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ARTICLE INFO ABSTRACT

Associate editor: Thomas Wagner Branched and isoprenoidal glycerol dialkyl glycerol tetraethers (br- and isoGDGTs) are membrane lipids pro-
duced by bacteria and archaea, respectively. These lipids form the basis of several frequently used paleoclimatic

Keywords: proxies. For example, the degree of methylation of brGDGTs (MBT’sye) preserved in mineral soils (as well as

GDGT

peats and lakes) is one of the most important terrestrial paleothermometers, but features substantial variability

gemPe_rta?,"e that is so far insufficiently constrained. The distribution of isoGDGTs in mineral soils has received less attention
recipitation . . . .
Vegefa tion and applications have focused on the use of the relative abundance of the isoGDGT crenarchaeol versus brGDGTs

(BIT index) as an indicator of aridity. To expand our knowledge of the factors that can impact the br- and
isoGDGT distribution in mineral soils, including the MBT’5)e index, and to improve isoGDGT-based precipitation
reconstructions, we surveyed the GDGT distribution in a large collection of mineral surface soils (n = 229) and
soil profiles (n = 22) across tropical South America. We find that the MBT sy index is significantly higher in
grassland compared to forest soils, even among sites with the same mean annual air temperature. This is likely a
result of a lack of shading in grasslands, leading to warmer soils. We also find a relationship between MBT sy
and soil pH in tropical soils. Together with existing data from arid areas in mid-latitudes, we confirm the
relationship between the BIT-index and aridity, but also find that the isoGDGT distribution alone is aridity
dependent. The combined use of the BIT-index and isoGDGTs can strengthen reconstructions of past precipitation
in terrestrial archives. In terms of site-specific variations, we find that the variability in BIT and MBT sy is larger
at sites that show on average lower BIT and MBT sy values. In combination with modelling results, we suggest
that this pattern arises from the mathematical formulation of these proxies that amplifies variability for inter-
mediate values and mutes it for values close to saturation (value of 1). Soil profiles show relatively little variation
with depth for the brGDGT indices. On the other hand, the isoGDGT distribution changes significantly with depth
as does the relative abundance of br- versus isoGDGTs. This pattern is especially pronounced for the iso-
GDGTsomerindex Where deeper soil horizons show a near absence of isoGDGT isomers. This might be driven by
archaeal community changes in different soil horizons, potentially driven by the difference between aerobic and
anaerobic archaeal communities. Finally, we use our extensive new dataset and Bayesian neural networks
(BNN5s) to establish new brGDGT-based temperature models. We provide a tropical soil calibration that removes
the pH dependence of tropical soils (n = 404; RMSE = 2.0 °C) and global peat and soil models calibrated against
the temperature of the months above freezing (n = 1740; RMSE = 2.4) and mean annual air temperature (n =
1740; RMSE = 3.6). All models correct for the bias found in arid samples. We also successfully test the new
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calibrations on Chinese loess records and tropical river sediments. Overall, the new calibrations provide
improved temperature reconstructions for terrestrial archives.

1. Introduction

Branched and isoprenoidal glycerol dialkyl glycerol tetraethers (br-
and isoGDGTs) are membrane lipids produced by bacteria and archaea
that are ubiquitously found in aquatic and terrestrial environments
(Koga et al., 1993; Schouten et al., 2013; Sinninghe Damsté et al., 2000;
Weijers et al., 2007). In soils, brGDGTs synthesized by bacteria are
usually dominant, while isoGDGTs produced by archaea are typically
dominant in marine settings (Schouten et al., 2013; Weijers et al., 2006).
Although the isoGDGT crenarchaeol is thought to be synthesized
uniquely by ammonia oxidizing Thaumarchaeota (Sinninghe Damsté
et al.,, 2012; Sinninghe Damsté et al., 2002), the origin of the other
isoGDGTs and brGDGTs and their isomers is debated and not always
well constrained, especially in mineral soils and peats (Blewett et al.,
2020; Chen et al., 2022; De Jonge et al., 2021; Naafs et al., 2019; Sin-
ninghe Damsté et al., 2018).

The relative distribution of brGDGTs has been found to be temper-
ature and pH dependent in mineral soils (De Jonge et al., 2014; Wang
et al., 2018; Weijers et al., 2007), lakes (Pearson et al., 2011), speleo-
thems (Blyth and Schouten, 2013; Yang et al., 2011) and peats (Naafs
et al., 2017b). The temperature dependence of brGDGTs is likely the

effect of homeoviscous adaption as indicated by molecular dynamic
simulations of membranes consisting of brGDGTs (Naafs et al., 2021)
and preliminary culture studies (Chen et al., 2022). Early temperature
calibrations that used brGDGTs had to be corrected for pH (Weijers
et al., 2007) and exhibited a bias to cooler temperatures in arid regions
(Peterse et al., 2012; Weijers et al., 2007). Advances in chromatography
allowed for the exclusion of pH and aridity dependent 6-methylated
brGDGTs, using only the 5-methyl isomers in the MBT 5y index (De
Jonge et al., 2013; De Jonge et al., 2014). Despite these improvements,
the MBT’5pe proxy for mean annual air temperature (MAAT) still carries
large uncertainties, especially in mid-latitudes, suggesting additional
influences other than MAAT (Dearing Crampton-Flood et al., 2020;
Naafs et al., 2017a; Véquaud et al., 2022). While large temperature
seasonality, varying pH conditions, vegetation type and temperatures
below freezing are known confounding factors, the impact of changing
microbial diversity has been suggested but remains speculative (De
Jonge et al., 2021; Liang et al., 2019; Peterse et al., 2014; Raberg et al.,
2022; Wang et al., 2020; Weijers et al., 2011).

IsoGDGTs are generally less abundant compared to brGDGTs in
mineral soils and peats and have received less attention in soil proxy
calibration studies, with some notable exceptions (Blewett et al., 2020;
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Fig. 1. Vegetation and mean annual temperature map of tropical South America (Karger et al., 2017; Olson et al., 2001). Colors (see legend) differentiate the major
biomes (Olson et al., 2001), and intensity (see legend) refers to mean annual temperature. The small inset map provides a detailed overview of the sample locations in
the Llanos basin. Sample locations are shown with triangles and locations of previous soil studies by De Jonge et al. (2014), Pérez-Angel et al. (2020) and Kirkels et al.
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Dirghangi et al., 2013; Naafs et al., 2018; Xie et al., 2012). In the
terrestrial realm, isoGDGTSs have been mainly used in the BIT index and
the R ratio, both of which reflect the relative contribution of certain
isoGDGTs versus brGDGTs and have been used as proxies for aridity in
mineral soils (Dirghangi et al., 2013; Tang et al., 2017; Xie et al., 2012).
Improved chromatography has led to the detection of isoGDGT isomers
in certain soils (Becker et al., 2013; Blewett et al., 2020; Hopmans et al.,
2016; Pitcher et al., 2009). In peat, the relative contribution of isoGDGT
isomers appears to be pH dependent (Blewett et al., 2020) and Thau-
marchaeota culture experiments also found a temperature dependence
of the relative abundance of isoGDGT isomers (Bale et al., 2019). There
are, however, no reports yet of these isoGDGTs isomers in mineral soils.

Here we undertake a survey of br- and isoGDGT distributions in
mineral surface soils and soil profiles from across lowland tropical South
America (Fig. 1). The vegetation mosaic of the Cerrado and the Llanos
savannas and the adjacent rainforests allows for the study of the impact
of pH and vegetation on the soil GDGT distribution. In addition, the
region covers a major precipitation gradient from rainforest to the semi-
arid Caatinga shrubland areas. This is important as open savanna and
shrubland soils are generally understudied for GDGT-based proxies. So
far, only a few samples from lowland rainforests and savanna soils have
been analyzed for their brGDGT distributions and paleoenvironmental
reconstructions have mainly focused on the Amazon Basin (Bendle et al.,
2010; Haggi et al., 2019).

In our study, we test the influence of vegetation, climate, and soil
properties among the major biomes on the GDGT distribution. As soils
are known to be locally heterogeneous, we analyze multiple samples per
site and samples from different soil horizons to study local soil hetero-
geneity. We also make use of advancements in numerical analysis
methods to extract information from complex systems beyond linear
regressions (Véquaud et al., 2022) and present Bayesian neural network
(BNN) based models for improved brGDGT-based temperature
reconstructions.

2. Materials and methods
2.1. Study area

The study area covers mineral soils across tropical South America
between 5 °N and 25 °S and includes all major biomes of tropical South
America (Fig. 1). Namely the Amazon and Atlantic rainforests, the
Caatinga shrubland, and the savannas and grasslands of the Cerrado and
the savanna and grassland mosaics of the Llanos basin. The Cerrado
savanna features a continuum of savanna vegetation types varying be-
tween dry forests (Cerradao), mixed savanna with trees and interspersed
grasses (Cerrado sensu stricto), savannas with small trees and shrubs
(Campo Cerrado) and open grasslands of the Campo Sujo and Campo
Limpo (Goodland, 1971). Likewise, the Llanos grassland consists of a
variety of different types of vegetation density (Blydenstein, 1967). In
this study we focus on the comparison between soils from open grass-
land versus those from riparian forest areas. Mean annual air tempera-
tures (MAAT) in the study area varied between 19 °C in the mountainous
areas (altitude up to 1000 m) of southeastern Brazil that are at the
southern edge of our transect and 27 °C in the semi-arid Caatinga
shrubland areas in northeastern Brazil (Karger et al., 2017) (Fig. 2). The
highest mean annual precipitation (MAP) is found in the Llanos basin
(>3000 mm y 1), while the driest sites were sampled in the Caatinga
shrubland (<500 mm y_l) (Karger et al., 2017) (Fig. 2). The drivers of
the dominance of forest and savanna vegetation in tropical South
America are still debated as forest-savanna boundaries are not neces-
sarily following clear climatological thresholds. On a local scale, water
availability controlled by soil properties can play a role (Ruggiero et al.,
2002), while hysteresis processes have been put forward as an expla-
nation of the current rainforest-savanna boundary (Staver et al., 2011;
Wuyts et al., 2017).
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Fig. 2. Climate conditions sampled in the present study (blue squares)
compared to the global dataset (grey dots) used in the MBT sy, calibration to
mean annual air temperature (MAAT) in the global compilation by Dearing
Crampton-Flood et al. (2020) (DFC 2020), and references therein. The tem-
peratures from the present study are derived from a 30 arc sec climate tem-
perature model by Karger et al. (2017).

2.2. Sample collection

Sampling was conducted during multiple field campaigns in 2016,
2019 and 2020 (Fig. 1). Surface soil samples and soil profiles from the
Atlantic rainforest, the Cerrado (savanna) and the southern Amazon
rainforest were collected on a north-south transect from Sao Paulo to the
Amazon rainforest in April 2019 (Fig. 1), followed by collection from the
Caatinga (shrubland) in northeastern Brazil in March 2020. These were
supplemented by soil profiles from close to the boundary between Cer-
rado and Caatinga vegetation collected in March 2019; samples from the
Llanos basin were collected from grasslands, riparian forests, and
Mauritia swamps sampled in February 2019; and soil profile samples
from the interior Amazon rainforest that were collected in September
2016. Sampling sites cover lowland and hill areas with an altitude be-
tween 200 and 1200 m.a.s.l. (meters above sea level). In the transect
from the Atlantic rainforest across the Cerrado to the Amazon rainforest
and the Caatinga transect, we took five surface samples within a quad-
rant of maximally 15 m x 15 m to analyze local variability. We took
samples from the Llanos basin in transects connecting riparian forest and
grassland areas. We collected surface samples from the top 5 cm of the
soil using a shovel and took soil profile samples from the cleaned surface
of soil profiles with a total depth between 55 and 277 cm. Samples
collected from the long transects across the Cerrado and Caatinga of
Brazil were transported on ice in coolers to avoid microbial activity and
were freeze-dried at the University of Sao Paulo prior to shipping. The
other samples were shipped to the University of Southern California and
freeze-dried there.

2.3. Laboratory preparation

We homogenized freeze-dried soils with mortar and pestle and
removed root fragments manually or using a 1 mm sieve. The homog-
enized soils were extracted by Accelerated Solvent Extraction (ASE 350)
with a 9:1 v/v mixture of dichloromethane (DCM):methanol (MeOH)
and two 15 min extraction cycles (100 °C, 1500 psi) and a rinse step.
After removal of a 20 % split for archiving purposes, the total lipid
extract was separated by column chromatography (5 cm x 40 mm
Pasteur pipette, NHy sepra bulk packing, 60 A) eluting the neutral
fraction with 2:1 DCM:isopropanol (IPA) followed by elution of diethyl
ether: formic acid 96:4 (the acid fraction; not used here). The neutral
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fraction was further separated by open column chromatography (5%
deactivated silica gel, 100-200 mesh) eluting a saturated fraction (not
used here) with hexane, and then eluting the polar fraction, containing
the GDGTs, with subsequent rinses of pure DCM and MeOH. 50% of the
polar fraction (40% of the total extract) was then filtered using a syringe
PTEE filter (0.45 pm) using hexane: IPA 99:1 and passively evaporated
to dryness prior to HPLC-MS analysis.

2.4. GDGT analyses

For GDGT analysis, the polar fractions were redissolved in 300 or
100 pl Hex:IPA (99:1) and the GDGT distribution was analyzed by high
performance liquid chromatography/atmospheric pressure chemical
ionization — mass spectrometry (HPLC/APCI-MS) using a ThermoFisher
Scientific Accela Quantum Access triplequadrupole MS at the University
of Bristol. Injection volume was 15 ul and we used two ultra-high per-
formance liquid chromatography silica columns and normal phase sep-
aration, following Hopmans et al. (2016). Analyses were performed in
selective ion monitoring mode (SIM) to increase sensitivity and repro-
ducibility and M+H" (protonated molecular ion) GDGT peaks were
manually integrated using the Xcalibur software. The MS continuously
scanned for m/z’s 1302 (isoGDGT-0), 1300 (isoGDGT-1 and isomers),
1298 (isoGDGT-2 and isomers), 1296 (iso GDGT-3 and isomers), 1294
(GDGT-4 and isomers), 1292 (crenarchaeol (cren.) and its regio isomer
(cren.”)), 1050 (brGDGT-IIIa and isomers), 1048 (brGDGT-IIIb and iso-
mers), 1046 (brGDGT-IlIc and isomers), 1036 (brGDGT-IIa and iso-
mers), 1034 (brGDGT-IIb and isomers), 1032 (brGDGT-IIc and isomers),
1022 (brGDGT-Ia), 1020 (brGDGT-Ib), 1018 (brGDGT-Ic), 744 (Cse
standard), and 653 (archaeol).

Analytical stability was monitored by repeated analysis of a peat
standard. MBT s of this standard yielded an average value of 0.94 +
0.004. BIT values yielded an average value of 0.998 + 0.002.

The MBT’sp index (De Jonge et al., 2014) reflects the degree of
methylation of brGDGTs and is temperature dependent. It represents an
adaption from the original MBT(’) index (Peterse et al., 2012; Weijers
et al., 2007):

(la+1Ib + Ic)

MBT sy =
M (la + Ib + Ic + Ha + b + lc + Illa)

(€8]

There are multiple proxies that have been correlated with soil pH. The
CBTspe index (De Jonge et al., 2014) is an adaptation for 5-methyl
brGDGTs from the CBT index (Weijers et al., 2007), which reflects
changes in the degree of cyclisation of brGDGTs:

(Ib + IIb)
CBTsye = —I P 2
M 810 ((Ia ¥ lla) 2
The CBT’ also includes 6-methyl brGDGTs (De Jonge et al., 2014):
. (Ic + IId + 1V + 1I¢ + Hld + HIb + 1)
CBT =1 3
©810 ( (Ia + la + Illa) )

The degree of cyclization (DC) describes the relative contribution of
compounds containing cyclopentane moieties (Sinninghe Damsté et al.,
2009):

(Ib + I1b + 11b)
(la+1la+1ld + Ib + IIb + IIb)

DC ()]

The isomer ratio of 6-methyl brGDGTs (IRgme) reflects the relative
abundance of 5 and 6-methyl brGDGTs and is also pH dependent in
mineral soils (De Jonge et al., 2014) and peats (Naafs et al., 2017b):

(Ha +11b +1Ic + I1ld + 1Y + HIc')
(la~+1Ib+Ilc+1la +11b +1Ic +lla+ITIb + Ic+11la + ITIb +11Ic)
5

Reme =
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To determine the relative distribution of br- versus the specific isoGDGT
crenarchaeol, we used the branched and isoprenoid tetraether index
(BIT-index) (Hopmans et al., 2004) with the inclusion of both 5 and 6-
methyl brGDGTs:

(la + Ha + Hla + Hda + Ild)

BIT = 7 7
(Ia+ Ha + Hla + Ila + Illa + cren.)

(6)

The ratio of br-GDGT relative to iso-GDGT is determined using the R/,
ratio (Xie et al., 2012):

Ziso — GDGT

Xbr — GDGT 7

Riyp =
To be able to compare our results to previously published data, we only
included the non-isomer isoGDGTs compounds in the Rj,, while we
included both 5 and 6-methyl brGDGTs that coeluted in previous
methods.

The methane index (MI) measures the relative abundance of cren-
archaeol in relation to the other cyclic isoprenoid GDGTs (Zhang et al.,
2011):

(GDGT — 1+ GDGT — 2 + GDGT — 3)

MI =
(GDGT — 1 + GDGT — 2 + GDGT — 3 + cren. + cren.)

(3

The iso0GDGTigomerindex Measures the relative abundance of the isomers
of the cyclic isoGDGTs 1-3 (Blewett et al., 2020):

»GDGT

1S0GDGT jumertuies = —5 o —r
¥3GDGT + L3GDGT

)]

Given the occasional presence of multiple early eluting isomers, we used
the sum of all early eluting isomers to calculate the iSOGDGTisomerindex-
In addition, we define the isoGDGT humidity index:

(cren.)

isoGDGT umiditylndex’ s ~ o~ ~1 1 | o\
150 Humidintndex(GDGT — 1 + cren.)

(10)

2.5. Determination of environmental parameters

Soil pH was determined in the laboratory using Extech pH110 and
Extech pH90 pH meters. Measurements were conducted on a 2.5:1 (v:v)
water:soil mixture that reflects the same methodology that was used in
previous calibrations studies for brGDGTs (Weijers et al., 2007). pH
meters were regularly calibrated against buffer solutions (pH of 4 and 7).
MAAT and MAP were derived from a global high-resolution 30 arc sec
climate model by Karger et al. (2017), equivalent to 1 km? resolution at
the equator. This resolution is sufficient to constrain temperature and
precipitation at our sites between 200 and 1200 m.a.s.l. as we do not
include areas of steep relief, where climatic variations finer than the
resolution of the model could be a concern. Indeed, the GMTED2010
landscape model (Danielson and Gesch, 2011) underlying the precipi-
tation and temperature models by Karger et al., (2017) has a standard
deviation of <50 m for the sample locations. However, we note that
local soil conditions depend on many variables and might be slightly
different compared to those obtained from the climate model, poten-
tially adding uncertainty. Both tropical and global data sets used for the
new calibrations presented in this study include samples from moun-
tainous areas, where the modelled data resolution may lead to mismatch
with the sample conditions. Therefore, we adopted the same approach as
Pérez-Angel et al. (2020) and use in situ measurements wherever
available and used model data for the new samples with no other in-
formation. Given that the neural network models introduced in Section
2.7. can be re-trained with new data, alternative temperature models
can be used according to user preference. We also used the mean tem-
perature of the months above freezing (MAF) for calibration purposes to
avoid the complications posed by large temperature seasonalities that
involve freezing temperatures. Our new tropical data set does not
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include samples from regions with months with temperatures below
freezing and the MAAT and MAF values are therefore identical. How-
ever, for previously published data, we relied on the data provided in the
global data set compiled by Raberg et al. (2022). Raberg et al. (2022)
found that studies frequently report MAAT values but MAF data is less
often available. Therefore, Raberg et al. (2022) employed model-
generated data to fill the missing MAF values. This results in a pattern
where some locations have higher MAAT temperatures than MAF tem-
peratures, which is an artefact of the usage of model MAF data alongside
analytical MAAT temperatures.

2.6. Statistical analyses

Statistical analyses were performed using the statistical software R
(R_Core_Team, 2021). The violin plots shown were created using the R-
package vioplot (Adler and Kelly, 2019). We further conducted Monte
Carlo modelling to assess to what degree local variability found among
the samples collected at the same site can be explained by pure sto-
chastics. To that end we used global br- and isoGDGT data, added
random normally distributed variability to each data point and modelled
5 samples per site to reflect our sampling strategy. We varied the ¢ of the
added variability to test the best fit corresponding to our data set. The
code used for the modeling can be found in the supplementary infor-
mation and is available on https://github.com/chaeggi/gdgt and in the
supplementary material. The matrixStats package was used for the
modelling (Bengtsson, 2018).

2.7. Predicting climate variables using neural networks

We used supervised learning to train neural network models that
predict MAAT and MAF from brGDGT distributions. On the one hand,
we provide a tropical soil calibration based on the novel soil data pre-
sented in this study and tropical soil data curated by Pérez-Angel et al.
(2020) calibrated to MAAT. On the other hand, we provide global soil
and peat calibrations based on the new data and data compiled by
Raberg et al. (2022) calibrated to MAAT and MAF. We used brGDGT
data for which a corresponding climatic variable was available (labeled
data) to train the models and used them to predict climate from unla-
beled brGDGT data.

We rescaled the brGDGT data to a range between 0 and 1 and used
them as features in the input layer of the neural network (NN) and
trained independent NNs for MAAT and MAF. The NNs were configured
with an output layer with one node predicting MAAT (or MAF) and a
linear activation function. To train our models, we split the data into a
training set (80% of the entries) and a validation set (20%) and per-
formed 5-fold cross-validation, shifting the validation set at each fold.
This allowed us to estimate a cross-validation prediction error, which we
used to evaluate the performance of our models.

We used a Bayesian NN (BNN) as implemented in the Python module
npBNN v.0.1.15 (Silvestro and Andermann, 2020) to obtain posterior
estimates of MAAT (or MAF) and a quantification of the prediction error.
The BNN used a gaussian likelihood function with a mean defined by the
output of the network and a standard deviation set equal to the sample
standard error between true and predicted values. We used standard-
normal prior distributions N(0, 1) on the weights. The BNNs included
two hidden layers of 12 and 4 nodes, respectively, using a tanh activa-
tion function. The parameters of the model were sampled from their
posterior distribution via Markov Chain Monte Carlo, ran for 25 million
iterations, from which we obtained 1,000 posterior samples of the
weights. We therefore used the sampled weights combined across the 5
cross-validation sets to obtain posterior estimates of MAAT (MAF) for
unlabeled data and we defined the expected prediction error as the
standard error averaged across samples.

For comparison, we optimized NN regression models as implemented
in Tensorflow v. 2.1 (Abadi et al., 2016) to minimize the mean squared
error between predicted and true MAAT (or MAF). Unlike the BNN this
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model only returned point estimates of the temperature without quan-
tification of uncertainty. We optimized the NN weights through a
number of epochs determined by monitoring the validation loss with the
patience parameter set to 10. We used three hidden layers 128, 64, and
32 nodes and ReLU activation function.

We evaluated the performance of the different NN and BNN archi-
tectures by computing the root mean squared error (RMSE) across the 5
cross-validation sets. For BNN estimates we also evaluated the coverage
as the fraction of data for which the true value was included within the
95% credible interval of the predicted one (as determined by the
sampled means and standard errors).

We ran npBNN and Tensorflow using Python v. 3.10 (python.org).
All codes and scripts implementing NN and BNN analyses is available
here: https://github.com/dsilvestro/gdgt-ai. The scripts include
detailed model settings and random seeds that ensure the full repro-
ducibility of our results.

We further tested the performance of our new models on published
late Pleistocene to Holocene brGDGT records from the Chinese Loess
Plateau. Based on their high temporal resolution, we selected the Xifeng
record from the northern part of the Chinese Loess Plateau (Lu et al.,
2019) as well as the Lantian and Weinan records, from the southern
parts (Lu et al., 2016; Tang et al., 2017). Detailed information on the
context and location of all studied loess sections can also be found in Lu
etal. (2019). We focused our analysis on the last 50 thousand years (ka),
where the age control allows for direct comparisons. Given the high
temperature seasonality on the Chinese Loess Plateau, we compared the
output of our BNN model calibrating the global data set to MAF (BNN
MAFgobal) to the output of the FROG machine learning approach, using
the FROGy calibration to MAF (Véquaud et al., 2022). We also compared
a stepwise regression model (MASTsgr) based on a local Chinese soil-
temperature calibration (Wang et al., 2020). We provide the MBT s5pg
index for all records, although we do not convert to absolute tempera-
tures as the numerous available calibrations lead to different absolute
temperatures but maintain the same overall trends (De Jonge et al.,
2014; Dearing Crampton-Flood et al., 2020; Naafs et al., 2017a).

3. Results
3.1. Relative distribution of brGDGTs in surface soils

Measured soil pH across our tropical soils varied between 3.9 and
7.4. Open grassland soils from the Cerrado and Llanos had low soil pH <
6, while soils under forest and shrubland vegetation had a pH between
3.9 and 7.4. The relationship between soil pH and the pH-dependent
indices like CBT’, CBTspe, and IRgye yielded values in the range of
previous global mineral soil calibrations (Fig. 3a-c; Fig. 4a-c) (De Jonge
et al., 2014; Dearing Crampton-Flood et al., 2020; Naafs et al., 2017b;
Raberg et al., 2022). The relationship between the MBT’ 5y, proxy and
MAAT also falls within that of global soil, peat and lake datasets, except
for a few Campo Cerrado and Campo Sujo grassland samples (Figs. 3d,
4d) (De Jonge et al., 2014; Dearing Crampton-Flood et al., 2020; Mar-
tinez-Sosa et al., 2021; Naafs et al., 2017a; Raberg et al., 2022). Llanos
Basin grasslands similarly have higher MBT sy values than nearby
forest soils despite constant climate conditions (Fig. 5b). If grassland and
forest biomes are combined for the entire data set, it becomes evident
that the grassland soils yield overall higher MBT’ 5)je values compared to
forest soils (Fig. 5a). Caatinga vegetation is only found in the warmest
and driest parts of the study area. MBT’ 5 values for this biome were in
the range of forest samples from the Amazon and the Llanos basin
(Fig. 4d).

3.2. Relative distribution of isoGDGTs in surface soils
The relative abundance of brGDGT and isoGDGTs shows a distinct

relationship with precipitation (Fig. 6). For example, BIT values < 0.7
and R/}, values > 1 are exclusively found in semi-arid areas with MAP <
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750 mm/y. In addition, we also find a precipitation dependence of the
relative distribution of isoGDGTs as indicated by the iso-
GDGTHumidityindex (Fig. 6¢). Here, values close to 1 are found throughout
the entire dataset, while lower values < 0.7 are limited to regions with a
MAP of >1000 mm y'. In addition to the response of the indices in
(Fig. 6a-c), the relative distribution of isoGDGT-1 further reveals the
precipitation dependence of isoGDGT distributions in soils with a rela-
tive abundance of isoGDGT-1 in excess of 0.1 only in areas with MAP >
1000 mm/y (Fig. 6d).

Principal component analysis (PCA) of isoGDGT distributions shows
that the loadings of isoGDGT-0 and crenarchaeol are in opposite di-
rections for principal component (PC)1 accounting for 78% of the
variability, while both isoGDGT-0 and crenarchaeol show opposite loads
to isoGDGTs 1-3 in PC2 accounting for 11% of the variability (Fig. 7a).
Moreover, the PCA shows that samples from the semi-arid Caatinga
shrublands cluster around positive values along PC1, while grass and
savanna samples have negative values along PC1. Forest samples show
intermediate values. Consistent with this, the ratio of isoGDGT-0 rela-
tive to crenarchaeol indicates distinct isoGDGT distributions among
different vegetation types (Fig. 8). The isoGDGTsomerindex do€s not show
a significant relationship with climate parameters or soil pH (Fig. 7c, d).
Rather, it is related to the relative abundance of isoGDGT-1 to 3 indi-
cating that a high isoGDGTsomerindex iS only possible for samples where
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isoGDGT-0 and crenarchaeol dominate over isoGDGT 1 to 3 (Fig. 7b).

3.3. Local variability

The site-specific variability based on the analysis of five samples per
site reveals that the variability of the climate dependent MBT 5, BIT
and R, proxies increases as the mean site value diverges from the
endmember of the proxy (1 in the case of the MBT 5y, and BIT-index;
0 in case of the Ri,; Fig. 9a-c). These results are broadly in line with
our Monte Carlo modelled results that illustrate a purely stochastic
explanation for the pattern (Fig. 9a-c). For all the climate dependent
proxies, Caatinga samples have the largest variability (Fig. 9a-c). For the
BIT and Rj,p, this is in line with the on average lowest BIT and highest R;,
b values at these sites. For the MBT sy, We also observe a weak, but
significant (p-value < 0.05) relationship of variability with precipitation
(Fig. 9e).

3.4. Down-profile variability

For the br-GDGT-based proxies, we do not observe systematic down-
profile trends for most proxies (Fig. 10a-d). The IRgpe, CBTspe, and the
CBT’ show values that fit the global surface soil pH calibrations in
deeper soil horizons (Figs. 10a-c; 11a-c). Likewise, the MBT 5y index



C. Haggi et al.

Geochimica et Cosmochimica Acta 362 (2023) 41-64

4 1 5
a b
3 0 — a0 e
g .’ o - uEuu
= 2 . -1 - R = "
8 R (@] ® asel IIA R
- s ° - a0 ;0. He ®mrg g
3 YA Ko
o !.Ek (3452 1 3 ?
1 o 24 taegndt
L] , o o XA ) AA ] -]
4 o _ R N
0 ——7—7—%7—— -3 T T
3 4 5 6 7 8 3 4 5 6 7 8
pH pH
1 7 17 &
c d y
] ] : : is; - .
0.8 > a® 0.96 — § 5 .
| . ° ::nu i ‘ T kfg 1 ;
. -] 3 " * ’é a %
0.6 — N 0 0.92 30 i s
© N = N - oo
= o Ao «®, . =
1 e - -
0.4 o te % 3T Ve =08 4 ., :
NIRRT T .
- 5,0 | A o -
,E.:éﬁ ‘2:{‘ . A : o °
0.2 N ey iiA R 0.84 —
| éﬁﬁa L0 4 .
0 T | i T“ T I T | T l 08 T | T l T I T | T |
3 4 5 6 7 8 18 20 22 24 26 28
pH MAAT (°C)
@ Atlantic rainforest W Cerradao (dry forest) Campo Cerrado [ Caatinga

P> Amazon rainforest € Cerrado (sensu strictu)

A Llanos riparian forest()Llanos swamp

Campo Sujo Llanos grassland

Fig. 4. Influence of vegetation type on brGDGT-based proxies for pH and MAAT in South American surface soils. a) Relationship of the CBTsy index with pH. b)
Relationship of the CBT’ index to pH. c) Relationship of the IRgye with pH. d) Relationship between the MBT sy index and mean annual air temperature (MAAT).

shows little down-profile changes and samples from deeper soil horizons
are still consistent with those expected from the global surface calibra-
tion (Figs. 10d, 11d). For the CBTsy, the CBT’ and the MBTsye index,
savanna samples show greater deviations from the surface than forest
samples but values are still within the range of the global calibration
(Figs. 10a,b,d; 11a,b,d). The absence of directional changes in the
brGDGT-based proxies with depth is contrasted by pronounced direc-
tional down-profile shifts that are observed in the relative abundance of
brGDGT and isoGDGT as well as in the isoGDGT-based proxies (Fig. 12a-
d). For the BIT index, the Caatinga soil profiles that have surface samples
with low BIT index indicative of arid conditions, show an increasing
down-profile trend towards values of 1, while the profiles from more
humid areas are stable around 1 (Fig. 12a). For the R;/, a comparable
picture arises for the Caatinga samples, where elevated Rj values
decline in deeper soil profiles (Fig. 12b). In addition, the R;/; also fea-
tures distinct trends towards increasing values for some of the savanna
profiles (Fig. 12b). The isoGDGTisomerindex, describing the relative
abundance of isoGDGT isomers, features a down-profile trend towards
0 for all vegetation types indicating the low abundance of isoGDGT
isomers in deeper soil profiles (Fig. 12d). The MI, describing the relative
distribution of isoGDGTs, increases with depth towards 1 (Fig. 12c).
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3.5. Temperature models using Bayesian neural networks

The tropical BNN and NN temperature models show both high fi-
delity to MAAT with a cross-validation root mean squared errors (RMSE)
of 2.04 and 1.92, respectively (Fig. 13a, Fig. S2a). The coverage for BNN
predictions was 0.95, indicating that 5% of the predictions might not
include the true value in their 95% credible interval. The global tropical
NN and BNN models showed nearly identical results (Fig. S2b). The
following reporting of the results, therefore focuses on the BNN side
(BNN MAATTqpical) but would also apply to the NN model. The residuals
of the novel models show no correlation with precipitation and soil pH
(Fig. 13e, Fig. 14b). The highest residuals are still found in samples from
open grasslands, while samples from Caatinga and rainforests have
lower residuals (Fig. 13e). Samples with a low degree of cyclization and
MBT’spe values close to 1 show BNN MAATTopical temperatures of
around 25 °C, while values for samples with a high degree of cyclization
extend up to 28 °C (Fig. 14c). Likewise, the global BNN models cali-
brating the global data set to MAF (BNN MAFgopa) and MAAT (BNN
MAATGIobal) also show high fidelity with MAF and MAAT with RMSEs of
2.42 and 3.6, respectively (Fig. 13c, Fig. S3a). Both models also show no
increased residual for samples from arid areas (Fig. 13f, Fig. S3c).
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3.6. Application to Chinese loess sections

The application of the BNN MAFg|opa model to the brGDGT records
from the Xifeng, Lantian and Weinan loess sections yields consistent
temperature trends for all three loess records over the last 50 ka
(Fig. 15c¢; older parts of the records with lower temporal resolution and
less precise age control are shown in Fig. S4). All three records show the
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lowest temperatures during the last glacial maximum (LGM), a tem-
perature maximum during the late deglacial, and mid to late Holocene
temperatures higher than during the LGM. Absolute reconstructed
temperatures were highest for the Weinan section (LGM ~ 17 °C, late
deglacial ~ 25 °C, late Holocene ~ 20 °C) and lower for the Lantian
(LGM 10 °C, late deglacial ~ 20 °C, late Holocene ~ 15 °C) and Xifeng
sections (LGM ~ 11 °C, late deglacial ~ 17 °C, late Holocene ~ 14 °C).
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4. Discussion
4.1. Impact of vegetation type and pH on brGDGT proxies

4.1.1. Impact of vegetation on MBT 5pe

The MBT’s5pe to temperature relationship observed in the mineral
surface soils from tropical South America falls in the range of the global
dataset (Fig. 3d). The exception are the Campo Sujo and Campo Cerrado
samples at the lower end of the studied temperature range, where
MBT’spe values are higher than found in mineral soils with similar
MAAT in previous studies (Figs. 3d, 4d). This deviation is part of a larger
trend where savanna soil samples have systematically higher MBT’5pe
values compared to forest soils under comparable MAAT-conditions
(Fig. 5a, b). Higher MBT’ 5 values in savanna soils are both observed
for the MAAT- MBT 5 regressions across the entire dataset as well as in
the Llanos data set that was sampled under constant MAAT (Fig. 5a, b).
As demonstrated in Fig. 5c-d, this observation is not an artefact of soil
pH.

This impact of vegetation type on brGDGT-based temperatures might
be attributed to two different factors. First, there is a direct impact of
vegetation type on mean annual soil temperatures (MAST). Due to the
lack of shading by canopy, savanna and shrubland soils typically have
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MAST that exceed MAAT by up to several degrees Celsius, while forest
soils have MAST that closer match MAAT (Lembrechts et al., 2020;
Pérez-Angel et al., 2020; Wang et al., 2020). Second, microbial com-
munities have also been reported to differ between forest and savanna
soils in the study area (Vieira et al., 2018), which might further impact
MBT’s)e values. However, in the absence of detailed microbial analysis
of the studied ecosystems this explanation remains speculative.

The divergence of air and soil temperatures has led to previous at-
tempts of using in situ measured soil temperature to calibrate the
MBT’5)e temperature proxy in soils. Pérez-Angel et al. (2020) used soil
temperatures in a calibration study in the Colombian Andes and Wang
et al. (2020) used this approach with Chinese soils. Pérez-Angel et al.
(2020) sampled in forested regions and obtained consistent soil and air
temperatures. Wang et al. (2020) studied shrublands, grasslands and
forests and found that soil temperatures exceeded air temperatures
under open vegetation cover, consistent with studies elsewhere (Lem-
brechts et al., 2020; Li, 1926; Zheng et al., 1993). Wang et al. (2020) did
not report a unidirectional change in MBT 5y, but they reported an
improvement in the proxy calibration when using MAST rather than
MAAT.

We observe an offset of 0.04 in the MBT 5y values for the Cerrado
and Llanos grasslands compared to forest vegetation types, equivalent to
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an offset of 1-2 °C depending on the choice of MAAT calibration et al., 2020; Wang et al., 2020). However, we find that Caatinga soils
(Fig. 5b). Soils are warmer than air (MAST-MAAT) by around 1 °C in have similar MBT 5. values as forest samples with lower MAAT and

forests and 3 °C in grasslands and shrubland, yielding a difference be- have overall the lowest residuals of all biomes (Fig. 4d, Fig. 14a). We
tween forests and savannas of around 2 °C, in line with the magnitude of note the Caatinga shrublands are drier compared to the other studied
the observed MBT’ sy discrepancy between these vegetation zones biomes. Dry soils in arid climates have previously yielded lower than
(Lembrechts et al., 2020; Wang et al., 2020). Hence, the MAST-MAAT expected MBT’5pe values (Dang et al., 2016). This has been linked to the
offset largely explains the observed MBT’sy discrepancy between distinct microbial communities in dry soils (Guo et al., 2021).
soils under forest and savanna vegetation in the Llanos and Cerrado, Hence, our findings suggest that vegetation induced MAST-MAAT
where the large-scale climate is otherwise similar. discrepancies only lead to higher MBT 5y values in open vegetation
Since open shrublands have a MAST-MAAT discrepancy comparable biomes found under comparably humid conditions such as in the Llanos
to grasslands of around 3 °C, we would also expect to observe a bias in basin and the Cerrado. For semi-arid areas such as the Caatinga shrub-

MBT’spe values in the semi-arid Caatinga shrublands, (Lembrechts lands this effect is likely overprinted by the effect of aridity or not
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present in the first place in denser shrubland types. These results high-
light the complex impact of vegetation on the MBT 5y index.

4.1.2. Impact of soil pH on MBT 5

While the separation of 5 methylated and 6’ methylated brGDGTs
was thought to eliminate the pH-dependent component of the MBT
proxy, the impact of pH on the MBT sy temperature proxy is still
debated (De Jonge et al.,, 2014; De Jonge et al.,, 2021; Dearing
Crampton-Flood et al., 2020). Residuals of global temperature calibra-
tions are not pH dependent (Dearing Crampton-Flood et al., 2020).
However, in a field experiment, De Jonge et al. (2021) found an increase
in MBT 5y for a pH increase from 5 to 6.5, similar to the pH values in
our dataset. MBT 5y values also increased in alkaline soil profiles with
pH values > 8, values beyond those found in our sample set (Peaple
etal., 2022; Pei et al., 2021). In our sample set, we do not observe a clear
influence of soil pH on MBT 5y values (Fig. 5c, d), finding only a sta-
tistically insignificant trend towards lower MBT’sye at higher pH
(Fig. 5d). However, we do observe a negative relationship with pH in the
compiled tropical dataset using available data from the literature, which
covers a larger (from 3.3 to 9.1) pH range (Fig. 14a). This relationship is
inverse to that noted by De Jonge et al., (2021) in their field experiment,
yet the effects on GDGT distributions are largely the same: the relative
contribution of the dominant brGDGT Ia decreases, while the contri-
bution of 6-methylated and cyclized compounds increase (Fig. 4a-c).
This can be explained as follows: low pH tropical brGDGT molecular
abundance distributions are comprised almost exclusively of brGDGT Ia,
and the addition of a more evenly distributed brGDGT assemblage
introduced under high pH conditions inevitably lowers MBT’ 5y values.
For intermediate MBT sy values as observed in the field experiment of
De Jonge et al. (2021) the brGDGT distribution is more even than in
tropical counterparts. Hence, the addition of relatively evenly distrib-
uted brGDGT source can also lead to higher MBT 5y values. The in-
crease in auxiliary brGDGTs such as 6-methyl compounds might be
caused by a change in bacterial communities in response to higher pH
values (De Jonge et al., 2021; Guo et al., 2021), but could also be a
metabolic response to pH or other covarying variables in soil chemistry
or climate. In summary, the impact of soil pH on MBT 5y, is relatively
limited for tropical sites.

4.1.3. brGDGT-based pH proxies

The brGDGT proxies for soil pH (IRgyg, CBT’ and the CBTsye) all
show relationships that are consistent with previous findings from sur-
face soils (Fig. 3a-c, Fig. 4a-c). Here, the detection of bias introduced by
vegetation type is complicated by the observation that only forest

51

Geochimica et Cosmochimica Acta 362 (2023) 41-64

vegetation covers most of the pH range observed in the study area
(Fig. 4a-c). Semi-arid Caatinga shrubland soils mainly have pH values
between 6 and 7, while savanna and grassland vegetation types are
limited to pH values < 6 (Fig. 4a-c).

4.2. Calibration of isoGDGT-based proxies

4.2.1. Use of isoGDGTs as precipitation proxy

The use of isoGDGTs in mineral soils as climatic proxy has so far been
largely limited to applications based on the relative distribution of
brGDGTs and isoGDGTs as an indicator for aridity (e.g., Xie et al., 2012;
Tang et al.,, 2017). There have been studies showing a temperature
dependence of isoGDGT distributions (i.e., TEXge) in soil altitude tran-
sects analogous to aquatic environments (Coffinet et al., 2014; Liu et al.,
2013). These relationships have however been weaker than for brGDGT
based temperature proxies and have not been regularly applied for
paleoenvironmental studies. The results of our study confirm that
increased R, values and lower BIT values occur in drier (semi-arid)
areas, as reported in previous studies from Asia and the Western United
States (Fig. 6a, b) (Dang et al., 2016; Dirghangi et al., 2013; Xie et al.,
2012). This could be driven by the expansion of crenarchaeol producing
ammonia oxidizing thaumarchaeota in well drained soils. Together
these data demonstrate that the relative distribution of brGDGT to
isoGDGTs, driven by changes in microbial community structure, can be
used as a clear sign of aridity on a global scale (Fig. 6a, b). However, low
Ri,b values and BIT values close to 1 cannot be interpreted as the absence
of arid conditions with a MAP < 500 mm y?, since these values are also
found in semi-arid areas (Fig. 6a, b). This presents a limitation for these
proxies (Tang et al., 2017; Xie et al., 2012).

To circumvent this limitation, we further analyzed the relative dis-
tribution of isoGDGTs. While the relative contribution of crenarchaeol to
the isoGDGT pool is consistently high for semi-arid areas, likely driven
by the preference of ammonia oxidizing Thaumarchaeota for (oxic) dry
soils (Xie et al., 2012), we found that isoGDGT-1 shows consistently low
values in semi-arid areas (Fig. 6d). IsoGDGTs-2 and 3 also show lower
relative contributions for arid areas, but the trends are less pronounced
than for isoGDGT-1 (Fig. S1a, b). Therefore, we focused on crenarchaeol
and isoGDGT-1 to define the isoGDGTxumidityindex (Eq. (10) and left out
isoGDGT-2, isoGDGT-3 and cren’ which are used in the MI (Fig. Sla-d).
The is0GDGTHumidityindex has an inverse relationship compared to the
BIT index and the R;,. While elevated R;, values and lowered BIT
values are found in exclusively semi-arid samples, the iso-
GDGTHumiditylndex Shows exclusively low values (<0.7) for soils from
humid areas, while semi-arid soils all have values close to 1 (Fig. 6¢).
Thereby, a low (<0.7) is0GDGTxumidityindex i @ clear sign for humid
conditions, while the index does not provide unequivocal evidence for
aridity. Thus, combined with BIT and R;; proxies, the iso-
GDGTHumiditylndex allows for improved precipitation reconstructions.

While the use of the proposed isoGDGT based precipitation proxies is
limited to terrestrial archives due to aquatic isoGDGT production
(Hopmans et al., 2004), our data compilation with samples from China
and North America shows that isoGDGT based precipitation proxies are
potentially useful in subtropical and mid-latitude areas around the
globe, where the majority of arid and semi-arid regions and suitable
archives such as loess can be found (Li et al., 2020).

4.2.2. isoGDGT isomers in surface soils

In contrast to previous studies that used peat and culture experi-
ments (Bale et al., 2019; Blewett et al., 2020), our iSOGDGTsomerindex
data from mineral soils does not indicate any relationship between the
relative abundance of isoGDGTs isomers and temperature or pH (Fig. 7c,
d). Rather our results indicate that the iSOGDGTisomerindex in mineral
soils is shaped by the relative distribution of the classical isoGDGTs. PCA
analysis of the isoGDGT distribution in surface soils indicates that the
loading of isoGDGT-1' is similar to the loading of isoGDGT-0, while the
other, generally less abundant isoGDGT isomers do not show a
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pronounced loading (Fig. 7a). Crenarchaeol (in PC1) and isoGDGT-1 to
isoGDGT-3 (in PC2) have loadings in opposite directions compared to
isoGDGT-0. This indicates that isoGDGT-1'is typically more abundant in
soils with a higher isoGDGT-0 abundance and lower relative isoGDGT-1
to isoGDGTs-3 contributions (Fig. 7b). Thereby, our data indicates that

soils do not reflect the patterns observed in cultures and in peat. This
may be caused by the greater and distinct variability of archaeal species
present in soils compared to pure cultures and peats (Bates et al., 2011;
Ochsenreiter et al., 2003).
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4.2.3. Vegetation dependence of isoGDGT distributions

While the relative abundance of isoGDGT isomers is not related to
climate variables and pH, the PCA of the isoGDGT distributions shows
patterns related to vegetation (Fig. 7a). While forest and shrubland
samples mostly plot in the positive area of PC1, where crenarchaeol
dominates, Cerrado savanna as well as grassland samples and Cerradao
dry forest samples are predominantly found in the negative area where
isoGDGT-0 is prevalent. Moreover, there is a secondary pattern in PC2,
where most Caatinga samples plot in the negative range, while samples
from the other vegetation types show greater variability, with open
grassland vegetation types showing the most positive values. In partic-
ular, the effect of vegetation on isoGDGT distribution is highlighted
when focusing on the relative distribution of isoGDGT-O and cren-
archaeol, which are dominant in most samples (Fig. 8). This further il-
lustrates that savanna and grassland vegetation types (Cerrado and
Llanos) have a low crenarchaeol contribution and are dominated by
isoGDGT-0. This might reflect a difference in archaeal community be-
tween these soils with a greater contribution of isoGDGT-0 producing
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methanogens relative to crenarchaeal producing ammonia oxidizers in
savanna and grassland soils. While the clustering of the Caatinga sam-
ples can be explained by the semi-arid climate conditions found in the
area (e.g., Xie et al.,, 2012), the variability on the transect between
Amazon and Atlantic rainforests is likely caused by vegetation. One
mechanism that may explain the divergent patterns in different biomes
might be varying nitrogen availability in soils underlying savanna and
rainforest vegetation (e.g., Sugihara et al., 2015). Varying nitrogen
availability would lead to higher relative abundances of ammonia
oxidizing Thaumarchaeota synthesizing crenarchaeol, in rainforest soils
with high nitrogen availability, while soils with lower nitrogen avail-
ability in savannas would have lower relative crenarchaeol abundances
(e.g., Dirghangi et al., 2013; Sinninghe Damsté et al., 2012). Asides from
the effects of nitrogen availability, oxygen availability might also play a
role. Our results suggest that archaeal membrane lipid distributions in
mineral soils can be related to vegetation type, but more work is needed
to fully disentangle the factors influencing the distribution of isoGDGTs.



C. Haggi et al.

Geochimica et Cosmochimica Acta 362 (2023) 41-64

2
-3
a
-2 —
.
-1
=
o i
O
0
1 —
2 - 4
pH MAAT (°C)
2 4 6 8 10 -20 -10 0 10 20 30
0 — . 1 \
c ) : d
02 . 0.8
@ °
- ,\“: .
f:o'o :
0.4 8. 206 - A5
o F 3 o
: RF o B . sk
o 28, 50 7 : ot R
e 0 %, . m 94 QY
».;.' “{0.\ . 2 14 X APy ....:
A o
06 A Wl 7 04 0y < 2 M
. XA+ I% KR * ESR <R A ¢
* d D 2
i .0 o‘.“’ . o: - “. ‘;::‘ S .
2 e S ey Y
d LIRSS AR MR oo
X 9 S 3
08 R A ¥ B T R A
o
* %ef (R4 % —
*
M ”:’:;t%’ .o’ .
*
1 - . 0

A Cerrado savanna

@ Tropical rainforest

@ Caatinga Shrubland M Dry forest

Fig. 11. Down-profile brGDGT-based pH and temperature proxies compared to the global surface soil data set by Raberg et al. (2022) a) CBT" pH proxy. b) CBTsye

pH proxy. ¢) IReme pH proxy. d) MBT sy, temperature proxy.
4.3. Site specific proxy variability

One of the main debates concerning the MBT’ ). temperature proxy
are the causes for the variability seen in mineral soils from temperate
areas (De Jonge et al., 2021; Dearing Crampton-Flood et al., 2020; Naafs
et al., 2017a). There are several factors such as more pronounced sea-
sonality, shifts in microbial communities, vegetation, and soil pH that
have been put forward (De Jonge et al., 2019; Wang et al., 2020). Our
study demonstrates that vegetation type and soil pH indeed play a role
(Fig. 5a, b). In addition, we also tested how consistent values are in local
(15 m x 15 m) plots. Our results show that the climate sensitive
MBT spme, BIT and Ry p proxies all show a lower site-specific variability at
sites with mean values closer to the maximal or minimal possible proxy
value (i.e., 1 in the case of the MBT’spje and the BIT index and 0 in case of
the Rip; Fig. 9a-c). In addition to this first order relationship, we observe
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that the semi-arid Caatinga shrubland sites have a higher MBT 5y
variability, which can be explained by the comparably arid conditions in
the Caatinga areas (Fig. 9e) (De Jonge et al., 2014). The finding that
local MBT 5y variability is lower close to values of 1 is consistent with
MBT’spe data from the global peat database (Naafs et al., 2017b) that
highlights a greater variation in mid- and high-latitude compared to
tropical peats.

Mathematically, proxy values for the MBT 5y index as well as the
BIT index are more sensitive to small variations close to 0.5 and less
sensitive for values close to the endmembers of 0 and 1. Let us assume
for illustrative purposes that the BIT-index is a two-component system
formed by crenarchaeol and branched GDGTs. If either component is
doubled from a starting BIT value of 0.5, then this will result in a BIT
value of 0.33 or 0.66. If either component is doubled from a starting
point of 0.9, this will result only in a change to 0.95 or 0.82. Likewise, R;,
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b values close to O are less sensitive to variability than values that are
larger.

Using Monte Carlo modelling, we tested what 1c variability would
have to be added to the relative abundances of the constituent com-
pounds of each proxy to produce the observed pattern in a purely sto-
chastic way (Fig. 9). We find that the 1o variability needed to explain the
BIT and R, values is both 0.5 (Fig. 9a, b, gray dots), while the vari-
ability needed to explain the MBT 5y index is 0.25 (Fig. 9¢).

In addition, to the purely stochastic explanation (i.e., that the con-
stant relative variability added to the constituent compounds mostly
explains the pattern), we also find a weak relationship of local MBT 5pe
variability with MAP (Fig. 6e). This observation is consistent with those
from the global temperature calibration sets, where aridity also led to
enhanced proxy variability (Dearing Crampton-Flood et al., 2020). The
stochastic explanation for the observed local variability in the BIT, R;p
and MBT sy indicates that the local variability in relative compound
distribution is more or less constant across large climatic and vegetation
gradients, demonstrating that these factors do not play the dominant
role in explaining this variability. Our study area covers relatively ho-
mogeneous rainforest biomes, but also highly structured savanna mo-
saics making the constant variability a noteworthy finding. The lack of
impact of vegetation structure on the variability might be explained by
local homogenization of microbial communities due to dispersal by both
macroscopic and microscopic soil fauna (Vieira et al., 2018; Vos et al.,
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2013).

Finally, we tested the impact of variability on the global dataset by
Raberg et al. (2022). For this purpose, we binned the global dataset in
1 °C MAAT brackets of on average 33 samples each and analyzed their
variability. The resulting variability also broadly follows the pattern
predicted by a purely stochastic variation (Fig. 9d), highlighting the
impact of the formulation of the MBT’ 5 index on driving the observed
large variability in temperate regions. But, as demonstrated in this
study, there are also additional factors such as vegetation and soil pH
that play a role and can influence the MBT’sy index (Fig. 5a, b;
Fig. 14c).

4.4. GDGT distributions in deeper soil horizons

4.4.1. brGDGT variations in soil profiles

The occurrence and causes of variability of brGDGT proxies in deeper
horizons of soil and peat profiles has been inconclusive (Davtian et al.,
2016; Huguet et al., 2010; Naafs et al., 2017b; Pei et al., 2021). Most
studies have observed some degree of down-profile variability in the
MBT’spe index, but these variations have not been unidirectional
(Davtian et al., 2016; Pei et al., 2021). One consistent finding has been
that alkaline soil profiles with a pH > 8 featured a trend towards higher
MBT:5) indices with increasing soil depth (Peaple et al., 2022; Pei et al.,
2021). In our soil profiles, we do not observe consistent MBT’ 5 trends
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with depth for all studied vegetation types. Rather, we find that MBT 5pe
values are relatively stable within a profile and most values fall within a
range of +0.04 of their corresponding surface sample (Fig. 10d). A few
savanna profiles have larger variability (up to 0.12; Fig. 10d). Conse-
quently, we find that MBT 5y values fall within the range expected from
the global calibration set (Fig. 11d). In mid-latitude soils radiocarbon
ages of brGDGTs have been found to be at best centuries older than bulk
organic carbon (Gies et al., 2021). Given that carbon turnover times in
the tropics are faster than in mid latitude soils (Shi et al., 2020),
brGDGTs in deeper soil horizons are likely reflecting Holocene tem-
perature conditions (Gies et al., 2021). The consistency of down profile
MBT’sye values is therefore indicating that the same processes
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controlling surface soils (e.g., homeoviscous adaptation (Naafs et al.,
2021)) are also controlling MBT 5y distributions in subsurface horizons
in tropical soil profiles with pH values < 7 (Fig. 10e).

Likewise, we find that the CBTs)yg, CBT” and the IRgye pH proxies do
not show consistent unidirectional variations, which is consistent with
the relatively stable soil pH (Fig. 10a-c, e). Moreover, their values also
fall in the range of the global calibration data set (Fig. 11a-c). The most
pronounced shifts can again be observed in the savanna samples. As an
explanation for this pattern, we note low brGDGT concentrations in the
deeper savanna profiles that could have rendered brGDGT distributions
more susceptible to overprint at depth. The low brGDGT yields in deeper
horizons also imply that these parts of the soil profiles are not expected
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to have a significant contribution compared to the higher concentrations
in the surface soils that will therefore dominate the biomarker fluxes in
terrestrial erosion and fluvial transport to lacustrine and marine sedi-
mentary archives in tropical South America.

4.4.2. Variations in the relative contribution of isoGDGT and brGDGTs in
soil profiles

In contrast to the relatively stable downprofile brGDGT ratios, we
observe significant variations in the isoGDGT distribution as well as the
relative abundance of brGDGTs and isoGDGTs within soil profiles
(Fig. 12). While we observe lowered BIT-values in semi-arid surface
soils, down-profile samples show a convergence of BIT values towards 1
(Fig. 12a). This finding is consistent with results from other soil profiles
(Peaple et al., 2022; Pei et al., 2021). Lowered BIT values in arid surface
soils are likely caused by an enhanced relative contribution of ammonia
oxidizing Thaumarchaeota archaea (Dirghangi et al., 2013; Yang et al.,
2014). In deeper, less oxygenated soil horizons, this prevalence likely
decreases and leads to the observed BIT values close to 1. Likewise, we
find that elevated R;; values in the semi-arid Caatinga shrubland
decrease with depth (Fig. 12b), owing to the same explanation as the
convergence of BIT values towards 1. Conversely, we find R/, ratios
increase with depth in some savanna profiles, a pattern undetected by
BIT which uses crenarchaeol as the only archaeal compound. While we
do not report absolute brGDGT concentrations, brGDGT yields in these
savanna profile samples were either close to 0 or even absent. Hence, the
high R;, ratios in these soils were likely caused by low brGDGT con-
centrations rather than a decrease in isoGDGT concentrations. One
explanation here could be that the typically less dense rooting of the
dominant herbaceous strata in open savannas (Boonman et al., 2020)
negatively affects the in-situ production of brGDGTs. Since brGDGTs
producing microbes have been suggested to be closely associated to
roots (Huguet et al., 2013), this might lead to the observed lower rela-
tive contribution of these compounds in deeper savanna soil.

4.4.3. IsoGDGT variations in soil profiles

Our results indicate a strong and directional change with depth in the
soil profile isoGDGT distributions. The relative contribution of cren-
archaeol as measured by the MI consistently decreases with depth and
the iS0OGDGT somerindex trends toward O in deeper soil profiles (Fig. 12c,
d). While a decrease in crenarchaeol with depth has been observed
before in mineral soils (Yang et al., 2019), the decrease in the iso-
GDGTisomerindex iS @ novel finding. Studying the iSoOGDGTisomerindex iN
peat profiles, Blewett et al. (2020) found a significant correlation with
soil pH and, relatively stable values down-profile, contrasting with our
findings. The gradient in isoGDGTisomerindex it OUr soil profiles suggests
different source organisms contributing to the isoGDGT pools or that
there is a metabolic response to conditions in deeper soil horizons. As
deeper soil layers are less well aerated, their lower oxygen availability
and associated redox impacts may drive this change in isoGDGT
isomerization.

The down profile patterns with a decrease of the relative contribu-
tion of crenarchaeol and isoGDGT isomers and an increase in the relative
contribution of isoGDGT- 1 to isoGDGT-3 is in line with the findings
from the surface soils, where high isoGDGTisomerindex Values were also
only found in samples that had a low relative contribution of isoGDGT-1-
3 (Fig. 7b).

4.4.4. Implications on paleo applications

The lack of significant downprofile changes in the brGDGT-based
indices like MBT 5y demonstrates that brGDGT based proxies can be
used to reconstruct environmental conditions over time and that there is
limited production of brGDGTs at depth in mineral (tropical) soils.

The distinct down profile trends observed for isoGDGTs as well as the
relative distribution of crenarchaeol and brGDGTs (i.e., BIT index) have
implications for the applicability of proxies based on these compounds
in terrestrial deposits.
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The trend for the BIT index towards values close to 1 in deeper soil
horizons as well as the similar trend of the MI also converging towards 1
both indicate a lower relative contribution of crenarchaeol in deeper soil
horizons (Fig. 12a, c). Most soils analyzed in this study were developed
through in situ weathering and not through sedimentation and the
Caatinga soils developed on late Pleistocene palaeodunes did also not
feature recent accumulation (Mescolotti et al., 2023). Therefore, our
findings indicate that the low contribution of crenarchaeol in deeper soil
horizons is likely the result of low production in these soil horizons,
which might have to do with the lower oxygen availability.

This has implications for the application of both the BIT-index as well
as the is0GDGTHumidityindex» Where crenarchaeol are main constituent
components. If crenarchaeol is produced in deeper soil horizons at a low
rate, this would indicate that overprint during burial and sediment
accumulation is negligible. Indeed, in accumulating terrestrial sediment
deposits such as loess, lower BIT and higher R;/;, values formed due to
aridity in top soils are preserved after deposition and burial and are not
overprinted by overlaying sediment layers (Tang et al., 2017; Xie et al.,
2012).

4.5. Bayesian neural networks based temperature models

Our findings show that numerous factors such as vegetation, aridity
and soil pH can impact brGDGT-based temperature reconstructions. To
circumvent these limitations, previous studies have put forward cali-
brations for specific environments. Liang et al. (2019) for instance
suggested vegetation specific calibrations for forests and grassland soils.
However, this approach requires control of numerous factors that might
not be fully constrainable for samples from sedimentary archives. In
order to allow for independent reconstructions without reliance on
further parameters, we used a Bayesian neural networks (BNN)
approach to obtain novel temperature models. Machine learning ap-
proaches have shown to be advantageous for lipid biomarker based
paleotemperature reconstructions including in calibrations using
brGDGTs (Véquaud et al., 2022). Given that our study focuses on the
tropics and more than doubles the GDGT data from tropical mineral
soils, we opted to create a tropical temperature model including previ-
ously published mineral soil data between 23.3 °N and 23.3 °S (De Jonge
et al., 2014; Jaeschke et al., 2018; Kirkels et al., 2020; Pérez-Angel et al.,
2020; Wang et al., 2020). Creating a tropical soil model has the
advantage that it does not cover areas that are subject to extensive
seasonal temperature variability that complicate brGDGT-based MAAT
reconstructions. To expand the applicability of the BNN approach to a
global scale we further provide a global soil and peat BNN model cali-
brated against MAAT and MAF. Calibrations against MAF also allow to
circumvent the issues regarding temperature seasonality and tempera-
tures below freezing encountered in MAAT calibrations (De Jonge et al.,
2014; Dearing Crampton-Flood et al., 2020). We note that further
models specifically targeting data from other sources, such as from lakes
can be easily trained using the provided code according to user
preference.

The results of our BNN models yield strong temperature relationships
(BNN MAATopical: RMSE = 2.0 °C; coefficient of determination ) =
0.84; BNN MAFGjobal: RMSE = 2.4; = 0.88; BNN MAATG|obal: RMSE =
3.6; r2 = 0.86; Fig. 13a, c; Fig. S3a). The models do not show a sys-
tematic relationship with MAP or pH and also do not feature a pattern
that would indicate greater variability in arid areas with a MAP < 500
mm y ! (Fig. 13e, f), a significant advance over previous calibrations.

The BNN MAATTopical model also extends the temperature range
compared to the MBT 5 calibration (Fig. 13a, Tab. S1). The upper limit
of the MBT 5y proxy is, by definition, a value of 1, describing the
exclusive occurrence of brGDGT Ia-c among the constituent proxy
compounds (De Jonge et al., 2014). In the BNN MAATopical model an
MBT’5pe value of 1 does not necessarily correspond the highest tem-
perature values. Rather, the compensation of the cold bias found for the
MBT’spe in the tropical high pH samples can lead to higher BNN
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MAATTopical temperatures (Fig. 14a, c). High pH samples contain
compounds with a consistently higher degree of cyclization that also
affect the MBT 5pge proxy (Fig. 14c). The neural networks adapt to this
pattern and correct for the lowered temperatures that would arise if the
MBT sy approach was used. Hence, the BNN temperatures reach the
highest values for samples with a high pH and the resulting high degree
of cyclization (Fig. 14a, b). Due to this adaption, the BNN temperature
model removes the pH bias present in the MBT 5y data set (Fig. 14c, d).

Likewise, the results from the semi-arid Caatinga shrublands illus-
trate that the addition of 6-methylated and cyclopentane compounds
can impact temperature reconstructions in arid areas (Fig. 4d). The
observation that all BNN models show no trends towards more pro-
nounced residuals in arid sites with a lower MAP < 500 mm y ! illus-
trates that the BNN models also compensate for the bias introduced to
arid samples that has been observed in previous calibrations (Fig. 13e, f,
Fig. S3c) (e.g., Dearing Crampton-Flood et al., 2020).

The addition of a brGDGT component with enhanced contributions
of 6-methylated and cyclopentane compounds has also been repeatedly
reported from aquatic environments in the tropics such as the Amazon
River system (Bertassoli et al., 2022; Zell et al., 2013). Given that the
BNN approach successfully corrects for trends associated with increased
cyclization, we also tested if the soil BNN models could also be applied to
riverine samples from the Amazon Basin (Fig. 14e, f). Indeed, when
looking at published samples from the lowland Amazon Basin (Bertassoli
et al., 2022), one can observe lower MBT sy, values in some of the
samples with higher DC (Fig. 14d). When applying the BNN temperature
models, this is muted (Fig. 14e, f). In the BNN MAATT;qpical there are
even signs of a slight overcorrection, as the samples with the highest DC
have the overall highest BNN temperatures.

Our results show that the BNN approach is able to yield accurate
temperatures in the Amazon River system. This opens the possibility for
reconstructions in terrestrial records from the Amazon basin (Baker
et al., 2015). There are however limitations of the approach when it
comes to marine or lake sourced brGDGT. While the studied riverine
samples have brGDGT distributions that are similar to the ones found in
soils and have all a BIT value > 0.3 (Bertassoli et al., 2022), marine
samples with a dominant aquatic overprint can have brGDGT distribu-
tions falling outside the ones found in modern soils and peats covered in
the training data sets (Dearing Crampton-Flood et al., 2021; Sinninghe
Damsté, 2016). Likewise, lake sediments have also distinct brGDGT
distributions from soils, which also precludes the application of our
novel soil calibrations to lacustrine records (Russell et al., 2018; Zhao
et al., 2023). Indeed, when applying the novel calibrations to a recently
published lacustrine surface sediment data set from tropical South
America (Zhao et al., 2023), we found a consistent underestimation of
reconstructed temperatures (Fig. S5). Hence the novel calibrations
should not be applied to paleoclimatic estimations from samples with
dominant marine or lacustrine contributions. For lacustrine samples the
BNN models can be easily retrained to create lake-specific calibrations.
Since marine and lacustrine sourced brGDGT distributions are distinct
from soils and peats, a dominant marine or lacustrine contribution can
be detected in paleoenvironmental records (Dearing Crampton-Flood
et al.,, 2021; Sinninghe Damsté, 2016) and suitable calibrations
applied accordingly.

Pretrained BNN and NN models are available on GitHub (https://gith
ub.com/dsilvestro/gdgt-ai) and can be used to predict MAAT and MAF
from new user-provided brGDGT data.

4.6. Application to Chinese loess sections

We applied our BNN MAFg|opa) model to the interpretation of GDGT
records previously reported from three Chinese loess-paleosol sections
spanning the late Pleistocene to the Holocene. This is a rigorous test of
the BNN approach as loess is typically a high-pH environment, which
can compromise MBT-based thermometry, as demonstrated in this
study. The results for the BNN MAFg)obal Show consistent trends for all
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three loess sections with the Weinan section being warmer than the
other sites (Fig. 15c). The temperature minima for the Weinan and
Lantian records occur during the last glacial maximum (LGM), whereas
Xifeng has minimum temperatures at 40 ka BP, with warming during the
LGM. For all sites temperatures peak during the late deglacial. Holocene
temperatures are a few degrees lower than the peak, but substantially
warmer than the glacial (Fig. 15¢).

The early onset of warming at the Xifeng loess section before 30 ka
BP is a common feature in all tested calibrations (Fig. 15a-d). Lu et al.
(2019) ascribed this pattern to a shift to more open vegetation in the
northern part of the Loess Plateau during this time period, an interpre-
tation that is in line with vegetation effects identified in this study. In the
BNN MAFg)oba model we find the lowest temperatures at around 40 ka
BP with a warming of 3 °C during the LGM (Fig. 15c¢). This warming
could be consistent with a temperature increase purely caused by
vegetation change, as the difference between open and closed forest
vegetation observed in this and previous studies is of the same magni-
tude (Wang et al., 2020). In all other calibrations the LGM temperature
rise is more pronounced and the timing for MASTsg and MBT 5y differs
from the machine learning models (Fig. 15a-d). The MASTsg and
MBT’5)e reach the highest temperatures of the record towards the end of
the LGM, while both machine learning approaches have later tempera-
ture maxima during the deglacial, consistent with the other two loess
records (Fig. 15a-d).

Another distinction between the different calibrations lies in the
degree and timing of the decrease in temperature during the Holocene in
the Weinan section. While the BNN MAFgjoba1 as well as MBT sy e show a
gradual decrease or stable conditions during the Holocene, the FROGq
and MASTgsg show marked decreases in the youngest samples reaching
similar-to-LGM temperatures.

Other studies consistently show that temperatures on the Chinese
Loess Plateau were considerably lower during the LGM than during
modern times: Clumped isotope analysis on snails from the Weinan loess
section for instance show that summer temperatures were around 10 °C
lower during the LGM than during modern times (Dong et al., 2020).
Likewise, groundwater noble gas thermometry from two records to the
north of the analyzed loess sections (38°N; analyzed loess sections are
between 34 and 36°N) show a glacial cooling of 5-6 °C (Seltzer et al.,
2021). Global model-proxy integration also shows by 3.5 °C lower
temperatures in the region during the LGM (Osman et al., 2021; Tierney
et al., 2020). Hence, the cooling during the Holocene to glacial tem-
perature levels observed in some of the previous calibrations in the
Weinan section and the temperature maxima during the LGM observed
in the Xifeng section seem unlikely, when compared to other evidence
(Dong et al., 2020; Osman et al., 2021).

The comparison to other proxy and model data also indicates that the
difference between LGM and modern temperatures of 3 to 5 °C in the
BNN MAFgjobal calibration are within the expected range, further indi-
cating the usefulness of the novel calibration. Given that both the noble
gas as well as clumped isotope temperature estimates do not cover the
deglacial (Dong et al., 2020; Seltzer et al., 2021), the veracity of the
deglacial temperature maximum found for the BNN MAFg|opq1 as well as
the previous calibrations remains hard to assess.

Both temperature and precipitation at the studied sites on the Chi-
nese Loess Plateau are subject to a high seasonality with temperatures
varying up to 20 °C between January and July and precipitation pre-
dominantly taking place during summer (Lu et al., 2016; Lu et al., 2019;
Tang et al., 2017). This can lead to seasonal bias towards summer
temperatures in terms of reconstructed temperatures. For the Xifeng
section all calibrations result in higher absolute temperatures for the
most recent samples than the modern MAAT of 9.6 °C (Lu et al., 2016;
Fig. 15). Furthermore, the deglacial temperature maxima in all cali-
brations reach temperatures of around 25 °C in the Weinan section,
exceeding the modern MAAT of 13.8 °C by more than 10 °C (Tang et al.,
2017; Fig. 15). Hence, both previous and our novel BNN calibration
likely tend to show a bias towards summer temperatures in the studied
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loess sections.

Overall, the BNN MAFg)obal appears to perform well in generating
expected temperature features across the glacial to Holocene transition
(Fig. 15). The successful BNN MAFgoba) application to loess-paleosol
sections here demonstrates the broad utility and applicability of the
approach. We also wish to emphasize that the BNN model can be
retrained and extended to environments such as lakes and to other proxy
systems with numerous compounds.

5. Conclusions

We studied brGDGT and isoGDGT distributions in mineral soils from
across tropical South America to improve the understanding of their
response to environmental variables such as vegetation, soil pH and
climate parameters. We found that the MBT sy temperature proxy is
vegetation dependent, with open grassland vegetation leading to over-
estimations in reconstructed temperatures, which is likely caused by
enhanced soil temperatures due to the sparser vegetation cover.
Together with previously published tropical samples, we also find an
effect of soil pH on MBT’ 5 in tropical soils, with higher soil pH leading
to lower MBT’5)e values. We further tested the local variability of these
proxies in 15 m x 15 m plots and found that the variability follows a
stochastic distribution controlled by the proxy formulation and that
there is no enhanced variability in structurally heterogeneous vegeta-
tion types of the Brazilian Cerrado. In addition to the previously
described relationship of BIT and R;,, values to aridity, we found that
the broader distribution of isoGDGTs is precipitation dependent, which
can be used to reconstruct precipitation in terrestrial archives like loess.
In soil profiles, we found that bacterial brGDGT distributions remained
relatively stable with depth, while archaeal isoGDGTs show strong
down-profile variations. In particular, the iSOGDGTigomerindex ShOWs a
strong trend towards O with increasing soil depth. We attribute this
trend to a shift in archaeal communities that might be associated with
sub-aerobic conditions in deeper soil horizons. To account for the impact
of auxiliary factors such as soil pH on the MBT’spye proxy and to
converge the information available in the brGDGT distribution, we used
Bayesian neural networks to create improved tropical and global tem-
perature calibrations. Our improved models remove the impact of soil
pH and aridity and also provide accurate temperatures in tropical river
samples. The models are also tested on timeseries from loess, generating
temperature interpretations that appear to resolve realistic glacial to
Holocene temperature transitions in three locations, resolving unex-
pected features when applying most other calibrations. The novel BNN
methods have immediate application to reconstruct temperature and
precipitation in terrestrial deposits, and the BNN model can be trained
on new datasets and applied to new proxies and settings.
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Research data, including the brGDGT, isoGDGT abundances, derived
indices and allied metadata corresponding to the soil samples can be
accessed in the Supplementary Material and at www.pangaea.de.

BNN models presented in this study are available as Python code on
the GITHUB following repository https://github.com/dsilvestro/
gdgt-ai.

Appendix A. Supplementary material

The Supplementary Materials contains Supplementary Figure 1
illustrating the precipitation dependence of isoGDGT-2 and iso-GDGT-3
as well as the relationship between the Methane Index and the iso-
GDGTHumiditylndex; Supplementary Figure 2 showing the relationship of
the NN and BNN tropical temperature models; Supplementary Figure 3
illustrating the performance of the BNN MAATGjopa1 model; Supple-
mentary Figure 4 showing the full loess records shown in Figure 15;
Supplementary Figure 5 showing the application of the BNN models to
South American lake sediments; The R code for the Monte Carlo
modelling presented in Figure 9; The research data. The file contains
three sheets: One for the surface data, one for the soil-profile data and
one for the loess data featured in Figure 15 and Figure S4. Supplemen-
tary material to this article can be found online at https://doi.
org/10.1016/j.gca.2023.09.014.
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