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Abstract

Let QSH be the whole class of non-degenerate planar quadratic differential systems possessing
at least one invariant hyperbola. In this article, we study family QSH, ¢y of systems in QSH
which possess three distinct real singularities at infinity. We classify this family of systems, modulo
the action of the group of real affine transformations and time rescaling, according to their
geometric properties encoded in the configurations of invariant hyperbolas and invariant straight
lines which these systems possess. The classification is given both in terms of algebraic geometric
invariants and also in terms of invariant polynomials and it yields a total of 162 distinct such
configurations. This last classification is also an algorithm which makes it possible to verify for
any given real quadratic differential system if it has invariant hyperbolas or not and to specify
its configuration of invariant hyperbolas and straight lines.
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1 Introduction and statement of the main results

A real planar polynomial differential system is a differential system of the form

dz/dt = p(z,y),dy/dt = q(x,y) (1)

where p(z,y), ¢(z,y) are polynomial in z,y with real coefficients (p,q € Rz, y]). We call degree of
such a system the number max(deg(p), deg(q)).



A real quadratic differential system is a polynomial differential system of degree 2, i.e.

T = Po +p1(dax7y) + p2(&7$7y) = p(d,agy),
y =qo+ ql(dvxay) + q2(&7$7y) = Q(&,J;,y)

with max(deg(p), deg(q)) = 2 and

bo = a, pl(daxvy) :C;U—i_dyv pQ(avxay) =g$2—|—2hxy—|—/£y2,
q@0=">b qazy) =er+fy, @@y =Ila®+2mzy+ny’.

Here we denote by a = (a,c,d, g, h,k,b,e, f,l,m,n) the 12-tuple of the coefficients of system (2).
Thus a quadratic system can be identified with a points @ in R'2.

We denote the class of all quadratic differential systems with QS.

Planar polynomial differential systems occur very often in various branchesb of applied mathemat-
ics, in modeling natural phenomena, for example, modeling the time evolution of conflicting species
in biology and in chemical reactions and economics [13, 30], in astrophysics [6], in the equations of
continuity describing the interactions of ions, electrons and neutral species in plasma physics [21].
Polynomial systems appear also in shock waves, in neural networks, etc. Such differential systems
have also theoretical importance. Several problems on polynomial differential systems, which were
stated more than one hundred years ago, are still open: the second part of Hilbert’s 16th problem
stated by Hilbert in 1900, the problem of algebraic integrability stated by Poincaré in 1891 [18], [19],
the problem of the center stated by Poincaré in 1885 [17], and problems on integrability resulting
from the work of Darboux [9] published in 1878. With the exception of the problem of the center,
which was solved only for quadratic differential systems, all the other problems mentioned above,
are still unsolved even in the quadratic case.

Our main motivation in this article comes from bintegrability problems related to the work of
Darboux. Darboux showed that if a polynomial system has s invariant algebraic curves f;(x,y) =0
with f; € Clz,y] with s > m(m + 1)/2 where m is the degree of the system, then the system
is integrable. This condition is only sufficient for Darboux integrability (integrability in terms of
invariant algebraic curves) and it is not also necessary. Thus the lower bound on the number of
invariant curves sufficient for Darboux integrability stated in the theorem of Darboux is larger than
necessary. Darboux’ theory has been improved by including for example the multiplicity of the curves.
Also, the number of invariant algebraic curves needed was reduced but by adding some conditions, in
particular the condition that any two of the curves be transversal. But a deeper understanding about
Darboux integrability is still lacking. We point out that algebraic integrability, which intervenes in
the open problem of Poincaré, and which means the existence of a rational first integral for the
system, is a particular case of Darboux integrability.

To advance knowledge on algebraic or more generally Darboux integrability it is necessary to have a
large number of examples to analyze. In the literature scattered isolated examples were analyzed but
a more systematic approach was still needed. Schlomiuk and Vulpe initiated a systematic program
to construct such a data base for quadratic differential systems. Since the simplest case is of systems
with invariant straight lines, their first works involved only lines (see [23], [25], [26], [27], [28]). In this
work we study the class QSH of non-degenerate, i.e. p, g are relatively prime, quadratic differential
systems having an invariant hyperbola. Such systems could also have some invariant lines and in



many cases the presence of these invariant curves turns them into Darboux integrable systems. We
always assume here that the systems (2) are non-degenerate because otherwise doing a time rescaling,
they can be reduced to linear or constant systems. Under this assumption all the systems in QSH
have a finite number of finite singular points.

On the class QS acts the group of real affine transformations and time rescaling and due to this,
modulo this group action quadratic systems ultimately depend on five parameters. This group also
acts on QSH and modulo this action the systems in this class depend on three parameters.

As we want this study to be intrinsic, independent of the normal form given to the systems, we
use here invariant polynomials and geometric invariants for the classification.

An important ingredient in this work is the notion of configuration of invariant curves of a poly-
nomial differential system. This notion appeared for the first time in [23], restricted for invariant
lines.

Definition 1. Consider a planar polynomial system of degree n. By configuration of invariant
algebraic curves of this system we mean the set of (complex) invariant algebraic curves (which
may have real coefficients) of the system, each one of these curves endowed with its own multiplicity
and together with all the real singular points of this system located on these invariant curves, each
one of these singularities endowed with its own multiplicity.

We associate to each system in QSH its configuration of invariant hyperbolas and straight lines,
in other words in the definition above we limit ourselves only to hyperbolas and lines.

Let us suppose that a polynomial differential system has an invariant algebraic curve f(z,y) =0
where f(x,y) € Clz,y] is of degree n, f(z,y) = ap+a10z+ap1y~+... +anox" +an—112" y+...+ap,y"
with @ = (ag, ..., apn) € CY where N = (n + 1)(n + 2)/2. We note that the equation \f(x,y) = 0
where A € C* and C* = C\{0} yields the same locus of complex points in the plane as the the
locus induced by f(z,y) = 0. So that a curve of degree n defined by a can be identified with a point
[a] = [ao : a10 : ... : apn) in Py—1(C). We say that a sequence of degree n curves f;(x,y) = 0 converges
to a curve f(z,y) = 0 if and only if the sequence of points [a;] converges to [a] = [ag : a1p : ... : aon)
in the topology of Py_;(C).

Definition 2. We say that an invariant curve L : f(xz,y) =0, f € Clx,y] (respectively Lo : Z =0)
for a quadratic system S has multiplicity m if there exists a sequence of real quadratic systems Sy
converging to S, such that each Sy, has m (respectively m — 1) distinct (complex) invariant curves
Lig: figlz,y)=0,..., Lok fulz,y) =0, converging to L (respectively to L) as k — oo, in the
topology of Pn—1(C), and this does not occur for m + 1 (respectively m).

It is clear that the configuration of invariant curves of a system is an affine invariant. In particular
the notion of multiplicity defined by Definition 2 is invariant under the group action, i.e. if a quadratic
system S has an invariant curve £ = 0 of multiplicity m, then each system S’ in the orbit of S under
the group action has a corresponding invariant line £’ = 0 of the same multiplicity m.

In [15] the authors provide necessary and sufficient conditions for a non-degenerate quadratic
differential system to have at least one invariant hyperbola and these conditions are expressed in
terms of the coefficients of the systems.



The goal of this article is to produce a classification with respect to the configurations of invariant

hyperbolas and invariant lines, of the whole class of non-degenerate quadratic differential systems

possessing three real distinct singular points at infinity, i.e. when 7 > 0 (we denote this family by

QSH(n>0)). This classification should QSH,~ ) also be expressed in terms of invariant polynomials

so that no matter how a system may be presented to us, we should be able to verify by using

this classification whether the system has or does not have invariant hyperbolas and to detect its

configuration.

Main Theorem. Consider the class of all non-degenerate systems in QSH(,~qy possessing an

tmwvariant hyperbola.

(A) This family is classified according to the configurations of invariant hyperbolas and of invariant

straight lines of the systems, yielding 162 distinct such configurations. This geometric classifi-

cation appears in Diagrams 1 to 7. More precisely:

(A1)

(A2)

There are exactly 3 configurations of systems possessing an infinite number of hyperbolas
which are distinguished by the number and multiplicity of the invariant straight lines of
such systems.

The remaining 159 configurations could have up to a maximum of 8 distinct invariant
hyperbolas, real or complex, and up to 4 distinct invariant straight lines, real or complex,
including the line at infinity.

Assuming we have m invariant hyperbolas H; : fi(xz,y) = 0, m' invariant lines L; :
gj(z,y) = 0, the geometry of the configurations is in part captured by the following in-
variants:

(a) the type of the main divisor Y n(H;)H;+ ) n(L;)L; on the plane Py(R), where n(H;),
n(L;) indicate the multiplicity of the respective invariant curve;

(b) the type of the zero-cycle MSoc = Y L;U; + ) mjs; on the plane Pa(R), where ;,
m; indicate the multiplicity on the real projective plane, of the real singularities at
infinity U; and in the finite plane s; of a system (2), located on the invariant lines and
1wvariant hyperbolas;

(c) the number of the singular points of the systems which are smooth points of the curve:
T(X,Y,2)=11F(X,Y,Z2) - 1]G;(X,Y, Z)- Z = 0 where F;,G}’s are the homogeniza-
tions of fi’s, gj’s respectively, where f; = 0 are the invariant hyperbolas and g; = 0 are
the invariant straight lines, and by their positions on T(X,Y,Z) = 0. This position
1s expressed in the proximity divisor PD on the Poincaré disk of a system, defined in
Section 2.

We have 120 configurations of systems with exactly one hyperbola which is simple:

(i) 40 of them with no invariant line other than the line at infinity: 36 of them having
only a simple line at infinity, 2 of them having a double line at infinity, and 2 of them
having a triple line at infinity;

(ii) 46 of them with only one invariant line other than the line at infinity: 39 of them
having only simple lines, 3 of them with a double finite line, and 4 of them with the
line at infinity being double;



(iii) 23 of them with two distinct simple affine invariant lines (real or complex) and a
simple line at infinity;
(iv) 6 of them with three simple invariant straight lines other than the line at infinity;

(v) 2 of them with two simple lines and one double line: 1 of them with a double finite line

and 1 of them with a double line at infinity;

(vi) 3 of them with four simple invariant straight lines other than the line at infinity.
We have exactly 35 configurations with hyperbolas of total multiplicity two:

(xi) 11 of them with no invariant straight line other than the line at infinity;
(xii) &5 of them with only one simple invariant straight line other than a simple line at
nfinity;
(ziii) 11 of them with exactly two invariant lines which are simple other than the line at
infinity, which 2 of them with a double hyperbola;
(xiv) 8 of them with exactly one double line either in the finite plane or at infinity;

(xzv) 5 of them with three simple invariant straight lines other than the line at infinity.
We have exactly 4 configurations with three distinct hyperbolas:

(zvi) 2 of them with only one invariant straight line other than the line at infinity;

(zvii) 2 of them with exactly two invariant lines which are simple other than the line at
nfinity.

(B) The affine classification of these configurations is done in terms of invariant polynomials in  Dana
Diagrams 8 and 9.

The diagrams Diagrams 8 and 9 give an algorithm to compute the configuration of a system with an
mwvariant hyperbola for any system presented in any normal form and they are also the bifurcation
diagrams of the configurations of such systems, done in the 12-parameter space of the coefficients of

these systems.

Remark 1. The polynomials X%Ai/) in Diagrams 8 to 9, where W = A,....G and i = 1,...,8,
are introduced in Section 3 within the proof of part (B) of the Main Theorem whenever they become

necessary, whereas other invariant polynomials (1, 0, p;, B;. .. and so on) are introduced in Section 2.
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2 Basic concepts, proof of part A of the Main Theorem and aux-
iliary results

In order to understand the classification stated in the Main Theorem we need to define all the in-
variants we used and to state some auxiliary results. A quadratic system possessing an invariant
hyperbola could also possess invariant lines. We classified the systems possessing an invariant hyper-
bola in terms of their configurations of invariant hyperbolas and invariant lines. Each one of these
invariant curve has a multiplicity as defined in [8]. We encode this picture in the multiplicity divisor
of invariant hyperbolas and lines. We first recall the algebaic-geometric definition of an r-cycle on
an irreducible algebraic variety of dimension n.

Definition 3. Let V' be an irreducible algebraic variety of dimension n over a field K. A cycle of
dimension r or r-cycle on'V is a formal sum Sywnw W, where W is a subvariety of V' of dimension
r which is not contained in the singular locus of V, ny € Z, and only a finite number of ny ’s are
non-zero. We call degree of an r-cycle the sum Xny . An (n — 1)-cycle is called a divisor.

For polynomial differential systems (S) possessing a finite number of irreducible affine invari-
ant algebraic curves f;(x,y) = 0, each with multiplicity n;, we may define the multiplicity divisor
on the complex projective plane, of the invariant algebraic curves as being the divisor ICD =
YuniFi(X, Y, Z) + noo Z where Fy(X,Y,Z) = 0 are the projective completions of f;(x,y) =0, n; is
the multiplicity of the curve F; = 0 and n is the multiplicity of the line at infinity Z = 0.

In the case we consider here, we have a particular instance of this divisor because the invariant
curves will be the invariant hyperbolas and invariant lines of a quadratic differential system, in
case these are in finite number. Another ingredient of the configuration of invariant hyperbolas and

10



(1)
C{)nﬁq H.78
PD= 473
hlyl
MSyc = U1+Uz+ Us

™ B
Config. H.79

PD=2P1+2P; = o

(1)

(1
Config. H.80
Ll h h

MSoc=U;+Us+Us ‘ W
- &)
»(1)
" Config. H.81
hly lLilo U o

MSyc = U1+U2+U3,+81+52 +25835 'W
)

(1)
hla o 1l l Config. H.82
MSoo = U1+U2+2U3+51 +82+ 83 R M
[€)] "
<)
d‘ Config. H.83
PD=3P+ 3P2

Al ) Config. H.84
MSoc=Uh+Us +U3 |[PD=2P) + 4P, A ’
Y m;;m

731 +3732 J o
+3'P;+3'P4
ICD=H+L+Ly+ Lo PD=3P+3Pa+4P3+4Py 0
PDo=3P1+3P> ﬂ o
7
(1)
i’onﬁq 81 Config. H.86
PD= 2P1+3P2 W ( Config H.88
hlylo]
MSoc = U1+U2+U3
PD=3P1+3P> ) c
hl hl “onfig. H.89
Lol ‘ <
o
PD =3P +4P: L
1 2 ‘ < )
PD =3P +3Py+3P3+4Py - , v
lilo (1) ‘
TMH=1 ]\[SOC Ul +U}2+U3 Config. H.90
TML=3 hix  hls ’ Config. H.91
+b1+52+53+é4 ' 1) "
<1)
r C(mﬁg H.92
PD= 2771+2732+3733 >
ho hlily C(m H.93
MSoc=U1+Uz+Us PD=2P1+3Py+3P3 "
1 hl hls
TA S+
)
u>
ICD:H+2£+£°°>.A6 (neat page) FOSERR ‘
ICD= 2
CD=HAL: £m>A7 (next page) Confio. 191
—> A5 (next page) -
1CD=H+3L

> Ag (next page)

DiacraM 3: Diagram of configurations with one hyperbola and TML =3

11



A

(L‘,v Config. .95
PDf:2P1 +2P2 o / o

PD=3P1+3P> <1>

PDf =3P 43P, _ / f;onﬁg, H.96
<

7 Cunﬁy H.97

PD=3P1+4P>

A\

As

ICD=H+Ly +,C2+£Oo
hiila PD=3P;+3P+4P3

]US()C U +U2+U3
lo  hli  hla
» Config. H.99
PD=3P,+3P,+3P3s+3P, /

V CO7LfJ H.98

A\

+81+52+83+84

7 Conﬁl] H.100
PD =3P +3P2+3P3+4P,

A\

Config. H.101

PD=2P,+3Ps ’ o
—> 1
1 Config. H.102

Pk
As PD=3P;+4P, / W
[IC’D:H+2£+£OO ‘ V U Config. H.103
TAH -1 PD=2P+3Py+4P3
TML=3 ‘
(1,1)
' Config. H.10
h hl hl / ol /
MSoc=2U1+2Us+Us+2s_ ‘ .1 . ﬁ 10
= (1,1) onfig. 5

A7 PD:2771 +3P2 /(11) (1,1) Config. H.106
(1)
ICD=H+L+2L

(1.1)
ho by |[PD=3P1+4P
AfSOC:2U1+2U2+U3+S1+SL2 ! 2 > ‘
a1
\’ Config. H.107
o) PD=2P;+3Py+3P3 = (1,1)
\' Config. H.108 A
PD=4pP @
1)
Asg Q) )
Config. H.109
ICD=H~+3L] .
[ el ppoap rop, o

DIAGRAM 3: (Cont.) Diagram of configurations with one hyperbola and TML =3
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PD=3P

s Ao
MSoc = U1 +Uz+Us

hls  hlils sl
+S1+82+ S3 + 84

o)

l ('orLﬁq H.111

ICD=H+L1+Lo+L3+ L ‘ Config. H.112

PD =3P +3P,

Q)

Config. H.113
hls  hiql
ZMSOC:U1+U;+UI32 PD=3P1+3P> }(

hly  hly | lils 1213
+51+s2+ 853+ D o
=

[
PD=3P;+4P, _ A @
o) - .

(1) Config. H.115

ICD=H~+L1+LS+L+Loo @

Q

(1.1)
"‘ (f‘jnﬁ(] H.116
o/

Config. H.114

ICD=H+L1+Lo+2L+

»

TMH=1
TML>4

1)

(1) ,,
p Config. H.117

ICD=H+2L1+Lo+Ls e
"4

h lilo  hlsly
MSoc=U1+Us+Us

l1l3 l2l4 hlll4 hlglg
+51+ 82+ 53+ 54

ICD=H+L1+Lo+ L3+ L4+ L l1  hly hlsly W
MSoc=U1+Us+Us

hls  laly l1lQl3 hllls
+s1+52+ 83+

Config. H.119
(1)

' Config. 1.120
ICD=H+LY + LS+ LY+ LS+ Loo @

DiacrAM 4: Diagram of configurations with one hyperbola and TML > 4

invariant lines are the real singularities situated on these invariant curves. We therefore also need
to use here the notion of multiplicity zero-cycle on the real projective plane of real singularities of a

system.
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(1)

N Config. H.121

h1 ho  hihs
]WSOC:Ul—O-UQ—FUg‘ @

h] h2 h1h2
MSpc = U1+U2+U3+81+82

&

ﬁ

h1 ha  hihs hiho
MSoc = U1+U2+U3+51+2 59

hi ha hiha Conﬁq H.122
MSoc =3U1+Uz+Us

TMH=2,TML=1

(Eon

(1 Config. H.125
hi  hg hiho ho e
MSoc =U1+Us+2 U3—|—81—|— égz‘ (1.,1>
” ‘ )

1ICD=H1+Ho+ L

h1 ha  hihy b, py
MSoc=U1+3Us+ Us +51+52 \ S

MSoc =Ui+Uy+Us +514 S2+ 83

( )Conﬁg H.127
— — (1)
=\
—

1)

(” Config. H.128
hi  ha hihs b by hihe [PD=2P14+3Py <l>
‘ w

(1)
PD=3P,+3P,+3P; m
(1) “

o .
N ; o ’ Config. H.130 Config. H.129
Lo M2 o by hy hiha
MSoc=U;+Uy+Usz+251+ 55+ 83 r(”
)

N Config. H.181
hi  hs hihs I
MSoc = U1+U2+U3+81—|—82—|—85—|—84 R (1)

DiacrAM 5: Diagram of configurations with two hyperbolas and TML =1

Definition 4. (1) Suppose a real polynomial system has a finite number of invariant hyperbolas and
mwvariant lines. The divisor of invariant hyperbolas and invariant lines on the complex projective
plane of such a polynomial system is the cycle defined as:

ICD =niHi+ ...+ npH +meoLoo + miLle+ ...+ mp Ly,

where H; are the invariant hyperbolas, L; are the invariant lines, nj (respectively m;) is the
multiplicity of the hyperbola H; (respectively of the line L;), Lo is the line at infinity and ms
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1)

h1 ha  hihal
MSyc=U1+Us+ Us_

hi ho hihal 1 1
MSoc=U+Us+ Us+s1+5s

2
>

hi  hy hihal pihs

ICD=H1+Ha+ L+ Lo

hihs
MSoc=U+Us+ Uz + 81+ 52

Q)
Config. H.132

(1)

“

ha hiha hil h

AlSOC:U1+U2+U3+Si+<S!2+

hiha

’ Config. H.134

Config. H.135
[¢Y]

hal
83+ 84

hi  hy hih2l 1

MSoc=U1+Us+ Us +51+S2+ S3 + 84

\ 4

7

(1)

hiha  hiha

hiha  hihalily
MSoc=U1+ Uy + Us

hlll hzl] }L1l2 hzlz

+ 81 + S2+ s3+ 54

PD=3P;+3P,
— T,

I1CD=H+Ho+ L1+ Lo+ Lo h ha  hihally

MSoc=U1+ Uy + Us

Iy hila  haly
+ 51+ s2+ 53 +

hihaly
54

PD=4P;+4P,
=

PD=3P1+3P

h1 hlhg hzlllg
MSoc=U;+ Uz + Us
hily holy  hila  hala

+ 51 + S92+ S3+ S4

TMH=2
TML>?2

hihs hihs
MSoc=U1+ Uy + Us

»
>

<1>

) Config. H.136

Config. H.137
(1
(D

&)
0,

(1)
Config. H.138

1)

m

>0

(1)

ICD=H1+Ho+ LY+ LS+ Lo

hi ho hihso
\MSoc=U1+ Uy + Us

ICD=HY+HF+ LY+ LS+ Lo

ICD=H{ +HS + L1+ Lo+ Lo

L Ay (next page)

A\

=

Config. H.143

Config. H.142

Config. H.145
(1)

DiacraM 6: Diagram of configurations with two hyperbolas and TML > 2
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[€))

(1)
' Config. H. 146
ICD=H1+Hs+L+2L _ ‘ / (1)
Y
hl h2l3 h1h2l1l2

MSoc=U1+ Uy + Us

haly  hiholy  halyls lals
+ 81+ s + S3°+ s4

h1  hihals  halils
MSoc=U1+ Uy + Us

lilg 1ol hihaly  hihal
ICD=H1+Ho+ L1+ Lo+ La+Loo | + 87 +85 + 55 + 51

Iy h1h2 h1h21213
MSoc=Ur+ Us+ Us;

hila  hilz  hihls  halils
+ 81 + s9 + 83+ S4

1)

\ (1)
’ Config. H.150 Config. H.149
ICD=H +Ho+ L1 +LS +LS + Lo (1

)
Ag g % @

e Conf 115
[TMLZZ_ ICD=H{+HS +L1+LS+LS+ Lo . g,m
((1)
ICD=H1+Ho+2L+ Lo v Sonfig- 152
"\

(1)
(1)
ICD=H{+HS +2L+ Lo Config. H.155
(1)

\ 4

(1)

<1>

Config. H.154
[CD=2H+L1+Lo+ Lo - / o
<
() Config. H. 155

ICD=2H+L+ LS+ Lo 0

DiaGrRAM 6: (Cont.) Diagram of configurations with two hyperbolas and TML > 2

is its multiplicity. We also mark the complex invariant hyperbolas (respectively lines) denoting
them by ’HZC (respectively EZC) We define the total multiplicity TM H of invariant hyperbolas as
the sum y_; n; and the total multiplicity TML of invariant line as the sum ), m;.

In case we have an infinite number of hyperbolas we define ICD = moo Lo +m1 L1+ ...+ mpLy;

(2) The zero-cycle on the real projective plane, of real singularities of a system (2) located on the
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ICD=Hi+Ho+Hs+L+ L

Config. H. 157
Config. H.158
(1)

ICD=H1+Ho+Hs+ L1+ Lo+ Lo

(1)

(1)
h Config. H.159
(1)

ICD=HY+H§ +Hs+ LT+ LS + Lo %

TMH>3

ICD=L1+Lo+ L3+ L4+ L5+ Lo

ICD=LY+ LS+ LY+ LS+ L5+ Lo

ICD=L14+2Ly +2L3+ L

DIiAGRAM 7: Diagram of configurations with three or more hyperbolas (TMH > 3)

configuration of invariant lines and invariant hyperbolas, is given by:
MSoc =11UL+ ... + LU +masy + ... +mySn,

where U; (respectively sj) are all the real infinite (respectively finite) such singularities of the
system and l; (respectively m;) are their corresponding multiplicities.

As the Main Theorem indicates, we also have three cases with an infinite number of hyperbolas
but in these cases we have a finite number of invariant lines and the systems are classified by their
configurations of invariant straight lines encoded in the invariant lines divisor.

The above defined divisor and zero-cycle contain several invariants such as the number of invariant
lines and their total multiplicity 7'M L, the number of invariant hyperbolas in case there are a finite
number of them and their total multiplicity T'M H, the number of ”complex invariant hyperbolas”
of a real system. This term requires some explanation. Indeed the term hyperbola is reserved for a
real irreducible affine conic which has two real points at infinity. This distinguishes it from the other
two irreducible real conics: the parabola with just one real point at infinity and the ellipse which has
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1 Config. H.1
XE4)<0 )
L Config. H.2
W
X(Cl) 04> Config. H.17
(1)
>0
(1) B Config. H.19
Xp' #0 X(1)<0
Wso i Config. H.16
&
5 >0 Config. H.18
W X' <0
Xy >0 X(1)<034> Config. H.21
0 R Config. H.23
onfig. H.2:
T#0
2 X(l)
X8)>0 ﬁ) Config. H.20
1
X§3> =0 Xp = Config. H.22
o
Config. H.26
T=0 X(l)
>0 Config. H.24
(1)
X(1)<0 Xp >0, Config. H.25
1) _ OB—> Config. H.7
= x5 >0
Xp =7, Config. H.8
B1#0 W <0
(1) 04> Config. H.3
Xa =2 >0
Xp =2, Config. H.4
&
Y Xp Config. H.30
Xé <0 (1)7“]
Xg) >0 Config. H.32
M Config. H.34
(1)
o Xz <0 Config. H.29
Xc <0 W 20
(1) M) o 22— Config. H.31
>0 g
(o — o S
Config. H.33
(1)
0
Xg)<0—>XD z Config. H.9
1 _
X(l):O Xp =0, Config. H.11
- X' #0
B1#0 (1)>0 Config. H.10
T
Xg)ZO 70 Config. H.12
>0 NOP T=0, Config. H.15
0+£0 ) _ g2 Config. H.1/
M 0o
B1=0 Cy (next page) Config. H.15
E Cy (neat page)
1f1=0_

C3 (next page)

DIAGRAM 8: Bifurcation diagram in R'? of the configurations: Case 7 > 0, 8 # 0

18



D<0

Config. H.39
W <0 D>o

Config. H.49

(1) _
Xa' <0 D=0 Config. H.4/

(1)
M» Config. H.38

Xg><0

Config. H.75
Xg)<0 D<0

Config. H.74

XS)>U D>0

Config. H.48
D=0
X4 >0 D<0

Ho#0
x4 <0/ >0

Config. H.64
Config. H.73

Config. H47

D=0 -
Xg) -0 L————— Config. H.66

M Config. H.72

>0l D>0o

Config. H.46

D=0
L———~ Config. H.65
X £0 fig

T<0
(1)

Y <o Config. H.67

T>0

X(Al) =0 Config. H.43

X5’ >0

Config. H.42

(1)
X <0, Config. H.70

1o=0 D<0

Config. H.71

Xg)>0 D>0

Config. H.41
D=0

Config. H.55

C

1 DO config. H.60
rﬁo} X' <0 W0
Pi=0 D=01u_,
Lo #0 Xp = Config. H.69

X <0

Config. H.63

Config. H.61
(1)

Xe' >0

= @ D70 Config. H.59
xXp >0
By 40 - X5 #0
B1#0 D=0 oo
Weo D Config. H.68
c Config. H.56

(1)

>0

Xo Config. H.57
L (1)

<0
|:77>0] Xe =7, Config. H.50

Config. H.62

xe' =0 0

X;})>0 D# Config. H.51
D=0 Config. H.54

[B2=0 Cy (next page)

| & F——C, (nest page)
£1=0

EL=2 C3 (neat page)

DIAGRAM 8: (Cont.) Bifurcation diagram in R!2 of the configurations: Case n > 0, § # 0
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X(l)
04> Config. H.84

(1)
<0
XECSD Config. H.86
(1) (1)
>0 <0
Ca _XC Xg < Config. H.85
¢ X >0x8 >0
B ;0 Config. H.83
1) xg' =0
Xp =0 X(l):o Config. H.81
Pr1#0 || Bo=0 LC s Config. H.82
X(Q)
L Config. H.37
(2)
Cs X(A2)>UXB <0 Config. H.52
+v(2)
[¢2] Xz >0 Config. H.53
=0
- Config. H.45 (3) <0
(3)<0 (3) Config. H.1
>0 Config. H.2
+(3)
B <oPrE= =Y Config. H.17
B0
) 20 = Config. H.19
= MO
Xg>>0 i Config. H.16
(3)
Xp >0
10 #0 (3)>0 Z{;nﬁg.H.]S
x$)<0 X <0 Config. H.21
- (3)
T 40 X5 >0, config. H.29
>0 (3) _ (3)
[Z%O} xp =0 Xe >0, Config. H.20
T=0 Config. H.26
(3)
B1#£0 xP=0 Xw =0 Config. 0.7
>0 Config. H.8
(3)
<0
Xa = Config. H.3
. (3)7£
(3) o Config. H.32
=0, o 1.4
(3)
@) glXe >0,
51 #0 po=0 [ Xa >0 config H(éfg
(3) 70 Config. H.9
O g <0x<3) 0 "
x¢ =0 L Config. H.11
(3)
Config. H.10
52#0 XB)
A Config. H.1}
B, =
Be#0 Cs (next page)
01=0
Cs Ce (next page)
[ f2=0, C7 (next page)

=0
5 ]L» Cs (next page)
DIAGRAM 8: (Cont.) Bifurcation diagram in R!2 of the configurations: Case n > 0, 6 # 0
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X&) <o

Config. H.49

X5’ <0

Config. H.7/
(3)
>0 D<0
& #0 D<o,

Config. H.73

X >0| D>0

Config. H.41

D=0

Config. H.55
B _p
Xa =

Config. H.67
. D#0 5
Mi: Config. H.60
6C5 D=0 Config. H.69
|; ?i 0] Ho 7& 0 Jo < 0
1= P D#0 Config. H.61

XE;%)>0 Ko>0 Config. H.59
8 3
By#0 X5 #0

D=0
=

Config. H.62

0
Config. H.68

(3) (3) 0
Xg =0 X 7 Config. H.

_ 9. H57
ro=0 T

B2 #0 Xc =0 Config. H.50
By= Config. H.86

D#0
Xg) <0 # Config. H.128
D=0 Config. H.130

fo <0 ng)>0

Config. H.129
@ =0
860 By #0 L Config. H.12}
Cs to>0 Config. H.127
[(51:0] to=0 Config. H.125
B1=0 Config. H 135
+(3)
Xa <0 Config. H.37
o XE<0 fig. H.52
onfig. H.
Cr [xi'>0 X(3)>0' 9
[ﬁ2:0] e 29, Config. H.53
n>0 ®)_g
|:05£0} XA Config. H.45 w_,
=0 Xp <
B ngl)<0 i) ] Config. H.1
>
Xp Config. H.2
0 (4)
Ho? Xp <0 Config. H.17
DA0 [
W50 Xn 20 Config. H.19
By £0 (4)
L -0 X <0 Config. H.27
(4)
8246240 X5 20, Config. H.28
8,40 Ho=0 Cy (next page)
7
Bi=
1=0 Cio (next page)
CS 68:62:0
— C11 (next page)
B =0]
B7=0

Cio (next page)
DIAGRAM 8: (Cont.) Bifurcation diagram in R!? of the configurations: Case n > 0, 8 # 0
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(4)

Xp <0

X%) <0 Config. H.5
X%)>0
Co ‘ Config. H.6
(4)
N <0
ng(zaé() le) <0 —»Xi) Config. H.35
Mé:() X5 Config. H.360
)]
<0
o Cio XI(Z) Config. H.37
0 = >0
! [B§+6§#0 Xa 77, Config. H.53
B1=0
#o<0 Config. H.123
(5)
Xa <0
i 110>0 © Config. H.121
>
= onfig. H.
s 0, =0 Xa Config. H.131
X(S) <0
11o=0 A Config. H 122
X5 >0
797;8 —=—— Config. H.126
p1=0
Be=0
(4)
e <OX(%<O» Config. H.1
4
xg >0
5340 ‘TO» Config. H.2
Xp <
XE:) ~0 fT({ Config. H.17
>
X5 Config. H.19
By #£0 : D <0
>
Bs #0 : Config. H.133
xffBOM’ Config. H.136
03=0
Ci2 2 © [ D>0, Config. H.134
=
7 -0 Config. H.156
B8 X(6) <0
) A Config. H.157
5
X <0
By 0 2)) Config. H.40
>0
X4 Config. H.58

DIAGRAM 8: (Cont.) Bifurcation diagram in R!2 of the configurations: Case n > 0, § # 0

two complex points at infinity. We call ”complex hyperbola” an irreducible affine conic fi(z,y) =0,
with fi(z,y) = ao + a0z + ao1y + asx? + 2a112y + agey?® over C, such that there does not exist
a non-zero complex number A\ with A(ag, aio, ao1, a0, a11, ap2) € R® and in addition such that this

conic has two real points at infinity.

Attached to an r-cycle C' on an irreducible algebraic variety V we have an invariant, the type of
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(1)
Xa <0 Config. H.2

X' <0
Xg)l)3£0 0 Config. H.17
0 Xg >0, Config. H.18
B1#0x, >0 (1)
T#0 Xp < Config. H.21
€y X5 >0

Xp #0 Xp >0, Config. H.22

" T=0., Config. H.25

Xy =0 Config. H.8

(1)

B0 #£0 Xy <0 Config. H.38
X( )
B—» Config. H.75
(1)
>0 D <0
m 750 (1) Config. H.72
>0/ D>0 Config. H 46
By =0 D=0 Config. H.65
W _g
B 70 4 Config. H.42
(1)
116=0 (1) Config. H.76
>0 Config. H.77
9 <0
Xa <0, Config. H.2
(3)
) <0, Config. 11.17
I A e NI
L 4 ) Xe =5, Config. H.18
Xp =V Config. H.21
N#0 (3) _
XA Config. H.8
Ho#0
By #0 Cis (next page)
n>0 540 po=0
0—0 47 Ci4 (next page)
Bz #0 [B2=0 C15 (next page)
6 =
G270 4 Cig (next page)
Be=0 b =0 Ci7 (next page)
=0
b2 Cis (next page)
N=0

== Cy9 (next page)

DIAGRAM 9: Bifurcation diagram in R2? of the configurations: Case n > 0, 8 = 0
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X5 <0

XEZ) <0 Config. H.78
X(7) >0
BB =~ Config. H.79
(7)
X <0 Config. H.96
(7)
Xo <0 (7)
@ XD4<O> Config. H.99
Xp >0 B1o<0
Xg)>0 — Config. H.95
>0
X<D7)3£O L Config. H.9/
N<O0
. X(LZ) <o Config. H.100
7
Xp <0 ™2 N>0 Config. H.98
>
Ci3 . Xg) <0 XZ) Config. H.97
7
[MO#O] Xa >0 Xg)>0 Xf?)<0 Config. H.93
0
Xp 27, Config. H.92
N<O0
Xg) <0 Config. H.89
M _o N>0, Gonfig. H.90
D D<o
Xg) >0 Xe =5, Config. H.88
(7)
By #0 X0 >0 config. H.87
N <0
Xg) <0 Config. H.103
X(A7):() N>0 Config. H.102
(7)
>0
X5 Config. H.101
(7
M Config. H.106
04#0 C (7)
14
— Xp <0 Config. H. 105
o=
x<7)>0 X(7) >0
4 L Config. H.107
NG
= Config. H.10/
(7)
<0
8,4 Xo =-, Config. H.111
7 #0
0 N<0 )
c Ho7 X(C7) >0 Config. H 112
[B 175@ 0 [ N>0, Config. H.110
2= =
al Config. H.116
N<O0
B2#0 110 #0 Config. H.140
) Ci N>0., Config. H.139
pha e
Ps=0) POZ2 Config. H.146
n>0 -0
[9:0] br Ci7 (next page)
=0
b Cis (next page)
IN=0, ¢,y (next page)

DIAGRAM 9: (Cont.) Bifurcation diagram in R!2 of the configurations: Case n > 0, § = 0
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X <0

Config. H.115
Xg><0

Xg> >0

B3 #£0 XEZ)>O Config. H.114

Config. H.113
Config. H.117
Config. H.119

5540

Ciz_ B3;=0
B27#0
[87:0_ 95=0 Config. H. 147

7
X' =0

N7 =0 Config. H.80

0
Xa >0 Config. H.91
@)
<0
8246240 WD —orE=" Config. H.78

(7)
>0
Xp ~° Config. H.79

X5 <0

5 =0 Xg)>0 Config. H.96

(7)
Xg >0
B1o#0 e~ Config. H.95
M _p

(7)
Xp <0
Xy = Config. H.108

(7)
r N >0
é\f;f(()) X ~7, Config. H.109
76— ] X(A7> <0 .
Be=0,=01 Config. H. 143
XE47) >0

Config. H.141

(M)
M Config. H.144
(7)
>0
Ba70 X4 Config. H.145
(7 _

B7 40 Y10 <0 Xa =0 Config. H.153

By=

Config. H.151

Xy <0

Config. H.142

®)

[n>0] 7 #0 By #0 | (D o< =0, Config. H.17
@)

X >0 Config. H.138

Config. H.152
[/3220] M Config. H.149

B1o=0 (7) <0

Xa Config. H.155

Xfax?)>0

Y10 >0
Xy =0

710=0

Config. H.154

<0
Y7 =0 EURSL R Config. H.159

@ [10>0, Config. H.158

Xa =7, <0 Confi 5
_ g. H.150
Br=01 )

Xa >0, Config. H.148

N=

U. g (next page)

DIAGRAM 9: (Cont.) Bifurcation diagram in R!2 of the configurations: Case n > 0, § = 0
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(®)
Xy <0 Config. H.79

Rg<0

Config. H .96
(8)
>0 (8)
B2#0 XA Xp" <V Config. H.93
Ro>0 [y'¥>0
i XD Config. H.92
X(8):0
®) = Config. H.87
Cig Xy =0 Config. H.101
n>0
(2)
0=0 XA <0
[N:(J Y12 =0 o Config. H.120
Xa >0 Config. H.118
P2=0
—Rg—<0> Config. H 160
713=0
o Ro >0 Config. H.161
Ro=0 Config. H 162

DIAGRAM 9: (Cont.) Bifurcation diagram in R!2? of the configurations: Case n > 0, § = 0

the corresponding cycle defined as follows:

We call type of an r-cycle C' on an irreducible algebraic variety V', the set of ordered couples
(s(m), m) where s(m) is the number of the coefficients ny, in C' which are equal to m and 1 < m <
Max(C), where Max(C) is the maximum of all ny in C.

In analogy with this definition we can then construct such types associated to the divisor and
zero-cycle defined further above.

So although the cycles IC'D and M Syc are not themselves invariants, they are used in the clas-
sification because they explicitly contain these several specific invariants which actually turn out to
classify the systems.

Given a system in QSH, consider its compactification in the Poincaré disk. In the compactified
system the line at infinity of the affine plane is an invariant line. The system may have singular
points located at infinity which are not points of intersection of invariant curves, points also denoted
by U,.

The points at infinity which are intersection point of two or more invariant algebraic curves we
denote by (J]T, where j € {h,l,hh,hl,ll}. Here h (respectively [, hh, hl,ll) means that the intersection
of the infinite line is with a hyperbola (respectively with a line, or with two hyperbolas, or with a
hyperbola and a line, or with two lines).

In case we have a real finite singularity located on the invariant curves we denote it by ér, where
j € {h,l,hh,hl,ll}. Here h (respectively [, hh, hl,ll) means that the singular point s, is located on a
hyperbola (respectively located on a line, on the intersection of two hyperbolas, on the intersection
of a hyperbola and a line, on the intersection of two lines).

Suppose the real invariant hyperbolas and lines of a system (S) are given by equations f;(z,y) = 0,
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i€ {1,2,...,k}, fi € Rlz,y|. Let us denote by F;(X,Y,Z) = 0 the projection completion of the
invariant curves f; = 0 in P(R).

Definition 5. We call total curve of (S) in P»(C), the curve T(S) : [[ Fi(X,Y,Z)Z = 0.

We use the above notion to define the basic curvilinear polygons determined by the total curve
T (S). Consider the Poincaré disk and remove from it the (real) points of the total curve 7(S). We
are left with a certain number of 2-dimensional connected components.

Definition 6. We call basic polygon determined by T (S) the closure of anyone of these components
associated to T (S).

Although a basic polygon is a 2-dimensional object, we shall think of it as being just its border.

Regarding the singular points of the systems situated on 7'(S), they are of two kinds: those which
are simple (or smooth) points of 7(S) and those which are multiple points of 7 ().

Remark 2. To each singular point of the system we have its associated multiplicity as a singular
point of the system. In addition, we also have the multiplicity of these points as points on the total
curve. The simple points are those of multiplicity one. They are also the smooth points of this curve.
Through a singular point of the systems there may pass several of the curves F; =0 and Z = 0. Also
we may have the case when this point is a singular point of one or even of several of the curves in
case we work with invariant curves with singularities. This leads to the multiplicity of the point as
point of the curve T(S).

The real singular points of the system which are simple points of 7(S) are useful for defining some
geometrical invariants, helpful in the geometrical classification, besides those which can be read from
the zero-cycle defined further above.

Remark 3. Here are some observations made from the list of configurations of systems with invari-
ant hyperbolas:

(a) The basic polygons could have one of its sides as a segment of the line at infinity (as for example
in Config. H.1), or just two wvertices on the line at infinity (as in Config. H.156) or just one
vertex on the line at infinity (as in Config. H.95) or no vertex on the line at infinity (as in
Config. H.118, i.e. the finite polygon with four vertices);

(b) A finite basic polygon has either three or four vertices. Examples of 3-vertices finite polygons
are in Config. H.112 or Config. H.139; examples of j-vertices polygons are in Config. H. 147 or
Config. H.118. Altogether we have 4 configurations with finite polygons with four vertices and 5
configurations with polygons with three vertices.

(¢) There are 2 configurations (Config. H.119 and Config. H.149) which have two finite polygons both
triangles.

We now introduce the notion of minimal proximity polygon of a singular point of the total curve.
This notion plays a major role in the geometrical classification of the systems.
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Definition 7. Let p be a real singular point of a system, on T (S) on the Poincaré disk. Then p may
belong to several basic polygons. We call minimal proximity polygon of p a basic polygon on which
p is located and which has the minimum number of vertices, among the basic polygons to which p
belongs. In case we have more than one polygon with the minimum number of vertices, we take all
such polygons as being minimal proximity polygons of p.

For a configuration C', consider for each real singularity p of the system which is a simple point
of the curve 7(S), its minimal proximity basic polygons. We construct some formal finite sums
attached to the Poincaré disk, analogs of the algebraic-geometric notion of divisor on the projective
plane. For this we proceed as follows:

We first list all real singularities of the systems on the Poincaré disk which are simple points of the
total curve. In case we have such points U;’s located on the line at infinity, we start with those points
which are at infinity. We obtain a list Uy,..., Uy, s1,..., Sk, where s;’s are finite points. Associate
to Uy, ..., U, their minimal proximity polygons Pi,...,P,. In case some of them coincide we only
list once the polygons which are repeated. These minimal proximity polygons may contain some
finite points from the list sq,...,s,. We remove all such points from this list. Suppose we are left

with the finite points s, ..., s.. For these points we associate their corresponding minimal proximity

y Sy
polygons. We observe that for a point s;- we may have two minimal proximity polygons in which case
we consider only the minimal proximity polygon which has the maximum number of singularities
s;, simple points of the total curve. If the two polygons have the same number of ss points then we
take the two of them. We obtain a list of polygons and we retain from this list only that polygon
(or those polygons) which have the maximal number of ss points and add these polygons to the list
Pi,...,Pn. We remove all the ss points which appear in this list of polygons from the list of points
s, ..., s and continue the same process until there are no points left from the sequence s, ..., sy
which have not being included. We thus end up with a list Py, ..., P, of proximity polygons which

we denote by P(C).
Definition 8. We denote by PD the prozimity "divisor” of the Poincaré disk

PD =viP1+ -+ v, Py,

over Pa(R), associated to the list P(C) of the minimal prozimity polygons of a configuration, where P;
are the minimal proximity polygons from this list and v; are their corresponding number of vertices.

We used the word divisor in analogy with divisor on an algebraic curve and also thinking of
polygons as the borders of the 2-dimensional polygons. The next divisor considers the proximity
polygons in PD but only the ones attached to the finite singular points of the system which are
simple points on the total curve. So this time we start with all such points s1,...,s; and build up
the divisor like we did before. The result is called ”the proximity divisor of the real finite singular
points of the systems, simple points of the total curve” and we denote it by PDy.

We also define a divisor on the Poincaré disk which encodes the way the minimal proximity
polygons intersect the line at infinity.

Definition 9. We denote by PD the “divisor” of the Poincaré disk encoding the way the prozimity
polygons in PD intersect the infinity and define it as

PDy =) npP,
P
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where P is a proximity polygon in PD and np is 3 if P has one of its sides on the line at infinity,
it is 2 if P has only two vertices on the line at infinity, it is 1 if only one of its vertices lies on the
line at infinity and it is O if P is finite.

Definition 10. For a proximity polygon P we introduce the multiplicity divisor

mPpP = Z m(v) v,
where v is a vertex of P and m(v) is the multiplicity of the singular point v of the system.

In case a configuration C has an invariant hyperbola H and an invariant line £, we defined the
following invariant I which helps us decide the type of their intersection.

Definition 11. Suppose we have an invariant line £ and an invariant hyperbola H of a polynomial
differential system (S). We define the invariant I attached to the couple L, H as being: 0 if and only
if L intersects H in two complex non-real points; 1 if and only if L is tangent to H; 21 if and only if
L intersects H in two real points and both these points lie on only one branch of the hyperbola; 22 if
and only if L intersects H in two real points and these points lie on distinct branches of the hyperbola.
In case for a configuration C we have several hyperbolas H;, i € {1,2,...,7} and an invariant line L,

then I = {I(L,H1),I(L, Ha), ..., [(L, Hy)}.

We now indicate how the proof of part (A) of the Main Theorem is obtained, using its part (B)
proved in Section 3.

Proof: We first need to make sure that the concepts introduced above gave us a sufficient number
of invariants under the action of the affine group and time rescaling so as to be able to classify
geometrically the class QSH, ) according to their configurations of their invariant hyperbolas
and lines. Summing up all the concepts introduced, we end up with the list: ICD, MSyc, TMH,
TML, PD, PD¢, PDy, mP, I. From this list we clearly have that T'M H, T'M L are invariants under
the group action because the action conserves lines and the type of a conic as well as parallelism and
it conserves singularities of the systems which are simple points on an invariant curve. The types
of the divisor IC'D on P»(C) and of the zero-cycle MSyc on P»(R) are invariants under the group
because the group conserves the multiplicities of the invariant curves as well as the multiplicities
of the singularities. The number of vertices of a basic polygon is conserved under the group action
basically because the number of intersection points of the various invariant curves is conserved.
Furthermore the coefficients of mP are also conserved because multiplicities of the singularities
are conserved. For analogous reasons the coefficients of PD, PDy, PD., are also conserved. The
invariant I is also conserved because complex intersection points of a line with a hyperbola as well
as intersection multiplicities are conserved. The concepts involved above yield all the invariants we
need and we now prove that the 162 configurations obtained in Section 3 are distinct.

Fixing the values of TM H and T'M L, we first apply the main divisor /C'D. In many cases, just
using the invariants contained in IC'D and the zero-cycle MSyc (TM H, TM L and the correspond-
ing types) suffice for distinguishing the configurations in a group of configurations. In other cases
more invariants are needed and we introduce the necessary additional invariants, to distinguish the
configurations of the following groups. The result is seen in the Diagrams 1 to 7.
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We finally obtain that the 162 geometric configurations obtained in Section 3 and displayed in
Diagrams 1 to 7 are distinct, which yields the geometric classification of the class QSH,, o) accord-
ing to the configurations of invariant hyperbolas and lines. This proves statement (A) of the Main
Theorem, using its part (B), proved in Section 3. B

A few more definitions and results which play an important role in the proof of the Main Theorem
are needed. We do not prove these results here but we indicate where they can be found.

Consider the differential operator £ = z - Ly — y - L; constructed in [2] and acting on Rla, x, y],
where

_ _0 0 1., 9 _0_ 9 4 1p 9
L1 = 2005, + 105555 + 2001557 1+ 2000555 + 01055, + 3bor g7
_ _0 0 41, 0 0 0 4 1p 0
L2 - 2@00 dapl + ao1 dap2 + 2@10 da1l + 2b00 dbo1 + bOl Obg2 + 2b10 b1y *

Using this operator and the affine invariant pg = Resm(pg(&,x,y), q(a, x,y))/y4 we construct the
following polynomials

. 1 )
pi(a,z,y) = 5ﬁ( o), i=1,..,4,

where £ (o) = L(L7D (0)) and L) (10) = po-
These polynomials are in fact comitants of systems (2) with respect to the group GL(2,R) (see
[2]). Their geometrical meaning is revealed in the next lemma.

Lemma 1. ([1],[2]) Assume that a quadratic system (S) with coefficients a belongs to the family (2).
Then:

(i) The total multiplicity of all finite singularities of this system equals 4 — X if and only if for
every i € {0,1,...,A\—1} we have u;(a,x,y) = 0 in the ring R[z,y] and py(a,z,y) # 0. In this case,
the factorization py(a,x,y) = Hf‘zl(um —v;y) # 0 over C indicates the coordinates [v; : u; : 0] of
those finite singularities of the system (S) which “have gone” to infinity. Moreover, the number of
distinct factors in this factorization is less than or equal to three (the maximum number of infinite
singularities of a quadratic system) and the multiplicity of each one of the factors ux —v;y gives us
the number of the finite singularities of the system (S) which have collapsed with the infinite singular
point [v; : u; = 0].

(i) The system (S) is degenerate (i.e. ged(P, Q) # const) if and only if pi(a,z,y) = 0 in Rz, y]
for every1=20,1,2,3,4.

Proposition 1. ([31]) The form of the divisor D (P, Q) for non-degenerate quadratic systems (2)
1s determined by the corresponding conditions indicated in TABLE 1, where we write p+ q + r° + s¢
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TABLE 1

No Zero—cycle Invariant No Zero—cycle Invariant
D,(P,Q) criteria D,(P,Q) criteria
M0#07D<0>
1 1 g
p+q+r+s R>0S>0 0| p+qg+7r | no=0,D<0O,R#0
2| p+q+rc+s© o #Z0,D >0 11 p+q¢+7°| pp=0,D>0,R#0
”07&07D<0,R§0
3| pe4+qg-+rc+s° 12 2 =D=0,PR#0
peH+qi+ro+s 070D <0S<0 p+q | po ;PR #
4 2p+q+r woZ0,D=0,T<0 |13 3p po=D=P=0,R #0
50 2p4+¢+1° | pu#£0,D=0,T>0|14| p+gq Ho=R=0,P 70,
U>0
HO#O)D:T:(L c c ,LLO:R:OaP?éO)
6 2p + 2q PR > 0 15| p+gq U<0
c c HO#O,D:TZO, MOZR:07P7£O7
7 2p° +2¢q PR < 0 16 2p U=0
po #0,D =T =0, po=R=P =0,
1
8 3p+q P=0,R#0 oor U#0
po #0,D=T =0, po=R=P =0,
) 4p P=R=0 18 0 U=0,V#£0

if two of the finite points, i.e. ¢, s¢, are complex but not real, and

D = [3((u3, 13)?, 1) = (6p1opea — 3papts + 12, u4)(4)} /48,

P =12p0/1s — gz + p,

R =37 — 8uopa,

S =R? — 16,2P, (3)
T =185 (3113 — 8pzpa) + 2110205 — Ipa piopu + 277 pa) — PR,

U =pj — dpapia,

V =py.

The next result is stated in [15] and it gives us the necessary and sufficient conditions for the
existence of at least one invariant hyperbolas for systems (2) and also their multiplicity.

Theorem 1. ([15]) (A) The conditions n > 0, M # 0 and v1 = ~v2 = 0 are necessary for a
non-degenerate quadratic system in QS to possess at least one invariant hyperbola.
(B) Assume that for a non-degenerate system in QS the condition 1 = 2 = 0 is satisfied.

e (B1) If n > 0, then the necessary and sufficient conditions for this system to possess at least
one invariant hyperbola are given in DIAGRAM 10, where we can also find the number and
multiplicity of such hyperbolas.

e (B2) In the case n = 0 and M # 0 the corresponding necessary and sufficient conditions for
this system to possess at least one invariant hyperbola are given in DIAGRAM 11, where we can
also find the number and multiplicity of such hyperbolas.
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(C) The DIAGRAMS 10 and 11 actually contain the global bifurcation diagram in the 12-dimensional
space of parameters of the systems belonging to family of non-degenerate systems in QS, which pos-
sess at least one invariant hyperbola. The corresponding conditions are given in terms of invariant
polynomials with respect to the group of affine transformations and time rescaling.

C
Remark 4. An invariant hyperbola is denoted by H if it is real and by H if it is complex. In the
case we have two such hyperbolas then it is necessary to distinguish whether they have parallel or

non-parallel asymptotes in which case we denote them by HP (7—c[p) if their asymptotes are parallel
and by H if there exists at least one pair of non-parallel asymptotes. We denote by Hy (k=2,3) a
hyperbola with multiplicity k; by Hb a double hyperbola, which after perturbation splits into two HP;
and by MY a triple hyperbola which splits into two HP and one H.

Following [15] we present here the invariant polynomials which according to DIAGRAMS 10 and 11
are responsible for the existence and the number of invariant hyperbolas which systems (2) could

possess.

First we single out the following five polynomials, basic ingredients in constructing invariant poly-
nomials for systems (2):

Ci(a,z,y) = ypi(v,y) — xq;(v,y), (i =0,1,2)

e 4
Opi | 0% ;1 9). @

Dz(a,xvy) = o aya

As it was shown in [29] these polynomials of degree one in the coefficients of systems (2) are GL—
comitants of these systems. Let f, g € Rla, z,y| and

k
k ok f kg
5 — S (1)
(/:9) hz;)( Y <h> D hoyh Dty

The polynomial (f, g)*®) € R[a,z, ] is called the transvectant of index k of (f,g) (cf. [11], [16])).

Theorem 2 (see [32]). Any GL—comitant of systems (2) can be constructed from the elements (4)

by using the operations: +, —, X, and by applying the differential operation (x, *)(k).

Remark 5. We point out that the elements (4) generate the whole set of GL—comitants and hence
also the set of affine comitants as well as the set of T-comitants and CT-comitants (see [23] for
detailed definitions).

We construct the following G L—comitants of the second degree with respect to the coeflicients of

the initial systems

Ty = (Co, O, Ty = (Co, Co)V | Ty = (Co, Do)V,
T4 = (Clu Cl)(2) ) T5 = (Clu CQ)(I) ) T6 = (Clu C?)(Q) ) (5)
Ty = (C, D)W, Ty = (Co, )P, Ty = (Ca, Dy)Y.

Using these G L—comitants as well as the polynomials (4) we construct the additional invariant
polynomials. In order to be able to calculate the values of the needed invariant polynomials directly
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B0 319 o Ry £0

B1#0
17 Bs#0, J1H < v3=0, R1 #0
B2=0
BBZOM J1H © B5Ra#0
040 H J1H & 13=0,R2#0
527&0 B . 517&O:>1H, or
B0 3>1 4 v =0, R3#0 and either 51=0 = 2
5220, 3191 o 75 =0, Ry 40
p1=0 Br#0 B2 40240 = 1H, or
P70 35 - d either {8 " 2 ’
>1 & v5=0, R5#0 and either By —0y=0 = 2H
=0
Pe 500 3370 = 1H, or
57:09_, 3> 14 95=0,R5#0 and either { 5,—0, Bz #£0= 2H, or
_ 03=pPs=0=3H
B9=0, 3191 & 15=0,R5 £0 s
7>0 ﬂe#OM J1H & y7=0,Re#0
B10=0, 3 134 & 1,=0, BR5£0
B7#£0 B . 047#0 = 1H, or
N0 52750—' 3>1 4 18=0, S1dR;#0 and either §4=0= 2H
Br=0 B ) 05#0 = 1H, or
3>14 v=0, Rg#0 and either 55=0 = 2H
Bi0£0 ) B2 46540 = 1H, or
B > 1 4773 =0,R5#0 and either By —0y=0 = 2H
C
) Bz #0 (7 #0,710 <0 = 2HP, or
=0
2 v7#£0,v10 >0 = 2HP, or
-0 Bio=0 R3#0
B2 — —3z21 < and either Y7 #0,710=0= 1H3, or
C
P Y7=0,v10<0 = 1H+2Hp, or
T 3 oHe v7=0, R3#0 \’)/7:0,’)/10>0 = 1H+2HP

0
N=0 5270, J1H & B1=711=0, Rg#0
B2=0

712:05 R9¢0 = 1H7
or v3=0= 00

3> 1« ;=0 and either {

DiacraMm 10: Existence of invariant hyperbolas: the case n > 0

for every canonical system we shall define here a family of T—comitants expressed through C; (i =
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BEO, 319 & Ry £0

B2 #0 8
1:0 . 51#0:>1,H’
=2 3 =0, R3#0:
640 H e » Rs 7 {51:0:>1H2
Ba=0 ; { P #0 = 17;
2222, 31H & Bi=14=0, Rig#£0:
Br=m14 107 {5758 =0=1H,
Ba#0 e — 0= 1R
M#£0 — 3IH S B=0s=0. ReA 0o Lo o)
N0 606
_ . et #0=17H;
/84:0 6127&0)710_0' {716:66:0:1H20r
P4~ ", ] Z 1 & ﬂ6:O’ /6117?/11 3&0

and either {512 =716 =0, 117 <0 = 2H" or

C
=0 1= Bz =716 =0, 117 >0=2HP or
B2 = Y16 =17 = 0= 1HE

0
P70, J1H ©70=717=0, R11 #0

=0 - -
P13=0, 36 & Yo =718 =719=0

Cy=0

(MZO) d00 & N7:0

DiaGrAM 11: Existence of invariant hyperbolas: the case n = 0

0,1,2) and D; (j = 1,2):
A =(Cy, Ts — 2Ty + D) 144,
D = [2Co(Ts — 8Ty — 2D3) + C1 (6T — Ty — (C1, T5)V + 6D1(C1 D — T) — 9DEC] /36,
E= [D1(2T9 ~Ty) — 3(C1, To)V — Dy(3T% + Dy Do) | /72,
F = [6D?(D3 — 4Ty) + 4D Do(Ts + 6T%) +48Cy (Do, Tp)'Y) — 9D3T, 288D, E

@) N\
_ 94 (Cg,D) +120 (DQ,D) 360 (D, 1)V +8D; (DZ,T5)(1)} /144,

B= {16D1 (Do, Ts)V) (30, D1 — 2Co Dy + AT) + 32Cy (Ds, To)V (3Dy Dy — 5T5 + 9T)
+2(Dy, To)W (27C1 Ty — 18C1 D} —32D1 Ty + 32 (Co, T5) ™M)
+ 6 (Dy, TH)W [8Co(Ts — 12Ty) — 12C1 (D1 Do + Tr) + D1 (26C5 Dy + 32T5) +Co(9Ty + 96T3)]
+6 (D, Tg) Y [32C5 Ty — C1 (1217 + 52Dy Dy) —32C2D?] + 48D (Do, T1)™ (2D3 — Ty)
— 32D, Tk (D, To)M) + 9D3Ty (T — 2T7) — 16D, (Ca, Ty) V) (D? + 4T3)
+ 12Dy (C1, T5)? (C1 Dy — 2C3D1) + 6Dy Do Ty (Ts — 7D3 — 42Ty)
+12D1 (C1, Ts)M (T4 + 2D1 D) + 96 D3 [D1 (€1, T5)" + Dy (Co, T6)(1)} -
— 16D1 D, T3 (2D3 + 3T%) — 4D Dy (D3 + 3Ts + 6T) + 6D D3 (TTs + 2T7)
—252D1 DTy Ty} /(283%),
K =(Ty + 4Ty + 4D3)/72, H = (8Ty — Tx 4 2D3)/72.
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These polynomials in addition to (4) and (5) will serve as bricks in constructing affine invariant
polynomials for systems (2).

The following 42 affine invariants Ay, ..., A4o form the minimal polynomial basis of affine invariants
up to degree 12. This fact was proved in [3] by constructing Ay, ..., A42 using the above bricks.

A = A, Agy = ﬁ[CQ,B)(l),Dg)(l),DQ)(I),DQ)(UDQ)(I),
Ay = (Co, D) /12 Ay = [F,H)D,K)? 8,
Ay = [027]_)2)(1) ]_)2)(1)’]_)2)(1)/487 Agy = [02,]3)(2)7_;’5)(1),?]) (2)/327
Ay = (H,H)®), Ags = [D,D)®,E)? /16,
As = (H,K)® /2, Ay = (B,D)® /36
Ag = (E, H)? 2, Agr = [B, D)™, H)? 24,
Ar = [Cy, B)®, Dy)W 8, Asg = [Cy, K)®, DYV E)? /16,
Ag = [D,H)®, Dy) Vs, Asg = [D,F)D, DY? /96,
Ag = [D, D)V, D) Dy) M /a8, Agy = [Co, D), D) DYP) /288,
Ay = [D,K)®, Dy) Vs, Az = [D,D)®, KYY B)® /64,
An = (F,K)® /4, Agy = [D, D)@, D), H)Y Dy)Y s64,
Ay = (F, )@ /4, Ags = [D, D)V, F)V D) Dy)M /128,
Aig = [Co, YD, H)? Do)V 24, Agy = [D, D), Dy)M K)Y Dy) Y /64,
Ay = (B,C2)®) /36, Ags = [D, D), E)Y Do), Dy)W /128,
Ay = (E,F)? /4, Ass = [D,E)» DYV H)? /16,
A = [E, D), )Y R)P /16, As; = [D, D), D)V D)? /576,
Az = [D,D)®, D) Dy) V64,  Ags = [Co, DY, D) DYV B /64,
Ais = [D,F)® Dy)V /16, Asy = [D, D), F)V H)® 64,
Ay = [D, D), B)? /16, Ay = [D,D)®, F)V KY® /64,
Agy = [02,13)(2),13)(2)/16, Ay = [02713)(2)713)(2)7}?)(1)713 )(1)/64,
Ay = [D,D)®,K)? /16, Ay = [D,F) F)Y D)V /16,

In the above list, the bracket “[” is used in order to avoid placing the otherwise necessary up to

five parentheses “(”.

Using the elements of the minimal polynomial basis given above we construct the affine invariant
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polynomials

v1(@) =A% (346 4+ 2A7) — 2A6(As + Ara),

Yo(@) =9A%A5(23252 A3 + 23689A4,) — 1440A5A5(3A10 + 13A411) — 1280A4,3(2417 + Ag
+23A19 — 4A50) — 320A24(50Ag + 3A10 + 45A11 — 18A12) + 1204, A (6718 A
+ 4033 A9 + 3542411 + 2786 A12) + 3041 A15(14980A3 — 20294, — 48266 A5)
— 304, A7(76626 A7 — 15173 Ag + 11797 A1 + 16427A;; — 30153 A12)
+ 845 A7(75515A¢ — 32954 A7) + 2A5 A3(33057Ag — 98759 A15) — 6048047 Aoy
+ A A4 (6860545 — 131816 Ag + 131073 A19 + 129953 A1) — 242(141267 A2
— 208741 A5A12 + 320045A13),

v3(@) =843696 A5 AgA1g + A1 (—27(689078 As + 41917249 — 290714941 — 2621619A11) A13
— 26(21057 A3 Aoz + 4900544 Aoz — 166774 A3 Agg + 11564145 Asy)).

y4(@) = — 9AF(14A17 4+ Agy) + AZ(—560A17 — 518 A15 + 881 A19 — 28 A9 + 509A9)
— Ag(1T1A2 + 3A5(367Ag — 107A1g) + 4(99A2 + 9349 A1 + As5(—63A15 — 69419
+ TAgg + 24 A51))) + T2A93 Agy,

v5(d) = — 488 A3 Ay + A9(12(4468 A2 + 3243 — 91542, 4+ 32049411 — 3898A19A 1 — 333142,
+ 2Ag(7T8Ag + 199410 + 2433 A11)) + 2A5(25488A15 — 60259419 — 16824 A91)
+ 77944 A21) + 4(7380A10 431 — 24(A10 + 41A11) Ass + As(33453 A3 + 19588 A0
— 468A33 — 19120A34) + 96 Ag(—Asz + Azy) + 556 Ag Ay — A5(27773 Azg + 41538 Azg
— 2304A41 + 5544 A449)),

v6(a) =2A20 — 33 A1,

y7(@) =A1(64A3 — 541A4) A7 + 86Ag A1z + 128 A9 A3 — 54A10A13 — 128 A3 Aoy + 256 A5 Ago
+ 101 A3 A0y — 27 A4 Aoy,

v8(@) =3063A4A% — 42A%(304Ag + 43(Ag — 11A10)) — 6A3A9(159Ag + 28 Ag + 409A10)
+ 210045 A9 A13 + 315049 A7 A1 + 24A%(34A19 — 11A90) + 840A2Ag; — 93245 A3 A9
+ 525 A9 Aq A9y + 844 A3, — 630413433,

Yo(a) =245 — 649 + A,

Y10(a@) =34s + A1,

711(a) = — 5A7A8 + A7Ag + 10A3A14,

ma(@) =25A3 43 + 1847,

713(a) =As,

v14(a) =Ag A4 + 1843 A5 — 236 Agg + 188 Aay,
Yi5(@, 2, y) =144T1 T2 — T (Tys + 2Th3) — 4(ToTi1 + 4T5Ths + 50T3Ts + 2T Toy + 2T3Toy + 4Ty Tos),
Y16(@, z,y) =T1s,
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7@, z,y) = — (T + 12T13),
F18(a, z,y) =C1(Ca, C2)? — 2C5(Cy, C2) @,
F9(a, z,y) =D1(Ch, C2) P — ((Ca, C2)@, Cp) W,
01(a) =9Ag + 31A9 + 6 A0,
09(a) =41Ag + 44 A9 + 32 A1,
03(a) =3A19 — 4A17,
34(a@) = — BAyAs + 3As Ay + Ao,
55(a) =624 + 10249 — 1254,
0¢(a) =2T5 + 3Ty,
Bi(a) =3A% — 245 — 2419,
Ba(a) =2A7 — 94,
Bs(a) =As,
Bs(a) = — 5A4 + 8A4s,
Bs(a) =Au,
Be(a) =Ax,
Br(a) =8A3 — 3A4 — 445,
Bs(a) =24A3 + 11A4 + 2045,
Bo(a) = — 8As + 11A,4 + 445,
Bio(a) =8As 4+ 27A, — 54 As,
Bi1(a, x,y) =T — 2073 — 8Ty,
Bia(a, z,y) =11,
Bis(a, z,y) =13,
Ri(a) = — 247(12A7 + As + A12) + 5Ag(Aro + A11) — 241 (Azs — Aoy) + 2A5(A1g + Ass)

)
Rs(a) =A,
Ru(d) = — 3A2 A1, + 444 A,

Rs(a, z,y) =(2Co(Tx — 8Ty — 2D3) + C1(6T% — Tg) — (C1, T5) Y + 6 D1 (C1 Dy — Ts) — 9D?Cy),
Re(a) = — 21345 A6 + A (2057 Ag — 1264 A9 + 677 Ay + 1107 A12) + T46(Agr — Agg),
Ro(ad) = — 642 — AgAg + 243Ag — 5A4Ag + 444 A1 — 245 A3,

Rg(a) =Ao,

Ro(@a) = — 5Ag + 3 Ay,

Rio(a) =7Ag +5A10 + 11A14,
)
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\(a)
x5 (@)

(@) =

x5(@) =

x2(@) =

3)/~
a) =

Ag(A1 Ay —2A15)(3A3 — 245 — 2A13),

A7[41A1 Ay A + 846 Ag Ag — 252 A6 A10 + 3798 A6 A1y — 2A7(6588AF — 830 As + 265410
4366411 — 156A12) + 1098 Ag A1 + 983A3A14 — 1548 A4 A14 — 365A3A15 + 135044 A15
+ 1550A2A16 — 1350471 Ags],

05183 [8A1(42A03 — 24A9 A3 + 5942 A5) + Ag(2196 AT + 38449 + 24410 + 36041,
—432A19) 4+ 4A7(123A5—61A410—23A11 + 123419) + 8(244A14—3445A15—1945A56)],
57T90ATA7 + A7(—1531As — 140Ag + 177 A1g + 947 A1y — 2791 A15) + 2A44(553 As

+ 18349 — 100410 — 39A11 + 144A15) + A4 (46T A1y + 922A15) — A1 (461424,

— 183A2A5 + 296 A9y — 122A04),

48Ag(65Ag — 54A10 — 27TA11) — 16A7(TT4AT — 382A5 + 263A10 + 129411 — 360412)
+ 72A4(23A14 + 3A15) — 16A3(163A14 + 185A15) — 179245 A1 + 16 A1 (54 A2 A5

— 173432 + 27 Az4),

08183 [A7(245 — Ag) — 2A34¢],

1243 — TAy,

= Ay(5Ag — 1842 — Ay — 3A1; + 9A12),

A3(245 — 642 — Ag + Ajg — A11 + 3A10),

49071656765835 A5 4 27 A} (1344257279043 A1 — 1270094588593 A1)

+ 3A2(176071859457 A2 A4 + 2042424190056 A%, — 4553853105234A11 Ao

+ 2056276619466 A%, + 221071597034 A5 A1s — 539155411551 A5 A1

+ 65833344676 A5 Ang + 26464141896 A4 Az + 303070135713 A5 Ao

— 137515925820 A5 Ag3) + 1048(35846142A2 A4 A1y — 16357656043, — 21276288434, Ao
— 19547838042, Ao + 325223640411 A%, — 9386268043, + 78246044 Ag Ay

+ 26186136 A Ag Ago + 42548200 A5 Ag Agy — 2682720 A% Agg — 83946780 A2 A5 Az

+ 429178020 A5 A5 Asy — 204768603 Ag Ay Asy — 125823390 A5 A5 Asy),

10687627614087A% — 36 A2 A11 (57734730901 A1; — 18520980346 A1)

— 54A%(29889576561 A1, + 85579885241 A15) — 1848441298229 A4 AgAyg

— 995417129104 44 A19 A1 + 139152650610 A5 410 A1g — 854619791782A4A11 A1g
— 234092667978 A5 A11 A1g — 1064773031314 A4 A1 A1g — 1538921088774 A5 A2 Arg
— 2001099560624 A Ay — 3339915826444 A1 Az0 + 1182168636 A5 A19 Az

— 3369956119244 A11 Agg + 359794764 A5 A1 Az — 150658987068 A4 A15Asg

— 97478758260 A5 A15 Agg — 1043930677997 Ay Ag Ay — 381285679090 A4 A10 A

— 266080146306 A5 A19 A2 — 340140897016 A4 Ay; Ayy — 373227206190 A5 A11 Agy

— 763104633190 A4 A12Ag — 470713035534 A5 A15 sy,
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Xg> (@) = — (3083831194543 A2 A, + 2760800121876A2 A2 + 7697984307234 A3 Ag Ag
+ 3201113344320 A% A2 — 1697507613684 A2 Ag Ay + 31825111584 A3 A4 Ay,
— 69599088042 Ag A1 — 6141096042 A%, + 1024584710443 A, A1
— 24350953680 A4 Ag A17 — 29136484804, Ag A7 — 2523363762580 A% A5 Ag
— 29706323760 A4 Ag A1g + 334082073870A2 A5 A1g + 142776946840A2 A5 Ao
+ 47764080 A4 Ag Aoy + 28221048042 Ay Aoy + 2047601391150A3 A5 Asy
+ 6301647379245 Ag Ago + 77305513600 A2 Ag Agy — 35441430120 A2 A5 Ass
— 42056705280 A3 Ag Agz — 163762560 A2 Agg — 94243374720 A A5 Az,
+ 290822854080 A5 A5 Azy — 150861290016 A Ag Azq — 47162628000 A5 A5 Ass),
(@) = (78154242 — 19122604, A2 — 37723624, AgAg — 237900 A4 AgA1g — 17808045 A10A 5
— 193248 A9 A1 Az — 1318176 AZ A17 + 119474044 A5 A1g — 13910442 A5
+ 56706 A4 A5A19 + T02144A2 A1g — 5655244 A5 Agg — 11040 A% A9y — 995070 A4 A5 Aoy
— 32856 A3 A4 Aoz 4 2611242 A5 Asy),
B (&) = 544245 + 6114549 — 10445 A1, — 140 A5 A1g + T32A1 Ay — 243A5; — 234 A53 + 245 A5,
B a) = — (1144 + 1045),
XD (@) = (2434, — 80AZ + 64AgAg — 80AsA1g + 16Ag A1y — 9A%) — 32Ag A1y + 4849 Ay,
+ 2410411 + 2342, +120A5 A7 + 24A5A15 — 4A5A19 + 644 Ag; + 445A97)
x (264A3Ag — 11243 A9 — 56 Ag A17 + T46A19A17 + 1006 A11 Ay + 424 A10 A8
+ 824 A1, Arg + 109243 A1g — 384AgA1g — 9TA19A1g + 153411 Ayg — 264 A5 A
+ 168 A9 Agg + 14A10Agy — 14A11 Agg — 620Ag Aoy + 81A19Ag — 81411 Ay
+126A4A30 — 208A3 A3 — 11245 A33),
X(@) = (—12(518A4% — 16 Ag(2410 + 5A11) + 2(A1p + 3411) (31410 + 69411) + Ag(3694 1
+ 871 A1) — 96A3A17) + 2A5(552A% — 404 A5 + 2271 A9 — 316 Aoy — 1674A9)
— 13544 Ag; — 240A5A93)(4A3(6160Ag — 60659419 + 5565A11) + 533574 A19A 17
+ 2120070411 A7 4 365744 A0 A1g + 657528 A11 A1g — T13634A19A19 + 8Ag(22484 A7
+ 10472415 + 10911419 — 2156 Agg) 4 121318 A19Agg — 11130411 Aoy + 522591419 A0,
— 357309411 A9y + T2A5(13247A17 + 1081 A9 + 7084 A1) + 2079A4 A3 + 18652045 A34),

Xy (@) = 9549 + 2410,

Xf) (@) = 4411 — 4Ao,

ng) (@) = (A4 —245)(As — 2A11),

XV (@) = (A3 — Ag)(As — A),

(@) = — 2A5(6348A2 — A4 (502073 Ay + 250407 Arg + 3T072A20) + 1845(720 Agy + 8179 Ay3))

+ 3(640A3 + 36A2(3218 A5 + 17721 A q) + 8Ag(7505A4 Ars + 37966 Ag Ags) + 445 (A
X (74429A18 + 44574A19) — 7A10(5387A22 + 4741_423) + 243552A7A27)
+ A4(—341504A10A18 — 78779A7 Ao + 234046A2A33)),
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X (@) = 2484A42(2A15 + 9A19) — 2A5(276 A2 + Ay(—34111A15 + 51231 A19 — 35504 Ag0)
4 46794 A5 Aos) + 3(4A5(5403A13A15 — 20222413419 — 6123410 Ass + 1144449 Ao
+ 7131A10A93 + 41384A7A27) + A4(1O80A9A18 — 35328 A19A18 — 52173 A7 Ags
+ 3584245 A33)),

X\D(@) = (Ag — Ay)(8A2 — 44A3Ag + 2TA4 Ag + 4A3Ag + 2243410 — 944 Ay),

X4 (@) = 545 — A,

YW(@) = 949 — 25 As.

Next we construct the following T-comitants which are responsible for the existence of invariant
straight lines of systems (2):

Notation 1.
Bg(a,ZE, y) = (027D)(1) = Jacob (CQa D) 3

By(a,a,y) = (B, By)® — 6B3(C, D)V, (6)
Bi(a) = Res, (Ca, D) Jy° = —27937%(By, B3)W .
Lemma 2 (see [23]). For the existence of invariant straight lines in one (respectively 2; 3 distinct)
directions in the affine plane it is necessary that By = 0 (respectively By = 0; Bs =0).
At the moment we only have necessary and not necessary and sufficient conditions for the existence
of an invariant straight line or for invariant lines in two or three directions.

Let us apply a translation x = 2’ + xg, y = ¢ + yo to the polynomials p(a,x,y) and ¢(a, x,y). We

obtain ﬁ(d(aa Zo, 1/0), $/7 y/) = p(dv ! + xg, y/ + y0)7 q(a(a, Zo, yO): .1'/, y/) = Q(a‘7 ! + Zo, y/ + ZJO) Let us
construct the following polynomials
Pz(a7 xo, yO) = Res x! (CZ (d(&v Zo, y0)7 LI,’/, y/) ) CO (d(av xo, yO)a .T/, 3/)) /(y/)i+17
Fz(da Zo, 3/0) € R[a7 zo, yO]a i = 17 2.
Notation 2. We denote by

gi((l,il),y) = Fl(aa x()?yO)‘{zD:gj, Yyo=y} € R[avxay] (7’ = 172)'

Observation 1. We note that the polynomials Ei(a,xz,y) and E(a,x,y) are affine comitants of
systems (2) and are homogeneous polynomials in the coefficients a, b, c,d, e, f,g,h,k,l,m,n and non-
homogeneous in x,y and deg;&1 = 3, deg, \E1 =5, degzEa = 4, deg, ,\E2 = 6.

Notation 3. Let &(a, X,Y,Z), i = 1,2, be the homogenization of éi(d,x,y), i.e.

gl(daXaYaZ) = Z5gl(d’X/Zay/Z)v 52(&’X7Y’Z) = 2651(&7X/Z5Y/Z)

The geometrical meaning of these affine comitants is given by the following lemma (see [23]):

Lemma 3 (see [23]). 1) The straight line L(z,y) = ux + vy + w = 0, u,v,w € C, (u,v) # (0,0) is
an invariant line for a quadratic system (2) if and only if the polynomial L(x,y) is a common factor
of the polynomials gl(d,x, y) and gg(d,x, y) over C, i.e.

&i(a,z,y) = (uz + vy +w)Wiz,y), i =12,
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where Wi(z,y) € Clz, y).
2) If L(xz,y) = 0 is an invariant straight line of multiplicity \ for a quadratic system (2), then
[L(z, )] | ged(&1, &) in Clz,y], i.e. there exist Wi(a,z,y) € Clz,y|, i = 1,2, such that
gz(da z,y) = ('LL.ZL‘ +oy + w))\Wi(a’a T, y)v =12
3) If the line lo : Z = 0 is of multiplicity X > 1, then Z =1 | ged(&1, E2).
In order to detect the parallel invariant lines we need the following invariant polynomials:
N(a,z,y) = D3 + Ty — 2Ty, 60(d) = 2A5 — A4 (= Discriminant (N (a, z,y))/1296).

Lemma 4 (see [23]). A necessary condition for the ezistence of one couple (respectively two couples)
of parallel invariant straight lines of a system (2) corresponding to a € R'? is the condition 0(a) = 0
(respectively N(a,z,y) =0).

3 Proof of statement (B) of Main Theorem

In this section we provide the proof of statement (B) of our Main Theorem. In accordance with
Theorem 1 stated in [15], we only investigate the case n > 0 (see DIAGRAM 10). The case n = 0 will
be considered in a future paper.

So in what follows we assume 7 > 0. In this case according to [23, Lemma 44] there exist an affine

transformation and time rescaling which brings systems (2) to the systems
dx d
Eza—l—cw—l—dy—i—ng—i—(h—l)xy, d—i:b—i-ex—i-fy%—(g—l)xy—i-hyz, (7)

withn=1and 0 = —(g —1)(h—1)(g+ h)/2.

3.1 The subcase 0 # 0

Following Theorem 1 we assume that for a quadratic system (7) the conditions 6 # 0 and v; = 0
are fulfilled. Then, as it was proved in [15], due to an affine transformation and time rescaling, this
system could be brought to the canonical form

d d
d—f:a—l—cx%—ng—i-(h—l)xy, d—i:b—cy—i-(g—l)xy—i-hyZ, (8)

for which we calculate

Yo = — 1575¢%(g — 1)%(h — 1)* (g + h)(3g — 1)(3h — 1)(3g + 3h — 4)By,

B=—c <g—1>< —1)(3g — 1)(3h — 1)/4, (9)
Ba=—clg—h)Bg+3h—4)/2, 0 =—(g—1)(h—1)(g+h)/2,

where By = b(2h — 1) — a(2g — 1).

3.1.1 The possibility 8; # 0

In this case the condition 75 = 0 is equivalent to (3g + 3h — 4)B; = 0.
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3.1.1.1  The case B2 # 0. Then 3g + 3h —4 # 0 and we obtain B; = 0. Since ¢ # 0 due to the
rescaling (z,v,t) — (cx,cy,t/c) we may assume ¢ = 1. Moreover as (2g — 1)? + (2h — 1)? # 0 due to
P2 # 0 (i.e. g — h # 0), the condition By = 0 could be written as a = a1(2h — 1) and b = a1(2g — 1).
So setting the old parameter a instead of a1, we arrive at the 3-parameter family of systems

CC% =a(2h — 1)+ + g2* + (h — 1)zy, % =a(2g—1) —y+ (g — Dy + hy? (10)
with the condition
alg = 1)(h=1)(g +h)(g = h)(3g — 1)(3h —1)(3g + 3h — 4) # 0. (11)
These systems possess the invariant hyperbola
O(z,y) =a+azy =0. (12)

Remark 6. We point out that for systems (10) the parameters g and h have the same significance,
because we could replace g by h via the change (z,y,t,a,9,h) — (—=y,—z,—t,a,h,g), which keeps
these systems.

For systems (10) we calculate

By =2a*(g — 1)*(h — 1)*(g — h)(29 — 1)(2h — 1) [a(g + h)* = 1]. (13)

3.1.1.1.1  The subcase B1 # 0. In this case by Lemma 2 we have no invariant lines. For systems
(10) we calculate g = gh(g + h — 1) and we consider two possibilities: po # 0 and po = 0.

a) The possibility po # 0. Then by Lemma 1 the systems have finite singularities of total multi-
plicity 4. We detect that two of these singularities are located on the hyperbola, more exactly such
singularities are M o (1,‘172, yl,g) with

—1+7, 1+V7

= Z1 =1 —4agh.
2 Y1,2 on 1 ag

T12 =

On the other hand for systems (10) we calculate the invariant polynomial

= (9= 1)2(h = 1)%(g — h)*(3g — 1)2(3h — 1) Z4,

X% = —105a(g — 1)%(h — 1)%(g — h)*(3g — 1)*(3h — 1)2/8
(1) (1)

and by (11) we conclude that sign (x,’) = sign (Z1) (if Z; # 0) and sign (x;’) = —sign (a). So we

consider three cases: X(Al) <0, XS) ~ 0 and Xill) -0

ar) The case XS) < 0. So we have no real singularities located on the invariant hyperbola and we

arrive at the configurations of invariant curves given by Config. H.1 if Xg) < 0 and Config. H.2 if

xg) > 0.

ay) The case XS) > 0. In this case we have two real singularities located on the hyperbola. We

have the next result.
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Lemma 5. Assume that the singularities M o (CL‘LQ, ng) (located on the hyperbola) are finite. Then
these singularities are located on different branches of the hyperbola if Xg) < 0 and they are located
on the same branch if Xg) > 0.

Proof: Since the asymptotes of the hyperbola (12) are the lines x = 0 and y = 0 it is clear that
the singularities M o are located on different branches of the hyperbola if and only if z122 < 0. We

LV [V ot
2¢ 29 g’ (14)
X&) = 35agh(g — 1) (h — 1)* (g — B)*(g + 1)*(3g — 1)*(3h — 1)2/32

and due to the condition (11) we obtain that sign (z1x2) = sign (Xg))- This completes the proof of

calculate

T1T2 = |:

the lemma. [ |

Other two singular points of systems (10)are M3 4 (:):3,4, y3,4) (generically located outside the hy-
perbola) with
(1—2h)[1+ 2] (29— 1)[1 £ V73]

= = Zy=1+4a(l —g—h). 15
34 g+h—1) Y34 Ng+h-1) = = +4a(l—g—h) (15)

We need to determine the conditions when the singular points located outside the hyperbola
coincide with its points (singular for the systems or not). In this order considering (12) we calculate

A—(29-1)(2h—1)[1 £ 2]
(I)(CC, y)|{m:m3,4, y=y3,.4} 2(9 T h— 1)2 = 93,4(01797 h),

where A = 2a(g+ h — 1)(4gh — g — h). It is clear that at least one of the singular points Ms(z3,3)
or My(x4,y4) belongs to the hyperbola (12) if and only if

Z
Q= —— 223 0, Zy= (29— 1)(2h— 1) — a(dgh — g — h)>.

(g+h—-1)2
On the other hand for systems (10) we have

xp = 105(g —h)(3g — 1)(3h — 1) Zs/4
and clearly due to (11) the condition ngl) = 0 is equivalent to Z3 = 0. We examine two subcases:

XS) # 0 and Xg) =0.

o) The subcase x%) # 0. Then Zs # 0 and on the hyperbola there are two simple real singularities

(namely M 2(x1,2,y12)). By Lemma 5 their position is defined by the invariant polynomial Xg) and

we arrive at the following conditions and configurations:

° X(cl') < 0 and Xg) <0 = Config. H17,;

° Xg) < 0 and Xg) >0 = Config. H.19;
° Xg) > 0 and ngl) <0 = Config. H 16,

° Xg) > 0 and Xg) >0 = Config. H.18.
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B) The subcase X(Dl) = 0. In this case the conditions Z3 = 0, By # 0 (see (13)) and (11) implies
4gh — g —h # 0 and we obtain a = (29 — 1)(2h — 1)/(4gh — g — h)?. Then considering Proposition 1
we calculate

D=0, T=-3[g(g—1)(2h—1)z+h(h—1)(29—1)y]°P,

12
P= M(Z —39—3h+ 4gh)2(gx - hy)2 [(29 — Dz + (2h — 1)y]2,

B1) The possibility T # 0. Then T < 0 and according to Proposition 1 systems (10) possess one
double and two simple real finite singularities. More exactly, we detect that one of the singular points
Ms(x3,y3) or My(z4,ys) collapses with a singular point located on the hyperbola, whereas another
one remains outside the hyperbola. Taking into consideration Lemma 5 we obtain the following
conditions and configurations:

° Xg) < 0 and Xg) <0 = Config. H21,

° XS) < 0 and ngl) >0 = Config. H23,

° Xg) > 0 and Xg) <0 = Config. H.20;

° xg) > 0 and Xg) >0 = Config. H22.

B2) The possibility T = 0. In this case due to the conditions (11) and pp # 0 the equality
T = 0 holds if and only if P = 0 which is equivalent to 2 — 3g — 3h + 4gh = 0 (or equivalently
2 —3g + h(4g — 3) = 0). Since g — h # 0 (see (11)), the condition (4g — 3)? + (4h — 3)? # 0 holds,
then by Remark 6 we may assume (49 — 3) # 0, i.e. h = (3g — 2)/(4g — 3) and we obtain

3 2
D=T=P=0, R= m(g —1)*(29 — 1)*[g(4g — 3)z + (2 — 39)y] "
Since R # 0, by Proposition 1 we obtain one triple and one simple singularities. More precisely the
singular points M3 and My collapse with one of the singular points M; or My and the last point
becomes a triple one. In this case, we calculate

1 105(g —1)°Bg - 1)*(5g —3)> 1) _ 359(39 —2)(g — 1)'°(g — 1)*(59 — 3)*(2¢> — 1)*
X = 8(4g — 3)° e 8(dg —3)10 |

We remark that the condition Xg) < 0 implies Xg) > 0. Indeed, if Xg) < 0 then g(3g —2) < 0 (i.e.

0 < g < 2/3) and for these values of g we have 49 — 3 < 0, which is equivalent to Xg) > 0. Taking

into consideration Lemma 5 we obtain the following conditions and configurations:
o\ <0 = Config. H.26;

° XS) > 0 and ngl) <0 = Config. H24;

° Xg) > 0 and Xg) >0 = Config. H25.
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az) The case X(Al) = 0. Due to the condition (11), the condition XS) = 0 implies Z; = 0 and it

yields a = 1/(4gh). In this case the points M 5 collapse and we have a double point on the hyperbola.
So we calculate

D = —312095h (g 1)2(h — 1)%(g — 1)*(3g — 1)2(3h — 12,
X5 =35(g — 1)*(h — 1)*(g — h)*(g + h)*(3g — 1)%(3h — 1)2/128 > 0,
W = = I h33g - 1)(3h 1) £ 0.

16gh

Since Xg) = 0, no other point could coalesce with the double point on the hyperbola and we arrive
at the configurations given by Config. H.7 if Xg) < 0 and Config. H.8 if Xg) > 0.

b) The possibility 19 = 0. Then by Lemma 1 at least one finite singular point has gone to infinity
and collapsed with one of the infinite singular points [1,0,0], [0,1,0] or [1,1,0]. By the same lemma,
a second point could go to infinity if and only if u(z,y) = 0. However, for systems (11) we have the

following remark.

Remark 7. If for a system (10) the condition po = 0 holds then p; # 0. Moreover by (3) the
condition R = 3u2 # 0 is fulfilled.

Indeed for systems (10) we calculate
po=gh(g+h—1)=0, pu =g(l—g-—2gh)x+h(l—h-—2gh)y. (16)

We observe that in the case g = 0 (respectively h = 0; g = 1 — h) we get uy = h(1 — h)y # 0
(respectively 1 = g(1 — g)y # 0; 1 = h(h — 1)(2h — 1)(x — y) # 0) due to the condition (11).

We consider the cases: XE41) <0, XE41) > (0 and X(Al) = 0.

bi) The case XS) < 0. The points on the hyperbola are complex and, moreover, 1 — 4agh < 0
implies agh > 0 and hence Xg) > (. Then we arrive at the configurations given by Config. H.3 if
Xg) < 0 and Config. H.4 if Xg) > 0.

b)) The case XS) > 0. The points on the hyperbola are real and we observe that due to the
condition (11) the equality Xg) = 0 is equivalent to gh = 0. So we consider two subcases: Xg) #£0

and X(Cl) = 0.

) The subcase X(c}) 2 0. Then the condition g = 0 gives g+ h—1 =0, i.e. ¢ =1 — h and one
finite singularity has gone to infinity and collapsed with the point [1,1,0]. Clearly that this must
be a singular point located outside the hyperbola and hence on the finite part of the phase plane of
systems (10) there are three singularities, two of which (M; and Ms) being located on the hyperbola.

Since the singular points on the hyperbola are real we have to decide when the third point will
belong also to the hyperbola. For systems (10) with g = 1 — h we calculate

X4 = —105ah?(h — 1)2(2h — 1)%(3h — 1)2(3h — 2)?/8,
X =105(2h — 1)%(2 — 3h) (3h — 1) [1 + a(2h — 1)?] /4.
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We observe that the condition ngl) < 0 implies XS) = 0. Indeed, supposing Xg) = 0 and considering

condition (11), we obtain a = —1/(2h — 1)? and hence
W = 105h2(h — 1)2(3h — 1)%(3h — 2)2/8 > 0.

So in the case X(Cl) < 0 we get the following conditions and configurations:

o xi) <0 = Config. H.50;

° XS) > 0 and X(Dl) %0 = Config. H.32;

. Xg) > (0 and X(Dl) =0 = Config. H.34;

whereas for XS) > (0 we get

° ngl) <0 = Config. H29;

° Xg) > 0 and XS) %0 = Config. H.31;

° Xg) > 0 and X(Dl) =0 = Config. H.33.

B) The subcase Xg) = 0. Then gh = 0 and ¢ + h? # 0 due to g — h # 0. By Remark 6 we may
assume g = 0 and then one of the singularities located on the hyperbola (12) has gone to infinity
and collapsed with the point [1,0, 0]. The calculations yield

X3 = —105ak?(h — 1)2(3h — 1)2/8, ) = 105h(3h — 1)(1 — 2k — ah?)/4. (17)

(1)

B1) The possibility x ;" < 0. Then we have to analyze two cases: XS) # 0 and XS) = 0.

If xg) # 0, the finite singularities M3 4 remain outside the hyperbola and we arrive at the config-
uration given by Config. H.9. In the case Xg) = 0 (which yields a = (1 —2h)/h?), one of the singular

points M3 4 coalesces with the remaining singularity on the hyperbola. For this case we calculate
D =0, P= (3h —2)%*(x +y — 2hy)?, T = —3h%(h — 1)*y*P.
We observe that the condition Xg) > 0 implies T # 0. Indeed, the conditions XS) =T = 0 imply
h =2/3 and a = —3/4, and hence Xg) > 0.
Moreover, according to Remark 7, in the case pug = 0, the condition R # 0 is satisfied for systems
(10). Then, since T # 0, we obtain PR # 0, and by Proposition 1 we have a double singular point
on the hyperbola and we arrive at Config. H.11.

B2) The possibility Xg)

> (. We again analyze the cases XS) # 0 and Xg) = 0. In the case X(Dl) £ 0,
the finite singularities M3 4 remain outside the hyperbola and we arrive at the configuration given
by Config. H.10. If X%) = 0, we obtain the configurations shown in Config. H.12 if T # 0 and

Config. H.13 if T = 0.

b3) The case XS) = 0. Due to the condition (11), the condition X(Al) = 0 implies Z; = 0 (then
gh # 0) and hence a = 1/(4gh). Therefore the condition py = 0 yields g = 1 — h. In this case the
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singular points M; o collapse and we have a double point on the hyperbola. For systems (10) with
g=1—hand a =1/[4h(1 — h)|, we calculate

XYy = 105h(h —1)(2h = 1)*(3h — 1)*(3h — 2)?/32,

X&) = 128 > pi(h - 1)1 (2h — 1)2(3h — 1)2(3h — 2)%,

1 105
XD = 16h(h — 1)

D=0, T=-3nh-1)>%2h—-1)>2x—-y)*(x+y)?>#0.

(2h — 1)3(3h — 1)(3h — 2),

Since XS) # 0 (due to condition (11)), the singular point located outside the hyperbola could not
collapse with this double point and we arrive at the configurations given by Config. H.14 if X( )

and Config. H.15 if XSB) > 0.

3.1.1.1.2  The subcase By = 0. According to Lemma 2 the condition By = 0 is necessary in
order to exist an invariant line of systems (10). Considering the condition (11) we obtain that B; = 0
(see (13)) is equivalent to
(29 — 1)(2h — 1) [a(g + h)* — 1] = 0.

On the other hand, for these systems we calculate
X' = =105 — 1)(h = 1)(g ~ )39~ Bh—1) Zs,  Zs = [alg +h)* 1],
and by (11) the condition Z4 = 0 is equivalent to X( ) =0.

a) The possibility XE # 0. In this case we get ¢ = 1/2 and this leads to the systems
dr
dt

for which the following condition holds (see (11)):

a(2h — 1) +x +22/2 + (h — 1)y, % = —y(2+2z—2hy)/2, (18)

a(h — 1)(2h — 1)(2h + 1)(3h — 1)(6h — 5) # 0. (19)

We observe that besides the hyperbola (12) these systems possess the invariant line y = 0, which
is one of the asymptotes of this hyperbola. For the above systems we calculate

105
po = h(2h —1)/4, W = —— (h=1D(2h=1)(3h - 1) Za] (s oy
By =0, By=—648a(h—1)*(2h— 1)y Z4‘{g 1/2}"

Therefore we conclude that due to the conditions X ;é 0 and (19) we obtain By # 0 and, by
Lemma 2, we could not have an invariant line in a direction which is different from y = 0. Moreover,
due to the condition € # 0 and according to Lemma 4, in the direction y = 0 we could not have
either a couple of parallel invariant lines or a double invariant line.

a;) The case jip # 0. Then h(2h — 1) # 0 and considering the coordinates of the singularities
M;(zi,y;) (i=1,2,3,4) mentioned earlier (see page 33) for g = 1/2 we have

T12 = —1:&\/1—2&]1, Y12 = —1:F\/1—26Lh,
34 =—1£+/1+2a(1—-2h), y34=0.
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We recall that the singular points M; 2(z1,2,y1,2) are located on the hyperbola. We also observe that
the singularities M3 4(x34,y3,4) are located on the invariant line y = 0.

On the other hand, for systems (18) we calculate

AW =272(h - 1220 — 1)2(3h — 1)%(1 — 2ah), x%3) = —105a(h — 1)2(2h — 1)%(3h — 1)2/512,

X0 = 271635an(h — 1)4(2h — 1)2(2h + 1)%(3h — 1), D = 3a%(2h — 1)*[2a(2h — 1) — 1](1 — 2ah),
and it is clear that, due to the factors 1 — 2ah and 1 + 2a(1 — 2h), the invariant polynomials XS)
and D govern the types of the above singular points (i.e. are they real or complex or coinciding),
whereas the invariant polynomials Xg) and Xg) are respectively responsible for the position of the
hyperbola on the plane and for the location of the real singularities on the hyperbola (i.e. on the

same branch or on the different ones).

o) The subcase XS) < 0. Then the singularities M; o (located on the hyperbola) are complex,

whereas the types of singularities M3 4 (located on the invariant line y = 0) are governed by D. We
observe that clearly the condition XS) < 0 implies Xg) > 0.

Furthermore, we see that Xg) > 0 implies D < 0. Indeed, the condition Xg) > 0 yields a < 0 and,

since 1 — 2ah < 0 (i.e. 4ah > 2), we have 2a(2h — 1) — 1 = 4ah — 2a — 1 > 0; then D < 0. So we
arrive at the following conditions and configurations:

° ngl) <0and D <0 = Config. H.39;
° Xg) <0and D >0 = Config. H49;
e X'y <0and D=0 = Config. H.44;
° XS) >0 = Config. H.38.

B) The subcase X(Al)

> 0. In this case the singularities M; o are real and we have to decide if they
are located either on different branches or on the same branch and, moreover, the position of the
hyperbola.

We observe that the conditions Xg) < 0 and X(Cl) < 0 imply D < 0. Indeed, the conditions
ngl) < 0 and Xg) < 0 yield a > 0 and ah < 0, respectively, and, since 1 — 2ah > 0, we have
2a(2h — 1) — 1 = 4ah — 2a — 1 < 0; then D < 0.

(1)

So in the case xjz° < 0 we get the following conditions and configurations:

e\ <0 = Config. H.75;

. Xg) >0and D <0 = Config. H.74;
° XS) >0and D >0 = Config. H48;
o x)>0and D=0 = Config. H.6};

whereas for Xg) > 0 we get
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° Xg) <0and D <0 = Config. H.73; Xg) >0and D <0 = Config. H.72;

N Xg) <0and D >0 = Config. H.47; Xg) >0and D >0 = Config. H46;
° X(cp <0and D=0 = Config. H.66; x((}) >0and D=0 = Config. H.65.

~) The subcase Xfaxl) = 0. Due to the condition (11), the condition XS) = 0 implies Z1 = 0 and

hence a = 1/(2h). In this case the points M; o collapse and we have a double point on the hyperbola.
For systems (10) with a = 1/(2h) we calculate

35
W = g7 (h=11(2h = 1)°(2h + 1)*(3h — 1)%,

_ %(h —1)(2h — 1)*y? [22 + 4h(h — 1)y?]>.

Due to (19), we have Xg) > 0 and sign (T) = sign (h(h—1)), therefore according to Proposition 1,

besides the double point on the hyperbola, we could have two simple points on the invariant line
y=0.

We observe that the condition ngl) > 0 implies T > 0. Indeed, if Xg) > 0 we have a < 0 and, since
a=1/(2h) (i.e. h <0), we obtain h(h — 1) > 0; then T > 0.

So we arrive at the configuration Config. H.67 if Xg) < 0 and T < 0; Config. H 43 if XSBI) < 0 and
T > 0; and Config. H.42 if ngl) > 0.

ay) The case py = 0. Then h(2h — 1) = 0 and considering the condition (19) we get h = 0. In
this case one of the singular point located on the hyperbola has gone to infinity and collapsed with
[0,1,0] (since u1 = x/4, see Lemma 1).The second singularity on the hyperbola has the coordinates
(—2, —a/2), whereas the coordinates of the singularities M3z 4(234,y34) located on the invariant line
y = 0 remain the same. Since for systems (18) with h = 0 we have D = —3a?(2a + 1) we obtain
sign (D) = sign (2a + 1).

We observe that in the case Xg) < 0, we have a > 0 and hence D = 2a + 1 > 0, which implies
the existence of two real simple singularities on y = 0 and we obtain the configuration shown in
Config. H.70. Now, in the case ngl) > 0, we obtain the following conditions and configurations:
Config. H.71 if D < 0; Config. H./1 if D > 0; and Config. H.55 if D = 0.

b) The possibility XSEI) = 0. In this case we obtain a = 1/(g + h)? and this leads to the systems

dx 2h —1 9 dy 29 —1
dr_ “h= 1 h—Day, % -
dit  (ghp T +(h=Dzy, (g+h)

possessing the following invariant line and invariant hyperbola

s —y+(g— Day + hy? (20)

x—y+2/(g+h)=0, ®(z,y) = g1 h)?

+xy = 0. (21)
We claim that the condition Xg) = 0 implies D < 0 and Xg) < 0. Indeed, if X%) = 0, then
a=1/(g+ h)? and in this case we see that
(1) 105(g = 1)*(h = 1)*(g — h)*(3g — 1)*(3h — 1)*
e 8(g+ h)?
_192(g —h)%(g+h—2)*(g+ N —29h)" _
(g + h)® o

<0,

D=
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due to condition (19), and this proves our claim.

For the above systems we calculate

o 0= DA = 129 = D2k = Dz )’ 2

and by Lemma 2 for the existence of an invariant line in a direction different from y = =z it is

By =

necessary By = 0.

b)) The case By # 0. Since 6 # 0 by Lemma 4 we could not have a couple of parallel invariant
lines in the direction y = = and obviously the invariant line y = x 4+ 2/(g + h) is a simple one. As
before we consider two subcases: 1o # 0 and po = 0.

o) The subcase pg # 0. Then gh(g +h — 1) # 0 and systems (20) possess four real singularities
M;(x;,y;) with the coordinates

1 1 2h —1 29— 1
€T :—7’ :77 €T :—7’ = ,
! g+h a g+h ’ g+h v3 g+h (23)
h g 2h —1 29 — 1
ro = ——F < = T Ty =

gg+h) T hg+h) Trmgrh -0 T Gy h—1)

It could be checked directly that the singularity M;j(z1,y1) is a common (tangency) point of the in-
variant hyperbola and of the invariant line (21). Moreover, the singular point Ms(z2, y2) (respectively
My(x4,y4)) is located on the hyperbola (respectively on the invariant line), whereas the singularity
M3 (x3,ys3) generically is located outside the invariant hyperbola as well as outside the invariant line.

For systems (20) we calculate

X == 6%1(9 = 1)%(h = 1)*(9 = 1)*(Bg = D*Bh = 1)* Z1] (o gy
e :%gh(g — 14 (h — 1)4(g — h)%(3g — 1)2(3h — 1), (24)
W) = = (e — W Bg — DBh—1lg+h— 290

and, due to (11), the condition XS) = 0 is equivalent to Z; = —(g — h)?/(g + h)? = 0 and this
contradicts the condition (11). So the singular points M; and My could not collapse.

We consider two possibilities: Xg) < 0 and X(Cl) > 0.

a1) The possibility Xg) < 0. In this case the singularities M o are located on different branches

of the hyperbola and we need to decide if the singular point Mj3 coalesces with the singularities on
the hyperbola, and this fact is governed by the polynomial D. However, this last polynomial could
vanish due to the factors g + h — 2 and g + h — 2gh. Then, according to (24), we need to disti guish
the cases Xg) # 0 and Xg) =0.

So we get the configurations Config. H.60 if D # 0; Config. H.63 if D = 0 and X(Dl) # 0; and
Config. H.69 if D = 0 and X%) =0.

az) The possibility X(Cl) > 0. Assume Xg) > 0, i.e. gh > 0. Then, by Lemma 5, both singularities
M; o are located on the same branch of hyperbola. It is clear that the reciprocal position of the
singularities My (located on the hyperbola) and My (located on the invariant line) with respect to
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the tangency point M of the hyperbola and the invariant line (21), define different configurations.
More exactly the type of the configuration depends on the sign of the expression:

(9 —h)?
g+h—1)(g+h)?

x1 —x9)(T1 —T4) =
(21 — m2)(71 — 24) ol
and hence we need sign (g(g +h— 1)) when gh > 0. We calculate
X = (g+h)(g+h—1)(g—1)*(h—1)*(g — h)*(3g — 1)*(3h — 1)*/256

and, since in the case gh > 0 we have sign (g) = sign (¢ + h), we deduce that

sign (X)) = sign (g + h)(g + h — 1)) = sign (g(g + h — 1)).

We observe that the conditions Xg) > 0 and XE:I) < 0 imply D # 0 (i.e. D < 0). Indeed, if we
suppose D = 0, then (g + h — 2)(g + h — 2gh) = 0. In the case g = 2 — h, we have

W = (h = 1)1°(3h — 5)(3h — 1)2/32 > 0,
due to (19), which contradicts the condition xg) < 0. On the other hand, if g = h/(2h — 1), we have

o_ 1y o 2y 21 ,
X = gamgh o 1 (= D PR — 11— 2h 4 20%) > 0,

due to (19), which again contradicts the condition x%l) < 0. So we detect that in the case X%l) <0

we obtain the configuration Config. H.61.
In the case X%l) > 0, the polynomial D could vanish and we need to detect to which singular
points My or My the singularity M3 collapses. So we get the following conditions and configurations:

Config. H.59 if D # 0; Config. H.62 if D = 0 and x\)) # 0; and Config. H.68 if D = 0 and x\}) = 0.

B) The subcase po = 0. Then gh(g +h — 1) = 0 and, by Lemma 1, at least one finite singularity
has gone to infinity and collapsed with an infinite singular point. Since for systems (20) we have

XS) = 0 if and only if gh = 0 (see (24)), we consider two possibilities: XS) # 0 and Xg) =0.

B1) The possibility Xg) # 0. Then the condition pg = 0 implies g+ h —1=0,1ie. g=1—-h
and considering the coordinates (23) of the finite singularities of systems (20) we observe that the
singular point My located on the invariant line has gone to infinity and collapsed with the singularity
[1,1,0]. In this case calculation yields

X4 = B2 (h — 1)2(2h — 1)'(3h — 1)%(3h — 2)/64,
X5 = 105 R2(h — 1)%(2h — 1)2(3h — 1)2(3h — 2)%/8,
X! =35 (1~ h)°(2h — 1)2(3h — 1)*(3h — 2)?/32,
D = —192(2h — 1)5(1 — 2h + 2h2)2,
and by (19) we have XE41) > 0, Xg) > 0 and D < 0. Moreover, since by Remark 7 the condition R # 0

holds, then according to Proposition 1 all three finite singularities are distinct. This means that the
singularities located on the hyperbola are simple and belong to different branches (respectively of the
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same branch) of the hyperbola if XS) < 0 (respectively Xg) > 0). As a result we get configurations

Config. H.56 if Xg) < 0 and Config. H.57 if XS) > 0.

B2) The possibility Xg) = 0. Then gh = 0 (this implies pg = 0) and we have ¢g? + h? # 0 due to
g — h # 0. Considering Remark 6, without loss of generality, we may assume g = 0. In this case,
the singularity Ms located on the hyperbola (21) has gone to infinity and collapsed with the point
[1,0,0]. Since by Remark 7 we have p; # 0, then according to Lemma 1 other three finite singular
points remain on the finite part of the phase plane.

It is clear that depending on the position of the singular point My (located on the invariant line
(21)) with respect to the vertical line x = x1 we get different configurations. So this distinction is
governed by the sign of the expression x4 —x1 = 1/(1 — h). Moreover, since in this case we have the
invariant line x — y + 2/h = 0, its position depends on the sign of h. Then we need to control the
sign (h(1 — h)). Thus, we calculate

X2 = B3 (h —1)3(3h — 1)2/256, D = —192(h — 2)°

and we have sign (h(1 — h)) = —sign (Xg)).

It is clear that, in the case Xg) < 0, we have D # 0 and, since the condition R # 0 holds (see
Remark 7), Proposition 1 assures us that all three finite singularities are distinct if D # 0. So we

arrive at the cconfiguration given by Config. H.50.

Now, in the case X(ﬁ}) > 0, the polynomial D could vanish and we obtain the configuration Con-
fig. H.51 if D # 0 and Config. H.54 if D = 0.

by) The case By = 0. Considering (22) and the condition (11) we obtain g = 1/2 and this leads to
the 1-parameter family of systems

de  4(2h —1) 72 dy
oo 4+ (h—-1 = —y(2+a — 2hy)/2 25
G- hre et +(h=Dzy, —=-y(2+z-2hy)/2, (25)

for which the condition 65182 # 0 gives
(h—1)(2h 4+ 1)(2h — 1)(3h — 1)(6h — 5) # 0. (26)

These systems possess two invariant lines and a hyperbola

4 4

r-ytg—7=0, y=0 (z,9) (2h+1)2+:vy
as well as the following singularities M;(z;, y;):
2 2 _2(-2m)
€Ty = 2h+17y1_2h+17 r3 = oh+ 1 y Y3 =5 (27)
4h 1 4 0
To = ———— = —-———" Ty = ——— = .
2T Tohr 1 P T ey T a0 M

We observe that due to the condition (26) all singularities are located on the finite part of the phase
plane, except the singular point My which could go to infinity in the case h = 0. For the above
systems we calculate

X0 = 35K (h — 1)4(2h — 1)%(3h — 1)%/16384
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and we analyze the subcases XS) < 0, Xg) > 0 and X(é) =0.

o) The subcase x(cl,) < 0. Then h < 0 and it implies

48
=h(2h—1)/4#0, D=———(2h—3)%(2h—1)5 #0.
o = h(2h —1)/4 £, i 2h -9 - 1f #
Since the singular points on the hyperbola are located on different branches, we arrive at the unique
configuration Config. H.84.

B) The subcase Xg) > 0. Then h > 0 (this implies again g # 0) and the singularities on the
hyperbola are located on the same branch. Thus, it is necessary to distinguish the position of My on
the hyperbola with relation to My, which is the intersection point of the hyperbola and the invariant
line x —y+4/(2h+1) = 0, and My, which is the intersection point of the two invariant lines, as well
as the position of the singularities M3 and M, on the invariant line y = 0. We calculate

4(2h — 1)

(331 - «T2)(CU1 - 1’4) = m, (x4 - 553) =

2(2h - 3)
2h +1

and hence sign (2h — 1) (respectively sign (2h — 3)) will describe the position of the singularity Mo
on the hyperbola (respectively the position of the singularity M3 on the invariant line y = 0). We
calculate

Y =278 2n — 1320+ 1)(h+ 1) Bh— 1%, X3 = (@n—3)(h+1)/8
and, due to (26) and since h > 0, we obtain sign (2h — 1) = sign (X%l)) and sign (2h — 3) = sign (X(Gl)).

We observe that the condition X(Gl) = 0 yields h = 3/2 and this implies D = 0. In this sense, we

obtain the following conditions and configurations:
° x%) <0 = Config. H.86;

° X%) > 0 and X(Gl) <0 = Config. H85;

° X%) > 0 and Xg) >0 = Config. H.83;

o X'V >0and Xy =0 = Config. H.81;

~) The subcase Xg) = 0. Then h = 0 (this implies up = 0) and the singularity Ms has gone to
infinity and collapsed with [0, 1, 0]. As a result we get Config. H.82.

3.1.1.2  The case S = 0. Since 51 # 0 (i.e. ¢ # 0) we get (9 — h)(3g + 3h —4) = 0. On the other
hand, for systems (8) we have

f3=—clg—h)(g—1)(h—1)/4

and we consider two possibilities: §3 # 0 and 83 = 0.
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3.1.1.2.1  The possibility f3 # 0. In this case we have g—h # 0 and the condition Sy = 0 yields
3g+3h—4=0,ie g=4/3 — h.In this case, for systems (8), we calculate

v3 = 7657c(h — 1)3(3h — 1)*[a(5 — 6h) — 3b(2h — 1)],
Bz = —c(h —1)(3h —2)(3h — 1)/18, Ry = (a — b)e(h — 1)*(3h — 1)3/6.

Without loss of generality, we may assume 2h — 1 # 0, otherwise via the change (z,y,t,a,b,¢) —
(y,x,t,b,a,—c) we could bring systems (8) with h = 1/2 to the same systems with h = 5/6.
Therefore, due to 3 # 0, the condition v3 = 0 yields b = a(5 — 6h)/[3(2h — 1)] and since ¢ # 0 we
may assume ¢ = 1 due to the rescaling (z,y,t) — (cz, cy,t/c).

We remark that the condition 73 = 0 could be written as a = a1(2h — 1) and b = a;1(5 — 6h)/3. So
setting the old parameter a instead of a;, we arrive at the 2-parameter family of systems

Z—f :3a(2h—1)—|—m+4_3hx2+(h—1):z:y, % :a(5;6h) —y+ Lo sh
for which the condition 65183R1 # 0 is equivalent to the condition

zy + hy?,  (28)

a(h —1)(3h —1)(83h —2) # 0. (29)
Moreover, these systems possess the same invariant hyperbola (12).

Observation 2. We observe that the family of systems (28) is in fact a subfamily of systems (10)
under the relation g = 4/3— h. Moreover, if we present the condition (11) in the form F(a,g,h)(3g+
3h —4) # 0, then in the case g = 4/3 — h, the condition (29) is equivalent to F(a,g,h) # 0. We
also point out that the condition g = 4/3 — h does not imply the vanishing of any of the invariants
XS),XS), e ,X(Gl). Hence, all the configurations of systems (28) are the configurations of systems
(10) determined by the same invariant conditions.

Considering this observation, we could join the conditions defining the family (10) (i.e. n > 0,
0B182 # 0) with the conditions which define the subfamily (28) (i.e. n > 0, 851 # 0, f2 = 0 and
B3 # 0). More precisely, the conditions defining both such families of systems are 83 + 32 # 0 and
(¢1), where

(€1): (BaR1#0)U (B2 =73=00N03#0).

3.1.1.2.2  The possibility 3 =0. Due to 51 #0 (i.e. (¢ —1)(h—1) #0), we get g = h. In this
case, we calculate

vo =6300h(h — 1)(3h — 2)(3h — 1)?By,
0= h(h—172 B =—(h—1)2(3h—1)/4,
Bs =2h(3h —2), B5=—2h*(2h —1).
We shall consider two cases: 54 # 0 and 84 = 0.
a) The case B4 # 0. So the condition v = 0 implies 5; = 0 and by Theorem 1 the condition 55 # 0

is necessary for the existence of hyperbola. Hence, we arrive at the particular case of systems (10)
when g = h, i.e. we get the systems

dz
dt

d
=a(2h — 1) +x + ha? + (h — 1)y, d—i =a(2h — 1) —y + (h — )2y + hy? (30)
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with the condition

ah(h —1)(2h — 1)(3h — 1)(3h — 2) # 0. (31)
These systems possess the invariant line and hyperbola
1+h(z—y)=0, ®(x,y)=a+zy=0.

Since pg = h?(2h — 1) # 0 (see (31)), then the systems have finite singularities M;(x;,y;) of total

multiplicity 4:
1++V1—4ah? 17 V1—4ah?

T12 = — Y12 =

2h ’ 2h ’
—1=++/1+4a — 8ah 1F 1+ 4a — 8ah
T34 = 2 Y34 = 2 )

We detect that the singularities Mo are located on both the hyperbola and the straight line.
These singular points are located on different branches (respectively on the same branch) of the
hyperbola if only if z1xe < 0 (respectively xjxo > 0), where x129 = a. Moreover, these singularities
are real if 1 — 4ah? > 0, they are complex if 1 — 4ah? < 0 and they coincide if 1 — 4ah? = 0.

On the other hand, we calculate
X2 = 2n%(2h — 1)2(3h — 1)2(1 — 4ah?), X = —a(h — 1)2(2h — 1)%(3h — 1)* /4

and, due to the condition (31), we have sign (1—4ah?) = sign (Xf)) (if 1—4ah? # 0) and sign (z122) =
. 2
—sign (XSB)).

We observe that at least one of the singular points M3 4 could be located either on the invariant
hyperbola or on the invariant straight line. Next we determine the conditions for this to happen. We
calculate

D(2, Y fe=as4, y=ys.a} = (=1 +4ah £ V1 +4da —8ah) = §74(a, h),
1+ h(® = Y)]l{e=s.4, y=ysa} = 1 + h(=1 £ V1 +4a — 8ah) = O34(a, h).

So Ms or M, could be located on the invariant hyperbola (respectively invariant line) if and only if
Q49 = 0 (respectively ©304 = 0). So we have

Q4 = —a(l — 4ah®) =0, O304 = (1 —2h)(1 —4ah®) =0

if and only 1 — 4ah? = 0 (due to the condition (31)).
2)

Thus, in the case XE42) # 0 we arrive at the configuration given by Config. H.37 if x,’ < 0;
Config. H.52 if xf) > (0 and X(BQ) < 0; and Config. H.53 if XE42) > 0 and Xg) > 0.

Assume now xf) =0, i.e. 1 —4ah?® = 0. Due to the condition (31) we have h # 0 and hence

a = 1/(4h?). It could be easily observed that in this case the singular points Mo and M3z coalesce
with the singularity M; and this point becomes a triple point of contact of the invariant hyperbola
and invariant line. We remark that this point of contact could not be of multiplicity 4 because in
this case we have

po=h*(2h—1)#0, D=T=P =0, R=3h%*h—1)22h—1)*(z+1y)*#0,

due to the condition (31). Thus, in the case Xf) = 0 we get the configuration given by Config. H. /5.
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b) The case B4 = 0. Then, due to § # 0, we get h = 2/3 and we obtain a family of systems which
is a subfamily of systems (30) setting h = 2/3. Since in this case we have

P =8(9 - 16a)/729, ) = —a/324,

it is clear that we obtain again the same four configurations as for the family (31) with the same
invariant conditions. As earlier we could join the cases 54 # 0 and B4 = 0. More precisely, the
conditions defining the corresponding families of systems are

(€2) 1 (BaPsR2 #0)V (Ba =73 =0, R2 #0).

3.1.2 The possibility g; =0

Considering (9) and the condition 6 # 0, we get ¢(3g — 1)(3h — 1) = 0. On the other hand, for
systems (8) we calculate

Bs = —clg—1)(h—1)/2

and we shall consider two cases: 8 # 0 and g = 0.

3.1.2.1 The case 5 # 0. Then ¢ # 0 (as before we could assume ¢ = 1 due to a rescaling) and
the condition 51 = 0 implies (3g — 1)(3h — 1) = 0. Therefore, due to Remark 6, we may assume
h =1/3 and this leads to the following 3-parameter family of systems

dx

E:a+x+g$2—2xy/3,

d
dfz:b—y+(9—1)wy+y2/3, (32)

which is a subfamily of (8).

For these systems we calculate

Y4 =16(g — 1)*(3g — 1)?[3a(2g — 1) + b] [(3g + 1)*(b — 2a + 6ag) + 6(1 — 3g)] /243,
Bs=(9-1)/3, Ba=(1-9)(89—1)/2, Ry=a(3g—1)°/18.

3.1.2.1.1  The subcase B2 # 0. Then 3g — 1 # 0 and, in order to have 74 = 0, we must have
[3a(2g — 1) +b][(3g + 1)%(b — 2a + 6ag) + 6(1 — 3g)] = 0.

We claim that systems (32) with (3g + 1)%(b — 2a + 6ag) + 6(1 — 3g) = 0 (i.e. b= 2(3g — 1)(3 —

a — 6ag — 9ag?)/(3g + 1)) could be brought to the same systems with b = 3a(1 — 2g) via an affine

transformation. Indeed, due to 8 # 0 (i.e. (3g+1)(g—1) # 0), we may apply the affine transformation

39 +1 39 +1 2 3(g—1)

= ; == - + 5 t1 = P
NE3a—gn Y 3(1—9)(96 v) 1—g ' 3g+1

and we arrive at the systems

(33)

d.%'l

d
P a1 + 1 + g12] — 221y1/3, LA b —y1 + (g1 — Dy + yi/3,

dtq

where by = —3a1(291 — 1), a1 = —a(3g + 1)?/[9(g — 1)?] and g1 = (2 — 3g)/3. This completes the
proof of our claim.
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Thus, in what follows, we consider the following family of systems

d d
= atage®—2ay/3, L= —3a(2g— 1)~y +(g— Day+y’/3, (34)
with the condition
alg —1)(39 —1)(3g +1) # 0. (35)

According to Theorem 1, these systems possess either one or two invariant hyperbolas if either
61 # 0 or &; = 0, respectively, where 61 = (3g — 1)[6(1 — 3g) + a(3g + 1)?] /18.

a) The possibility 51 # 0. Then systems (34) possess the unique invariant hyperbola
O(x,y) =3a —zy = 0. (36)
For systems (34) we calculate

By =8a*(g—1)*(29 — 1)(3g — 1)[3 + a(3g + 1)*] /2T. (37)

a1) The case By # 0. In this case, due to (35), we have (29 — 1)[3 + a(3g + 1)?] # 0. For systems
(34) we calculate pp = g(3g — 2)/9 and we consider two possibilities: po # 0 and py = 0.

«) The subcase py # 0. In this case the systems have finite singularities of total multiplicity 4
with coordinates M;(z;, y;):

—1£+/1+4ayg 3(1 £ +/1+4ag)
y Y12 = ’
' 2

T2 = %
1++/1—8a+ 12ag 3(2g —1)(1 £ /1 —8a+ 12ag)
T34 = y Y34 = .
2(3g—2) 2(3g—2)

We detect that the singularities M o are located on the invariant hyperbola. More exactly, these
singular points are located on different branches (respectively on the same branch) of the hyperbola
if only if x129 < 0 (respectively z1xe > 0), where z129 = —a/g. Moreover, these singularities are
real if 1 + 4ag > 0, complex if 1 + 4ag < 0 or they coincide if 1 + 4ag = 0.

On the other hand, we calculate

(3 7713280

XA =g (1+4ag)[6(1 - 3g) +a(3g + P,
164798932
vy = = alg = D*(3g — 1)?[6(1 - 39) + (39 + 1)*]",
66560
A& = 2 ag[6(1 — 39) + a(3g +1)%)%,

9

and, due to the condition (35), we have sign (Xf)) = sign (1 +4ag) (if 1 +4ag # 0) and sign (Xg)) =
sign (z1x2).

We point out that at least one of the singular points M3 4 could be located on the invariant
hyperbola. Next we determine the conditions for this to happen. We calculate

3[2a(g —1)(3g —2) — (29 — 1)(1 + /1 — 8a + 12ayg)
(I)(mvy)|{ariw3,4, y=y3a} [ 2(39 — 2)2 ] = QgA(a’g’ h)
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It is clear that at least one of the singular points M3 or My belongs to the hyperbola (36) if and
only if Q5] = 0. So we have

9ala(g —1)* — 29 + 1]

%t = (39 —2) -
and, since
) = % (39 — 1)[a(g — 1)* = 2g + 1][6(1 — 39) + a(3g + 1)?],
Wé )deduce that at least one of the singular points Ms34 belongs to the hyperbola if and only if
xp =0.

aq) The possibility XS) < 0. So we have no real singularities located on the invariant hyperbolas

and we arrive at the configurations given by Config. H.1 if Xg) < 0 and Config. H.2 if Xg) > 0.

az) The possibility XS) > 0. In this case we have two real singularities located on the hyperbola

and we need to decide if they are located either on different branches or on the same branch of the
invariant hyperbola and also if at least one of the singular points M3 4 will belong to the hyperbola.

t) The case Xg) # 0. Then a(g — 1)?> —2g + 1 # 0 and on the hyperbola there are two simple real
singularities (namely M 2) and we arrive at the conditions and configurations given by:

° xg’) < 0 and Xg) <0 = Config. H.17,

° X(g) < 0 and Xg) >0 = Config. H19;

° Xg) > 0 and Xg) <0 = Config. H 16,

° x(éf’) > 0 and Xg) >0 = Config. H.18.

1) The case Xg) = 0. In this case, due to By # 0 and (35), we obtain a = (29 —1)/(g — 1)2. Then,
considering Proposition 1, we calculate

_ 2
—M(?’g —1)%(3gx — y)*[3(29 — )z — y]* [3g(g — )z +2(29 — 1)y]".

D=0, T=
41.1) The subcase T # 0. Then T < 0, Xf) > 0 and, according to Proposition 1, in this case
systems (10) possess one double and two simple real finite singularities. More exactly, we detect that
one of the singular points M3 or My collapses with a singular point located on the hyperbola, whereas
the other one remains outside the hyperbola. Then, we obtain the conditions and configurations as
follow:

° X(c:*))) < 0 and Xg) <0 = Config. H21,

° x(g) < 0 and Xg) >0 = Config. H23,;

° Xg) >0 = Config. H.20,
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in which in the last case the condition X(g) > 0 implies XS) < 0, because T < 0 yields 0 < g < 1/2

and, for these values of ¢ combined with the condition X(O?’) > 0, we have a < 0 and hence Xg) < 0.

14.2) The subcase T = 0. In this case, due to the conditions (35) and py # 0, the equality T =0
yields g = 3/5 and hence X(C?’) = —416000/3 < 0, which leads to configuration given by Config. H.26.

ag) The possibility X(A?’) = 0. Due to (35), the condition Xf) = 0 implies 1 4+ 4ag = 0 and hence

a = —1/(4g). In this case the points M; 2 collapse and we have a double point on the hyperbola. In

this case we see that
46(3g — 1)3(9g — 1)?

8192 70

R

and 01 # 0, due to (35). So, as ij’) # 0 no other point could collapse with the double point on the
hyperbola, we arrive at the configuration Config. H.7 if Xg) < 0 and Config. H.8 if Xg’) > 0.

B) The subcase py = 0. We consider the possibilities: Xf) <0, Xf) > (0 and Xff) = 0.

B1) The possibility X(A?’) < 0. The singular points on the hyperbola are complex and, since 1+4ag <
0 yields ag < 0, we have g = 2/3 and then a < 0, which is equivalent to Xg) < 0. So we arrive at

the configuration given by Config. H.3.

B2) The possibility ij’) > 0. Analogously we have g = 2/3 and the points on the hyperbola are
real. We observe that, due to the condition (35), the equality Xg)) = 0 is equivalent to g = 0. So we

consider two subcases: X(C?’) # 0 and Xg) =0.

1) The case X(c%) # 0. Then one finite singularity has gone to infinity and collapsed with the point
[1,1,0]. As observed earlier, this must be a singular point located outside the hyperbola which goes
to infinity and hence on the finite part of the phase plane of systems (38) there are three singularities,
two of which (M; and Ms) being located on the hyperbola.

Since the singular points on the hyperbola are real, we have to decide when the third point will
belong also to the hyperbola. For systems (34) with g = 2/3 we calculate

7713280 164798932
W= Ba ke 3)Ba—2P, ) = T a(Ba - 2)%,
(3) _ 133120 Y @ _ 16 B
Xo = 3 a(3a —2)°, xp = 213 (a—3)(3a—2).
. G o (3) 3) . o . . (3)
We observe that sign (x5’) = —sign (x/’) and, moreover, x;,’ = 0 (i.e. @ = 3) implies x/’ < 0. So

we get the following conditions and configurations:
. Xg) < 0 and Xg)) #0 = Config. H.32;
° Xg)) < 0 and Xg) =0 = Config. H3/;
° X(c:*))) >0 = Config. H.29.

it) The case X(g) = 0. Then g = 0 and this implies

W = 164798932a(a + 6)2/81, X2 =0, '3 = —736(a1)(a + 6)?/81.

So we get the following conditions and configurations:
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. Xg) < 0 and X(Dg) #0 = Config. H.9;

o ¥V <0and W =0 = Config. H.11;

° Xg) >0 = Config. H.10,

in which in the last case the condition Xg) >0 (i.e. a > 0) implies Xg) # 0.

B3) The possibility X(j) = 0. Due to (35), the condition py = Xf) = 0 implies g(3g—2) = 1+4ag =
0. Then this yields g # 0 and hence g = 2/3 and a = —3/8. In this case the singularities M 2 collapse
and we have a double point on the hyperbola. For systems (34) with a = —3/8 we calculate

B = 162500 >0, X\ =575/18 £ 0.

Since Xg) = 0, no other point could coalesce with the double point on the hyperbola and we arrive
at the configuration Config. H.1/.

ay) The case By = 0. Thus, according to Lemma 2, the condition By = 0 is necessary in order to
exist an invariant line of systems (34). Considering (35), the condition B; = 0 (see (37)) is equivalent
to

(29 —1)[3+a(3g+1)*] = 0.
On the other hand for these systems we calculate
3
X = (39— D)[3+a(3g+ 1)?] [6(1 — 3¢) + a(3g + 1)?]

and we examine two possibilities: XS) # 0 and Xg) =0.

«) The subcase Xg) # 0. In this case we get ¢ = 1/2 and this leads to the systems

d d
=a+ata/2-2ys, = —yl+a/2-y/3), (38)
for which the following condition holds (see (35)):
a(25a — 12) # 0. (39)

Since the family of systems (38) is a subfamily of (34) (setting g = 1/2), the invariant hyperbola
remains the same as in (36). Besides this hyperbola, systems (38) possess the invariant line y = 0,
which is one of the asymptotes of this hyperbola. For the above systems we calculate

po=—1/36, ' = (250 4 12)(25a — 12)/192, B, =0, By = —8a(25a+ 12)y".

Therefore, we conclude that, due to the conditions X(E?’) # 0 and (39), we obtain By # 0 and by
Lemma 2 we could not have another invariant line in a direction different from y = 0. Moreover, due
to the condition # # 0 and according to Lemma 4, in the direction y = 0 we could not have either a
couple of parallel invariant lines or a double invariant line.
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Since pg # 0, systems (38) possess finite singular points of multiplicity 4 with coordinates M;(z;, y;)
(i=1,2,3,4):
r12=—-1%£v2a+1, y12=31+£v2a+1)/2,
T34 = -1+ A\ 1-— 2(1, Y34 = 0.

We recall that the singular points Mj 2 are located on the hyperbola and that the singularities M3 4
are located on the invariant line y = 0.

On the other hand for systems (38) we calculate
3) 482080

Xa' = 5 (2a +1)(25a — 12)?, D =a*(2a —1)(2a + 1)/3,
(3 41199733 5 2080
P —qpa(2ia —12)%, T ~=5a(25a —12)°

and then the invariant polynomials XS) and D govern the types of the above singular points (i.e. are

they real or complex or coinciding), whereas the invariant polynomials Xg’) and X(C?’) are responsible
respectively for the position of the hyperbola and the location of the real singularities on it (i.e. on

the same branch or on the different ones).

o) The possibility Xf) < 0. Then the singularities M 2 (located on the hyperbola) are complex.

Since Xf) < 0, we obtain Xg) < 0 and D > 0, and by Proposition 1 the singularities on the invariant
line are real and distinct. So we get the configuration given by Config. H.49.

az) The possibility XS’) > 0. In this case the singularities M; 2 are real and they are located
on different branches (respectively on the same branch) of the hyperbola if Xg) < 0 (respectively
X(g) > 0). We observe that the conditions Xf) >0 and D > 0 imply @ > 1/2 and then X(g) > 0 and

Xg) < 0. Moreover, the conditions x(j) > 0 and Xg) < 0 yield —1/2 < a < 0 and then D < 0 and

X(CS) > 0. Therefore, we arrive at the following conditions and configurations:

° Xg) <0 = Config. H74;
° Xg) >0and D <0 = C(Config. H.73;
° Xg) >0and D >0 = Config. H47;

e x\W>0and D=0 = Config. H.66.

ag) The possibility Xf) = 0. Due to the condition (39), the condition XES) = 0 implies a = —1/2.
In this case the points M 5 collapse and we have a double point on the hyperbola. For systems (38)
with a = —1/2 we calculate

X = 41199733/41472 > 0, T = — (32 — 2y)(92% — 24y + 8y*)2/4478976 < 0.

So, according to Proposition 1, besides the double point on the hyperbola, we have two simple real
singular points on the invariant line y = 0 and we get the configuration given by Config. H.67.

B) The subcase Xg) = 0. In this case we obtain a = —3/(3g + 1)? and this leads to the systems

dx 3 9 dy 9(2g—-1) 2
- Y 44 —2ry/3, 2 =2 - _ 44 (g—1 +y“/3 40
dt (3g+1)2 o zy/3, dt  (3g+1)? ytlg—layt+y/ (40)
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with the conditions
(9—1)(8g—1)(3g +1)(6g — 1) # 0. (41)

Moreover, systems (40) possess the following invariant line and invariant hyperbola

r—y+6/(Bg+1)=0, P(z,y)= + 22y = 0. (42)

18
(39 +1)2

We observe that the condition XS) = 0 implies

(3) _ T713280(3g — 1)%(6g — 1)?

(3) _  164798932(g — 1)*(3g — 1)*(6g — 1)
Xa 27(3g + 1)

>0 xp = 3(3g 1 1) <0,

due to (41). Therefore, the points on the hyperbola are real and distinct and the hyperbola assumes
only one position.

For the above systems we calculate

70 (g~ 1220 — 1)z — v)* (43)

2T Bg+1)

and, by Lemma 2, for the existence of an invariant line in a direction different from y = x it is
necessary By = 0.

B1) The possibility Ba # 0. Then 2g — 1 # 0 and, since § # 0, by Lemma 4 we could not
have a couple of parallel invariant lines in the direction y = x and obviously the invariant line
y=x+6/(3g+ 1) is a simple one. As before, we consider two cases: pg # 0 and pg = 0.

1) The case pg # 0. Then g(3g — 2) # 0 and systems (40) possess four real singularities M;(z;, y;)
having the following coordinates:

3 3 1 3(2g — 1)
X :_77 — ; €Tra = — s g 7,
SR VIE L e VAT | ST T3+ 1 BT 391 )
1 9g 3 9(2g — 1)

T =

[];‘4:— y4:

TyBg+1) T 3g 1 (3g+1)(3g—2)’ (Bg+1)(39—2)

We could check directly that the singularity M; is a common (tangency) point of the invariant
hyperbola and of line (42). Moreover, the singular point My (respectively My) is located on the
hyperbola (respectively on the invariant line), whereas the singularity Ms is generically located
outside the hyperbola as well as outside the invariant line.

For systems (20) we calculate
= 0+ 1789 — 5230 1, o = g(39 —2)/9
3(3g+1)8 ’ ’
B _ 1996809 (6g — 1)® (B _ 1472 + D) (3g - 1)*(6g — 1)
¢ (3g+1)2 P 27(3g + 1)2

(45)

1.1) The subcase X(c%) < 0. Then g < 0 and the singular points M2 are located on different

branches of the hyperbola and we obtain the configuration Config. H.60 if D # 0 and Config. H.69
it D=0.
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©.2) The subcase X(g)) > 0. Then g > 0 and the singular points Mj o are located on the same

branch of the hyperbola. It is clear that the reciprocal position of the singularities My (located on
the hyperbola) and My (located on the invariant line) with respect to the tangency point M; of the
hyperbola and the invariant line (42) defines different configurations. More exactly, the type of the
configuration depends on the sign of the expression:

- 3(3g —1)?
939 —2)(8g+1)%

Hence, we observe that sign ((z1 — z2)(z1 — x4)) = sign (o). So, if D # 0, we arrive at the configu-
ration Config. H.61 if up < 0 and Config. H.59 if ug > 0.

We consider now the case D = 0. Then, due to the condition (20), we have (¢ + 1)(3¢g —5) = 0

and clearly the invariant polynomial X(D?’) distinguishes which one of the two factors vanishes.

(z1 — z2)(21 — 24)

If Xg’) # 0, then g+ 1 # 0 and we get g = 5/3. We observe that in this case the singularity M3
collapses with the singular point My located on the invariant line. On the other hand, we calculate

T = —256(x — y)*(52 — y) (5 + y)? /177147 < 0

and, by Proposition 1, we have three distinct singularities (one of them being double). Now, assuming
g = 5/3, for systems (40), we calculate

XD = 748800 > 0, (1 — o) (21 — x4) = 4/15 > 0

and hence we arrive at the configuration given by Config. H.62.
In the case xg) = 0, we have ¢ = —1 and then the singularity Mgz collapses with the singular point

M5 located on the hyperbola (but outside of the invariant line). Moreover, for g = —1 we have
T = —256(x — y)*(3z + v)? (97 + y)?/243 < 0

and again we conclude that systems (40) possess three distinct singularities (one double). In this
case we have
X&) = —2446080 < 0, (w1 — a2) (21 — 24) = 12/5 > 0

and therefore we get the configuration given by Config. H.68.

it) The case py = 0. Then g(3g —2) = 0 and, by Lemma 1, at least one finite singularity has gone

to infinity and coalesced with an infinite singular point. Since for systems (40) we have Xg) =0 if

and only if g = 0 (see (45)), we consider two subcases: X(g) # 0 and X(c%) =0.

41.1) The subcase Xg’) # 0. Then the condition py = 0 implies 3g — 2 = 0 (i.e. ¢ = 2/3) and,
considering the coordinates (44) of the finite singularities of systems (40), we observe that the singular
point My located on the invariant line has gone to infinity and collapsed with the singularity [1, 1, 0].
In this case calculation yields

D = —1600/19683 < 0, ¥ = 133120 >0,

and, since by Remark 7 the condition R # 0 holds, according to Proposition 1, all three finite
singularities are distinct. Moreover, due to X(C:s) > (, the singularities are located on the same branch

of the hyperbola and we get the configuration given by Config. H.57.
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11.2) The subcase X(g’) = 0. Then g = 0 and in this case the singularity M5 located on the hyperbola

(42) has gone to infinity and collapsed with the point [1,0,0]. Since by Remark 7 we have u; # 0,
according to Lemma 1 the other three finite singular points remain on the finite part of the phase
plane.

Now, depending on the position of the singular point My (located on the invariant line (42)) with
respect to the vertical line x = x1, we may get different configurations. This distinction is governed
by the sign of the expression x4 — x1 and we calculate

D =—1600/3#0, x4—a1=23/2>0.

Since by Remark 7 the condition R # 0 holds, according to Proposition 1, all three finite singularities
are distinct (D # 0) and since x4 — 1 > 0, we arrive at the configuration given by Config. H.50.

B2) The possibility By = 0. Considering (43) and the condition (35), we obtain g = 1/2 and this
leads to the system

d d
dit” = —12/25+ x + 22/2 — 2ay/3, d—f = —y(l+2/2—y/3), (46)

possessing the two invariant lines and the invariant hyperbola:

12 72
s-y+—-=0, y=0 Px,y)=-+2y=0.

as well as the following singularities M;(z;,y;) with the coordinates

6 6 2 4 9 12
= — - = - = - :O‘ = —_—— = - = —— :O. 47
il 5 Y1 5 T3 5 Y3 ) 5 Y2 5 T4 5 Ya (47)
Hence, all singularities are located on the finite part of the phase plane since g = —1/36 # 0. We
calculate

D — —2352/390625 < 0, X = 319488/5 > 0.

Since Xg) > 0, the singular points M; and M are located on the same branch of the hyperbola

and we need to detect the position of the singularity Ms on the hyperbola. This fact is verified by
the sign of the expression (r1 — z2)(z1 — z4) = —12/25 < 0. Then, we arrive at the configuration
given by Config. H.86.

b) The possibility 1 = 0. Due to condition (35) we get a = 6(3g — 1)/(3g + 1)? and we get the
following 1-parameter family of systems
dr  6(3g—1) o 2zy dy  18(1—2g)(3g —1) 2

Y
dr S99~ ) _ 2y - _ _ L 48
G~ Bg1E TP T (Bg+1)2 yHlg=Doy+g, (48)

with the conditions
(9—1)Bg—1)(3g+1) #0. (49)

Moreover, systems (48) possess two invariant hyperbolas:

36(1 — 39)

36(3g — 1 12
gy T2w=0 Dy (2, y) = ( )

22(x — ) = 0. 50
Bg+1)? 39410 " z(z =) (50)

q)l(x’y) -
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We observe that the family of systems (48) is a subfamily of systems (34) and hence, via the
transformation (33), systems (48) could be brought to systems of the same form (48) but with the
new parameter g; = 2/3—g. So, this transformation induces a transformation in the coefficient space
which fixes the point g = 1/3 and sends the interval (—oo, 1/3] onto the interval [1/3,+00). Thus,
in what follows we shall consider only the values of the parameter g on the interval (—oo, 1/3].

In this sense, we get the next remark.

Remark 8. Due to an affine transformation and a time rescaling, we could assume that the param-
eter g in systems (48) belongs to the interval (—oo, 1/3].

For systems (49) we calculate

oo~ VB0~ 1720 = 1)(6g — 1) 61

By =
and we analyze two subcases: By # 0 and By = 0.

b)) The case B # 0. In this case due to (49) we have (2g — 1)(6g — 1) # 0. For systems (48) we
calculate po = g(3g — 2)/9 and we consider two subcases: o # 0 and po = 0.

a) The subcase pg # 0. Then the systems have finite singularities of total multiplicity 4 with

coordinates:
oy 3g—1 "= 189 . 3(3g — 1) y 929 -1)(3g—1)
P gBg 1) T 39 U P Be+DBg-2) 7 Bg+1)(Bg—2) (52)
6 3(1-3g) 2 6(1—29)
2T Ty 1P T 3 T T3y M T T3yt

We detect that the singularities M o are located on the first invariant hyperbola (88) and moreover
the singularity My is also located on the second hyperbola, i.e. Ms is a point of intersection of these
two hyperbolas on the finite part of the plane. The singular point M3 belongs to the second hyperbola,
whereas the singularity My generically is located outside the hyperbolas.

For systems (88) we calculate

X = (99 —1)(99 —5)/9, o= g(3g —2)/9,

16
D=——(9g—1)209g —5)%(5g — 1)%(15g — 7).
3(3g+1)8(9 )7(99 —5)7(59 — 1)*(159 — 7)
On the other hand, we have
6(1 —39) 12(1 — 59) 4(159 — 7)
- ) (b ) = I (I) ) = .
N By 12 1(e0,34) (39 —2) 2(ea,94) (39 —2)

We observe that the singular points M are located on different branches (respectively on the
same branch) of the first hyperbola if only if z129 < 0 (respectively x129 > 0), and this is governed
by the sign (z122) = —sign (g9(3g —1)). Since by Remark 8 we have g € (—o0, 1/3], we conclude that
in this interval sign (x;22) = —sign (p0)-
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Besides, we point out that the singular point My(x4,y4) (which generically is located outside of
the hyperbolas) could be located on one of these invariant hyperbolas if and only if the following
condition holds:

=0.

[@1(Ma)] [@5(My)] = {12“ = 59)] [4<159 - 7)} _48(1—5g)(15g — 7)

Bg+1)* | [ 3g+1)? (3g +1)*
We observe that in the case X%?)) # 0 the condition (59 — 1)(15g — 7) = 0 is equivalent to D = 0.

a1) The possibility pg < 0. According to Remark 8, the condition pg < 0 is equivalent to g > 0
and the singular points M are located on the same branch of the first hyperbola. We calculate

We observe that sign (1 — x2) = sign (ng)) due to Remark 8. Then we consider the cases Xg)) <0,

X;?) > (0 and XE:?’)) =0.

1) The case Xg) < 0. Then (99 — 1)(9g — 5) < 0 and we consider two subcases: D # 0 and D = 0.
If D # 0 we have only simple singular points on the hyperbolas and we arrive at the configuration
shown in Config. H.128. Otherwise, D = 0 implies the existence of a double singular point on the
first hyperbola and this point is characterized by the collision of the singular points M; and My, and
we get the configuration given by Config. H.1350.

i) The case Xg) > (. Then (9g—1)(9g—5) > 0 and we get the configuration given by Config. H.129.

ii1) The case ng’) = 0. Then (1 — 5¢)(9¢9 — 5) = 0 and, according to Remark 8, we get g = 1/5.
In this case, the singularities M7 and Ms have collided and we obtain a double singular point at the

intersection of the two hyperbolas (88) and hence we get the configuration given by Config. H.12/.

az) The possibility po > 0. In this case the singularities M 2 are located on different branches of
the first hyperbola and we get the configuration given by Config. H.127.

B) The subcase 9 = 0. Then g = 0 and the point M; has coalesced with the point [1,0,0] at
infinity and we obtain the configuration shown in Config. H.125.

by) The case By = 0. Considering (49), the condition By = 0 (see (51)) is equivalent to (2g—1)(6g—
1) = 0. According to Remark 8, we have g = 1/6 and in this case, besides the hyperbola, we have the
invariant line z —y +4 = 0. Since By = —6400(z — y)*/9 # 0, the system could not possess another
invariant line by Lemma 2. Moreover, we observe that the point M; is the point of intersection of
the first hyperbola and the invariant line. Since pg = —1/36 < 0 and x13 = —7/36 < 0, we get the
configuration given by Config. H.135.

3.1.2.1.2  The subcase 3 =0 Then g = 1/3 and we arrive at systems of the form

d d
d—f:a+x+x2/3—2xy/3, d—zt/:b—y—Q:Uy/?)—l—yQ/fi, (53)

For systems (53) we calculate

75 = 256ab(a — b)/81, R4 = 128(a® — ab+ b?)/6561.
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In order to have v5 = 0 we must have ab(a — b) = 0. We observe that i n the case ab = 0 we may
assume b = 0 due to the change (x,y,t) — (—y, —z, —t). On the other hand, the systems (53) with
b = 0 could be brought to the same systems with b = a via the change (z,y,t) — (x,2 —y + 3, —t).
Therefore, we consider the following family of systems

d d
d—f =—a/3+z+2%/3 —2zy/3, d—?; = —a/3—y—2zxy/3+y%/3, (54)
with the condition a # 0.

We observe that the above family of systems is a subfamily of systems (30) defined by the condition

h = 1/3. For the family (30), it was shown that, due to the conditions (31) (i.e. h # 1/3), we have
sign (Xf)) = sign (1 — 4ah?) and sign (Xg)) = sign (z1x2). Clearly that for the subfamily (54) these
invariants vanish and we need other invariant polynomials which are responsible for the sign (1—4ah?)

and sign (z1x2) in this particular case.
We calculate
(1-— 4ah2)‘{h:1/3} = (9 —4a)/9, (x1332)‘{h:1/3} = q.
On the other hand, for systems (54) we calculate

P = 12341248042(9 — 4a)/19683, x\Y = 106496043 /729

(3)

(j)) = sign (9 — 4a) and sign (x’) = sign (z122).

and hence sign (x

Thus, considering the conditions and configurations for family (30), we get the configurations
given by Config. H.37 if Xf) < 0; Config. H.52 if Xf) > 0 and X(g)) < 0; Config. H.53 if Xf) > (0 and
X(g)) > 0 and Config. H.45 if XS) = 0.

3.1.2.2 The case s = 0. The conditions s = —c(g — 1)(h —1)/2 =0and 0 = (g — 1)(h —
1)(g + h)/2 # 0 imply ¢ = 0. Then for systems (8) with ¢ = 0 we calculate

Br=2(29 - 1)(2h = 1)(1 — 29 — 2h), 5 = —288(g9 — 1)(h — 1)(g + h)B1B,Bs,

where
By =b(2h—1)—a(2g—1); Ba=b(1—2h)+2a(g+2h—1); Bs=a(l—2g9)+2b(2g+h—1).
We consider two subcases: 87 # 0 and 57 = 0.
Remark 9. Considering systems (8) with ¢ = 0, having the relation (2h—1)(29—1)(1—29—2h) =0
(respectively (4h —1)(4g — 1)(3 —4g —4h) = 0), due to a change, we may assume any of the factors
2h—1,2g9—1 or1—2g—2h (respectively 4h — 1, 49— 1 or 3 —4g — 4h) to be zero, for instance we
could set 2h — 1 = 0 (respectively 4h —1 =0).

Indeed, it is sufficient to observe that in the case 2g — 1 = 0 (respectively 49 — 1 = 0) we could

apply the change
(x’ y’ a) b’ g7 h) }_> (y7 x’ b7 a’ h’g)?

which conserves systems (8) with ¢ = 0, whereas in the case 1 —2g—2h = 0 (respectively 3—4g—4h =
0) we apply the change

(;U,y,a,b,g,h)r—>(y—x,—x,b—a,—a,h,l—g—h),

which also conserves systems (8) with ¢ = 0.
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3.1.2.2.1 The subcase 37 # 0. According to Theorem 1, in this case for the existence of an
invariant hyperbola, it is necessary and sufficient v5 = 0, which is equivalent to B1B2B3s = 0. We
claim that, without loss of generality, we may assume By = 0, as other cases could be brought to

this one via an affine transformation.

Indeed, assume first By # 0 and By = 0. Then we apply to systems (8) with ¢ = 0 the linear

transformation 2’ =y —x, ¥ = —x and we get the systems
dx’ dy’
E:a/_‘_g/x/Q (W — D'y, C% :b'+(g'—1)x'y’+h'y'2.

These systems have the following new parameters:
ad=b—a, b=—-a ¢=h h=1-g—h.
A straightforward computation gives
By =b(2h —1)—d'(2¢ —1) =b(1 —2h) +2a(—1+g+2h) =B =0

and hence, the condition By = 0 we replace by By = 0 via a linear transformation.

Analogously in the case By # 0 and B3 = 0, via the linear transformation z” = —y, ¢/ =z —y,
we replace the condition B3 = 0 by B; = 0 and this completes the proof of our claim.

Since f7 # 0 (i.e. 2h — 1 # 0) the condition B; = 0 yields b = a(2g — 1)/(2h — 1) and we arrive at
the 3-parameter family of systems

CC% = a(2h — 1) + ga® + (h — D)zy, % =a(2g— 1)+ (g — Day + hy? (55)
with the condition
a(g—1)(h—1)(2g — 1)(2h — 1)(g + h)(2g + 2h — 1) # 0. (56)
These systems possess the invariant hyperbola
O(x,y) =a+zy=0. (57)

For systems (55) we calculate

By = 2(4g —1)(4h —1)(3 — 4g — 4h),

58
8y = 2a(4g — 1)(4h — 1) [68(g> + h?) + 236gh — T9(g + h) — 144gh(g + h) + 22], (58)

According to Theorem 1, these systems possess either one or two invariant hyperbolas if either
32 + 63 # 0 or B = dy = 0, respectively.

We claim that the condition fg = d2 = 0 is equivalent to (4g — 1)(4h — 1) = 0. Indeed, assuming
that (4g — 1)(4h — 1) # 0 and fg = d2 = 0 we obtain

3—4g—4h =0, 68(g>+h?) +236gh —79(g + h) — 144gh(g + h) + 22 = 0.

The first equation gives g = 3/4 — h and then from the second one we obtain (2h — 1)(4h — 1) =0,
which contradicts the condition (56) and the assumption. This completes the proof of our claim.
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a) The possibility 32 + 63 # 0. Then this implies (4g — 1)(4h — 1) # 0 and systems (55) possess
only one invariant hyperbola. For these systems we calculate

By = 2a%(g — 1)*(h — 1)*(29 — 1)(2h — 1)(g — h)(g + h)?
and considering (56) we conclude that the condition B; = 0 is equivalent to ¢ — h = 0. We examine
two cases: By # 0 and By = 0.

a;) The case By # 0. Then g — h # 0 and by Lemma 2 we have no invariant lines. For systems
(55) we calculate pg = gh(g +h — 1) and we consider two subcases: ug # 0 and pg = 0.

o) The subcase pg # 0. In this case the systems have finite singularities of total multiplicity 4
with the following coordinates M;(z;,y;):

v —agh v —agh
T2 ==+ , Y2 =ft—7,
g h
a(l—g—nh) a(l—g—nh)
—ten )Y IT W —t(g-Y I

We detect that the singularities M 2 are located on the invariant hyperbola. More exactly, these
singular points are located on different branches (respectively on the same branch) of the hyperbola
if only if z129 < 0 (respectively x1zo > 0), where x1x2 = ah/g. Moreover, these singularities are real
if agh < 0, they are complex if agh > 0 and they coincide if agh = 0.

On the other hand, we calculate

X = —16128aPgh(g — 1)%(h — 1)%(g + h)*(2g — 1)*(2h — 1)*(4g — 1)2(4h — 1),
X = —4257792a% (g + h)*(2g — 1)5(2h — 1)8(4g — 1)2(4h — 1)?

and due to the condition (56) we have sign (Xff)) = —sign (agh) = —sign (z122) and sign (xg)) =
—sign (a) (which corresponds to the position of the hyperbola). We observe that in the case the
singular points M; and My are real, they must be located on different branches of the hyperbola
(we recall that systems (55) is symmetric with respect to the origin). Moreover, we could not have
X%) = 0 due to pp # 0 and (56).

Besides, we point out that at least one of the singular points M3 4 could be located on the invariant
hyperbola and we determine the conditions for this to happen. We calculate

a(4gh — g —h)

q) = (I) =
(23,y3) (24, Y1) g+h—1

It is clear that both of the singular points M3 and My belong to the hyperbola (57) if and only if
4gh — g — h = 0. Since
D = —768a*(4gh — g — h)* o,

we deduce that both of the singular points Mgz 4 belong to the hyperbola if and only if D = 0.

a1) The possibility XE;L) < 0. So we have no real singularities located on the invariant hyperbolas

and we arrive at the configurations given by Config. H.1 if Xg) < 0 and Config. H.2 if Xg) > 0.
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) The possibility X%) > 0. In this case we have two real singularities located on the hyperbola

and they are located on different branches. Now, we need to decide if both of the singular points
M3 4 will belong to the hyperbola.

i) The case D # 0. Then 4gh — g — h # 0 and on the hyperbola there are two simple real
singularities and we obtain the configurations given by Config. H.17 if xg) < 0 and Config. H.19 if

Xg) > 0.
i1) The case D = 0. Then 4gh — g — h =0 (i.e. ¢ = h/(4h — 1)) and in this case we calculate

X&) = —4128768 a®h'0(h — 1)2(2h — 1)3(3h — 1h)?/(4h — 1),
D=T=0, PR=-256ah%2h—1)%[z — (4h — 1)y]°/(4h — )"

and, due to X%) > (0, we have PR > 0 and on the hyperbola there are two double real singularities

(see Proposition 1) we arrive at the configurations given by Config. H.27 if Xg) < 0 and Config. H.28
e (4)
if x> 0.

B) The subcase g = 0. We consider the possibilities: X%) <0, X,(:) > (0 and X%) =0.

B1) The possibility X%) < 0. Then gh # 0 and the condition pg = 0 yields ¢ = 1 — h. So we
calculate
D=0, =0, p=ah(l—h)2h—1)>*x—y)*+£0.

Hence, two singular points go to infinity in the direction y = x and we get the configurations
Config. H.5 if Xg) < 0 and Config. H.6 if Xg) > 0.

B2) The possibility Xgl) > (0. As in the previous subcase, two singular points go to infinity in
the direction y = x and, moreover, the singularities M o are real. So we obtain the configurations
Config. H.35 if Xg) < 0 and Config. H.36 if Xg) > 0.

az) The case By = 0. Then by conditions (56), we get g = h and systems (55) possess the invariant
line x — y = 0. For this case due to (56) we have

po = h?(2h —1) # 0, D =12288a*h5(1 — 2h)5 # 0.

o) The subcase XE:‘) < 0. In this case the singularities M o are complex and, since

W = —258048 a®h(h — 1)*(2h — 1)%(4h — 1)* < 0,

we have Xgl) = —68124672a°h*(2h — 1)!2(4h — 1)* < 0. So, we obtain the unique configuration
Config. H.37.

B) The subcase Xf) > 0. In this case the singularities Mj 2 are real and analogously we have
(4)

sign (x, ) = sign (Xg)). So we get the unique configuration Config. H.53.

b) The possibility 3 = d2 = 0. Then this implies (49 — 1)(4h — 1) = 0 and, due to a change, we
may assume h = 1/4, without loss of generality. In this case, systems (55) possess the two invariant
hyperbolas

(I)l(x,y):a+xy:0, q)Q(Iay):a’_x(x_y):O
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For these systems we calculate
po = g(4g —3)/16, Bi =9a’(g — 1)*(2g — 1)(4dg — 1)(dg + 1)*/1024
and, due to conditions (56), we verify that By # 0. Then we consider two cases pg # 0 and po = 0.

b)) The case g # 0. Then g(4g — 3) # 0 and the systems have finite singularities of total
multiplicity 4 with the following coordinates M;(x;,y;):
/—ag

T12 = iTa Y12 = t2¢/—ag, x34==%

—a(4g — 3)

—a(4g — 3)
49 — 3 ' ’

Y34 = +2(2g — 1) 193

We detect that the singularities M; o are located on the invariant hyperbola ®;(x,y) = 0. More
exactly, these singular points are located on different branches (respectively on the same branch)
of the hyperbola if only if x129 < 0 (respectively z1z9 > 0), where z1z92 = a/4g. Moreover, these
singularities are real if ag < 0, they are complex if ag > 0 and they coincide if ag = 0. We also point
out that the position of the hyperbolas are governed by sign (a).

On the other hand, we calculate
W) = —41a(8g — 3)3/128.

We observe that in the case the singular points M; and Ms are real, they must be located on
different branches of the hyperbola (we recall that systems (55) is symmetric with respect to the
origin). Moreover, we could not have X(A5) = 0 due to pp # 0 and (56).

Moreover, we also detect that the singularities M3 4 are located on the invariant hyperbola ®3(z,y) =
0 and their position concerning which branch they are located is also governed by sign (a) and they
will be complex, real or coinciding depending on the sign of the expression a(4g — 3) and hence the
sign of uo plays an important role in this analysis.

Besides, we point out that the singular points M;js could not be located on the hyperbola
$y(x,y) = 0 and, conversely, M3z 4 could not be located on the hyperbola ®;(z,y) = 0, since we

have
a

3—4g

a
Qo (z1,2,Y1,2) = 1 #0, @1(34,Y34) = # 0,

due to conditions (56).

We consider the case pp < 0 (i.e. 0 < g < 3/4). Then, for these values of g, we have 8¢ —3 < 0
and, independently of the sign of a, we get the unique configuration Config. H.123.

In the case pg > 0, we obtain the configuration Config. H.121 if XS) < 0 and Config. H.151 if

xf) > 0.

by) The case pg = 0. Then g(4g—3) = 0 and depending on which one of these two factors vanishes,
we have different finite singular points coalescing with an infinite singular point. More precisely, if
4g — 3 = 0 then the singular points M3 4 coalesce with [1,1,0], and if g = 0 then the singular points
M, 2 coalesce with [1,0,0].

However, we observe that, applying the change (z,y,t,a) — (—z,y — x,t,—a), we could bring
systems (56) with A = 1/4 and g = 3/4 to the same systems with h = 1/4 and g = 0. So, without
loss of generality, we may assume g = 0.

Thus, we obtain the configurations given by Config. H.122 if XS)) < 0 and Config. H.126 if XE45) > 0.
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3.1.2.2.2 The subcase §; = 0. We recall that the conditions 51 = B¢ = 0 yields ¢ = 0 and
systems (8) with ¢ = 0 becomes
d d
&gt (h—Vzy, L =b+ (g Day+ hy’ (59)
dt dt
Without loss of generality, Remark 9 assures us that we may choose ¢ = 1/2 — h in order to have
Br =2(2g — 1)(2h — 1)(1 — 29 — 2h) = 0.

Now, we calculate

By = 4h(1 — 2h)

and we analyze two possibilities: B9 # 0 and §g = 0.

a) The possibility B9 # 0. As earlier, according to Theorem 1, in this case for the existence of at
least one invariant hyperbola, it is necessary and sufficient 5 = 0, which is equivalent to BiB2B3 = 0
and, without loss of generality, we may assume B = 0, as other cases could be brought to this one
via an affine transformation.

a;) The case 63 # 0. In this case we have only one invariant hyperbola and the condition d3 # 0
yields @ — b # 0. Then, the condition 75 = 0 is equivalent to b(1 — 2h) — 2ah = 0, which could be
rewritten as a = a1(2h — 1) and b = —2a;1h. So, setting the old parameter a instead of a;, we arrive
at the 2-parameter family of systems

d d
d—‘f =a(2h — 1) + (1 — 2h)2*/2 + (h — 1)zy, dii = —2ah — (2h + 1)zy/2 + hy?, (60)
with the condition
ah(h —1)(2h — 1)(2h 4+ 1)(4h — 1) # 0. (61)
These systems possess the invariant hyperbola
®(z,y) =a+azy=0. (62)

We observe that, due to (61),
By = a®h(h — 1)%(2h — 1)(2h + 1)%(4h — 1) # 0
and, hence, systems (60) possess no invariant line. Moreover, we have
po = h(2h —1)/4#0, D =12a*h(1 —2h)(1 — 4h + 8h*)* # 0,

due to the same conditions, and then all the finite singularities are in the finite part of the phase
plane and none of them coalesces with other points. Considering the coordinates of these singularities
Mi(xia yz) (121727374)7 we have

2ah(2h — 1) 2ah(2h — 1)

= =+(2h —1)Vv2 = +2hVv2a.
on 1 YN2=7F o, ;o w34 =%(2h —1)V2a, y34 hv2a

r12 = +

After simple calculations, we obtain that Mo are located on the hyperbola, whereas Ms 4 are
located generically outside the hyperbola. Then, the singular points M o are complex if ah(2h—1) <
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0 and they are real if ah(2h — 1) > 0. We point out that these two singularities could not coincide
since ah(2h — 1) # 0, due to (61). So, we need to control sign (ah(2h — 1)). Moreover, sign (a) gives
the position of the hyperbola on the phase plane.

On the other hand, we calculate
& =2016 675 (h — 1)2(2h — 1)°(2h + 1)2(4h — 1)*,
X5 = 17031168 a® 1S (2h — 1)5(4h — 1)
Therefore, we arrive at the following conditions and configurations:

° XE:‘) < 0 and Xgl) <0 = Config.H.1;

° XE:‘) < 0 and Xgl) >0 = Config. H.2;

° XE:‘) > (0 and Xgl) <0 = Config. H.17;

° XE:‘) > (0 and Xgl) >0 = Config. H.19.

as) The case 3 = 0. In this case, the conditions 75 = d3 = 0 yield a — b = 0 (i.e. b = a) and

systems
‘% — a4+ (1—2h)22/2+ (h— Day, % —a— (2h+ 1)ay/2+ hy?, (63)
with the condition
ah(h —1)(2h — 1)(2h + 1) # 0, (64)
possess at least two invariant hyperbolas. We calculate fBg = —2(4h — 1)? and we analyze two

subcases: s # 0 and (g = 0.
) The subcase g # 0. Then 4h — 1 # 0 and systems (63) possess two invariant hyperbolas:

a
2h —1

Pi(a,y) = ta(e—y) =0, Palay) =5 +2yle—y) =0. (65)

We observe that
By =0, By=—162a*(h —1)*(2h +1)*(z —y)* #0,
due to (64), and this implies that systems (63) possess only one invariant straight line, namely
z—y=0.

Due to condition (64), we obtain
po=h(2h —1)/4#0, D = —12a"h(2h —1) # 0,
and then we have four distinct finite singularities M;(x;,v;) (i=1,2,3,4), where

V2ah(2h =1 V2ah(2h —1
4 V2ah(2h — 1) iahéhh), w34 = +V2a, ysa = +£V2a.

oLz = oh—1

Y12 =

We observe that the singular points M; o are located on the first hyperbola (65), whereas M3 4 are
located on the invariant line. Additionally, the singularities M; o (respectively M3z 4) are complex if
ah(2h — 1) < 0 (respectively a < 0) and are real if ah(2h — 1) > 0 (respectively a > 0).
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So, we need to control sign (ah(2h — 1)) and sign (a). Moreover, sign (h(2h — 1)) gives the position
of the hyperbolas on the phase plane.

On the other hand, we calculate
X546) = ah(2h —1).

If XE46) < 0, then the singularities M 2 are complex and we get the configuration Config. H.132 if

D < 0 and Config. H.133 if D > 0.
In the case XEL‘G) > 0, the singular points M; 5 are real and we obtain the configuration Config. H.136

if D < 0 and Config. H.13/ if D > 0.

3) The subcase g = 0. Then h = 1/4 and systems (63) possess three invariant hyperbolas, namely
the two presented in (65) with h = 1/4 and

O3(x,y) = 2a —xy = 0.

In this case, we observe that D = 3a?/2 > 0 and we obtain the configuration Config. H.156 if
XE46) < 0 and Config. H.157 if X(f) > 0.

b) The possibility B9 = 0. Then h = 0 (this yields g = 1/2) and systems (59) becomes

dz 9 dy

— = 2 — —~ =b— 2. 66

il +27/2 — xy, p xy/ (66)
According to Theorem 1, in this case for the existence of at least one invariant hyperbola, it is

necessary and sufficient v = 0, which is equivalent to (a — b)b = 0. Without loss of generality,

we may assume b = 0, since we could pass from the case b = a to the case b = 0, via the affine

transformation (x,y,t) — (z,x — y,—t). Then, we arrive at the 1-parameter family of systems

d d
d—§:a+x2/2—xy, di;:—:cy/z. (67)
with the condition a # 0.

The above family possesses the invariant hyperbola
®(z,y) =a—ay=0 (68)

and, since By = 0 and By = —162a%y* # 0, due to a # 0, systems (67) possess the only one invariant
line y = 0.
We calculate
o =p1 =0, pg= ax2/8, D=0.

Then, two finite singular points has collapsed and gone to infinity and coalesced with [0, 1, 0]. Con-
sidering the remaining singularities on the finite part of the plane, their coordinates are M;(x;,y;)
(1=1,2):

r19="+vV-2a, y12=0.

We point out that these two singularities are located on the invariant line and they are complex
if a > 0 and are real if a < 0. So, we need to control sign (a), which also gives the position of the
hyperbola on the phase plane.
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On the other hand, we calculate
XS) = —a/16.

So, we obtain the configuration Config. H.40 if Xf) < 0 and Config. H.58 if XE45) > 0.

3.2 The subcase § =0
For systems (2) we assume 1 > 0 and therefore we consider systems (7) for which we have
0=—(g—1(h—=1)(g+h)/2.

Since # = 0, we get (¢ — 1)(h —1)(g + h) = 0 and we may assume g = —h, otherwise in the case
g = 1 (respectively h = 1) we apply the change (z,y,9,h) — (—y,x —y,1 — g — h, g) (respectively
(x,y,9,h) — (y — z,—x,h,1 — g — h)) which preserves the quadratic parts of systems (7).

So, g = —h and we arrive at the systems
dx 2 dy 2
E:a—l—cx—hm + (h— 1)zy, EZb—i—fy—{—(h—i—l)xy—l—hy, (69)

for which we calculate N = 9(h? — 1)(z — y)?. We consider two possibilities: N # 0 and N = 0.

3.2.1 The possibility N # 0
For systems (69), we calculate

n = (c—f)* e+ f)(h—1)*(h+1)*(3h — 1)(3h + 1) /64,

Be = (c— [)(h—1)(h+1)/4, pro=-2(3h—1)(3h+1).
According to Theorem 1, a necessary condition for the existence of hyperbolas for these systems is
v1 = 0.

3.2.1.1 The case s # 0. Then c—f # 0 and the condition v; = 0 yields (c¢+f)(3h—1)(3h+1) = 0.
So, we consider the subcases: 819 # 0 and S19 = 0.

3.2.1.1.1 The subcase 10 # 0. Then (3h —1)(3h+ 1) # 0 and we get f = —c and obtain the
following systems

%za—f—cx—hﬁ#—(h—l)xy, %:b—cy—(h—f—l)xy—i—hyz. (70)

Now, in order to possess at least one hyperbola, it is necessary and sufficient that for the above
systems the condition

7 =8(h —1)(h +1)[a(2h + 1) + b(2h — 1)] =0

holds, and due to N # 0 this is equivalent to a(2h + 1) + b(2h — 1) = 0.

Since B¢ = c¢(h — 1)(h +1)/2 # 0 (i.e. ¢ # 0), we could apply the rescaling (z,y,t) — (cz,cy,t/c)
and assume ¢ = 1. Moreover, since (2h — 1)2 + (2h +1)2 # 0, the condition a(2h+1) +b(2h —1) =0
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could be written as a = —a;1(2h — 1) and b = a1(2h + 1). So, setting the old parameter a instead of
a1, we arrive at the 2-parameter family of systems

d d
d%: = a(2h— 1)+ z — ha® + (h — 1)z, dit/ = —a(2h+1) —y — (h + D)ay + hy?, (71)

with the conditions
alh —1)(h+1)(3h — 1)(3h + 1) # 0. (72)

We observe that the family of systems (71) is a subfamily of systems (10) with g = —h.

The above systems possess the invariant hyperbola
D(a,y) = a+ay=0 (73)
and for them we calculate

By = —4a*h(h — 1)*(h + 1)*(2h — 1)(2h + 1). (74)

a) The possibility By # 0. Then h(2h — 1)(2h + 1) # 0 and by Lemma 2 systems (71) possess
no invariant lines. Since pg = h? # 0, these systems have finite singularities M;(x;,y;) of total
multiplicity 4, whose coordinates are

1+ V1 + 4ah? 1 F V1 + 4ah?
2= —"""F7 > Y2=——F57—" ">
2h 2h
N (2h — 1)(1 + /1 + 4a) ) (2h +1)(1 + /1 + 4a)
34 — ) 3,4 — .
’ 2 ’ 2

We observe that the singular points M; 2 are located on the hyperbola, whereas the singularities
M3 4 are generically located outside of it.

On the other hand, for systems (71), we calculate the invariant polynomials

A = B2(h = 1)%(h + 1)°(3h — 1)2(3h + 1)2(L + 4ah?) /16,
X = 105 ah?(h — 1)2(h + 1)2(3h — 1)2(3h + 1)2/2

and, by the condition (72), we conclude that sign (XS)) = sign (1 + 4ah?) (if 1 + 4ah?® # 0) and

sign (Xg)) = —sign (a). So, we consider three cases: X(Al) <0, XS) > 0 and Xigl) =0.

a;) The case Xgl) < 0. Then 1 + 4ah? < 0 yields a < 0 and hence Xg) > (. So, since the singular

points located on the hyperbola are complex, we arrive at the configuration given by Config. H.2.

ay) The case Xi;l) > 0. In this case, we have two real singularities located on the hyperbola. We

calculate x1x9 = —a and, due to the condition (72), we obtain that sign (Xg)) = sign (z122), which
defines the location of the singular points Mj 2 concerning the branches of the hyperbola (i.e. they

are located either on different branches if Xg) < 0 or on the same branch if Xg) > 0).

However, we need to detect when the singularities M3 4 also belong to the hyperbola. In this order,
considering (73), we calculate

(I)(xv y)‘{x:x3,4, y=y3.4} = 9374(0,, g, h)

4h*[1+2aF V1 +4a] —1+V/1+4a
2
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It is clear that at least one of the singular points M3 or My belongs to the hyperbola (73) if and
only if
Q304 = a(16ah® +4h* —1) = 0.

On the other hand, for systems (71), we have
W = —1051(3h — 1)(3h + 1)(16ah® + 41 — 1)

and clearly, due to (72), the condition X%) = 0 is equivalent to 16ah* 4+ 4h?> — 1 = 0. We examine

two subcases: Xg) # 0 and XS) =0.

) The subcase X%) = 0. Then, on the hyperbola there only two simple real singularities and we
obtain the configurations given by Config. H.17 if Xg) < 0 and Config. H.18 if ngl) > 0.

B) The subcase x(ﬁ) = 0. In this case, the condition 16ah* +4h? —1 = 0 yields a = —(2h —1)(2h +
1)/(16h*) and we calculate

D=0, T=-302h%—1)%z+y)>?[(2h+1)z—(2h — Dy]*[(h+1)(2h + Dz — (h — 1)(2h — 1)y]".

If T # 0, then we have a double and a simple singular points on the hyperbola and we arrive at the
configurations shown in Config. H.21 if Xg) < 0 and Config. H.22 if Xg) > (. In the case T =0, we
obtain h = £1/2/2 and hence Xg) > 0. Then, we have a triple and a simple singular points on the
hyperbola and we obtain the configuration Config. H.25.

a3) The case X(AI) = 0. Then a = —1/(4h?) and hence Xg) > 0. In this case, the singular points
M; and My coalesce and we get the configuration Config. H.8.

b) The possibility By = 0. Then h(2h — 1)(2h 4+ 1) = 0 and we analyze the two cases: pg # 0 and
po = 0.

bi1) The case po # 0. Then h # 0 and the condition B; = 0 is equivalent to (2h — 1)(2h + 1) = 0.
Without loss of generality, we may assume h = —1/2, otherwise we apply the change (z,y,t,h) —
(—y, —x, —t,a, —h), which keeps systems (71) and changes the sign of h.

So h =1/2 and then systems (71) possess the invariant line y = 0 and the singularities M3 4 are
located on this line. In this case, we calculate

YW =225(a + 1)/16384, W) = —236254/2048, D = —48a%(a + 1)(4a +1).

) The subcase XS) < 0. Then a + 1 < 0 implies a < 0 and hence ngl) > 0. So, we obtain the

configuration shown in Config. H.38.

B) The subcase XS) > 0. Then a > —1 and we have real singularities on the hyperbola. So, we get
the following conditions and configurations:

° ngl) <0 = Config. H.75;
° Xg) >0and D <0 = Config. H.72;

° XS) >0and D >0 = Config. H.40;
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° Xg) >0and D=0 = Config. H.65.

~) The subcase XS) = 0. Then a = —1 (consequently D = 0 and Xg) > 0) and this implies the
existence of a double singular point on the hyperbola and the singularities on the invariant line are
complex, obtaining the configuration Config. H.42.

by) The case g = 0. Then h = 0 and we also have u; = 0 and po = —zy, which means that the
singular points M 2 have gone to infinity and coalesced with the singular points [1,0,0] and [0, 1, 0].

Considering Lemma 3 we detect that Z is a simple factor of & and (61? So, we deduce that the

infinity line Z = 0 is a double invariant line for systems (71). Since x,;” = 1 > 0, we obtain the
configurations Config. H.76 if Xg) < 0 and Config. H.77 if ngl) > 0.

3.2.1.1.2  The subcase $19 = 0. Then (3h — 1)(3h + 1) = 0 and as earlier we may assume
h = 1/3 and obtain the following systems

dr a x 2zy dy  5a doey y 75
P 3+3: 3 3 = Y + (75)

with the condition a # 0. We again remark that the family of systems (75) is a subfamily of systems
(10) with g = —h and h = 1/3.
These systems possess the invariant hyperbola
O(z,y) =a+zy =0. (76)
and for them we calculate

po=1/9, D =—16(4a+ 1)(4a + 9)(16a — 45)/19683, B; = 1280a?/2187.

Since By # 0, systems (75) do not possess invariant lines and the condition pp # 0 implies that the
finite singularities M;(x;,y;) are of total multiplicity 4, and their coordinates are

3+4a+9 _3FV4a+9 -1+ V4a+1 _ 5(1F VAa+1)
2 ’ a 2 ’ a 6 ’ N 6 '

T12 = Y1,2 T34 Y34

We observe that the singular points M o are located on the hyperbola, whereas the singularities
M3 4 are generically located outside of it.

Concerning the singular points M o, we see that 129 = —a and the sign (a) will detect the location
of these singularities on the same or different branches of the hyperbola as well as its position on
the phase plane.

Moreover, we need to detect when the singularities M3 4 also belong to the hyperbola. Considering
(76), we calculate

8a +Hv/4a+1—-5

(I)(:Ca y)’{l’:$3’4, y=y3,4} — 18 = 95,4(a7 9, h)
and we observe that at least one of the singular points M3 or My belongs to the hyperbola (76) if
and only if
16a — 45)
= 2100 —15) _
334 18
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On the other hand, for systems (75), we calculate the invariant polynomials

3 123412480(4a+9) (3 1687541063684
Xa = 243 » Xp T 243 ’
@ 1064960 (3  5888(16a — 45)

Xee =779 X T 729

and we conclude that sign (Xf)) = sign (4da 4+ 9) (if 4a + 9 # 0), sign (Xg’)) = sign (Xg')) = —sign (a)
and at least one of the singular points M3 or My belongs to the hyperbola if and only if Xg) = 0.

We observe that the condition X(j) < 0 implies Xg) > 0 and Xé‘?) > 0, all the finite singular points

are complex and we get the configuration Config. H.2.

In the case X,(j) > 0, the singularities M; o are real and we arrive at the following conditions and

configurations:
° XS) =# 0 and X(g) <0 = Config. H.17;
o ¥ £ and v C :
Xp #0and x5 >0 = Config. H.18;
° Xg) =0 = Config. H.21.

And in the case Xf) = 0, the singular points M; 2 have collapsed and M3 4 are complex, obtaining

the configuration Config. H.S.

3.2.1.2 The case Bg =0. Then f = c and hence y; = 0. We calculate
fo=c(h—1)(h+1)/2, pr=-2(2h—1)(2h+1)

and we analyze two subcases: B2 # 0 and (2 = 0.

3.2.1.2.1 The subcase B2 # 0. Then ¢ # 0 and we obtain the systems

%za%—cm—hﬁ—k(h—l)xy, %:b—{—cy—(h%—l)xy—khyz (77)

a) The possibility B7 # 0. Then (2h—1)(2h+1) # 0 and, according to Theorem 1, for the existence
of at least one invariant hyperbola for systems (77), it is necessary and sufficient the conditions yg = 0
and B190R7 # 0. So, we calculate

s =42(h — 1)(h + 1) &3, B0 = —2(3h — 1)(3h + 1),
Ey = —2c%(h —1)(2h — 1) — 2a(h — 1)(3h — 1)* + b(2h — 1)(3h — 1)?,
E3=—2c%(h+1)(2h +1) + 2b(h + 1)(3h + 1)* — a(2h + 1)(3h + 1)2.

We observe that the condition vg = 0 is equivalent to £2E3 = 0 and due to the change (x,y, a,b, ¢, h) —
(y,x,b,a,c,—h), we may assume that the condition & = 0 holds.

Since f7510 # 0, we could write the condition & = 0 as ¢ = ¢1(3h — 1), b = by(h — 1) and
a = (by —2¢})(2h — 1) /2. Then, we apply the reparametrization by = ac} and a = 2a;. Finally, since
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c1 # 0 (due to ¢ # 0), we could apply the rescaling (x,y,t) — (c1z,c1y,t/c1) and assume ¢; = 1.
Thus, setting the old parameter a instead of aq, we arrive at the 2-parameter family of systems

CC% = (a—1)(2h — 1) + (3h — 1)z — ha® + (h — 1)z, -
% =2a(h— 1)+ (3h — 1)y — (h + 1)zy + hy?,
with the conditions
(a—1)(h—=1)(h+1)(2h—1)(2h+1)(3h —1)(3h + 1) # 0. (79)
These systems possess a couple of parallel invariant lines and an invariant hyperbola:
Lia(x,y)=hz—y)?—Bh—1)(z—y)+2h—a—1=0, (80)

O(z,y)=1—a—2x+x(zx—y)=0.
We remark that, since
Discriminant [£q2(z,y), 2 — y| = (h — 1)* + 4ah,

these lines are complex (respectively real) if (h — 1)? + 4ah < 0 (respectively (h — 1)? + 4ah > 0).
We calculate
04 =3(h—1)(2h — 1)[(h — 1)*(2h + 1) + a(3h + 1)?] /2
and we consider two cases: d4 # 0 and 64 = 0.

a1) The case 54 # 0. In this case we have (h —1)?(2h + 1) + a(3h +1)? # 0 and hence ®(x,y) =0
(see (80)) is the unique invariant hyperbola. Since B; = 0 for systems (78), we calculate

By = —1296 a(a — 1)(h — 1)3(h + 1)%(2h — 1)(z — y)*.

a) The subcase By # 0. Then a # 0 and, since ug = h?, we consider two possibilities: pg # 0 and
po = 0.

aq) The possibility py # 0. So we get h # 0 and the finite singularities of systems (78) are of
multiplicity 4, and their coordinates are M;(x;,y;):

h+14+/(h—1)2+4ah (h=1)[h =1+ +/(h— 1) + 4ah]
2

y Y12 = 2 )

(2h —1)[h+ 1+ \/(h — 1)? + 4ah]
h

2

T12 =

T34 = , ysa=h—1%++/(h—1)2+4ah.

We observe that the singular points Mj > are located on the hyperbola and on the invariant lines,
whereas the singularities M3 4 are located on the invariant lines.

Concerning the singular points Mj 2, we see that #1292 = h(1—a) and hence sign (h(a—1)) detects
the location of these singularities on the same or different branches of the hyperbola. Moreover, the
position of the hyperbola is governed by sign (a — 1).
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In order to detect when the singularities M3 4 also belong to the hyperbola, we consider (80) and
we calculate

A+ [(h+1)2h—1)\/(h—1)% + 4ah
Q)(az, y)|{z=963,4, y=y34} [ 2h2 ] = §’4(a,g, h)

where A = 2ah(1 —3h)+ (1 —h)(1—h+2h?), and we observe that at least one of the singular points
M3 or My belongs to the hyperbola (80) if and only if

(a—1)[a(8h —1)* +2(h —1)3]
h2

QL0 = = 0.

On the other hand, for systems (78), we calculate the invariant polynomials

X7 = (h = 1)%(h + 1)[(h — 1) + 4ah] /16,
A = 6480(a — 1)(h — 1)2[(h — 1)%2h + 1) + a(3h + 1)2]%,
X = 2160 h(1 — a)(h — 1)2[(h — 1)*(2h + 1) + a(3h + 1)*]%,

and we conclude that sign (XEZ)) = sign ((h—1)*+4ah) (if (h—1)*+4ah # 0), sign (Xg)) = sign (a—1),
sign (Xg)) = sign (h(l —a)) and at least one of the singular points M3 or My belongs to the hyperbola
if and only if a(3h — 1)2 +2(h — 1)% = 0.

1) The case XEZ) < 0. Then all the finite singular points are complex as well as the pair of invariant

lines. Moreover, the condition Xfp < 0 (i.e. (h—1)2 4+ 4ah < 0) yields ah < 0. Combining this
inequality with Xg) < 0 (i.e. a—1 < 0) (respectively Xg) >0 (i.e. a—1 > 0)), we obtain h < 0
(respectively h > 0) and hence xg) < 0 (respectively Xg) > 0). So, we arrive at the configuration
Config. H.78 if Xg) < 0 and Config. H.79 if Xg) > 0.

i1) The case X,(47) > 0. Then all the finite singular points and the pair of invariant lines are real.

In this sense, according to the position of the finite singular points on the hyperbola and on the

invariant lines, we may have different configurations.
We calculate

a(3h — 1) +2(h —1)3
h Y

(1 —24) (22 — 73) = —

(3h — 1)\/(h — 1)? + dah
h b

(I—=h)(h+1)
h

(21 —24) — (22 — 23) = (1 — x4) + (X2 — 23) =

and we observe that sign ((z1—z4)(z2—3)), sign ((z1—24) — (z2—x3)) and sign ((z1—x4)+ (z2—x3))
govern the position of the four finite singularities along the hyperbola and the invariant lines. More
exactly, if (z1 — x4)(z2 — 23) < 0 (vespectively (1 — x4)(z2 — x3) > 0), then the sign ((z1 — z4) —
(z2 — x3)) (respectively sign (1 — 4) + (¥2 — 23))) distinguishes the position of Mz and M, with
respect to the hyperbola.

On the other hand, we calculate

X = 3(h — 1)2(h+1)%[a(3h — 1)2 + 2(h — 1)%] /8,
Bio=—-23h—1)(3h+1), N=9h—-1)(h+1)(z—1y)>
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We consider two subcases: Xg) # 0 and Xg) =0.

11.1) The subcase Xg) # 0. In this case the singularities M3 4 do not belong to the hyperbola and
we need to distinguish when the singular points M » are located on different or on the same branch.

11.1.1) The possibility Xg) < 0. Then M; o are located on different branches of the hyperbola and,

if Xg) < 0, we obtain a < 0 and h < 0, and hence Xg) < 0. So, we get the configuration Config. H.96.

In the case Xg) > 0, we observe that the condition Xg) < 0 implies N < 0. So, we arrive at the

following conditions and configurations:

° xg) <0 = Config. H.99;
° xg) > 0 and 10 < 0 = Config. H .95;

° Xg) >0and B0 >0 = Config. H.94.

11.1.2) The possibility X(C7) > 0. Then M; o are located on the same branch of the hyperbola.

If Xg) < 0, the condition Xg) > 0 implies f1p < 0 and we obtain the following conditions and
configurations:

° Xg) <0Oand N <0 = Config. H.100;
° Xg) <0and N >0 = Config. H.98;
o V>0 = Config. H.97
In the case Xg) > (, the condition Xg) < 0 implies B9 < 0. Moreover, if Xg) > 0, independently of
sign (N), we are led to the same configuration. So, considering the claim stated in the next paragraph,

we arrive at the configuration Config. H.93 if Xg) < 0 and Config. H.92 if Xg) > 0.

We claim that, if Xg) > 0 and Xg) > 0 (i.e. the singular points M; o are located on the same
branch and the hyperbola is positioned in the sense of Xg) > 0), we could not have the configuration
with the singular points M3 4 located inside the region delimited by both branches of the hyperbola.

Indeed, suppose the contrary, that this configuration is realizable. Then the conditions XEZ) > 0,

(7)

Xp' >0 and Xg) > 0 are necessary and these conditions are equivalent to
(h—1)2+4ah >0, a—1>0, h<O0.

We assume that Mg and My are located inside the region delimited by both branches of the hyperbola.
We observe that inside this region we also have the origin of coordinates (because ®(0,0) = 1—a < 0).
Therefore we must have Q4Q/ > 0 and sign (4 + Q) = sign (A) = sign (1 — a). Hence the condition
A < 0 must hold. However, the conditions (h — 1)? + 4ah > 0 and h < 0 imply

A =2ah(1—3h)+ (1 —h)(1—h+2h%) = [(1 - 3h)[(h — 1)*> +4ah] + (1 — h)(h + 1)?] >0,

DO |

and this proves our claim.
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11.2) The subcase Xg) = 0. Then a = —2(h — 1)3/(3h — 1)? and the singular points My coalesces

with the singularity M;. We note that the hyperbola divides the plane into three regions: ®(z,y) < 0,
®(z,y) > 0 and ®(x,y) = 0, and the singular point M3 could be located only in the first two regions.

Moreover,
(2h —1)(h — 1)(h + 1)?
d(M3) = —
(M) h2(3h —1)
and, in this case, we have
3h — 1 — 4h? 3—5h

We calculate

A0 = (h =1+ 1)*16(3h —1)%), ¥ = —58320(2h — 1)(h — 1)8(h + 1)5/(3h — 1)5,
X = 19440 h(2h — 1) (h — 1)%(h + 1)%/(3h — 1)6, N = 9(h — 1)(h+ 1)(x — y)°.
Due to conditions (79), we have XEZ) > 0, sign (Xg)) = —sign (2h — 1) sign (x (C
1)) and sign (N) = —sign ((h — 1)(h 4+ 1)). Moreover, L1 — Lo = (h —1)(h+ 1)/
If Xg) <0 (i.e h > 1/2), we have Xg) > 0 and sign (®(M3)) = —sign (ﬁl Ls)
we get the configuration Config. H.89 if N < 0 and Config. H. 90 if N > 0.
In the case Xg) > 0 (i.e h < 1/2), the condition X( ) <0 implies N < 0 (then zo — z3 < 0),
obtaining the configuration Config. H.88. If X(C) > 0 (then ®(M3) > 0), independently of the sign of
N, we get the configuration Config. H.87.

111) The case X(A7) = 0. Then we have two double singular points (namely M; = My and M3 = M4)

)) —sign (h(2h —
[h(3h —1)].
= —sign (N). Then

and a double invariant line. The condition X(A7) = 0 yields @ = —(h — 1)2/(4h) and hence X( )

and sign (Xg)) = sign (ij)) —sign (h).

We observe that, if X&;) > 0, independently of sign (519) and sign (N), we are conducted to the
same configuration. Thus, we get the following conditions and configurations:

° Xg) <0Oand N <0 = Config. H.103;
° xg) <0and N >0 = Config. H102;

° Xg) >0 = Config. H.101.

az) The possibility 19 = 0. Then h = 0 and, since we also obtain p; = 0 and p = zy, two
finite singularities of systems (78) have gone to infinity and collapsed with [1,0, 0] and [0, 1, 0]. The
remaining two finite singularities have the coordinates M;(z;, y;):

r1 =1, y1 = —a, ro=a—1, yo = —2.

In this case, the invariant hyperbola remains the same, whereas one of the invariant lines (80)
goes to infinity and hence the line of infinity Z = 0 becomes double (see Lemma 3). The remaining
invariant line is expressed by z —y — (a + 1) = 0.
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We observe that the singular point M; is the intersection of the hyperbola and the straight line,
whereas My is generically located on the line and outside the hyperbola.

However, My could be located on the hyperbola if and only if
®(22,92) = (a—1)(a—2) =0,

which is possible if and only if a — 2 = 0, due to conditions (79).
For systems (78) with h = 0, we calculate

D =6480(a — 1)(a + 1)2, ¥\ =3(a—2)/8.

We note that, if Xg) < 0, then a < 1 and hence Xg) < 0. So, we have the following conditions and
configurations:
° xg) <0 = Config. H.1006;

. Xg) > (0 and X}? <0 = Config. H.105;

. Xg) > (0 and Xg) >0 = Config. H.107;

o Xg) <~ 0 and X(D7) =0 = Config. H.104.

B) The subcase By = 0. Then a = 0 and we arrive at the family of systems

d d
dif = 1—2h+ (3h— 1)z — ha® + (h — 1)zy, dii = (3h — 1)y — (h+ Day + hy?, (81)

with the conditions
(h—=1)(h+1)(2h — 1)(2h + 1)(3h — 1)(3h + 1) # 0. (82)
These systems possess three invariant lines and an invariant hyperbola
Li(x,y)=x2—y—1=0, Lo(x,y)=h(zx—y)+1—2h=0,
Li(x,y)=y=0, P(z,y)=1-2zx+z(x—y)=0.

Since g = h?, we consider again the possibilities: jg # 0 and g = 0.

B1) The possibility py # 0. Then h # 0 and the finite singularities of systems (81) are of multiplicity
4, and their coordinates are M;(x;,y;):

(h—1)
P

2h-1

1‘1:17y1:07 $2:h7?/2: 1‘3:2}1_17 y3:2(h_1)) T4 = h

, yq = 0.

We observe that the singular points M o are located on the hyperbola, M is located on the lines
L1 =0 and L3 = 0, M, is located on the line Lo = 0, M3 is located on the line £1 = 0 and My is
located on the lines £5 = 0 and L3 = 0.

Concerning the position of these singularities with relation to the invariant lines and the invariant
hyperbola, we have:
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the location of M; and Ms on the branches of the hyperbola: sign (x122) = sign (h);

M3 and My could not belong to the hyperbola, since ®(x3,y3) = 2(1 —h) # 0 and (x4, ys) =
(h —1)%2/h? # 0, due to conditions (82);

the position of the line £, = 0 with respect to the line £; = 0: sign (£1 — £2) = sign (h(h—1));

the position of M; and My on L3 = 0: sign (x1 — x4) = sign (h(l — h));

the position of My and My on Lo = 0: sign (xa — x4) = sign (h);

e the position of M and M3 on £; = 0: sign (x; — x3) = sign (1 — h).
On the other hand, for systems (81), we calculate the invariant polynomials

(M _ _ 1\6 2 _ _ N2
Xo' =2160h(h —1)°(2h+1)°, N =9(h—1)(h+1)(z —y)".

We observe that the condition Xg) < 0 implies that sign (h — 1) is controlled and we have the

unique configuration given by Config. H.111.

In the case Xg) > 0, we obtain the configuration Config. H.112 if N < 0 and Config. H.110 if
N > 0.

B2) The possibility po = 0. Then h = 0 and, since we also obtain p; = 0 and ps = zy, two
finite singularities of systems (78) have gone to infinity and collapsed with [1,0, 0] and [0, 1, 0]. The
remaining two finite singularities have the coordinates M;(z;, y;):

:Clz—l, y1:—2, 1'2:1, yQZO.

In this case, the invariant hyperbola remains the same (since it does not depend on h), whereas
the invariant line £o = 0 goes to infinity and hence the line of infinity Z = 0 becomes double and
we obtain only one configuration given by Config. H.116.

ay) The case 64 = 0. In this case, the condition (h — 1)2(2h + 1) + a(3h + 1)? = 0 yields a =
—(h —1)%(2h 4+ 1))/(3h + 1)2, which leads to the family of systems

de  2(h+1)*(1—2h)

+ (3h — D)a — ha® + (h — 1)zy,

dt — (3h+1)2
dy 2(1—h)3(2n+1) 9 (84)
& Ghiy? + Bh =1y — (h+ Dy + hy~,
with the conditions
(h—1)(h+1)(2h —1)(2h +1)(3h — 1)(3h + 1) # 0. (85)

These systems possess two invariant lines and two invariant hyperbolas

4h 5h% — 1
El(x7y)_$_y_3h+1_0a 52($,y)—$—y—m—07
~ 2(h+1)3 - _2(1—h)*  2(3h—1) -
él(x,y)—W—Qer:v(xfy)—O, Po(z,y) = Ghr12 " antd z—ylr—y)=0.

(86)
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Since 1o = h?, we consider again the possibilities: po # 0 and g = 0.

) The subcase j19 # 0. Then h # 0 and the four finite singularities of systems (84) have coordinates
M;(x;,y;), where:

(h+1)? (h—1)2 2h(h + 1) (2h +1)(h —1)?
1= 7 7 V1= 77 X2 = —F7 7 5 Y2 = )
3h+1 3h+1 3h+1 h(3h + 1)
e 2(h+1)(2h — 1) ~ 2(h—1)(2h + 1) oy (2h —1)(h + 1)? ~ 2h(h—1)
ST 3y T T 3 YT TRBhr) T T3h

We observe that the singular point M; is located on both hyperbolas and on the line £; = 0, M»
is located on the hyperbola ®; = 0 and on the line L5 = 0, M3 is located on the line £1 = 0 and My
is located on the hyperbola ®5 = 0 and on the line £5 = 0.

Concerning the position of the singular points on the lines and hyperbolas, we observe that the
position of M; and Mz on £y = 0 is governed by sign (z; — 23) = sign ((h — 1)(h + 1)(3h + 1)) and
the position of My and My on Ly = 0 is governed by sign (zg — 24) = sign (h(h — 1)(h+1)(3h +1)).
Moreover, the position of the hyperbolas is governed by sign ((h —1)(h+ 1))

We observe that, in the case (h — 1)(h + 1) < 0, we have —1 < h < 1. Then, analyzing the
sign of the expression h(3h + 1), we verify that all the possible configurations for these values of
the parameter coincide. Analogously, we obtain the same configurations by analyzing the sign of
h(3h + 1) subjected to (h —1)(h+ 1) > 0. So, it is sufficient to only study sign ((h — 1)(h + 1)).

Thus, we conclude that sign (N) = sign ((h — 1)(h + 1)) and we arrive at the configuration given
by Config. H. 140 if N < 0 and Config. H.159 if N > 0.

B) The subcase g = 0. Then h = 0 and two finite singular points have gone to infinity and
coalesced with [1,0,0] and [0, 1,0], since u1 = 0 and ps = zy. The remaining two finite singularities
have the coordinates M;(x;,y;), where

a:1:—2, y1:—2, 1‘2:1, y2:1.

In this case, both invariant hyperbolas remain the same (since they do not depend on h), whereas
the invariant line Lo = 0 goes to infinity and hence the line of infinity Z = 0 becomes double (see
Lemma 3) and we obtain only one configuration given by Config. H.1/6.

b) The possibility B7 = 0. We recall that the conditions g = 0 and 2 # 0 imply f = ¢ # 0, and
then we arrive at systems (77). As earlier, via a time rescaling, we may assume ¢ = 1. Moreover,
the condition S7 = 0 implies (2h — 1)(2h + 1) = 0 and, without loss of generality, we could choose
h = 1/2, otherwise we apply the change (z,y,t,a,b,h) — (—y, —z,—t,b,a,—h), which keeps the
systems (77) and changes the sign of h.

Now, according to Theorem 1, for the existence of at least one hyperbola for systems (77), it is
necessary and sufficient the conditions v9 = 0 and Rg # 0. So, we calculate 9 = 3a/2 and, setting
a = 0, we obtain the 1-parameter family of systems

d d
£:$—$2/2—xy/27 £:b+y_3xy/2+y2/2, (87)

with the condition b+ 4 # 0.
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These systems possess three invariant lines (two of them being parallel) and an invariant hyperbola

El,?(xvy): ($—y)2—2($—y)+2bzo, £3($,y) :ZL':O,

(83)
O(x,y)=44+b—4x+z(x —y) =0.

We remark that, since Discriminant [£12(z,y),z — y| = 4(1 — 2b), these lines are complex (re-
spectively real) if 20 — 1 < 0 (respectively 2b — 1 > 0).
We calculate 5 = 3(8 — 25b)/2 and we consider two cases: 5 # 0 and J5 = 0.

bi) The case 65 # 0. In this case we have 25b — 8 # 0 and hence ®(x,y) = 0 (see (88)) is the
unique invariant hyperbola. Since By = By = 0 for systems (87), we calculate

By = —27ba?(x — y)? /4.

o) The subcase B # 0. Then b # 0 and, since pg = 1/4, the finite singularities M;(z;,y;) of
systems (87) are of total multiplicity 4, and their coordinates are

3++v1—-2b 1Fv1-2b
Tip= "5 Y= 5 234 =0, y34 = —-1£ V120

We observe that the singular points M o are located on the hyperbola and on the invariant lines
L12 = 0, whereas the singularities M3 4 are located on the intersections of the couple of parallel

invariant lines with the third one.

Considering the singular points M; o, we see that xjx2 = (b+ 4)/2 and hence sign (b + 4) detects
the location of these singularities on the same or different branches of the hyperbola. Moreover, the
position of the hyperbola is governed by sign (b + 4).

In order to detect when the singularities M3 4 also belong to the hyperbola, we consider (88) and
we calculate

(@ (23, y3)] [®(z4,34)] = (b+4)* #0,

otherwise the hyperbola splits into two lines. Thus none of the singular points M3 or M, could belong
to the hyperbola (88).

On the other hand, for systems (87), we calculate the invariant polynomials
X =01 —2b)/256, {7 = 135(b + 4)(25b — 8)%/8

and we conclude that sign (X(A7)) = sign (1 — 2b) (if 20 — 1 # 0) and due to d5 # 0 (i.e. 250 — 8 # 0)
. (N .
we have sign (x’) = sign (b + 4).

a1) The possibility XEZ) < 0. Then all four finite singularities are complex as well as the invariant

lines £12 = 0 and we get the configuration shown in Config. H.115.

az2) The possibility XEZ) > 0. Then all four finite singularities and the invariant lines £ 2 = 0 are

real and we obtain the configuration Config. H.114 if Xg) < 0 and Config. H.113 if Xg) > 0.

ag) The possibility XEZ) = 0. Then we have two double finite singular points (namely, M;=M,

and M3=M,) and also the invariant lines £ = 0 collapse and we obtain a double invariant line.
So, we arrive at the configuration Config. H.117.

87



B3) The subcase B3 = 0. Then b = 0 and we obtain a specific system possessing a fourth invariant

line, namely £4 = y = 0. Then, we obtain the unique configuration Config. H.119.

by) The case d5 = 0. Then b = 8/25 and again we obtain a concrete system, but now possessing
a second hyperbola, namely ®o(z,y) = —4/25 — 4y/5 + y(xr — y) = 0. Moreover, we observe that,
for systems (87) with b = 8/25, we have By = —54x?(x — y)?/25 # 0 and hence there are no
more invariant lines rather than the ones given in (88). So, we arrive at the unique configuration
Config. H.147.

3.2.1.2.2  The subcase o = 0. Then ¢ =0 and we obtain the systems

d d
W o ha? 4+ (h—Dary, Z=b— (h+ay+ hy? (89)
dt dt

a) The possibility 7 # 0. Then (2h — 1)(2h + 1) # 0 and, since f19 = —2(3h — 1)(3h + 1), we
consider two cases: 19 # 0 and 319 = 0.

ai) The case B19 # 0. Then (3h — 1)(3h + 1) # 0 and, according to Theorem 1, for the existence
of at least one invariant hyperbola for systems (89), it is necessary and sufficient the conditions
v7vs = 0 and Rs5 # 0. So, we calculate

vr=8h—1)(h+1)E, 78 =42(h —1)(h+1)(3h —1)%(3h + 1) &&3,
El=al2h+1)+b2h—1), & =2a(l—h)+b2h—1), & =2bh+1)—a(2h+1).

We observe that we could pass from the condition & = 0 to the condition & = 0 via the change
(x,y,a,b,h) — (y,x,b,a,—h), and any of these conditions is equivalent to vg = 0. However, the
condition & = 0 could not be replaced. So, we need to analyze the possibility 77 = 0 and then the
possibility vg = 0.

We calculate

Bs = —6(4h — 1)(4h + 1), do = 2[(a + b)(128h% — 11) + (a — b)h(400h* — 49)].

a) The subcase 33 + 63 # 0. By Theorem 1 (see DIAGRAM 10 in this case systems (89) possess
a single invariant hyperbola if and only if y7v¢ = 0 and R5 # 0. We consider the cases 77 = 0 and
~vs = 0 separately.

a1) The possibility v7 = 0. Then & = 0 and we obtain a subfamily of systems (71) with ¢ = 0.
So, we arrive at the 2-parameter family of systems

dz

dt
for which h # 0, otherwise we get degenerate systems, and considering the condition N 87810R5 (52 +
83) # 0, we have

=a(2h — 1) — ha? + (h — 1)y, % = —a(2h+1) — (h+ 1)zy + hy?, (90)

ah(h—1)(h+1)(2h —1)(2h 4+ 1)(3h — 1)(3h + 1)(4h — 1)(4h + 1) # 0. (91)
These systems possess two parallel invariant lines and the invariant hyperbola

Lio=(x— y)2 —4a =0, ®(z,y)=a+2ay=0. (92)
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Since 19 = h? # 0, these systems possess all four finite singularities on the finite part of the phase
plane and their coordinates are M;(x;,y;), where

r12 = +Va, yi12 = FVa, r34 = +(2h — 1)Va, y34 = £(2h + 1)Va.

We observe that the singular points M; o are located on the hyperbola and on the invariant lines
L1 2 = 0, whereas the singularities M3 4 are located only on the invariant lines.

Considering the singular points M 2, we see that 2129 = —a and hence sign (a) detects the location
of these singularities on the same or different branches of the hyperbola. Moreover, the position of
the hyperbola is also governed by sign (a).

We point out that the singularities M3 4 could not belong to the hyperbola since

(@ (23, y3)] [®(24,34)] = 16a*h* # 0,

due to conditions (91). On the other hand, we calculate Xf) = 80ah® and we note that sign (Xf)) =

sign (a). So, we arrive at the configurations given by Config. H.80 if XE42) < 0 and Config. H.91 if

xf) > 0.

a2) The possibility v = 0. Then & = 0 and this is equivalent to the relations a = a1(2h — 1) and
b = 2a;(h—1), where a; is a new parameter. So, setting this reparametrization in (89) and replacing
the old parameter a instead of aj, we arrive at the 2-parameter family of systems

%f = a(2h—1) — ha? + (h — L)ay, % =2a(h —1) — (h+ Day + hy?, (93)

with the conditions
alh—1)(h+1)(2h —1)(2h + 1)(3h — 1)(3h + 1)(4h — 1)(4dh + 1) # 0. (94)
These systems possess two parallel invariant lines and the invariant hyperbola

Lio=(r—y)}—a/h=0, ®(x,y)=a—2(x—y)=0. (95)

We consider the coordinates M;(z;,y;) of the finite singular points of systems (93):

(h — 1)Vah (2h — 1)V ah

12 = £Vah, y12 =+ h , T34 =ETT Y4 = +2Vah.

We observe that the singular points Mj o are located on the hyperbola and on the invariant lines
L1 2 = 0, whereas the singularities M3 4 are located only on the invariant lines.

Considering the singular points M 2, we see that xjxe = —ah and hence sign (ah) detects the
location of these singularities on the same or different branches of the hyperbola. Moreover, the
position of the hyperbola is governed by sign (a).

We remark that the singular points M3 4 could not belong to the hyperbola since

a?(3h — 1)?

[®(23,y3)] [P (24, y4)] = — 7 #0,
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due to conditions (94). On the other hand, we calculate
XD =ah(h = 12(h+1)2/4, N = 648043 (h — 1)2(3h + 1)

and we note that sign (XEZ)) = sign (ah) and sign (Xg)) = sign (a).

If XS) # 0 (i.e. h # 0), we obtain the following conditions and configurations:

° XEZ) < 0 and Xg) <0 Config. H.78;

=
° Xg) < 0 and Xg) >0 = Config. H.79;
=
=

(7) ()

e x >0and x5’ <0 Config. H.96;

(7) (7)

e x, >0and x5 >0 Config. H.95.

In the case XEZ) =0

(i.e. h = 0), then we have pg = p1 = p2 = puz = 0 and uy = a®z%y? # 0.
Thus, the four finite singularities have gone to infinity and two of them coalesced with [1,0,0] and
the other two of them coalesced with [0, 1,0]. Moreover, the two invariant lines £; 2 = 0 have also
gone to infinity and hence the line of infinity Z = 0 is a triple invariant line for the system, because

Z? is a double factor of the polynomials £ and & (see Lemma 3).

Now, according to the sign (a) we have different position of the hyperbola and consequently distinct
configurations. So, we get the configurations shown by Config. H.108 if Xg) < 0 and by Config. H.109
if Xg) > 0.

B) The subcase g = d2 = 0. Then the condition g = 0 gives (4h — 1)(4h + 1) = 0 and, without
loss of generality, we may assume h = 1/4 due to the change (x,y,a,b,h) — (y,z,b,a, —h).

We calculate
do =6(b—3a), ~7=-15(3a—10)/4, ~s=15435(3a — 5b)(3a —b)/8192

and hence the condition d9 = 0 yields b = 3a and then 77 = g = 0. So we obtain the 1-parameter

family of systems

d d
d—f:a—x2/4—3xy/4, d—i:3a—5xy/4+y2/4, (96)

with the condition a # 0.

These systems possess two parallel invariant lines and two invariant hyperbolas
£1,2 :(l’—y)Z—FSCL:O, <I>1(m,y) :2a—xy:(), <I>2(x,y) :2a+x(x—y)=0 (97)

Since 1o = 1/16 # 0, all the four finite singularities are on the finite part of the phase plane and
their coordinates are M;(z;,y;):
—2a 3vV—2a

y Y34 = F 5

x1,2 = +v —2a, Y12 = +V —20,, X34 = +

We observe that the singular points M o are located on the first hyperbola ®; = 0, whereas the
singularities M3 4 are located on the second hyperbola ®3 = 0. All singular points are located on the
invariant lines £ 2 = 0.
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Considering the singular points Mo (respectively Ms4), we see that z1z9 = 2a (respectively
x3r4 = a/2) and hence sign (a) detects the location of these singularities to be on the same or
different branches of the hyperbolas that they are located on. Moreover, the position of the hyperbola
is also governed by sign (a).

We remark that the singular points Mj o (respectively Msz4) could not belong to the hyperbola
®y = 0 (respectively ®; = 0) since

[®a(21,51)] [P2(2,2)] = 4a® #0,  [®1(x3,y3)] [®1(24,94)] = a®/4 # 0,

due to a # 0.

On the other hand, we calculate
W = —2254/2048

and we note that sign (XE:)) = —sign (a). So, we get the configurations shown by Config. H.1/3 if

XS) < 0 and Config. H.141 if XEZ) > 0.

az) The case B19 = 0. Then (3h — 1)(3h + 1) = 0 and, without loss of generality, we may assume
h = 1/3, since the case h = —1/3 could be brought to the case h = 1/3 via the change (x,y,a,b, h) —
(y,x,b,a,—h). So, we arrive at the systems

%:a—:UQ/B—Qxy/S, %:b—4xy/3+y2/3. (98)

with the condition a # 0, possessing a pair of parallel invariant lines and a couple of invariant
hyperbolas with parallel asymptotes

Lia(z,y)=(x—y)?—=3a—0b)=0, ®1a(x,y)=3a++/34a—bz+z(x—y)=0. (99)

In accordance to Theorem 1, we have to analyze the following subcases: v7 # 0 and 7 = 0 and we
calculate
vz = —65(5a — b)/27, 10 = 8(4a — b)/27.

o) The subcase vz # 0. Thenb we could not have other invariant hyperbolas rather than the ones
in (99). Moreover, the hyperbolas (99) are complex if 19 < 0, real if 19 > 0 and they coincide if
Y10 = 0. Then, we consider two possibilities: v19 < 0 and 19 > 0.

aq) The possibility y10 < 0. bThen the hyperbolas (99) are complex. In this case, we set a new
parameter v # 0 satisfying 4a — b = —3v?, which yields b = 4a + 3v? and we obtain the 2-parameter
family of systems

% =a—2%/3 - 2xy/3,

dy _

o =da+ 3v? — dzy/3 + % /3, (100)

with the condition av # 0, possessing the invariant lines and invariant hyperbolas
Lio(z,y)=(x—y)?+9a+0v*) =0, ®1s(zx,y)=3a=+3ive +z(z—y)=0. (101)

We calculate
po=1/9, By =0, By=—512a(4a + 3v?)(x —y)*
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and we consider two cases: Bo # 0 and By = 0.

t) The case By # 0. Then there are no other invariant lines rather than £;9 = 0 in (101). We
calculate

po=1/9#0, D = —-4096v*(a+v*)?/3, S =256v%(a+ v?)(x —y)*(2x +y)? /2187,
R = —16[(4a + 50*)2* + 2(2a + v*)zy + (a + 20*)y?] /81, T = —81RS/32.

We claim that all four finite singular points are complex. Indeed, if a + v? > 0, we observe that
Discriminant [R, z| = —1024v*(a + v*)y®/729 < 0, Coefficient [R,y*] = —16(a + 20*)/81 < 0

and hence R < 0. Since D < 0, by Proposition 1 all four finite singularities of systems (100) are
complex.

Now, if a +v? < 0, then D < 0 and S < 0, and by Proposition 1 all four finite singularities of
systems (100) are complex.

Finally, if @ +v? = 0, then D = T = 0 and we have two collisions of finite singular points, i.e.
we have two double singular points. As in any case we have only complex singularities, these double
singular points are also complex. So, our claim is proved.

We calculate X,(Z) = —16(a + v?)/81 and we note that sign (XEZ)) = —sign (a + v?).

If Xg) < 0, then the invariant lines are also complex and we get the configuration Config. H.144. In
the case XEZ) > () the invariant lines are real and we arrive at the configuration Config. H.145. If XEZ) =

0, then the invariant lines collapse and become double, which leads to configuration Config. H.153.

ii) The case By = 0. Then 4a + 3v? = 0 and systems (100) have a third invariant line y = 0 and
the lines £1 2 = 0 are complex. So, we get the configuration Config. H.151.

az) The possibility 10 > 0. In this case, we set the new parameter v # 0 satisfying 4a — b = 3v?,
which yields b = 4a — 3v? and we obtain the 2-parameter family of systems
dx

priake z%/3 — 2zy/3,

dy

o =da- 3v? —dzy/3 + y*/3, (102)

with the condition a # 0, possessing the invariant lines and invariant hyperbolas
Li2(x,y) = (x —y)? +9(a—2%) =0, ®1a(z,y) =3a+3vz +z(xr—1y) = 0. (103)
Remark 10. We remark that, the condition v =0 for systems (102) is equivalent to 19 = 0.

We calculate
po=1/9, By =0, By=—512a(4a — 30v?)(x —y)*
and we consider two cases: Bo # 0 and By = 0.

t) The case By # 0. Then there is no other invariant line rather than £;2 = 0 in (103). Since
po # 0, all four finite singularities of systems (102) are on the finite part of the phase plane and
their coordinates are M;(z;,y;), where

T2 =—-vEVvE—a, y12=—-vF2Vv?—a, x34=vEVV2—aqa, y34=0vF2V0v?—a.
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We observe that the singular points M; 2 are located on the first hyperbola ®; = 0 and on the
invariant lines £1 2 = 0, whereas the singularities M3 4 are located on the second hyperbola ®5 = 0
and on the invariant lines £ 2 = 0.

Considering the pairs of singular points M; 9 and M3 4, we see that x1z2 = 324 = a and hence
sign (a) detects the location of these singularities to be on the same or different branches of the
respective hyperbola they are located on.

We remark that the singular points M; o (respectively Ms 4) could belong to the hyperbola ®; = 0
(respectively ®; = 0) if and only if

[@2(301, yl)] [(1)2(262, yg)] = 36@1}2 = 0, [@1(1’3, yg)] [q)l($4, y4)] = 36(1’02 = 0,

which are equivalent to v = 0. However by Remark 10 and the condition 719 > 0 we have v # 0.

On the other hand, we calculate
XD =16(0% —a)/81, X3 = 17039360 a(a + 30%)%/9

and we conclude that sign (XEZ)) = sign (v? — a) and sign (X(g)) = sign (a).

Since v # 0, the invariant hyperbolas ®1 o = 0 are distinct. We observe that the condition XEZ) <0
implies @ > 0 (as v # 0) and consequently, Xg)) > 0. Moreover, if XE:) = 0, then both invariant
lines coalesce and we obtain the double invariant line (z — 3)? = 0. So, we arrive at the following

conditions and configurations:

e x\l) <0 = Config. H.142;

° XEZ) > 0 and X(C?’) <0 = Config. H.137;

° X,(A7) > 0 and X(C?’) >0 = Config. H.138;

° xf) =0 = Config. H.152.

i1) The case By = 0. Then a = 3v?/4 and we have a third invariant line £3(z,y) = y = 0 and the
previous two lines could be factored as £;(x,y) = 2z — 2y +3v = 0 and Lo(z,y) = 22 — 2y — 3v = 0.

Since a > 0, we have
X7 = 4?81 >0, & = 199680000 > 0

and we obtain the unique configuration Config. H.149.

ag) The possibility v19 = 0. In this case according to Remark 10 we have v = 0, and then Xg) =

—16a/81 # 0. In this case, both hyperbola collapse and we get a double hyperbola. Furthermore,
the singularities collapse two by two and we have two double singular points (namely M; = M3 and
My = My).

It remains to observe that the condition XEZ) < 0 (respectively XE47) > 0) implies X(c%) > 0 (re-

spectively X(g) < 0). So, we get the configuration Config. H.155 if XEZ) < 0 and Config. H.154 if

xg) > 0.
B) The subcase v7 = 0. Then b = 5a and we arrive at the 1-parameter family of systems
dx dy

E:a—xQ/B—Qxy/B, E:5a—4xy/3+y2/3, (104)
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with the condition a # 0.

These systems possess a couple of parallel invariant lines, a pair of invariant hyperbolas with
parallel asymptotes presented in (99) and a third hyperbola

Lig(z,y) = (z —y)* +12a =0,

105
Qi 9(x,y) =3atV-3ar+z(x—y)=0, ®3(z,y)=2xy—3a=0. (105)

Since By = 0 and By = —2560a?(x —y)* # 0, systems (104) could not possess other invariant lines
rather than the ones in (105). Moreover, we have pp = 1/9 # 0 and all the four singularities are on
the finite part of the phase plane with coordinates M;(x;,y;), where

vV —3a 5v—3a
T12 =*+V-3a, y12 =FV-3a, x34==% 5 o Wa=F o

We observe that all four singular points are located on the invariant lines and also: M; is located
on the hyperbolas ®5 = 0 and &3 = 0, M> is located on the hyperbolas ®; = 0 and &3 = 0, M3 is
located on the hyperbola ®; = 0 and My is located on the hyperbola ®5 = 0.

Concerning the position of the singularities on the hyperbolas, we have
e the position of My and M3 on @1 (z,y) = 0 is controlled by sign (xex3) = sign (a);
e the position of M; and My on ®a(z,y) = 0 is controlled by sign (x1x4) = sign (a);

e the position of M; and My on ®3(z,y) = 0 is controlled by sign (xox3) = sign (3a).

We also point out that due to a # 0, the singularities could be located on the hyperbolas only as
it is described above.

We remark that, if a > 0, then the four singularities are complex as well as the pair of invariant
hyperbolas @1 2(z,y) = 0 and the couple of invariant lines £; 2(z,y) = 0.

On the other hand, we calculate 7190 = —8a/27 and we conclude that sign (vy19) = —sign (a). So,
we arrive at the configuration Config. H.159 if 19 < 0 and Config. H.158 if ~19 > 0.

b) The possibility 57 = 0. Then (2h — 1)(2h + 1) = 0 and, without loss of generality as earlier, we
may assume h = 1/2. So, we obtain the systems

d d
—x:a—x2/2—xy/2, —y:b—3wy/2+y2/2. (106)
dt dt
According to Theorem 1, the condition v7 = 0 is necessary and sufficient for the existence of

invariant hyperbolas for systems (106). Moreover, this condition implies the existence of two such

hyperbolas.
We calculate 7 = —12a = 0 and we obtain the 1-parameter family of systems
d d
d—f:—xQ/Q—my/Q, d—i:b—3xy/2+y2/2. (107)

with the condition b # 0.
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These systems possess three invariant lines and two invariant hyperbolas

£172<m7y):<m_y)2+2b:07 £3(.’E,y):$:0, (108)
For systems (107) we calculate B; = By = 0 and By = —27bx?(x — y)?/4 # 0 and therefore
by Lemma 2 systems (107) could not posses other invariant lines rather than the ones in (108).
Since pp = 1/4 # 0, these systems have finite singularities of total multiplicity 4 with coordinates
M;(2;, i), where
V—2b —2b

» Y12 = :FTa x34 =0, y34 = £V —20b.

1,‘172 =+ 9

We observe that the singular points Mo are located on the two hyperbolas and on the lines
L12 = 0 and the singularities M3 4 are located on the three invariant lines.

Moreover, due b # 0 we deduce that the singular points M3 4 could not belong to the hyperbolas.
By the same argument the singular points M 2 could not belong to the invariant line £3 = 0.

Since x1x2 = b/2, the position of the singular points M; 2 on the hyperbola is governed by sign (b),
as well as the position of the invariant hyperbolas.

We calculate XEZ) = —9b/128 and we conclude that sign (Xg)) = sign (b).

It is worth mentioning that, if b > 0, then all four singular points are complex as well as the couple

of invariant lines £12 = 0. So, we get the configuration Config. H.150 if Xg) < 0 and Config. H.148

it 7 > 0.

3.2.2 The possibility N =0
Since for systems (7) we have § = —(¢g — 1)(h — 1)(g + h)/2 = 0, we observe that the condition
N =(g-1)(g+1)2®+2(g = 1)(h = Day+ (h = 1)(h +1)y* =0

implies the vanishing of two factors of #. Then, without loss of generality, we may assume g = 1 = h,
otherwise in the case g+ h = 0 and g — 1 # 0 (respectively h — 1 # 0), we apply the change
(x,y,9,h) — (—y,z —y,1 — g — h,g) (respectively (z,y,9,h) — (y — z,—x,h,1 — g — h)) which
preserves the form of such systems.

So, g = h =1 and due to an additional translation we arrive at the systems

dx o dy 2
= atdy+a?, o =bter+y’, (109)

for which we calculate
B1 =4de, o= —2(d + 6).

According to Theorem 1, a necessary condition for the existence of hyperbolas for these systems is
B1 = 0. This condition is equivalent to de = 0 and, without loss of generality, we may assume e = 0,
due to the change (z,y,a,b,d,e) — (y,x,b,a,e,d).

Then Py = —2d and we analyze two cases: f3 # 0 and £ = 0.
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3.2.2.1 The case 2 # 0. Then d # 0 and via the rescaling (z,y,t) — (4dx,4dy,t/(4d)), we may
assume d = 4.

In this case, since 51 = 0, according to Theorem 1 the conditions y;; = 0 and Rg # 0 are necessary
and sufficient for the existence of one invariant hyperbola.

We calculate 711 = —64(a — 4b+ 1) and, setting a = 4b — 1, we obtain the 1-parameter family of

systems

dx dy
L =4b—1+4 20 L =P 110
o tdy et o =bty (110)

for which Rg = 40(b + 1) # 0.

These systems possess the invariant lines and the invariant hyperbola

Since By = 0 and By = —124416(b + 1)y* # 0, systems (110) could not possess other invariant
lines rather than the ones in (111). Moreover, o = 1 # 0 implies that these systems possess finite
singularities M;(z;,y;) of total multiplicity four and their coordinates are

T1,2 = -1+ 2\/ —b, y172 = :t\/ —b, T34 = 1+ 2\/ —b, Y34 = FvVv —b.

We observe that the singular points M o are located on the hyperbola and on the lines, whereas
the singularities M3 4 are located on the invariant lines.

Moreover, at least one of the singular points M3 4 could belong to the hyperbola if an only if

[®(x3,y3)] [®(4,y4)] = 4(b+1)(4b+ 1) =0,

i.e. if and only if 46+ 1 = 0.

Since x1xg = 4(4b + 1), the position of the singular points M; 2 on the hyperbola is governed by
sign (4b 4 1), while the position of the invariant hyperbola is governed by sign (b).

We calculate
& =806, ¥ =80(4b+1), Rg=40(b+1)
and we conclude that sign (Xf)) = —sign (b) and sign (X(Ds)) = sign (4b + 1).
We observe that, if b > 0, then all four singularities and the invariant lines are complex. So, we
arrive at the unique configuration Config. H.79 if Xf) < 0.

If Xf) > 0, we get the following conditions and configurations:
e Rg <0 Config. H 96,
e Rg >0 and X(g) <0 = Config. H.93;
e Rg >0 and Xg) >0 = Config. H.92;

o Rg>0and XY =0 = Config. H.87.
If X(AS)
M coalesces with M3, and so does Mo with My, and we have two double singular points, leading us
to the configuration Config. H.101.

= 0, then b = 0 and the invariant lines collapse and become double. Moreover, the singularity
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3.2.2.2 The case B2 = 0. Then d = 0 and, according to Theorem 1, the condition v19 = 0 leads
to the existence of only one invariant hyperbola, whereas the condition 13 = 0 leads to the existence
of an infinite number of such hyperbolas.

We calculate
vi2 = —128(a — 4b)(4a — b), v13 = 4(a —b).

3.2.2.2.1 The subcase y12 = 0. Then (a — 4b)(4a — b) = 0 and, via the change (z,y,a,b) —
(y,x,b,a), we may assume b = 4a and we arrive at the 1-parameter family of systems

dx 9 dy 9
— -4 112
at T @ aTy (112)

with the condition a # 0.

These systems possess two couples of parallel invariant lines and the invariant hyperbola
Lig(z,y) =a*+a=0, Lza(z,y)=y"+4a=0, &(z,y)=a—z(x—y) =0 (113)

Since By = By = 0 and Bs = 36ax?y? # 0, systems (112) could not possess other invariant lines
rather than the ones in (113). Moreover as o = 1 # 0, by Lemma 1 the above systems possess finite
singularities M;(z;,y;) of total multiplicity four and their coordinates are

T12 =*tV—a, y12 =2V —a, x34=FV—a, ys4 = F2V—a.

We observe that all four singularities belong to the lines L1234 = 0. Moreover, the singular
points M o are located on the hyperbola, whereas the singular points M3 4 could not belong to the
hyperbola due to a # 0.

Since z1x2 = 4a, the position of the singular points M 2 on the hyperbola is governed by sign (a),

as well as the position of the invariant hyperbola.
We calculate Xf) = —80a and we conclude that sign (Xf)) = —sign (a).

Since in the case a > 0 all four singularities and the invariant lines are complex, we arrive at the
configuration Config. H.120 if Xf) < 0 and Config. H.118 if X(AQ) > 0.

3.2.2.2.2  The subcase y13 = 0. Then b = a and we arrive at the 1-parameter family of systems

dz 5 dy 9
—a+ 2 —a+ 114
7 T (114)

with the condition a # 0.

These systems possess five invariant lines and the family of invariant hyperbolas

E172(1:,y):a:2+a:0, ‘63,4($ay) :y2+a20a £5($,y):$—y:0,

(115)
O(z,y) =2a—7r(x—y)+22y=0, reC.

Since pp = 1 # 0 the above systems possess finite singularities M;(x;, y;) of total multiplicity four
and their coordinates are

12 = +V~a, Y12 = +v—a, T34 =EV—a, ysa = FV-a.
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We observe that all four singularities belong to the lines £1 234 = 0. Moreover, the singular points
M; o are located on the hyperbolas for any r € C and on the line £5 = 0.

The sign (a) distinguishes if the singularities are either real, or complex, or coinciding (if a = 0).
Since Rg = 16a, we conclude that sign (Rg) = sign (a).

In the case a # 0, we could assume ¢ = 1 if @ > 0 and a = —1 if @ < 0, due to a rescaling. So,
we arrive at the configuration Config. H.160 if Rg < 0, Config. H.161 if Rg > 0 and Config. H.162
it Rg = 0.

The proof of statement (B) of the Main Theorem is completed because because all the cases have
been examined. B
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