
com QE definida por, 

QE = E(w)(n®n); (45) 
ou ainda, para o caso de materiais isótropos, 

~=(Â.+f.!)n®n+f.!l2 ; (46) 
onde Â, f.l são as constantes de Lamé, com E(w) 
definida por, 

E(w) = 2f.l(W) 14 + Â(w) 12 ® 12. (47) 

A análise da equação (44) é equivalente ao 
seguinte problema de autovalor generalizado: 

[QE -1Q- Yl2] m = 0; (48) 
e o estudo de ( 48), não fornece diretamente os 
autovalores do tensor acústico Q, mas é útil para 
determinar-se a condição de singularidade desse 
tensor. 

A equivalência das equações (42) e (48) para a 
existência de autovalores nulos é justifificada a 
seguir, para o caso simétrico. 

Para o caso do tensor Q simétrico, é conhecido 
da Álgebra Linear que existe uma base ortonormal 
gerada pelos autoversores { mi, j = 1 ,2,3}, associados 
aos autovalores Yi•, tal que o tensor Q pode ser 
representado nessa base. Além disso, Q é 
semelhante a uma matriz diagonal A, ou seja, 

Q=MT AM; (49) 
onde M é um tensor cujas colunas são formadas pelo 

autoversores m J e A é um tensor diagonal, ou seja, 

A= diag[y/ Yz• y3*]_ 
Se o tensor Q é simétrico, tem-se também que os 

autovalores Yi • são reais e independente da simetria 
ou não de Q, seu determinante pode ser calculado 
por: 

det Q = Y1 • Yz• Y3· · (50) 
De uma maneira análoga à (61) o determinante 

do tensor QE -1Q é determinado pelo produto dos 
seus autovalores associados, da seguinte forma: 

detQE-1Q= Y1Y2Y3. (51) 
Com os resultados (50) e (51) tem-se que, 

pesquisar autovalores nulos para a equação (42) é 
equivalente à mesma análise feita em ( 48), desde 
que: 
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detQE-1Q= detQ =Y1Y2Y3=> 
detQE 

det Q = det QE Y1 Yz Y 3, (52) 

det Q =y1• Y2• Y3• = det QE Yt Yz Y3, (53) 
o que implica em det Q = O para o caso da existência de 
autovalor nulo Yi =O em (48). 

Para o caso de Q ser não-simétrico ( lei de fluxo 
não-associativa), ele pode não ser diagonalizável, o que 
invalida o resultado ( 49), mas não invalida as relações 
(50), (51), (52) e (53), relativas à singularidade de Q. A 
não simetria de Q, pode implicar na existência de 
autovalores complexos na análise espectral. Assim, uma 
interessante estratégia encontrada em [19], a ser vista na 
seção 3.3, é definida para se fazer a análise espectral de 
tensores não-simétricos. 

Será visto, no decorrer desta seção, que os tensores 
Q e QE -1Q podem ser escritos como modificações de 
posto no máximo 2 do tensor identidade. Seus 
autovalores e autovetores serão caracterizados 
explorando-se essa característica peculiar, seguindo 
resultados encontrados em [ 15]. 

Considere-se o tensor acústico com dano, dado em 
(39), escrito da maneira simplificada abaixo: 

Q= QE- _!_a® b; (54) 
G 

onde a = f e n e b = g e n . Lembre-se que, no caso 

associativo, de acordo com a equação (44), tem-se: 

a= b =f e n. 

Utilizando-se (54), o tensor do autoproblema 
generalizado ( 48) pode ser escrito na seguinte forma: 

QE -1Q = Iz - _!_ QE -1(a ® b). (55) 
G 

Observe que, no caso de elasticidade isótropa, 
utilizando-se a fórmula de Sherman e Morrison, o tensor 
QE pode ser invertido da seguinte maneira: 

QE -1
= f.l-112 - (..1. + f.l) [f.l ( ..1. + 2f.lr1 (n®n) (56) 

A resolução de det QE -!Q = Y 1 Y2 Y 3 = O é feita 
notando-se que em (55) o tensor QE -1Q é uma 
modificação de posto 1 do tensor identidade 12. 

Baseando-se neste fato considera-se que o autovalor 
Yi = 1 tem multiplicidade dois para o tensor QE-1Q. Sem 
perda de generalidade, assumindo-se que Y1 = Y2 = 1, 
resta somente determinar o valor de Y 3 para se fazer a 
análise desejada. 

O cálculo do autovalor Y 3 é então feito da seguinte 
forma: 

então, desde que, 
det(I +a 18> b) = 1 + bT a, (58) 

tem-se que: 
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(59) 

De (57) e (59) conclui-se que: 

l3 = 1- _..!.._ (bT QE-l a). 
G 

(60) 

A condição necessária de localização de 
deformação se reduz a impor que: 

detQE"1Q = 1 3 =0, 
ou seja, 

(61) 

_..!.._ (bT QE -I a)= 1 <=> (bT QE -I a)= G. (62) 
G 
Considerando-se e substituindo-se o valor de G, 

visto em (12), a condição de localização para os 
modelos associativos com dano contínuo assume a 
forma: 

r- 1 (bT QE -I a)= fw. 
Substituindo-se a relação vista em (9) 

tem-se a seguinte equação para os 
associativos com dano contínuo: 

â. fw- W (bT QE -la)= 0. 

(63) 
na (63), 
modelos 

(64) 
O valor máximo para n que satisfaça a equação 

(64) e tal que 11 nll = 1, assinala um indício da 

deformação localizada, onde n é a correspondente 
direção de localização. 

Esse problema, pode ser formulado da seguinte 
forma: 

Maximizar {ã. fwr-bTQE -Ia= 0;11 nll =1} (65) 
eTn 
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tr(Q)=tr(QE)- _.!._ tr(a® b) = y,· + Yz• + y; => 
G 

2J..L + íl. + 211 - _.!._ b Ta = 11 + Yz • + Y3 • => 
G 

Yz.+y3"=311+íl.- _.!._ bTa = a. 
G 

(69) 

Então, (68) e (69) definem duas equações para se 
determinar y2" e y;: 

{
Y; ~ .r; = a 

YzY3 = ~ 
(70) 

e as soluções de (70), são as raízes de uma equação do 
segundo grau em y", ou seja, satisfazem: 

(y*/- a y" + f3 = O. (71) 
Resolvendo-se (71 ), chega-se aos autovalores 

procurados, Yz • e Y3 •. 

Observações 3.1: 

i) Em [14], demonstra-se que em geral y2" > y; e 
y; = O se 1 3 = O. Além disso, se existir algum 1 3 < O, 
então, em correspondência, y3 • < O, com correspondente 
velocidade de propagação imagmana, pois 
y3 • = pc i . Devido a simetria de Q, não existem 

autovalores complexos para (42); eles só poderão 
ocorrer para tensores não-simétricos (seção 3.3); 

ii) Considerando-se mTm =1, então, a equação 

onde a(n), b(n) estão definidos em (54) 
TQ • T • . (36) • -e m m = y m m = y , VIsta em , e uma equaçao 

algébrica quadrática em m, dependente diretamente dos 
autovalores / obtidos no estudo de (42). Então, os 
valores de y· servem diretamente para especificar, o 
comportamento dessa equação: 

eT = (1,1,1). 
Se a restrição (64) está satisfeita, então a 

determinação do versor n é feita resolvendo-se (65). 

3.2 Análise dos autovalores de Q para materiais - se y" > O , então tem-se que det Q > O, Q é definida 
isótropos positiva e a equação representa um elipsóide em 913 

Considerando-se materiais isótropos, tem-se que 
QE é definida de acordo com ( 46), com, 

íl. = íl.(w) e 11 = 11(w); (66) 
tal que, Q é definida de acordo com (39) e a sua 
substituição em (42) resulta em: 

[(11- y") 12 +(íl. + 11) n®n _...!_(a® b)] m =0. (67) 
G 

Nota-se que o tensor de (67) é uma modificação 
de posto 2 do tensor identidade 12, então, tem-se que 
y,· = 11 é um dos autovalores para (67). Os dois 
autovalores restantes são obtidos da equação (52) 
por: 

det Q = det QE Y 1 Y 2 Y 3 

det QE Y, Yz !3<::::> 11 Yz•Y; 
que fornece: 

. . . 
<=> y, Yz Y3 

= 1111 (íl.+211) l}, 

(note que se Q = 12 , a eq. mT 12m=/ é a equação de 
uma esfera, se y" > 0). Desde que um elipsóide (ou 
elipse em 912

) é estritamente convexo, tem-se 
mTQ(m* -m)<O, '<im* E 913,nãocolinearcomm (ver 
a figura 5) e uma condição de perda de elipticidade 
ocorre se mTQ (m*- m) >O, condição que é satisfeita se 
y • ~ O, como será visto a seguir. Qm pode ser visto 
como o gradiente da função j(m) = mT Qm e é 
tangente a cada ponto do contorno da elipse vista na 
figura 5; 
- se existir algum y • = O, então tem-se a perda da 
elipticidade da equação, que se degenera agora em 
planos ou retas no 913

, já que mTQm = O implica na 
singularidade de Q, para se ter soluções diferentes da 
trivial nessa equação e consequentemente posto(Q) < 3, 

Yz·y; = 11(íl.+211)Y3 =[3, 
cujo valor é zero para 1 3 = O. 

(68) o que degenera a equação da cônica no espaço de 
representação. Porisso essa equação é chamada de 
equação de uma cônica degenerada; Precisa-se de mais uma equação para se 

determinar y2 • e y3 •. A operação traço de Q define 
tal relação: 

- se y" < O, então, tem-se que det Q < O, Q é, portanto, 
definida negativa e a equação representa um hiperbolóide 

lO 
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quais o tensor Q é não-simétrico, pois, nesse caso, Qs 
não coincide com Q . Está análise, não realizada aqui, é 
encontrada em [ 1]. 

3.4 Determinação de autovalores e autovetores de Q 
mT Q (m'- m) ~ O, para materiais isótropos 

Figura 5- Condição elíptica em ~2 . 

iii) considerando-se o modelo escalar de dano de 
Mazars, as definições de 1 e 11, bem como, do 
tensor elástico Ifl para materiais isótropos, recaem 
em: 

1= (1-D) À{); 11 = (1-D)~-to; 

IfJ = (1 - D)[ 2~-to l4 + À{) lz ® lz]; (72) 
onde D é a variável de dano de Mazars, tal que, 
0-5oD-5o L 

Assim, na análise efetuada para materiais 
isótropos, QE, vista em (36), pode ser substituída por 
Q0 tal que: 

Q0 
= (1 - D)[ ~-to 12 + (À{}+ 2~-to) n®n] (73) 

e resultados análogos àqueles obtidos para QE, 
vistos nesta seção, podem também ser obtidos 
considerando-se Q0 como em (73). 

3.3 Análise espectral do tensor simétrico Q5 

O estudo indicado aqui é importante para a 
análise de materiais não-associativos nos quais Q é 
um tensor não-simétrico. 

Considere o tensor acústico elastoplástico com 
dano Q, escrito de maneira explícita por: 

O= H(w)(n ®n) = E(w)(n ®n) -_!_a® b, ou 
- G 

seja, 
Q= QE- _!_a® b; (74) 

G 

onde a = f e n e b = g e n ( f e = g e para o caso 

associativo). 
É possível definir o tensor Q como a soma de 

uma parte simétrica Q5 com a parte anti-simétrica 

Qa, ou seja, Q = Qs + Qa, onde: 

Qs = _1_ (Q + (Q)T) = QE-_!_ (a®b + b®a). (75) 
2 2G 

Então, é possível fazer a análise do problema 
espectral (48) considerando Qs definida em (75). 

Uma interessante aplicação desta está 
relacionada à análise do modelo constitutivo 
considerando-se materiais não-associativos, nos 

No caso de elasticidade isótropa, o tensor de 
localização de deformação Q é expresso através de uma 
modificação de posto 2 do tensor identidade: 

1 
Q = 11 lz + (1 + 11) n®n - G (a® b); (76a) 

então, Q pode ser escrita como uma modificação de 
posto 2 do tensor identidade: 

Q= 11I2 +U2; (76b) 
1 

onde, U2 = (1 + 11) n®n- - (a® b). 
G 

Seja agora o problema: 
[U2- tlz] n = O. (77) 

Os autovalores associados à equação (77), seguindo 
resultado da Álgebra Linear encontrado em [15], tem a 
forma: 

-r 1 = ..!.[a1T d 1 + a/ d2 ] + G,; (78a) 
2 

t 2 =..!. [a1T d 1 + a/ d2 ]- G1 ; (78b) 
2 

onde, 

G,= 

Assim, de (78a,b ), os autovalores de Q para a 
equação (77) são dados por: 

y,·=~-t+t,; Y2·=~-t+•2 e YJ• = 1-t - (79) 

Note que, se G-+ oo, então, as equações (78) e (79) 
recuperam os autovalores para a análise de problemas 
puramente elásticos, ou seja, 

Y2• = Y3• = 11 e y,· = lc,+211. (80) 
Utilizando-se mais uma vez os resultados vistos em 

[15], tem-se que, os autovetores associados a t, no 
problema (96), tem a forma: 

m= a 1 n + a 2 a; 
onde os ai's são calculados por: 

2 T 
L(di aj - t8ij) aj =O, 

(81) 

(82) 

para i = 1,2; t = t 1 ou t = t 2; di, aj (i,j = 1,2), 
expressos em (78c ). Substituindo-se (78c) em (82) 
obtém-se o seguinte sistema para determinar os ai's: 

l (À+j.!-r)a , + (À+!-!)(nTa)a, ~ O (83) 

(-k)(b T n)a, + ((- k)(b T a) -r)a
2 

~ O 
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Então, com os a; ' s calculados em (83), tem-se, 
com relação ao autovalor t , os seus autovetores 
relativos. 

3.4.1 A condição de localização 

A condição de localização para matena1s 
isótropos, dada por det Q = O, é obtida quando o 
autovalor y2• definido em (79), expresso utilizando­
se t 2 em (78b ), se anula. Isso acontece quando em 
(79): 

'2 =- 1-1 . (84) 
Por sua vez, a relação (84) só é válida se, em 

(78a,b), valer a condição G1 :2: O, com G1 definido 
explicitamente a partir de (78c) por: 

G = (À+J.!+ 1/ aTb)2 -4( ).+ 11 )(nTa)(nTb)· (85) 
I /G G 

Isto implica, se o problema for associativo, no 

tensor Q ser simétrico e então, na existência de 

autovalores reais para Q. 
Supondo-se que (85) esteja satisfeita, então, a 

resolução de uma equação do segundo grau com 

respeito a G em (78a,b), determina a seguinte 

condição de localização: 

G = (À+ 2J.L)(aTb)-(À+ J.L)(nTa)(nTb), (86) 

J.l(À + 2J.1) 

a qual coincide com a substituição em (56) de QE -i 
expresso por: 

3.4.1 Determinação dos autoversores de Q. 

Supondo-se que os autovalores foram calculados 
em (78) e (79), então é possível resolver (83) e 
determinar os autovetores associados, definidos na 
equação (81 ). 

Uma relação possível para a 1 e a 2, 

considerando-se a primeira equação em (83) é: 

5..= (À.+J.!) (nTa) . 
a2 Y2.- (À.+ 2J.!) 

(88) 

Considerando-se, na condição de localização, 
que t 2 = - 1-1 , então, y2 • = O e substituindo-o em 
(88) resulta: 

5..= - (À +Ji) (nTa). (89) 
a 2 (À+2,u) 

Utilizando a (89), tem-se em (81) que: 

31-maio a 3-junho-2004 

UNESP - Campus de Ilha Solteira 

m= a 2 [-( (À +,u) (nTa))n+a]. (90) 
(À+ 2,u) 

Com o valor de m expresso em (90) é possível agora 
caracterizar os seguintes modos de bifurcação (ver 
figura 4): 

- se m está alinhado com n e a está alinhado com n, 
então a bifurcação é do modo de abertura (modo I) ; 

- se m é perpendicular a n e a é perpendicular a n, 
então a bifurcação é do modo de cisalhamento puro 
(modo II); 

- se m não está alinhado com n, nem com uma direção 
perpendicular a essa, a localização é do modo misto 
(modo III). 

Na análise da condição de perda de elipticidade feita 
aqui, optou-se por estudar a singularidade do tensor 
acústico Q, mas a mesma análise pode ser feita 
explorando-se diretamente a singularidade do tensor 
elástico ou elastoplástico com dano H, analisando-se a 
condição necessária de localização, det(H) =O. 

Aplicando-se os resultados aqui obtidos, relações 
análogas seriam tiradas. 

Essa análise pode ser encontrada em [19] . 

Na próxima seção, seguindo resultados obtidos até 
aqui, faz-se uma introdução à análise pós-bifurcação ou 
pós-singularidade do problema da localização, 
utilizando-se resultados encontrados em [6], [10] e 
[11], os quais podem ser vistos no Apêndice E de [1]. 

4 Introdução à análise pós-bifurcação 

relativa à instabilidade de solução 

Nas seções anteriores, um amplo estudo da condição 
necessária de localização ou de perda de elipticidade foi 
efetuado sem se preocupar em analisar o que ocorreria 
após tal condição estar satisfeita. Essa seção se 
relaciona à caracterização do tipo de instabilidade de 
solução, numa análise pós-singularidade da equação de 
equilíbrio, para sistemas isótropos, associativos e 
conservativos com relação à forças, explorando a 
singularidade do tensor acústico de dano visto na seção 
anterior. Se tentará dar condições de caracterizar as 
soluções pós-singularidade, objetivando detectar se 
essas soluções representam instabilidade por bifurcação 
de equilíbrio ou instabilidade associada a pontos limites 
(inflexão, mínimo ou máximo) baseando-se em 
resultados da Teoria de Bifurcação encontrados em [6] , 
[10] e [11]. 

Antes de se iniciar a análise de pós-bifurcação para 
os modelos constitutivos com dano, serão revistos 
alguns conceitos relativos à instabilidade das estruturas, 
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que auxiliarão no entendimento dessa seção, 
baseados no proposto em [12] e [21]. 

4.1 A Definição de Estabilidade e Instabilidade 
de Solução 

O conceito de estabilidade: (no sentido de 
Liapunov) 

Considere uma configuração de equilíbrio de 
um sistema mecânico em relação a um dado 
referencial. Diz-se que a configuração está em 
equilíbrio estável se, dadas pequenas perturbações 
arbitrárias no sistema, através de modificações de 
posição e da imposição de velocidades iniciais, os 
movimentos resultantes permanecem pouco 
afastados da configuração de equilíbrio e tão mais 
proxrmos dessa quanto menores forem as 
perturbações dadas. Diz-se ainda que a 
configuração está em equilíbrio assintoticamente 
estável se para o tempo tendendo ao infinito a 
configuração do sistema perturbado tender, em 
termos de posição e velocidade, à configuração de 
equilíbrio. 

O conceito de instabilidade: 

A configuração está em equilíbrio instável se, 
dadas pequenas perturbações arbitrárias ao sistema, 
os movimentos resultantes tenderem a se afastar 
progressivamente da configuração de equihbrio, 
embora esse não seja propriamente o caso geral. 

Esses tipos de configurações serão importantes 
para se caracterizar em uma análise estrutural 
estática para sistemas conservativos com relação à 
forças, mas não-conservati vos com relação à 
dissipação de energia (por plastificação, dano, 
plastificação e dano), se a configuração encontrada 
em uma análise pós-bifurcação está relacionada à 
instabilidade do equilíbrio por bifurcação ou 
associada a pontos limites. 

Vários exemplos encontrados na literatura, os 
quais podem ser vistos em [12] e [21], servem para 
ilustrar o aparecimento de instabilidade por 
bifurcação de equilíbrio e de instabilidade associada 
a ponto limite, em problemas de análise estrutural 
estática (sistemas conservativos). 

Observa-se por outro lado nesses mesmas 
referências, que considerando-se sistemas não­
conservativos com relação à forças (tais como, 
ações de vento, forças variando no tempo, fluxo de 
fluidos, entre outros), existem exemplos em que não 
se consegue classificar a instabilidade como 
associada a ponto de bifurcação ou a ponto limite. 

Nesse tipo de sistema é possível ocorrer 
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instabilidade por múltiplos pontos de bifurcação ou por 
bifurcação em pontos limites múltiplos. Essa análise 
será objeto de pesquisa futura e não será desenvolvida 
aqui. 

4.2 Classificação geral da instabilidade de 
solução 

Antes de se fazer uma análise pós-bifurcação de 
solução, que é a proposta dessa seção, é interessante 
relembrar algumas caracteristicas relativas ao problema 
de instabilidade das estruturas e obter uma classificação 
dos tipos de instabilidade que ocorrem na prática. Essa 
classificação segue a proposta de [21] e evidencia a 
complexidade dos problemas gerais ligados à 
instabilidade. 

A instabilidade pode ser de dois tipos: divergente e 
oscilatória. 

Instabilidade divergente: 
A instabilidade divergente se caracteriza pelo 

sistema estrutural abandonar sua configuração inicial de 
forma definitiva, buscando novos e eventualmente 
inexistentes estados equilibrados. 

Instabilidade oscilatória: 
A instabilidade oscilatória se caracteriza pelo 

sistema estrutural oscilar em tomo de uma configuração 
de equihbrio, em periodos maiores, devido à crescente 
absorção de energia mecânica, típica do processo. 

Classificação da instabilidade divergente: 

A instabilidade divergente pode ser de dois tipos: 
estática e dinâmica. 

i) Instabilidade divergente estática: 
É o tipo de instabilidade divergente que pode ser 

estudada através de análise estática, se manifesta pelo 
aparecimento de pontos limites ou pontos de bifurcação, 
sendo típica de sistemas estruturais sujeitos a forças 
conservativas. Ela aparece, entre outras, em estruturas 
reticuladas planas ou espaciais, estruturas laminares, 
estruturas compostas e na forma de instabilidade local 
de barras isoladas ou por instabilidade global, sem que 
as barras isoladas percam a estabilidade. 

ii) Instabilidade divergente dinâmica: 
É típica de sistemas estruturais sujeitos a forças não 

conservativas, entre as quais se destacam as produzidas 
pelo vento, forças variáveis no tempo ou forças 
decorrentes de fluxo de fluido, devendo ser estudada 
por processos dinâmicos de análise. 
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Classifzcação da instabilidade oscilatória: 

A instabilidade oscilatória manifesta-se de 
diferentes modos, por ressonância e flutter, entre 
outros. 

i) instabilidade oscilatória por ressonância 
Manifesta-se quando forças não-estacionárias e 

periódicas agem sobre o sistema estrutural de modo 
que a sua frequência se iguale a uma das frequências 
próprias da estrutura, levando a velocidade de 
propagação e a amplitude de ondas a uma quase 
constância. 

ü) instabilidade oscilatória por jlutter 
É o tipo de instabilidade oscilatória provocada 

por forças não conservativas sobre as estruturas. 
Pela ação dessas forças, passam a existir 
movimentos cíclicos rápidos, sendo que em cada 
ciclo, o sistema estrutural absorve energia mecânica 
do meio e por consequência as amplitudes de ondas 
e velocidades de propagação se tornam crescentes 
como tempo. 

Outros tipos de instabilidade oscilatória podem 
se caracterizadas pela interação da instabilidade por 
ressonância e por flutter. 

De acordo com o estudo feito até aqui e do 
proposto em (21], uma classificação geral da 
instabilidade é representada a seguir na figura 6, 
relativa a seu gênero e espécie. 

Figura 6 - Classificação geral da instabilidade 
de solução. 

4.3 Classificação da instabilidade explorando os 
autovalores do tensor acústico 

Ao nível de modelo constitutivo, a caracterização 
dos tipos de instabilidade que podem acontecer pode 
ser feita, matematicamente, explorando-se os 
autovalores do tensor acústico Q ou do tensor 
rigidez tangente H . 

Em princípio é possível também propor uma 
classificação para a "instabilidade material por 
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localização" como sendo do tipo divergente ou 
oscilatória. 

Considerando-se o problema espectral (42), relativo 
ao problema de equilíbrio dinâmico, dado por: 

[Q- r •lz] m = O; (91) 
e impondo-se a hipótese de que o modelo analisado é o 
modelo ísótropo e associativo, então, os resultados 
obtidos na seção 3, podem ser utilizados para se 
caracterizar o tipo de instabilidade ocorrida. Daquele 
estudo, tem-se que um dos autovalores de (91) é 
positivo, r· = 1.1. > o, logo restam apenas dois 
autovalores a serem analisados. 

Esse estudo será desenvolvido nas seções 5.1 e 5.2. 
O caso do modelo geral, não-ísótropo, não-conservativo 
e não-associativo é tratado na seção 5.3. 

A classificação será feita explorando-se dois tipos de 
sistemas de equilíbrio do problema de análise estrutural: 
o equilíbrio estático e o equilíbrio dinâmico, tratados a 
seguir. 

Considere a hipótese do corpo n se constituir num 
meio homogêneo e infinito, sujeito no infinito a 
carregamentos uniformes com variação contínua no 
instante t, que dão origem às soluções homogêneas, em 
deslocamento u, em velocidade ü, em aceleração ü, 
em taxa de aceleração v , em tensão o; em taxa de 
tensão t:T , em carregamento p e em taxa de 
carregamento p. Com essa hipótese a equação de 

equilíbrio dinâmico pode ser dada por: 
divu + p = p ü ; (92) 

onde p é a densidade de massa do continuo. 
Denotando-se v = ú, tem-se que a relação 

(92) implica na seguinte relação em taxas, 
div (; + p = p v . (93) 

Se a taxa em deslocamento ú é constante, então, a 
relação (92) é equivalente à relação de equílibrio 
estático, 

div u + p = O (94) 
e (93) é equivalente à relação de equilíbrio estático em 
taxas: 

div (; + p =0. (95) 

A relação (93) pode ser expressa considerando-se, 
á= H(w) é (u) , (96) 

por: 
div (H(w)é (u)) + p = p v; (97) 

4.4 Classificação para Modelos Isótropos, 
Associativos e Conservativos 

Consideram-se as hipóteses do modelo ser isótropo, 
associativo e conservativo (em força). A hipótese de 
associatividade é considerada para se ter o tensor Q 
simétrico e garantir a existência de autovalores reais, 
somente. A hipótese de ísotropia é feita para utilizar-se os 
resultados obtidos na seção 3. A hipótese de sistema na 
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existência de urna zona de localização e de um 
ponto critico, a partir do qual pode-se sujeito a 
forças conservativas é feita para se poder 
caracterizar pontos limite ou pontos de bifurcação, 
de acordo com o descrito na figura 6. 

Isto não impede que a análise dos autovalores de 
Q seja feita através da equação (92) relacionado ao 
equilíbrio dinâmico. Lembre-se que a equação de 
equilíbrio estático em taxas é equivalente à equação 
de equilíbrio dinâmico se a velocidade de 
propagação c é nula (equações (94) e (95)), de 
acordo com a análíse feita na seção 2.4. Nesse caso 
ocorre o aparecimento de pontos críticos de carga e 
investiga-se a ocorrência de um dos autovalores r~· 
ou y3 • ser nulo. 

Sem perda de generalidade, consídere-se 
Yt·= J.L>O: 
- se y3 • = O então, utilizando-se do resultado 
demonstrado em [14], que y2• > y3", então, y2• >O 
e a instabilidade ocorrida é do tipo divergente 
estática. Essa afirmação é verdadeira pois, y;· = 
pc?, ou seja, y;" ~ O, para i= 1,2,3; o que 
exclui a ocorrência de velocidade de propagação 
imaginária e portanto de instabilidade divergente 
dinâmica. 

Nesse caso, y3 • = O implica na singularidade de Q 
e conseqüentemente ter instabilidade por bifurcação 
ou instabilidade associada a ponto limite. 

É válido ressaltar que, o sistema é conservativo 
com relação às forças, mas é não-conservativo com 
relação à dissipação de energia (nos regimes de 
encruamento ), podendo-se ter a ocorrência de 
autovalor negativo. 

Admitindo-se y3 • < O, então, de (79), y2 • > O e 
Yt·= J.l > O. Nesse caso tem-se a ocorrência de 
velocidade de propagação imagmana, pois 
y3"=fJC32 <O e a instabilidade é do tipo divergente 
dinâmica. 

No estudo a ser feito na seção 5, somente será 
considerado o caso de instabilidade divergente 
estática (y3 • = O) para se fazer a análise de 
singularidade do tensor Q. Mas é importante dizer 
que no tratamento numérico do problema, a 
ocorrência de autovalor negativo (y3" < O) implica 
em um ponto critico e em urna zona de localização 
já terem sido alcançados. Note que, se y3 • < O então 
detQ < O, o que implica em encruamento negativo e 
na solução obtida ser um ponto de bifurcação (não 
caracterizado pela análise de singularidade). 

4.5 Classificação para Modelos Isótropos, Não­
Associativos e Não-Conservativos 

As hipóteses de isotropia, de não associatividade 
e de sistema não-conservativo, implicam: 
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i) no tensor Q ser não-simétrico, o que possibilita a 
ocorrência de autovalores complexos; 
ü) na possibilidade de ocorrer instabilidade divergente 
dinâmica ou instabilidade oscilatória. 

A hipótese de isotropia garante que, um dos 
autovalores é positivo, ou seja, y1• =J.L >O e utili7..ando-se 
de resultados de [14], vistos na seção 3.2 (observações 
3.1), tem-se: 
- se o autovalor y3 • é negativo então y2 • é positivo; 
- se o autovalor y3 • for complexo então y2 • é complexo e 
conjugado em relação a Y3·· 

Com essas considerações chega-se a conclusão que, 
só é possível caracterizar a instabilidade através de uma 
análise dinâmica do problema. Nesse caso as seguintes 
situações podem ocorrer: 
i) se y3• <O, então, y2• >O e a instabilidade ocorrida é 
do tipo divergente dinâmica, com correspondente 

' velocidade de propagação imaginária (pois y3 • = pc ~ ); 

ii) se y3 • é um autovalor complexo, então a instabilidade 
é do tipo oscilatório existindo duas possibilidades: 
-se Re(y3•) "#O, a instabilidade é do tipo oscilatória por 
"flutter"; 
- se Re(y3 ") =O, a instabilidade é do tipo oscilatória por 
ressonância. 

4.6 Classificação para Modelos Gerais: Não-
Isótropos, Não-Associativos e Não-
Conservativos 

Nesse caso a análise é mais complicada pois podem 
aparecer os chamados fenômenos acoplados ou 
interativos. Por exemplo: 
i) se y3 • < O e y2 é imaginário puro, tem-se 
instabilidade divergente dinâmica acoplada à 
instabilidade oscilatória ressonante; 
ü) se Y3 • < O e Yz • é complexo com parte real não nula, 
então, ten1-se instabilidade divergente dinâmica 
acoplada a instabilidade oscilatória por "flutter"; 
iü) se y3 • é imaginário puro e y2• é complexo com parte 
real não nula, então, tem-se instabilidade oscilatória 
ressonante acoplada à instabilidade oscilatória por 
"flutter"; 

Na próxima seção, exploram-se as hipóteses e os 
resultados da seção 4.4 e resultados encontrados na 
Teoria de Bifurcação para se definir, em uma análise 
estática, condições que caracterizem instabilidade por 
bifurcação ou instabilidade associada a ponto limite. 

Essa análise será feita explorando a condição de 
existência de autovalores nulos para o Tensor Q, ou 
seja, admitindo-se que a velocidade de propagação c se 
anule em uma determinada região do meio considerado, 
denominada de "banda de localização". 

Justifica-se a análise estática porque, conforme visto 
no início da seção 2, se a velocidade de propagação é 
nula, o problema de equilíbrio dinâmico se toma 
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equivalente ao problema de equilíbrio estático. 
Explorando a condição de equilíbrio estático da 
estrutura, ou seja, desprezando-se forças de inércia, 
faz-se uma análise estática do problema, a nível 
local, relativa às propriedades fisicas do material. A 
análise a nível global, relativa às propriedades 
geométricas da estrutura pode ser vista no Apêndice 
F de [1]. 

5 Análise pós-singularidade envol­
vendo propriedades fisicas do 
material 

Considere-se o corpo em um meio continuo e 
infinito n c V e uma superficie regular num 
contorno comum entre duas regiões, simbolizadas 
por d, a c n, tais que, a função taxa de 
deslocamento Ú E fl é singular ao percorrer as 
regiões d e a do corpo. Isto implica pelo Lema 
de Hadamard que, ú pode ser expressa através da 
equação de salto: 

( Ú] = Ú +- Ú ·; Ú + E d, Ú- E il; (98) 
a qual implica na ocorrência de um salto de 
deformação para é , definido em (18) por [é ], 
caracterizando assim uma região dita localizada no 
corpo considerado. 

Supondo-se que, nas superficies d e .{] 
consideradas, a condição de equilíbrio estático é 
garantida, pretende-se fazer a análise pós-bifurcação 
explorando-se as equações em taxas de equilíbrio 
estático e constitutiva, combinadas na seguinte 
forma: 

Div[á]+f =div[H(w)é (ú)]+f= o. (99) 

Denotando-se, 
K(w, ü )= dtv[H(w )é (ú )J, 
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Em outras palavras, cada uma das soluções 
analisadas dependem do parâmetro o E~H e, então, esse 
parâmetro define uma família de configurações de 
equilíbrio, denominada trajetória de equilíbrio. A 
equação (100), então se torna: 

J{ú, w, â) =K(w ,ú) + of=O. (102) 

5.1 Condição de existência de pontos singulares 

A condição de existência de pontos singulares para 
(102), implica em que o tensor de segunda ordem V' 0 / 
, relativo a/, seja singular, caso contrário o teorema da 
função implícita garantiria a existência e unicidade de 
solução. Então, a condição de singularidade para (102) é 
equivalente a se pesquisar para um versor <p E 9\3~ (j) * 
O, a seguinte equação homogênea: 

(Vüf)<p =OQ(VüK + o'Vu f)(j)=O. (103) 

Pela (103), a condição de singularidade para V' 0/é 
equivalente a se mostrar a singularidade para 
V'uKeV'uf . 

Antes de se enunciar a proposição abaixo, que utiliza 
a hipótese do sistema considerado ser conservativo, é 
válida a seguinte colocação: "para sistema conservativo, 
ao nível do material, f é o vetor taxa de força por 
unidade de volume; f = O implica que não há variação 
da densidade do material e V' f = O, que a distribuição 
de densidade é homogênea". 

Proposição 5.1: 
Considere-se a equação (102). Então, na hipótese de 

carregamento conservativo, a condição de singularidade 
vista em (22) é também a condição de singularidade 
para (102). 

Justificativa: 

tã Inicialmente observa-se que, devido à hipótese de en o, 
K( w , ú ) = div(H( w )[é ( ú )])= div(H[ é ]). (1 00) carregamento conserva ti v o, V' u f = O, então, 

(V' u f )<p =O, V(j). (104) 

Assim, tem-se a equivalência de (99) com a 
seguinte equação: 

J{ú, w, Ô) =K(w ,ú) + f=O. (101) 

Logo, resta somente analisar a singularidade de 
V' ú K para obter a condição de singularidade para 
(102). 

Por simplicidade de notação será considerado 
V 0 = V' nos resultados que seguen1. 

Levando-se em conta a simetria de é , a simetria 

1659 

A função vetorial K defmida em (99), relaciona 
deformações é (em função de deslocamentos ú e 

dissipação de energia w ), com forças f e está 
associada às propriedades fisícas do material. menor de H, as equações (2a) e (2c), bem como11 - . tual lo . . ""E!>sa r .. açao e pun ou c a 

Para se fazer a análise pós-bifurcação de (99), 
considera-se na definição dessa um parâmetro o E 'R, 
pré-multiplicando f , cuja função será auxiliar a 
descrever o tipo de trajetória provocada por 
incrementos de carga, após a condição de 
singularidade estar satisfeita. 

resultados da Análise Tensonal, encontrados em [7], 
tem-se que: 

V'uK=V'u {div ((H(w)[é (ü)])} = 

=V' {div (H [V' ú] )} =V' {div (H) [V' ú] + HV' [V' u ]}= 
=v { HV' [V' ú]}. (105) 
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Considerando-se de (14) que, [Y'ú]=r(m 0 n) e 

que [ ú ] pode ser definido, de acordo com [ 4 ], 
por, 

então, 

H'V ['V ú] = % H'V( [ ú ] ®n) = 

%H( ['V ú] ®n)= '% H(m®n®n) 

=%H(n®n)m=% Qm. 

Voltando-se em (105), 

(106) 

'V { H'V ['V ú ]} = '%'V (Q m) = %'V (Q [li ]) = 

= i/ (Q ['V ú ]) = Y / Q (m ®n) = 
~~ N 

Logo, 

= y/ ( Qm®n). 
/~ 

(VüK)cp =y/ (Qm®n)cp=y/ (nrcp)(Qm). 
~~ /~ 

Assim, considerando-se y -:~; O e (3 -:F O, se existir 
n satisfazendo a equação (65), então, 

('V ú K) cp= O e> (nr cp)(Q m) =O 
e> Qm =0, 

a qual implica em Q ser singular. 

Ç:> 

(107) 
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(91), ou seja, determinar autoversores m associados a 
autovalores nulos y" =O, em (91). 

Considerando que m é um autoversor associado a 
autovalor nulo, a (107) pode ser expressa, 
equivalentemente, por: 

Q m =O, JJmJJ = 1. (110) 

então, das equações (109) e (110), a (108) é equivalente 
ao seguinte sistema estendido simplificado: 

J ( ú, w' O) = {f(it, w,onf =o, (lll) 
detQ 

A análise pós-bifurcação agora é feita explorando-se 
o estudo de problemas de bifurcação para um 
parâmetro, adaptado ao caso de dois parâmetros ( w e 
0), para o sistema estendido (111), de maneira análoga 
àquela encontrada na Teoria de Bifurcação, nas 
referências citadas ([6], [lO] e [11]). 

Viu-se que, na análise de instabilidade divergente 
estática (figura 6, da seção 4), tem-se instabilidade por 
bifurcação ou instabilidade por ponto limite. Isso 
implica, de acordo com resultados encontrados na 
Teoria de Bifurcação, que o núcleo de V ú/, denotado 
por N('V ú/), é gerado por um único vetor+ e 9\3

, ou 
seja, 

N('V õ/) = span{f} tal que, dím N(V ú/) = 1. (112) 

Logo, a singularidade de Q é uma condição Esta hipótese, descarta a possibilidade de se ter 
necessária para que [V õ K] seja singular. bífurcacão em ponto limite ou múltiplos pontos de 

De (104) e (107) conclui-se que, se Q for bifurcação relacionada a urna mesma variável, já que, 
singular, então, [V õ/] cp = O. esse tipo de bifurcação ocorre se e somente se 

Portanto a condição de singularidade vista en1 dím N('V ü/) > 1, de acordo com [6], [10] e [11]. 
(22) é também a condição de singularidade de V õ/ Esse resultado (dim N(V õ/) = 1) é sempre 
e a proposição fica demonstrada. verificado nas hipóteses assumidas do modelo ser 

Devido a (104) e (107), a análise de (102) e 
(103) é equivalente a se pesquisar soluções para o 
seguinte sistema estendido: 

A J f(u, w,o) 1 
f (ú ,w, Ó) = rú~~~,o)gf =o, (108) 

Devido à equivalência de (107) com (43) e da 
proposição 5.1, então, a análise de singularidade de 
(102) é equivalente a: 

Y'ü/(u,w,á)=O <=> Qm=O <=> 
<=>detQ =O; (109) 

Então, devido aos resultados encontrados na 
seção 3 .1.1, a condição necessana de 
singularidade, dada em (109), é equivalente a se 
analisar autovalores nulos do problema espectral 

isótropo e associativo, o que garante que o tensor é 
simétrico e possui três autovalores distintos. Logo, a 
cada autovalor está associado um único autovetor. 

Portanto, o autovalor nulo gera um único autovetor 
+e 9\3

, ou seja,N(V ü/) = span{t} e dim N(V ü/) = l. 
Nesse caso urna possibilidade exclui a outra, ou 

seja, ou se tem instabilidade divergente estática por 
bifurcação ou instabilidade divergente estática por ponto 
limite. 

5.2 Análise pós-singularidade ou pós-bifurcação 

A análise pós-bifurcação relacionada às 
propriedades fisicas do material, explora diretamente as 
equações de equilíbrio (99), (100), (101) e (102). 

Foi visto na seção anterior que, a condição de 
singularidade para (102), era equivalente a se ter, 

detQ = det[H( w )(n®n)]] =O. (113) 
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Se a ( 113) é verificada, o primeiro passo para se 
iniciar a análise de pós-bifurcação, consiste em 
determinar um autoversor m associado a autovalor 
nulo y* =O, solução da equação (110). Vale lembrar 
que, para se determinar o autoversor m é necessário 
antes determinar o versor n, o qual, pode ser obtido 
para modelo associativo e isótropo, resolvendo-se o 
problema de maximização ( 65), visto na seção 3 .1.1. 

Após o versor n ser determinado, o autoversor 
m é calculado pela expressão (81) e é dado por: 

m= a. 1 n + a.2 a; a= f. n; (114) 
onde a.1 e a.2 são determinados resolvendo-se o 
sistema (83). O autoversor m definido em (114) é 
equivalente àquele visto em (90) se o modelo 
considerado é o modelo isótropo e associativo. 

Com o autoversor m calculado, pode-se iniciar a 
análise pós-bifurcação. Para isso, considera-se uma 
solução ramificada ( ü @, w @,(){/;))relacionada ao 
ponto de singularidade obtido, que satisfaz a (111) e 
(112), o qual é expresso por: 

( ü (/;o), w (l;o),b{l;o))=( ü 
0 

, w 0 ,~) . 

Todos os resultados obtidos a partir de agora são 
aplicações diretas daqueles encontrados em [6], [1 O] 
e [11]. 

A análise pós-bifurcação se inicia efetuando-se 
os cálculos de , 

*T 0 *TI'() 
('I' ) f õ e ('I' ) J w ; (115) 

tal que, 'I'* E N(fP. ]T). 
u 

Considerando-se, 

f~= h ( ü (/;o), w (l;o),b{l;o)) =h ( u 
0 

, w 0 ,~), 
então, 

f o =f. ô , (116) 

ou seja, f~ é equivalente ao vetor taxa de forças f , 
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De acordo com as referências citadas, 'I'* é 
determinado resolvendo-se: 

~]T "'. =O. (118) 

Considere-se .fu = f iJ. ( ü 
0 

, w 0 ,~), tal que, f iJ. = 

V uf é expresso por, 
fu(ü,w,O)=(}Q(m®n); (119) 

onde 8 = Y' I . 
/ 13' 

Então, a partir de ( 119) e de resultados encontrados 
em [7], é feita a análise da equação (118): 

~]T'I'* =0 <=> [Qm®n]T 'I'* =0 <=> 

<=> [n ® Qm] 'I'* =O <=> [n ® m](QT 'I'*)= O 
<=> [n ® m] (Q '!'*)=O, 

pois da lei associativa e isotropia tem-se que Q é 
simétrica (ver equação (39)). 

Logo, 

~]T 'I'* =O <=> [n ® m] (Q '!'*)=O; 

º"'·=o, (120) 
a qual é equivalente à equação (107). 

Então, por resultados análogos àqueles obtidos na 
proposição 5.1, a análise da equação ( 118) é 
equivalente, pela (120), em 'I'* ser um autoversor 
associado a autovalor nulo de Q. Esta afirmação permite 
considerar 'I'* tal que: 

w· =m; (121) 
ou, como visto em [1], para o caso dinâmico por, 

. T 
"'*=Ç,(x,t)m=e' (n x-ct )m; (122) 

ou ainda, como o definido em ( 1 06), de tal forma que, a 
análise de (115) é equivalente a: 

T O T.o 
m f 8 em Jw (123) 

considerado para o ponto de singularidade Observação 5.1: 

(üo, wo ,~) . 

Da mesma forma, 

flw =f w ( ü (/;o), w (/;o), o (/;o)) =f w ( ü 
0 

, w 0 ,~), 

é determinado calculando-se K w ( w , ü ) por: 

Kw = _.:!__ (div(H( w )[V ü ]))= div(H w [V ü ]), 
dW 

para em seguida considerar este aplicado no ponto 

singular ( ü 
0 

, w 0 ,~), ou seja, 

Pw=div(Hw(w 0 )[Vu
0

]); (117) 

onde, [V Ü0 ] =y ( m ® n) 
No que segue são caracterizadas as condições de 

ponto limite e ponto de bifurcação, considerando-se 

os valores de f~ e flw determinados em (116) e 

(117). 

Na análise de (107) e (118) aparecem 
respectivamente os tensores [m ® n] e [n ® m]. Note 
que, esse tensores são singulares se m for paralelo a n 
(modo I) ou m for perpendicular a n (modo II) ou ainda 
se m não é paralelo nem perpendicular a n , mas Q é 
singular. Desde que, a recíproca é verdadeira, ou seja, Q 
é singular se m for paralelo a n (modo I) ou m for 
perpendicular a n (modo II), então, a singularidade de 
[m ® n] e [n ® m] implica sempre em que Q ser 
singular. 

Portanto, a singularidade de Q é uma condição 
suficiente para a análise de singularidade de ( 1 07) e 
( 118). 

18 

1661 



• ~ Imprimir Sair Menu 

Anais do 3° Congresso Temático de Dinâmica e Controle da SBMAC 

5.3 Condição de Ponto Limite Simples 

Baseando-se nos resultados da Teoria de 
Bifurcação, para problemas com um parâmetro 
( w ), devido aos autores citados, para se ter no 
problema de dois parâmetros ( 111) somente a 
ocorrência de pontos limites em ambas as variáveis 
o e w , deve-se ter: 
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associado à bifurcação. Para isso, basta definir-se ~ tal 

que, m TI~ 7:- O e, assim, uma condição de não 

degeneração definida pelos autores citados está 
satisfeita. Isso simplifica os cálculos efetuados já que, a 
análise de bifurcação propriamente dita recai apenas no 
parâmetro w , associado à dissipação de energia no 
processo. 

m T f~ 7:- O e mT f! 7:- O, (124) Observação 5.3: 

com m calculado em (114); f~ e f! determinados 

em (116) e (117), respectivamente. 

5.4 Condição de Ponto de Bifurcação 

Para se ter ocorrência de pontos de bifurcação 
para a equação (102) é necessário que se verifique 
uma das situações: 

m Tf~ =O ou mTJ! =O, (125) 

ou seja, basta que uma ou outra se verifique. 

Levando-se em conta a (125) e resultados 
extraídos da Teoria de Bifurcação vistos em [6], 
[10] e [11], relacionados à ocorrência de pontos de 
bifurcação, a caracterização dos pontos de 
bifurcação pode ser dada como segue. 

Sobre determinadas condições, vistas naquelas 
referências: 

i) o ponto singular ( ú 
0 

, w 0 ,~) implica em 

bifurcação simples ou bifurcação perturbada 
transcritica e a curva que passa pelo ponto, em uma 

vizinhança V( ú 
0 

, w 0 , ~), é uma quadrática 

simples, nesse caso hiperbólica; 

ii) o ponto ( ú 
0 

, w 0 ,~) implica em bifurcação em 

garfo e a curva passando pelo ponto, em 

V( ú 0 , w 0 , ~) é cúbica, em forma de cúspide. 

Uma análise pós-singularidade análoga à feita nesta 
seção para equações envolvendo propriedades físicas do 
material pode ser feita explorando-se as propriedades 
geométricas da estrutura com procedimentos análogos 
aos efetuados aqui, a qual pode ser vista no Apêndice 
F de [1]. 

6 Análise incrementai 

Para o tratamento numérico do modelo constitutivo 
analisado, faz-se a Análise Incrementai do problema de 
localização de deformação em modelos de dano 
contínuo, considerando-se as relações locais em taxas 
vistas em (22) e (35), exploradas na equação de 
localização de deformação, expressa em (64), a qual é 
equivalente à (65) . Para a análise incrementai de pós­
localização devem ser incluídas na primeira análise, as 
equações em taxas vistas nesta seção. 

O tratamento numérico possibilita uma integração 
numérica exata e regime de softening linear, se o 
incremento de deslocamento não viola o limite imposto 
em (5a,b ), para a energia de dissipação. As relações 
locais de dano são equivalentes a um problema de 
complementaridade linear, vistas em (8a,b ), enquanto 
que, o problema incrementai relativo à (65), trata-se de 
um problema de maxirnização. Assim, a análise 
incrementai pode ser feita explorando-se métodos de 
otimização associados ao método dos elementos finitos . 

iii) o ponto ( ü
0

, w 0 ,~)exibe bifurcação em ilha e Conclusão 
a curva passando pelo ponto, em uma vizinhança 

V( ú 
0 

, w 0 ,~), é uma quadrática simples, nesse caso 

elíptica. 

As figuras ilustrativas dos ítens i), ii) e iii) 
podem ser vistas em ([1], Apêndice E). 

Observação 5.2: 

A consideração feita em (124) é importante 
pois, pode-se fazer a análise pós-bifurcação de 
solução, considerando-se um dos parâmetros como 
parâmetro de controle ou continuação, por exemplo 
o parâmetro 5, enquanto que o outro parâmetro é 

Neste trabalho, em virtude dos modelos constitutivos 
de dano contínuo perderem a unicidade de solução no 
regime de encruamento negativo, realizou-se um estudo 
detalhado da condição de localização e de pós­
localização de deformação para esses modelos. O tensor 
acústico, caracteristico deste estudo, foi obtido a partir de 
abordagens locais estática e dinâmica do equilíbrio. Em 
particular, na abordagem dinâmica, mostrou-se que a 
localização está também relacionada ao problema da 
estacionariedade de ondas de aceleração. A condição 
necessária de localização de deformação ou de ocorrência 
da instabilidade, analisada nas seções 2 e 3, foi 
relacionada à singularidade do tensor acústico. No caso 
do tensor ser simétrico, a análise espectral relacionou a 
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condição de localização diretamente à existência de 
autovalores nulos para o mesmo e sua aplicação aos 
modelos associativos com dano contínuo, 
caracterizou a singularidade do tensor acústico a 
partir da existência de um autovalor nulo para um 
problema modificado. 

Viu-se ainda, na seção 3, que pode ocorrer a 
existência de autovalores não nulos, no caso 
dinâmico, para tensores não-simétricos, relacionados 
aos modelos isótropos não-associativos. Utilizando-
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CNMAC" (J.M. Balthazar, S.M. Gomes e A. Sri 
Ranga, eds.), Série TEMA, Vol. 2, pp. 25-35, 
SBMAC, 2002. 

[3] A.R Balbo e S.P.B. Proença, Análise de 
Localização de Deformação em modelos 
constitutivos de dano contínuo, "Seleta do XXV 
CNMAC" (J.M. Balthazar, S.M. Gomes e A. Sri 
Ranga, eds.), Série TEMA, pp. 149-158, SBMAC, 
2003. 

[4] A. Benallal, Localisation 
se da relação de semelhança do tensor acústico com 
tensores obtidos como modificações de posto um ou 
posto dois do tensor identidade, conseguiu-se 
expressões para se calcular os autovalores e 
autovetores decorrentes da singularidade desse 
tensor. Na seção 4, utilizando-se de resultados [5] 
obtidos nas seções anteriores, foram estudados os 
vários tipos de instabilidade de solução que podem 
ocorrer, através de urna análise pós-singularidade 

Phenomena m 
Thermoelastoplasticity, Arch. 
(1992), 15-29. 

Mechanics, 44 , 

R. Billardon, Etude de la Rupture par la 
Mecanique de L'endommagement, Lab. Mec. 
Tech., E.N.S. Cachan/ C.N.R.S./ Un. Paris 6, 1989. 

dos autovalores associados ao tensor acústico. [6] 
Assim, a condição de suficiência foi investigada a 
partir da análise de pós-bifurcação do modelo. Fez-

D.W. Decker e H.B. Keller, Multiple Limit Point 
Bifurcation, Journal of Mathematical Analysis 
and Applications, 75, (1980), 417-430. 

se urna classificação da instabilidade de acordo com 
E.M. Gurtin, "An Introduction to Continuum 
Mechanics", Academic Press Inc., New York, 
1981. 

os modelos assumirem ou não, isotropia e [7] 
associatividade, bem como, carregamentos 
conservativos ou não. De acordo com cada caso, 
urna classificação foi proposta explorando-se os 
autovalores do tensor acústico. [8] M. Hachich, "Conditions de Bifurcation dans 

les Solides", These de Doctorat, Lab. Mech. Tech., 
E.N.S. Cachan/C.N.R.S.!Un. Paris 6, 1994. 

Na seção 5, analisou-se o modelo isótropo, 
associativo e conservativo em que o tensor é 
simétrico e os autovalores reais, caracterizando 
matematicamente a solução em dois casos 
excludentes: ponto limite ou ponto de bifurcação de 
solução. Os outros casos não foram analisados neste 
trabalho e são objetos de pesquisa futura. 

Uma idealização do tratamento numérico do 
modelo analisado através da análise incrementai foi 
resumida na seção 6. 

É importante ressaltar mais urna vez que, a 
proposta de caracterização da instabilidade ao nível 
constitutivo desenvolvida restringiu-se ao âmbito 
puramente matemático, não sendo possível no 
estágio de desenvolvimento efetuado, especular 
sobre o significado fisico dos resultados obtidos. 
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