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A B S T R A C T

This study investigates the Topological Tail Dependence (TTD) theory’s applicability to individual stock
volatility and high dimensions. Utilizing a comprehensive dataset from the S&P 100, the research employs
various methodologies to test the predictions and implications of the TTD theory. The theory’s main prediction
of Wasserstein Distance’s predictive utility, particularly in nonlinear models during volatile periods, is
confirmed. The research suggests extending the TTD theory’s application to various financial instruments and
incorporating dynamic topological features to enhance understanding market dynamics. This study validates
the TTD theory for individual stocks and highlights the necessity of topological considerations in financial
modeling, promising advancements in financial econometrics and risk management strategies.
. Introduction

The intricate dynamics of financial markets and their suscepti-
ility to external shocks have perennially captivated the interest of
esearchers and practitioners alike [1–3]. For instance, Cetorelli and
ambera [4] explores the how the structure of the banking finan-
ial markets plays a crucial role in shaping the dynamics of capital
ccumulation and economic growth, while [5,6] and [7] studies the
henomenon of volatility spillovers between financial markets, espe-
ially in the context of globalized economies. The insights provided
y these studies are directly relevant to understanding and exploiting
he nature of current global financial markets, where this paper also
ontributes to.

Within this realm, the forecasting of stock realized volatility remains
cornerstone of financial econometrics, portfolio management, and

isk assessment [8–10]. For example, Atkins et al. [11] demonstrates
hat news-derived information significantly improves the prediction of
olatility movements over price movements, highlighting the impor-
ance of qualitative factors in volatility forecasting. Similarly, Bonato
t al. [12] shows that realized skewness and kurtosis enhance the pre-
iction of realized volatility across multiple time horizons, underscor-
ng the value of incorporating higher moments of return distributions
n forecasting models.

Moreover, Bašta and Molnár [13] explores the comovement of
olatility between the equity and oil markets, finding that such rela-
ionships are time-scale dependent, which further complicates volatility
orecasting but also opens up new avenues for more nuanced models.
xpanding on these themes, Liu et al. [14] introduces an innovative

∗ Corresponding author.
E-mail addresses: hgsouto@usp.br (H.G. Souto), amir.moradi@han.nl (A. Moradi).

approach by decomposing trading volume to improve volatility fore-
casts, thereby providing a fresh perspective on the volume-volatility
relationship. In the context of advanced forecasting techniques, Tang
et al. [15] employs optimized deep learning models to predict Bitcoin
volatility, achieving significant improvements in accuracy, while Zhang
et al. [16] highlights the superiority of neural networks over traditional
models in forecasting intraday realized volatility by capturing complex
latent interactions.

Incidentally, in the last years, the amount of attention paid to
machine learning models for forecasting stock realized volatility in the
scientific literature has considerably increased [17–19]. To give a few
examples, Souto [17] evaluates the TimesNet model for forecasting
realized volatility and shows that it is not superior to existing bench-
mark models, highlighting the ongoing need for model enhancements
in volatility forecasting, while [20] introduces a novel Convolutional
Neural Network (CNN)-Long Short Term Memory (LSTM) hybrid model
specifically designed for predicting gold volatility, achieving substantial
improvements over benchmark models in this task. This work under-
scores the effectiveness of hybrid architectures in capturing both static
and dynamic characteristics of time series data, similar to how [21]
combines Feedforward Neural Networks with LightGBM to improve the
accuracy and robustness of volatility predictions. Both studies illustrate
the power of combining different machine learning techniques to tackle
the complex and nonlinear nature of financial data.

Finally, Bucci [22] and Lei et al. [23] both emphasize the superi-
ority of deep learning models like LSTM and Temporal Convolutional
Networks (TCN) over traditional econometric methods.
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These and other studies collectively represent the many develop-
ents in both theory and practice have been done in the realized

olatility literature, though among all these developments, the use of
ersistent Homology (PH) theory and derived techniques is presumably
ne of the most extraordinary and interesting, with its successful appli-
ation ranging from corporate and systemic financial stability [24–27]
o investment strategies [28,29] and stock realized volatility forecasting
30,31]. Nonetheless, it was not until the work of Souto [30] that the
iterature had a proposed theory to explain the success of the use of
H in portfolio and risk management. He introduces the Topological
ail Dependence (TTD) theory to explain this success by connecting
he mathematical theory behind PH and the finance tail dependence
heory [32,33].

This paper expands the work of Souto [30] by testing the TTD
heory not only using stock indices. Although the assumption that
indings applicable to stock indices can be seamlessly extrapolated to
ndividual stocks often holds true, at times it can overlook the nuanced
nd often divergent behaviors between these two entities, influenced by
diosyncratic factors, sectoral dynamics, and investor sentiment [34].
his distinction underscores the necessity of validating the TTD theory’s
fficacy at the individual stock level, ensuring that its predictive capa-
ilities are not confined to the aggregated market movements reflected
n indices. Moreover, though [30] affirms that the TTD theory could be
een as a generalization of the finance tail dependence theory for high
imensions, his paper only uses six dimensions (stock indices) when
utting the TTD theory to the test. As a result, by exploring a great
umber of individual stocks, one could also test whether the TTD theory
ndeed works for high dimensions (e.g., above 20 stocks).

Consequently, given the current gap in the finance literature of
esting the TTD theory with individual stocks and in high dimensions,
his study aims to close this gap and contribute to the theoretical
evelopment of the realized volatility literature. Adopting a rigorous
mpirical approach, this study employs a comprehensive dataset com-
rising realized volatility measures of 80 individual stocks present in
he S&P 100, meticulously selected to ensure continuity and represen-
ativeness. The empirical investigation unfolds through a three-pronged
ethodology: a linear regression analysis, a Granger causality frame-
ork adapted for both linear and nonlinear models, and an innovative
pplication of Shapley Additive Explanations (SHAP) values within a
achine learning context to test one of the main implications of the
TD theory.

This research endeavors to make two scientific contributions to
he realized volatility literature. Firstly, by testing and extending the
TD theory to individual stocks and in high dimensions, allowing
esearchers and practitioners to use the TTD theory to enhance their de-
ision making regarding portfolio and risk management. Secondly, this
esearch gives more evidence for the TTD theory, proving further indi-
ation that an exploration and even extension of this theory can likely
ield promising results for researchers regarding the understanding of
he stock market and for practitioners concerning the use of topological
nformation for better decision making in the context of portfolio and
isk management. On the other hand, the potential skepticism regarding
he novelty of this research is addressed by emphasizing the critical
eed for theory validation across different financial securities. The gen-
ralization of the TTD theory to individual stocks and high dimensions
ot only tests the theory’s veracity and robustness but also expands its
pplicability, thereby enhancing its utility for a broader spectrum. Such
alidation exercises are indispensable in the iterative process of theory
efinement and development in scientific inquiry [35–40]. Last but not
east, although this paper and [30] both explore the TTD theory, this
aper distincts itself by testing TTD for individual stocks and in high
imensions and utilizing a more robust testing methodology, which
xploits a robust linear regression analysis method, a modified Granger
ausality framework, and SHAP values.

Finally, the remainder of this paper is structured as follows: Sec-

ion 2 presents a brief description of the TTD theory and important e

2

concepts for its understanding, such as PH and Wasserstein Distance
(WD). Section 3, on the other hand, thoroughly explain the methodol-
ogy used in this study to put the TTD theory to the test in the context
of individual stocks and high dimensions. While Section 4 presents and
discusses the results of the empirical tests performed to test the TTD
theory, Section 6 concludes the paper by summarizing the key findings
of this research and their implications, and by proposing future research
avenues that researchers can follow based on the results of this study.

2. Topological tail dependence theory

Before going into the TTD theory, concepts such as Betti numbers,
PH and WD should be understood. Hence, if the reader is not familiar
with these concepts from Topology theory, please see [41] and [30].
However, a brief revision of these concepts can be found below:

PH is a methodological process for uncovering the topological char-
acteristics of data. This process involves: (1) plotting the data points,
(2) enveloping these points with disks or spheres of diameter 𝜖, and
stablishing connections between points when their respective spheres
ntersect, (3) estimating the quantity of 𝑑-dimensional holes using Betti
umbers, (4) iterating this procedure for a range of 𝜖 values, and
inally (5) constructing a PH diagram that chronicles the emergence
nd resolution of each Betti number across dimensions for varying 𝜖
alues. This process can also be visualized in Figs. 1, 2, and 3, which
s an example based on the lecture of Rieck [42].

Subsequently, the topological attributes of two datasets or time
rames can be compared by evaluating their respective PH diagrams
sing the WD metric in order to model the topological change in time
r dataset.

Now considering the TTD theory, only a brief explanation of this
heory is presented in this paper to ensure sparsity. If the reader is
nterested in the details behind this theory, please see [30].

The TTD theory exploits the phenomenon suggested by the Financial
ail Dependence Theory [33,43,44] that there is an increase in absolute
tock correlations during financial downturns and also preceding such
ownturns as discovered by Jebran et al. [45]. In other words, not
nly do the absolute stock correlations increase in magnitude during
inancially stressful times as the Financial Tail Dependence Theory
redicts, but also preceding such periods, albeit to a less extent. A real
ife example of the COVID financial crisis can be found in Figs. 4, 5, and

when considering the stock indexes Standard and Poor’s 500 (S&P
00), Dow Jones Industrial Average (DJIA), and Russell 2000 Index
RUT).

Hence, the variation in absolute stock correlations between two dis-
inct periods could serve as a predictive marker for impending financial
urbulence by establishing a threshold during regular periods. However,
his method’s efficacy is limited by the ‘curse of dimensionality’ (thus,
ot being useful for portfolio management of portfolios with a great
umber of stocks) and fails to discern nonlinear and intricate rela-
ionships within the data [46,47]. Such limitations are circumvented
hrough the adoption of PH techniques, utilizing WD or 𝐿𝑛 norms of
ersistent Landscapes (which remain unaffected by such challenges
46,47]) to properly model the phenomenon found by Jebran et al. [45]
nd use this information for better decision making and forecasting
asks. This explains for the success of the adoption of PH methods
n recent studies to foresee financial volatile periods [24–27] and
etter perform portfolio management [28,29] and realized volatility
orecasting [30,31].

As a result of this theory, we can anticipate a positive relationship
etween lagged WD and realized volatility. This is the case since prior
o and during financial downturns, equities exhibit a fast increase in
heir joint correlation, and this increase in joint correlation can be
ffectively captured through the use of WD as a measure of market
tructure change, even in high dimensions where other methods fail due
o the aforementioned curse of dimensionality. Since WD captures the

xtent of structural changes in the market, including increased stock
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Fig. 1. Data points enveloped by spheres of different diameters (inspired by Rieck [42]).
Fig. 2. 1st Betti number for each 𝜖 (inspired by Rieck [42]).
Fig. 3. Persistence homology graph for 𝛽1 (inspired by Rieck [42]).

Fig. 4. 3D scatter plot from 16 December 2019 until 16 January 2020 (Normal Period)
[30,31].
3

Fig. 5. 3D scatter plot from 17 January 2020 until 19 February 2020 (Preceding
Period) [30,31].

Fig. 6. 3D scatter plot from 20 February 2020 until 23 March 2020 (Turbulent Period)
[30,31].

correlations and clustering during high volatility periods, its lagged,
and especially top percentile, values correlates positively with realized
volatility. As market structures become more interdependent prior to
turbulent periods, the WD becomes more pronounced, indicating that
higher realized volatility values are likely to occur on the upcoming
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days. It is worth mentioning that while there is a fast increase in the
interdependence of stock prior to turbulent periods, the converse is
not true from turbulent periods to normal periods as the transition is
smoother and takes longer.

3. Research design

3.1. Sample

This study employs a comprehensive dataset comprising daily re-
alized volatility (RV) measures from individual stocks to rigorously
examine the applicability of the TTD theory beyond the realm of stock
indices. Specifically, the dataset encompasses daily realized volatility
data for a total of 80 constituents stocks from the S&P 100 index
that have maintained continuous trading activity during the period
from July 1, 2007, to June 30, 2021. This timeframe was deliberately
chosen to encapsulate a broad spectrum of market conditions, including
periods of financial stability and turbulence, thereby providing a robust
foundation for evaluating the predictive efficacy of WDs of PH graphs
in forecasting stock realized volatility as proposed by the TTD theory.

The dataset’s RV measurements are based on high-frequency data
within the day, namely 5-min data, sourced from the LOBSTER
database. This database is renowned for its accuracy in providing limit
order book data, ensuring the reliability and consistency of the RV
assessments. The calculation of RV metrics, on the other hand, was
conducted using the approach introduced [48]. For further information
on this technique, refer to [48].

Additionally, a table of the considered stocks, together with a
detailed statistical summary of their daily 5-min RV figures, is pro-
vided in A. The table includes a detailed array of statistical data such
as the mean, median, and standard deviation, among other crucial
statistical measures, offering a preliminary insight into the volatility
characteristics of each stock included in the study.

Lastly, concerning the estimation of PH diagrams and WD values for
the 80 stocks together, the algorithm proposed by Souto [30] is used.
In essence, this algorithm estimates PH diagrams using last business
month’s returns of all considered stocks, yields one PH diagram per
day, and estimates the WD value for a certain day as the WD of the PH
diagram of that certain day and the PH diagram of the preceding day.

3.2. Linear regression analysis

This subsection delineates the linear regression framework adopted
to empirically investigate the predictive power of WDs in forecasting
next-day stock realized volatility, something predicted by the TTD
theory [30,31]. Grounded in the Heterogeneous Autoregressive (HAR)
model as proposed by Corsi [49], our study extends this model to
incorporate WDs as a novel explanatory variable, alongside a suite of
control variables, to assess their collective impact on realized volatility.

The augmented HAR model, henceforth denoted as HAR-WD, ex-
tends the traditional HAR model by incorporating WDs, alongside a
carefully curated set of control variables, to capture the multifaceted
influences on stock realized volatility. The model is specified as:

𝑅𝑉𝑡+1 = 𝛽0 + 𝛽1𝑅𝑉𝑡 + 𝛽2𝑅𝑉
(𝑤)
𝑡 + 𝛽3𝑅𝑉

(𝑚)
𝑡 + 𝛾𝑊 𝐷𝑡 +

𝑘
∑

𝑖=1
𝛿𝑖𝐶𝑉𝑖,𝑡 + 𝜖𝑡+1, (1)

where 𝑅𝑉𝑡+1 denotes the realized volatility at time 𝑡 + 1, 𝑅𝑉𝑡, 𝑅𝑉
(𝑤)
𝑡 ,

nd 𝑅𝑉 (𝑚)
𝑡 represent the daily, weekly, and monthly realized volatil-

ties, respectively, and 𝑊𝐷𝑡 is the Wasserstein Distance at time 𝑡.
he term ∑𝑘

𝑖=1 𝛾𝑖𝐶𝑉𝑖,𝑡 captures the influence of 𝑘 control variables
elected based on theoretical relevance and empirical validation, with
𝑡+1 representing the error term.

Incidentally, we check the assumptions underlying linear regression
re upheld. This involves checking whether the assumption of the linear
egression theory are met and utilizing only the results of the stocks

hat meet these assumptions (unless if only the homoskedasticity of the

4

esiduals assumption is not met, then the Estimated Generalized Least
quares (EGLS) method is employed instead of Ordinary Least Squares
OLS) method). Besides this approach, multicollinearity is checked with
ariance Inflation Factor (VIF) and handled by using a basic feature
election, which was enough for this study given the considered control
ariables, by excluding variables with VIF values higher than 10 and
hat do not have a statistically significant T-value and/or were highly
orrelated with another control variable.

Moving to the control variables, initially, a broad array of con-
rol variables was considered, drawing from established literature to
apture various market and financial dynamics [30,31,50,51]. These
ariables, along with their respective proxies, are outlined below while
he data sources where the historical values for these variables can be
ound in Appendix B:

• Log of VIX close price and VIX close price, serving as a proxy for
market volatility expectations [30,31,50,51].

• US dollar foreign exchange index value (DXY), reflecting the
strength of the US dollar in global markets [50].

• American credit spread, proxied by the Term Premium on a
10 Year Zero Coupon Bond (THREEFYTP1), to capture the risk
perception in credit markets [50].

• American term spread, represented by the difference between 10-
Year Treasury Constant Maturity and 3-Month Treasury Constant
Maturity (T10Y3M), to gauge the yield curve’s shape [50].

• Treasury-EuroDollar (TED) rate, indicating the credit risk in the
banking sector [51].

• Fama–French five factors, extending the original three-factor
model to include RMW (Robust Minus Weak) and CMA (Conser-
vative Minus Aggressive) factors, reflecting a broader spectrum of
market anomalies [30,31].

Post the multicollinearity assessment and feature selection, the final
et of control variables incorporated into the HAR-WD model includes:

𝑉𝑡+1 = 𝛼 + 𝛽𝑅𝑉𝑡 + 𝛾𝑊 𝐷𝑡 + 𝛿1𝛥𝐶𝑆𝑡−1 + 𝛿2𝐷𝑋𝑌𝑡−1 + 𝛿3𝑇𝐸𝐷𝑡−1

+
5
∑

𝑘=1
𝛿3+𝑘𝐹𝐹5𝑘,𝑡−1 + 𝜖𝑡+1, (2)

where 𝛥𝐶𝑆𝑡−1 denotes the lagged American credit spread, 𝐷𝑋𝑌𝑡−1 the
agged US dollar foreign exchange index value, 𝑇𝐸𝐷𝑡−1 the lagged

TED rate, and 𝐹𝐹5𝑘,𝑡−1 the lagged values of the Fama–French five
factors. This refined model respects the assumptions behind the lin-
ear regression theory and do not contain strong multicollinearity. By
implementing this model and performing a linear regression analysis,
we aim to evaluate to what extent one of the implications of the
TTD theory, namely the statistically significant predictive power of WD
lagged values for realized volatility [30,31], holds for individual stocks.

3.3. Granger causality framework

The Granger causality approach constitutes the second pivotal
methodology in our exploration of the TTD theory and its predictions
concerning the relationship between WD values and next-day stock
realized volatility. Granger causality, a cornerstone in econometric
literature [52–59], assesses the predictive ability of one time series
over another, thereby enabling the inference of potential causal re-
lationships within temporal data sequences [60]. Our application of
this methodology is twofold, encompassing both linear and nonlinear
paradigms since the TTD theory states that there is only a strong
positive relationship between WD values and next-day stock realized
volatility close to volatile periods [30,31]. Hence, nonlinear models
would be able to capture this nonlinear relationship better than linear
models, albeit linear models ought to be able to capture this relation-
ship partially. Thus, the use of linear models has also the objective to
compare the gain in predictive power with the addition of WD as an
exogenous variable of the linear model and nonlinear model; if the gain
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in forecasting accuracy for the nonlinear model is considerably higher
than for the linear model, this is also another evidence that the TTD
theory is likely to be correct regarding the aforementioned implication
of the theory.

The data split used for training and testing both linear and non-
linear models is 70%/30%. This division follows standard forecasting
practices, ensuring enough model training and reliable performance
evaluation [61]. Additionally, four error measures are used to assess
the forecasting accuracy of the models in the testing sample: Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), Quasilikelihood
(QLIKE), and Mean Percentage Absolute Error (MAPE). These metrics
are defined as follows:

RMSE =

√

√

√

√

1
𝑠 × 𝑛

𝑠
∑

𝑗=1

𝑛
∑

𝑖=1
(𝑦𝑖,𝑗 − 𝑦̂𝑖,𝑗 )2 (3)

MAE = 1
𝑠 × 𝑛

𝑠
∑

𝑗=1

𝑛
∑

𝑖=1

|

|

|

𝑦𝑖,𝑗 − 𝑦̂𝑖,𝑗
|

|

|

(4)

LIKE = 1
𝑠 × 𝑛

𝑠
∑

𝑗=1

𝑛
∑

𝑖=1

( 𝑦𝑖,𝑗
𝑦̂𝑖,𝑗

− log
( 𝑦𝑖,𝑗
𝑦̂𝑖,𝑗

)

− 1
)

(5)

APE = 1
𝑠 × 𝑛

𝑠
∑

𝑗=1

𝑛
∑

𝑖=1

|

|

|

|

|

𝑦𝑖,𝑗 − 𝑦̂𝑖,𝑗
𝑦𝑖,𝑗

|

|

|

|

|

(6)

where 𝑦𝑖,𝑗 is the actual observation, 𝑦̂𝑖,𝑗 the forecasted value, 𝑛 the total
bservations, and 𝑠 the number of stocks. Together, these measures
ffer a complete evaluation of the forecasting power of the models
62,63].

In the realm of linear models, we employ the HAR model, as
elineated by Corsi [49] and its augmented form with the incorporation
f WD as an external variable. This extension aims to capture the linear
redictive influence of WD on stock realized volatility, adhering to the
raditional Granger causality framework that evaluates the statistical
ignificance of added predictors. Eqs. (7) and (8) present the original
AR model and the HARX model respectively [49]:

𝑉𝑡+1 = 𝛽0 + 𝛽1𝑅𝑉𝑡 + 𝛽2𝑅𝑉
(𝑤)
𝑡 + 𝛽3𝑅𝑉

(𝑚)
𝑡 + 𝜖𝑡+1, (7)

𝑉𝑡+1 = 𝛽0 + 𝛽1𝑅𝑉𝑡 + 𝛽2𝑅𝑉
(𝑤)
𝑡 + 𝛽3𝑅𝑉

(𝑚)
𝑡 + 𝛾𝑊 𝐷𝑡 + 𝜖𝑡+1, (8)

To transcend the limitations of linear assumptions and capture the
ositive nonlinear relationship between WD values and next-day stock
ealized volatility as proposed by the TTD theory [30,31], we incor-
orate nonlinear models through the cutting-edge NBEATSx neural
etwork [64]. This model is employed in two configurations: one uti-
izing historical values of stock’s realized volatility, henceforth named
BEATSx, and another extending the input space to include WD values,
enceforth named NBEATSx-WD. The choice of the NBEATSx model
ver other nonlinear models is motivated by its superiority over other
odels in various forecasting tasks [64–66], including stock realized

olatility forecasting [67]. To ensure sparsity of this paper, we opt to
ot mathematically and conceptually explain the architecture behind
he NBEATSx model and refer readers interested in this architecture
o [64].

The nonlinear nature of these models necessitates a departure from
onventional Granger causality testing [60], leading to the adoption
f the Diebold–Mariano (DM) test, initially devised by Diebold and
ariano [68] and improved by Harvey et al. [69]. This test evalu-

tes the null hypothesis of equal predictive accuracy between models,
nabling us to ascertain the incremental predictive value of WD in a
onlinear context. This adaptation is crucial for evaluating the TTD the-
ry’s premise that WD values, particularly during financially turbulent
eriods, hold enhanced predictive power for stock realized volatility. It
s worth mentioning that the DM test is done for each considered error
etric and stock individually for a more granular Granger causality

esting while the p-value threshold is the standard threshold of 0.05.
To specifically address the TTD theory’s implications, we also focus

ur analysis on the top ten percentile of trading days characterized by
 s

5

levated market realized volatility. This selective approach allows us
o scrutinize the theory’s assertion that proximity to volatile financial
eriods magnifies the predictive relevance of WD, providing a nuanced
nderstanding of its utility in forecasting stock realized volatility under
tress conditions [30,31]. This comprehensive Granger causality frame-
ork, encompassing both linear and nonlinear models and tailored to

he idiosyncrasies of financial market data, allows us to rigorously test
he TTD theory. By evaluating the predictive enhancement offered by

D, particularly during periods of financial turbulence, we effectively
ut the TTD theory to the test for individual stocks.

Lastly, in the context of nonlinear models, the task of ascertaining
he most suitable hyperparameters entails a rigorous and systematic
xploration, encompassing a dedicated validation phase. During this
alidation phase, a portion equivalent to 28.5% of the training dataset
s set aside for the purpose of fine-tuning the considered hyperparam-
ters of the NBEATSx model, which can be found in Appendix C. This
eticulous procedure entails the execution of a total of 40 distinct

rials, each probing diverse hyperparameter configurations, and an
dditional set of 20 trials dedicated exclusively to the identification
f the optimal random seed for maximal effectiveness. Finally, the
ptimal hyperparameters for NBEATSx and NBEATSx-WD can be found
n Appendix D.

.4. SHAP values

In our quest to empirically validate the TTD Theory, the third
nd concluding methodological facet employs SHAP (SHapley Additive
xPlanations) values [70] to elucidate the impact of WD on the pre-
ictability of next-day stock realized volatility. SHAP values, rooted in
ooperative game theory, offer a powerful framework for interpreting
omplex machine learning models by quantifying the contribution of
ach feature to the model’s prediction for a given observation [70].
his interpretability tool has gained widespread recognition in ma-
hine learning literature for its ability to provide transparent and
omprehensible explanations of model predictions, thereby bridging
he gap between advanced machine learning techniques and practical
ecision-making [71–79].

The core idea of SHAP values hinges on the Shapley value, a
oncept that allocates payouts to players based on their contribution
o the total payoff of the coalition they form. The Shapley value for a
layer (independent variable in our context) is computed as the average
arginal contribution of this independent variable across all possible

ets of considered independent variables for the model. Mathematically,
he Shapley value 𝜙𝑖 for feature 𝑖 in a coalition of 𝑁 features is defined

as [70]:

𝜙𝑖(𝑣) =
∑

𝑆⊆𝑁⧵{𝑖}

|𝑆|!(|𝑁| − |𝑆| − 1)!
|𝑁|!

(𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)) , (9)

here 𝑣(𝑆) represents the prediction function’s value for a subset of
eatures 𝑆, and 𝑣(𝑆 ∪ {𝑖}) denotes the value of the function when
eature 𝑖 is added to the subset 𝑆. The term |𝑆|!(|𝑁|−|𝑆|−1)!

|𝑁|! ensures
n equitable distribution, accounting for the number of permutations
hat include feature 𝑖 in a coalition of size |𝑆|. In the specific context
f forecasting stock realized volatility using machine learning models,
HAP values offer a nuanced understanding of how lagged values of
or instance realized volatility and WD influence the forecast. Con-
ider a model predicting next-day volatility 𝑅𝑉𝑡+1 based on features
𝑅𝑉𝑡, 𝑅𝑉𝑡−1,… ,𝑊 𝐷𝑡}:

𝑉̂ 𝑡+1 = 𝑓 (𝑅𝑉𝑡, 𝑅𝑉𝑡−1,… ,𝑊 𝐷𝑡), (10)

here 𝑓 represents the predictive model. The SHAP value for 𝑊𝐷𝑡,
or instance, quantifies the marginal contribution of the WD feature to
he difference between the forecasted volatility 𝑅𝑉 𝑡+1 and the average
orecast over all data points. This insight is invaluable, especially
hen evaluating the TTD theory’s assertion regarding the predictive
ignificance of WD in proximity to volatile financial periods [30,31].
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Table 1
Linear regressions results using Eq. (2).

Metric Value

Number of stocks where EGLS was used instead of OLS due to heteroscedasticity 79 (out of 80)
Number of stocks where the residuals autocorrelation assumption was not met 1 (out of 80)
𝑅2 73.43% ± 5.5%
Adjusted 𝑅2 73.50% ± 5.52%
Number of stocks where F -statistics p-value was below 0.01 79 (out of 79)
WD (t−1) coefficient value 0.0041 ± 0.0004
Number of stocks where T -statistics p-value for WD (t−1) was below 0.01 79 (out of 79)

Presented values for 𝑅2, Adjusted 𝑅2, and WD (t−1) coefficient value have the following format: mean value ± standard
deviation value.
l
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isualizing these SHAP values, particularly through scatter plots with
D values on the 𝑋-axis and SHAP values on the 𝑌 -axis, elucidates the

relationship between WD and its impact on volatility forecasts. Such
visualizations can confirm or refute theoretical predictions of the TTD
theory.

For this analysis, we employ the XGBoost (eXtreme Gradient Boost-
ing) algorithm [80], due to its predictive power and compatibility
with the ‘shap’ Python library (the Python library used in this study
for the estimation of SHAP values). To ensure sparsity, this paper
does not delve into the XGBoost’s architecture and refers readers in-
terested in it to Chen and Guestrin [80]. Consistent with the Linear
Regression Analysis, the input variables for the XGBoost model include
the same control variables found in Eq. (2), and, crucially, the WD
values. This consistency ensures a harmonized basis for comparison
across our methodological approaches. Our approach involves con-
ducting separate regressions for each stock using the XGBoost model,
followed by the computation of SHAP values for the WD variable.
This individualized analysis allows for a nuanced understanding of the
WD’s predictive influence across different stocks. To synthesize these
insights, we compute the mean SHAP values for the WD variable,
facilitating a consolidated view of its impact. The culmination of our
SHAP value analysis is a scatter plot that visualizes the relationship
between WD values (X-Axis) and their corresponding SHAP values
(Y-Axis).

This visualization strategy is designed to test the TTD theory’s
assertion regarding the behavior of the importance of WD values (here
represented by SHAP values) for RV forecasting in relation to WD mag-
nitudes. According to the theory, for WD values below the around 90th-
percentile threshold, SHAP values are expected to exhibit a random
distribution around zero, indicative of the WD’s negligible predictive
value in these ranges [30,31]. Conversely, for WD values surpassing
this threshold, SHAP values should manifest as positive and significant,
underscoring the enhanced predictive utility of WD in forecasting
stock realized volatility during periods proximal to financial turbulence
[30,31].

4. Empirical experimentation

4.1. Linear regression analysis

Table 1 presents the aggregated main results of the linear regres-
sions for all considered stocks using Eq. (2), while Tables 2 and 3
present the coefficient values and their standard deviations for the
explanatory variables other than WD (t − 1), as well as the significance
of the T-statistics p-values for these explanatory variables, respectively.

It can be seen that virtually all linear regressions possess het-
eroscedasticity in their residuals, demanding the use of EGLS instead of
OLS. Interestingly, the only model that does not have heteroscedasticity
in its residuals is also the same model where the residuals autocorre-
lation assumption is not met. As a result of the latter fact, this model
is not considered for the henceforth analysis of the linear regressions
results. The 𝑅2 and Adjusted 𝑅2 are relatively high, albeit there exists
a considerably high variation among the stocks. Given the Anderson–
Darling test statistic result of 0.580 for both variables and assuming that
 d

6

Table 2
Other explanatory variables coefficient values and their standard deviations.

Variable Coefficient value

D (t−1) coefficient value 0.7495 ± 0.0452
Mkt_RF (t−1) coefficient value −0.0002 ± 0.0001
SMB (t−1) coefficient value −0.0001 ± 0.0001
HML (t−1) coefficient value −4.8e−05 ± 8.7e−05
RMW (t−1) coefficient value 0.0002 ± 0.0002
CMA (t−1) coefficient value 0.0001 ± 0.0002
Credit spread (t−1) coefficient value 0.0001 ± 0.0003
TEDRATE (t−1) coefficient value 0.0014 ± 0.0005
Dolar index value (t−1) coefficient value −4e−06 ± 2.6e−05

Table 3
Number of stocks where T -statistics was significant for other explanatory variables.

Variable p-value = 0.05 p-value = 0.01

D (t−1) 79 (out of 79) 79 (out of 79)
Mkt_RF (t−1) 72 (out of 79) 66 (out of 79)
SMB (t−1) 21 (out of 79) 14 (out of 79)
HML (t−1) 8 (out of 79) 0 (out of 79)
RMW (t−1) 21 (out of 79) 7 (out of 79)
CMA (t−1) 5 (out of 79) 0 (out of 79)
Credit spread (t−1) 22 (out of 79) 13 (out of 79)
TEDRATE (t−1) 79 (out of 79) 79 (out of 79)
Dollar index value (t−1) 31 (out of 79) 22 (out of 79)

they are random variables, we can construct 99.7% confidence intervals
using the normal distribution as a basis. As a result, we can claim
that our linear regression model will likely have a 𝑅2 and Adjusted
𝑅2 between 56.93% and 89.93%, and 56.94% and 90.06% respectively
for a given American stock, showing the heterogeneity present in the
considered sample.

Incidentally, all linear regressions present a F -statistics p-value be-
ow the conservative threshold of 0.01, showing the all considered
odels pass the standard F -statistics check. Last but not least, all linear

egressions present a T -statistics p-value for WD (t − 1) below the
onservative threshold of 0.01 and all the coefficients of WD (t − 1)
re positive, showing that the prediction of the TTD theory regarding
he significant and positive relationship between WD values and next
ay’s realized volatility is correct. Consequently, not only do the results
f the Linear Regression Analysis in this study not allow us to falsify the
eneralization of the TTD theory for individual stocks, but it also serves
s evidence that the TTD theory could likely be correct, albeit further
nalysis with the Granger causality and SHAP values methodologies are
eeded to affirm this with certainty.

Lastly, when considering the results present in Tables 2 and 3,
he significance of the other explanatory variables, and thus their
mportance for a proper linear regression analysis, becomes empirically
lear, with the exception of HML (t − 1) and CMA (t − 1). However,
n in-depth analysis of and financial economic explanation for the
oefficient values is omitted to ensure the sparsity of this paper and
ue to the fact that it lies outside the scope of this paper.
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Fig. 7. DM tests results for RMSE.
Table 4
Error measures relative results.

Model RMSE MAE QLIKE MAPE

HARX (full testing sample) 99.59% 100.03% 99.32% 100.53%
NBEATSx-WD (full testing sample) 96.37% 99.97% 95.40% 103.16%
HARX (10th most volatile percentile of testing sample) 99.10% 99.64% 96.69% 100.56%
NBEATSx-WD (10th most volatile percentile of testing sample) 88.68% 90.00% 78.55% 92.16%

Presented values are relative values, in the sense that they are divided by the error metrics values of the models without WD (t−1) in order to facilitate
the analysis and interpretation of the results.
.2. Granger causality framework

The error metrics relative results for both linear and nonlinear
odels and considering the full testing sample or only the top 10th
ost volatile percentile of the testing sample can be found in Table 4.

t is worth mentioning that the present values are relative values,
eaning they are normalized by dividing them by the error metrics

alues of the models without WD (t − 1). This normalization facilitates
he analysis and interpretation of the results. Mathematically, this can
e expressed as:

elative Value =
Value with WD (t − 1)

Value without WD (t − 1)
This formula ensures that the values are easier to compare and

nterpret by providing a consistent basis for evaluation.
It can be seen that for the linear models (HAR and HARX), there

s barely no improvement in the predictive power with the addition of
D (t − 1) information for the full testing sample and to some extent

or the 10th most volatile percentile of the testing sample, with the
xception of the QLIKE error measure. Regarding the nonlinear model
NBEATSx and NBEATSx-WD), on the other hand, there is a more clear
mprovement in the predictive accuracy with the addition of WD (t −

1) information, especially for the 10th most volatile percentile of the
testing sample. This is exactly what the TTD theory predicts, namely
that there exists a significant nonlinear relationship between WD values
and next day’s realized volatility, which implies that the addition of
WD (t − 1) information for forecasting models would be beneficial
especially for nonlinear models and during volatile periods. Despite
these primary results, statistical testing with the DM test is still required
to validate the results and conclusions from Table 4.

Fig. 7 depicts the aggregated results of DM tests for RMSE. It is
worth noting that the results shown in Fig. 7 and subsequent figures in
this chapter are based on the number of stocks where the p-value for the
DM test is below the standard p-value threshold of 0.05. Interestingly,
t can be seen that the incorporation of WD (t − 1) information to both

the linear and nonlinear models led to a statistical superiority of the
models in forecasting accuracy, with the nonlinear model following the
prediction of the TTD theory of the model with WD (t − 1) performing
better in volatile times while the linear model not. However, this can
also be explained by another implication of the TTD theory, namely the
nonlinear relationship of WD values and next day’s realized volatility,
which needless to say can only be properly captured by nonlinear
models.
7

The DM tests results for MAE can be seen in Fig. 8. Now, a clear and
statistically significant improvement of forecast precision is observed
only for the nonlinear model and during volatile periods, as predicted
by the TTD theory.

Moving to the results of the DM tests for QLIKE, which can be found
in Fig. 9, the situation is almost identical to the DM tests results for
RMSE. Hence, the same conclusions drawn for RMSE are applicable
here.

Lastly, Fig. 10 shows the results the DM tests for MAPE. Inter-
estingly, in both cases the models without WD (t − 1) information
perform statistically better considering the whole testing sample. Yet,
when considering volatile periods, the incorporation of WD (t − 1)
information leads to a superiority of the nonlinear model and an
equality for the linear model. The superiority of the models without
WD (t − 1) information, when considering the whole testing sample,
can presumably be explained by the fact that the MAPE error measure
considers the relative error (i.e., the error normalized by the real value),
which makes this error metric to treat errors in volatile and non-volatile
periods with the same weight. Therefore, not only is the increase in
forecasting power through the addition of WD (t − 1) information not
perceived when considering the whole testing sample, but also the
incorporation of WD (t − 1) information has a negative impact on the
forecasting power of the models during non-volatile periods. This is
explained by the TTD theory’s implication of the nonlinear positive
relationship between WD values and next day’s realized volatility,
which is only present during periods preceding (and during as well)
volatile times. Thus, the models using WD (t − 1) information likely
detect and utilize a spurious relationship between WD values and next
day’s realized volatility for non-volatile periods during the training
stage, which lead to a relatively poorer performance of these models for
predictions for non-volatile periods in the testing sample. In conclusion,
although the results presented in Fig. 10 might at first seem to be
against the predictions of the TTD theory, after a good look, they are
actually evidence for the TTD theory.

4.3. SHAP values

Fig. 11 shows a scatter plot with a histogram of the normalized WD
(t − 1) values in the 𝑋-axis and SHAP values for WD (t − 1) in the Y-
Axis. As predicted by the TTD theory, the importance of the relationship
between WD values and next day’s realized volatility is non-existent
and becomes positive and significant for the top percentiles of WD
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Fig. 8. DM tests results for MAE.
Fig. 9. DM tests results for QLIKE.
Fig. 10. DM tests results for MAPE.
values. This can be seen by the fact that for the greatly majority of
WD values (values roughly below the 90th percentile threshold), the
SHAP values for WD (t − 1) are centered between 0 and approximately
distributed as a normal distribution, showing that the estimated SHAP
values are likely noise and there is indeed no relationship between WD
values and next day’s realized volatility. Incidentally, this is also an
evidence for the proposed explanation for the results of Fig. 10. On
the other hand, for a small minority of WD values (values roughly
above the 90th percentile threshold), the SHAP values for WD (t
− 1) are clearly positive, demonstrating the positive and significant
relationship between WD values and next day’s realized volatility for
the top percentiles of WD values.

4.4. Summary

Table 5 summarizes the methods used to test the TTD theory and
their respective conclusions. It can observed that each method provided
compelling evidence supporting the theory.

Regarding the linear regression analysis, the analysis revealed a
significant positive relationship between WD values and the next day’s
8

Table 5
Methods used to test the TTD theory and their respective conclusions.

Method Conclusion

Linear regression
analysis

Significant positive relationship between WD
values and next day’s realized volatility, as
predicted by the TTD theory.

Granger causality
framework

Significantly improvement in predictive accuracy
for nonlinear models, especially during volatile
periods, as predicted by the TTD theory.

SHAP values Positive and significant relationship between WD
values and next day’s realized volatility for top
percentiles of WD values, as predicted by the TTD
theory.

realized volatility. This result aligns with the TTD theory’s prediction
that higher WD values are associated with increased volatility, con-
firming the theory’s applicability at the individual stock level. Moving
to the Granger causality framework, the framework showed a notable
improvement in predictive accuracy for nonlinear models, particularly
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Fig. 11. Scatter plot of WD (t − 1) SHAP values and WD (t − 1) values.

during volatile periods. This finding supports the TTD theory’s assertion
of a nonlinear relationship between WD values and subsequent realized
volatility. Finally, the SHAP values analysis demonstrated a positive
and significant relationship between WD values and next day’s realized
volatility for the top percentiles of WD values. This result further
substantiates the TTD theory, highlighting the importance of WD values
in predicting volatility, especially for extreme values, as predicted by
the theory.

Collectively, the results from these methods provide strong evidence
in favor of the TTD theory. They demonstrate that the theory not
only holds true for individual stocks but also generalizes well to high
dimensions, involving numerous stocks. This reinforces the robustness
and broad applicability of the TTD theory in different market conditions
and across various financial instruments.

5. Research limitations

While the empirical results indicate a significant relationship be-
tween WD and realized volatility, this finding should be approached
with caution. The linear regression analysis demonstrates that WD (t
− 1) has a positive and statistically significant impact on next-day
realized volatility. However, this relationship may not fully capture
the complexity of market dynamics. Alternative explanations for the
observed relationship could include omitted variable bias or other
latent factors influencing both WD and volatility. For instance, market
microstructure effects or varying liquidity conditions might also play
roles that were not explicitly modeled in this study. Additionally,
the nonlinear Granger causality framework further supports the TTD
theory’s prediction that the relationship between WD and realized
volatility intensifies during volatile periods. Nonetheless, the limited
improvement in predictive power for linear models incorporating WD
suggests that the full explanatory power of WD may only be realized in
more complex, nonlinear models.

Incidentally, this study acknowledges several critical assumptions
that underpin the analysis, including those related to heteroscedas-
ticity. The extensive presence of heteroscedasticity in the residuals
necessitated the use of Estimated Generalized Least Squares (EGLS)
instead of Ordinary Least Squares (OLS) for 79 out of the 80 stocks
analyzed. Although EGLS addresses heteroscedasticity, it introduces
complexity and potential sensitivity to model specifications.

Another crucial assumption involves the linearity of the models used
in the initial regression analysis. Given the evidence of nonlinearity in
the relationship between WD and realized volatility, as highlighted by
the improved performance of nonlinear models, the reliance on linear
models may limit the scope of the findings. The nonlinear nature of
the relationship suggests that further exploration with more sophisti-
cated and nonlinear models could yield deeper insights. Moreover, the
9

potential for sample selection bias and model specification errors must
be considered. The dataset comprises stocks from the S&P 100 index,
which may not be representative of the broader market. This limitation
could restrict the generalizability of the findings. Additionally, the
choice of control variables, while based on established literature, might
omit other relevant factors, leading to omitted variable bias.

The discussion on assumptions and limitations emphasizes the need
for cautious interpretation of the results. Future research could ben-
efit from expanding the dataset to include a wider array of stocks
and incorporating additional control variables to mitigate potential
biases. Moreover, employing advanced econometric and machine learn-
ing techniques could provide a more nuanced understanding of the
complex dynamics at play.

In summary, while the study provides evidence supporting the
TTD theory’s predictions, the limitations related to model assump-
tions, potential biases, and the inherent complexity of financial mar-
kets suggest that these findings should be interpreted as indicative
rather than definitive. Further research is warranted to validate and
extend these results in different contexts and with more sophisticated
methodologies.

6. Conclusion

This study embarked on an empirical journey to explore the appli-
cability of the Topological Tail Dependence (TTD) theory to individ-
ual stock realized volatility, employing a multifaceted methodological
approach encompassing linear regression analysis, Granger causality
framework, and SHAP value analysis. The findings unveil that the TTD
theory can successfully be generalized to individual stocks and in high
dimensions, allowing for the use of the temporal moving Wasserstein
Distance (WD) estimations of Persistent Homology (PH) diagrams to
better model and forecast stock realized volatility and volatile periods.

The Linear Regression Analysis revealed a significant and posi-
tive relationship between WD and subsequent day’s realized volatility,
lending empirical support to the TTD theory’s prediction of the sig-
nificant relationship between WD and next day’s realized volatility.
The Granger causality approach, on the other hand, further nuanced
our understanding, particularly through the lens of nonlinear models
like NBEATSx, which demonstrated a marked improvement in pre-
dictive accuracy upon the inclusion of WD, especially during periods
of heightened volatility. This finding resonates with the TTD theory’s
assertion of a significant positive nonlinear relationship between WD
and future realized volatility, suggesting that WD’s predictive utility is
only present preceding and under turbulent market conditions. Finally,
the SHAP value analysis provided a granular view of this relationship,
revealing that the impact of WD on volatility predictions is predom-
inantly pronounced for values in the upper percentiles, aligning with
the TTD theory’s propositions. This observation not only corroborates
the theory’s validity but also highlights the importance of considering
topological features in volatility forecasting, particularly in the context
of volatile periods.

The practical implications of these findings are manifold. Firstly, the
demonstrated relationship between WD and realized volatility provides
a novel predictive tool for market participants. By incorporating WD
into predictive models, financial analysts and traders can potentially
improve the accuracy of their volatility forecasts, particularly dur-
ing volatile market conditions. This enhancement in forecasting can
lead to more informed trading strategies, better risk management,
and improved portfolio optimization. Moreover, the ability to predict
periods of heightened volatility with greater precision can aid in the
development of dynamic hedging strategies, reducing the potential for
significant financial losses during turbulent periods.

Additionally, the insights gleaned from this study open several
avenues for future research. Extending the analysis to a broader ar-
ray of financial instruments, including derivatives and fixed-income
securities, could provide a more comprehensive understanding of the
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Table 6
Summary statistics of 5-min realized volatility daily values.

Tickers Mean Std Min 25% 50% 75% Max

AAPL 1.32% 0.74% 0.27% 0.84% 1.12% 1.57% 6.08%
ABT 1.07% 0.51% 0.35% 0.75% 0.94% 1.22% 5.70%
ACN 1.15% 0.63% 0.37% 0.76% 0.96% 1.33% 7.28%
ADBE 1.42% 0.70% 0.40% 0.96% 1.24% 1.66% 6.64%
ADP 1.04% 0.57% 0.32% 0.70% 0.89% 1.18% 6.56%
AMGN 1.26% 0.55% 0.40% 0.90% 1.13% 1.46% 5.71%
AMT 1.27% 0.74% 0.43% 0.83% 1.05% 1.45% 7.17%
AMZN 1.57% 0.86% 0.33% 1.01% 1.36% 1.89% 7.71%
AXP 1.43% 1.05% 0.35% 0.80% 1.07% 1.63% 9.31%
BA 1.40% 0.85% 0.36% 0.88% 1.16% 1.61% 9.37%
BAC 1.75% 1.36% 0.32% 1.01% 1.34% 1.92% 11.45%
BDX 1.06% 0.50% 0.36% 0.74% 0.93% 1.22% 5.27%
BMY 1.20% 0.55% 0.29% 0.85% 1.07% 1.39% 5.43%
BSX 1.57% 0.81% 0.45% 1.07% 1.38% 1.83% 7.31%
C 1.80% 1.48% 0.39% 1.00% 1.35% 1.98% 15.64%
CAT 1.47% 0.79% 0.39% 0.97% 1.26% 1.70% 6.62%
CB 1.11% 0.76% 0.27% 0.66% 0.86% 1.27% 7.59%
CI 1.61% 1.01% 0.43% 1.01% 1.32% 1.81% 12.53%
CMCSA 1.34% 0.73% 0.34% 0.88% 1.15% 1.57% 6.84%
CME 1.48% 0.94% 0.43% 0.92% 1.17% 1.65% 8.21%
COP 1.53% 0.87% 0.40% 0.99% 1.31% 1.80% 8.50%
COST 1.07% 0.57% 0.31% 0.73% 0.92% 1.21% 5.32%
CRM 1.79% 0.89% 0.47% 1.20% 1.55% 2.15% 7.76%
CSCO 1.25% 0.65% 0.37% 0.84% 1.07% 1.45% 6.42%
CVS 1.29% 0.65% 0.39% 0.87% 1.10% 1.47% 6.02%
CVX 1.35% 0.79% 0.38% 0.85% 1.13% 1.57% 6.77%
D 0.94% 0.52% 0.27% 0.63% 0.80% 1.07% 5.11%
DD 1.37% 0.71% 0.37% 0.90% 1.17% 1.59% 6.46%
DHR 1.16% 0.60% 0.35% 0.78% 0.99% 1.32% 5.96%
DIS 1.25% 0.73% 0.34% 0.83% 1.07% 1.44% 7.38%
DUK 0.94% 0.49% 0.30% 0.63% 0.79% 1.06% 5.24%
FIS 1.18% 0.70% 0.39% 0.77% 0.98% 1.32% 7.74%
FISV 1.14% 0.63% 0.38% 0.76% 0.96% 1.30% 7.17%
GE 1.49% 0.85% 0.36% 0.93% 1.23% 1.73% 7.54%
GILD 1.37% 0.70% 0.39% 0.90% 1.16% 1.59% 6.75%
GOOGL 1.37% 0.72% 0.39% 0.90% 1.17% 1.60% 7.02%
GS 1.65% 1.03% 0.44% 1.02% 1.35% 1.90% 9.45%
HD 1.25% 0.67% 0.38% 0.84% 1.07% 1.43% 6.93%
HON 1.17% 0.63% 0.38% 0.80% 1.00% 1.31% 6.52%
IBM 1.21% 0.66% 0.36% 0.82% 1.04% 1.38% 6.89%
INTC 1.39% 0.73% 0.39% 0.90% 1.17% 1.62% 7.13%
INTU 1.27% 0.63% 0.39% 0.86% 1.10% 1.47% 6.13%
ISRG 1.58% 0.82% 0.47% 1.05% 1.35% 1.84% 6.78%
JNJ 0.97% 0.49% 0.31% 0.68% 0.83% 1.08% 5.44%
JPM 1.59% 1.09% 0.38% 0.93% 1.23% 1.79% 10.12%
KO 0.90% 0.48% 0.30% 0.63% 0.78% 1.00% 5.33%
LLY 1.23% 0.65% 0.38% 0.84% 1.06% 1.39% 6.90%
LMT 1.12% 0.61% 0.35% 0.76% 0.95% 1.26% 6.33%
LOW 1.30% 0.72% 0.35% 0.89% 1.11% 1.48% 7.23%
MA 1.39% 0.77% 0.38% 0.91% 1.17% 1.62% 7.41%
MCD 0.98% 0.54% 0.30% 0.67% 0.83% 1.10% 5.66%
MDT 1.10% 0.54% 0.36% 0.77% 0.96% 1.25% 5.96%
MMM 1.04% 0.58% 0.29% 0.68% 0.90% 1.22% 5.49%
MO 1.05% 0.55% 0.25% 0.72% 0.92% 1.20% 6.18%
MRK 1.13% 0.60% 0.35% 0.76% 0.96% 1.32% 5.49%
MS 1.90% 1.42% 0.44% 1.12% 1.48% 2.08% 15.72%
MSFT 1.20% 0.61% 0.34% 0.82% 1.04% 1.38% 5.44%
NFLX 2.15% 0.95% 0.60% 1.46% 1.94% 2.60% 8.48%
NKE 1.26% 0.65% 0.38% 0.86% 1.07% 1.42% 6.87%
NVDA 2.04% 0.98% 0.63% 1.35% 1.79% 2.44% 8.42%
ORCL 1.22% 0.64% 0.27% 0.81% 1.07% 1.43% 6.52%
PEP 0.89% 0.48% 0.25% 0.61% 0.76% 1.00% 5.17%
PFE 1.12% 0.54% 0.37% 0.76% 0.97% 1.29% 5.09%

(continued on next page)

TD theory’s applicability across the financial spectrum. Exploring
he integration of alternative topological estimations instead of WD,
or instance, 𝐿𝑛 norms of Persistent Landscapes, could yield more
ophisticated models capable of better capturing the multifaceted na-
ure of market dynamics. Moreover, the nuanced role of WD during
olatile periods invites further investigation into the temporal aspects
f topological dependence, potentially leading to dynamic modeling
10
able 6 (continued).
PG 0.88% 0.47% 0.30% 0.62% 0.76% 0.99% 5.50%
PNC 1.54% 1.11% 0.40% 0.89% 1.17% 1.74% 11.58%
QCOM 1.39% 0.71% 0.32% 0.90% 1.22% 1.66% 6.38%
SBUX 1.35% 0.79% 0.42% 0.84% 1.11% 1.57% 7.84%
SO 0.97% 0.49% 0.34% 0.68% 0.85% 1.10% 5.86%
SYK 1.15% 0.59% 0.29% 0.78% 0.99% 1.32% 6.94%
T 1.05% 0.61% 0.29% 0.69% 0.87% 1.18% 5.53%
TGT 1.35% 0.78% 0.34% 0.87% 1.11% 1.53% 7.18%
TJX 1.34% 0.72% 0.40% 0.87% 1.11% 1.59% 7.32%
TMO 1.23% 0.61% 0.39% 0.84% 1.07% 1.41% 6.25%
TXN 1.36% 0.68% 0.41% 0.92% 1.19% 1.60% 6.89%
UNH 1.41% 0.83% 0.40% 0.88% 1.16% 1.60% 7.13%
UNP 1.39% 0.77% 0.37% 0.91% 1.18% 1.58% 6.66%
UPS 1.10% 0.60% 0.31% 0.71% 0.94% 1.31% 5.51%
USB 1.42% 1.07% 0.37% 0.79% 1.08% 1.63% 9.41%
VZ 1.03% 0.57% 0.31% 0.70% 0.88% 1.15% 5.70%
WFC 1.58% 1.23% 0.33% 0.85% 1.18% 1.80% 10.07%
WMT 0.96% 0.50% 0.34% 0.67% 0.82% 1.08% 5.09%

approaches that adapt to changing market conditions. Lastly, the ap-
plication of advanced topological data analysis techniques, beyond
PH, could uncover deeper insights into the structural intricacies of
financial markets, offering novel perspectives on risk management and
investment strategy formulation.

In conclusion, this research not only affirms the potential of the
TTD theory in enhancing our understanding of stock volatility but also
underscores the importance of topological considerations in financial
modeling. The practical applications of these findings are significant,
offering new tools and strategies for market participants to navigate
volatility more effectively. The evidence presented herein, while sup-
portive of the TTD theory, also highlights the complexity of financial
markets and the need for continued innovation in analytical method-
ologies. As we advance the frontier of financial econometrics, the
integration of topological data analysis (TDA) with traditional and ma-
chine learning approaches promises to enrich our toolkit for navigating
the ever-evolving landscape of financial volatility.
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Appendix A. Summary statistics of S&P100 dataset

See Table 6.
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Table 7
Data sources of considered control variables.

Variable Data source

VIX close price Yahoo Finance API
DXY MarketWatch
THREEFYTP1 FRED Economic Data
T10Y3M FRED Economic Data
TED rate FRED Economic Data
Fama–French five factors Kenneth R. French Website
Table 8
NBEATSx hyperparameters search space.

Hyperparameters Options

n_inputs [3, 5, 10, 15, 21, 42, 84]
mlp_units [[[712, 712], [712, 712]], [[512, 512], [512, 512]], [[250, 250], [250, 250]], [[100, 100], [100, 100]]]
epochs [50, 100, 150, 250, 350, 450, 550, 650, 750]
learning_rate [0.0005, 0.0001, 0.00005, 0.00001]
num_lr_decays [5, 3, 2, 1]
scaler_type [‘‘robust’’, ‘‘standard’’, ‘‘minmax’’]
losses [MSE(), MAE(), MQLoss(level = [80, 90]), DistributionLoss(distribution = ‘StudentT’, level = [80, 90])]
n_harmonics [0, 0, 1, 1]
n_blocks [[1, 1], [2, 2], [3, 3], [5, 5]]
n_polynomials [0, 1, 0, 1]
Table 9
Optimal NBEATSx hyperparameters.

Hyperparameters Optimal

n_inputs [15]
mlp_units [[512, 512], [512, 512]]
epochs [450]
learning_rate [0.00001]
num_lr_decays [1]
scaler_type [‘‘minmax’’]
losses [MQLoss(level = [80, 90])]
n_harmonics [0]
n_blocks [5, 5]
n_polynomials [0]

Table 10
Optimal NBEATSx-WD hyperparameters.

Hyperparameters Optimal

n_inputs [3]
mlp_units [[100, 100], [100, 100]]
epochs [750]
learning_rate [0.00005]
num_lr_decays [2]
scaler_type [‘‘standard’’]
losses [DistributionLoss(distribution = ‘StudentT’, level = [80, 90])]
n_harmonics [0]
n_blocks [2, 2]
n_polynomials [0]

Appendix B. Data sources of considered control variables

See Table 7.

Appendix C. Hyperparameters search space for NBEATSx and
NBEATSx-WD

See Table 8.

Appendix D. Optimal hyperparameters for NBEATSx and
NBEATSx-WD

See Tables 9 and 10.
11
References

[1] D. Das, P. Kayal, M. Maiti, A K-means clustering model for analyzing the bitcoin
extreme value returns, Decis. Anal. J. (ISSN: 2772-6622) 6 (2023) 100152,
http://dx.doi.org/10.1016/j.dajour.2022.100152.

[2] J.K. Afriyie, K. Tawiah, W.A. Pels, S. Addai-Henne, H.A. Dwamena, E.O. Owiredu,
S.A. Ayeh, J. Eshun, A supervised machine learning algorithm for detecting and
predicting fraud in credit card transactions, Decis. Anal. J. (ISSN: 2772-6622) 6
(2023) 100163, http://dx.doi.org/10.1016/j.dajour.2023.100163.

[3] P. Bennett, L. Wei, Market structure, fragmentation, and market quality, J.
Financial Mark. (ISSN: 1386-4181) 9 (1) (2006) 49–78, http://dx.doi.org/10.
1016/j.finmar.2005.12.001.

[4] N. Cetorelli, M. Gambera, Banking market structure, financial dependence and
growth: International evidence from industry data, J. Finance (ISSN: 1540-6261)
56 (2) (2001) 617–648, http://dx.doi.org/10.1111/0022-1082.00339.

[5] G.-H. Moon, W.-C. Yu, Volatility spillovers between the US and China stock
markets: Structural break test with symmetric and asymmetric GARCH ap-
proaches, Glob. Econ. Rev. (ISSN: 1744-3873) 39 (2) (2010) 129–149, http:
//dx.doi.org/10.1080/1226508x.2010.483834.

[6] B.T. Ewing, F. Malik, Volatility spillovers between oil prices and the stock market
under structural breaks, Glob. Finance J. (ISSN: 1044-0283) 29 (2016) 12–23,
http://dx.doi.org/10.1016/j.gfj.2015.04.008.

[7] R. Jung, R. Maderitsch, Structural breaks in volatility spillovers between inter-
national financial markets: Contagion or mere interdependence? J. Bank. Financ.
(ISSN: 0378-4266) 47 (2014) 331–342, http://dx.doi.org/10.1016/j.jbankfin.
2013.12.023.

[8] M. Bonato, O. Cepni, R. Gupta, C. Pierdzioch, Forecasting the realized volatility
of agricultural commodity prices: Does sentiment matter? J. Forecast. (ISSN:
1099-131X) (2024) http://dx.doi.org/10.1002/for.3106.

[9] H.G. Souto, Time series forecasting models for S&P 500 financial turbulence, J.
Math. Finance (ISSN: 2162-2442) 13 (01) (2023) 112–129, http://dx.doi.org/10.
4236/jmf.2023.131007.

[10] C.M. Mesquita, C.A. Valle, A.C.M. Pereira, Scenario generation for financial data
with a machine learning approach based on realized volatility and copulas,
Comput. Econ. (2023) http://dx.doi.org/10.1007/s10614-023-10387-2.

[11] A. Atkins, M. Niranjan, E. Gerding, Financial news predicts stock market
volatility better than close price, J. Finance Data Sci. (ISSN: 2405-9188) 4 (2)
(2018) 120–137, http://dx.doi.org/10.1016/j.jfds.2018.02.002.

[12] M. Bonato, O. Cepni, R. Gupta, C. Pierdzioch, Forecasting realized volatility
of international REITs: The role of realized skewness and realized kurtosis, J.
Forecast. (ISSN: 1099-131X) 41 (2) (2021) 303–315, http://dx.doi.org/10.1002/
for.2813.

[13] M. Bašta, P. Molnár, Oil market volatility and stock market volatility, Finance
Res. Lett. (ISSN: 1544-6123) 26 (2018) 204–214, http://dx.doi.org/10.1016/j.
frl.2018.02.001.

[14] M. Liu, W.-C. Choo, C.-C. Lee, C.-C. Lee, Trading volume and realized volatil-
ity forecasting: Evidence from the China stock market, J. Forecast. (ISSN:
1099-131X) 42 (1) (2022) 76–100, http://dx.doi.org/10.1002/for.2897.

[15] X. Tang, Y. Song, X. Jiao, Y. Sun, On forecasting realized volatility for bitcoin
based on deep learning PSO–GRU model, Comput. Econ. (2023) http://dx.doi.
org/10.1007/s10614-023-10392-5.

http://dx.doi.org/10.1016/j.dajour.2022.100152
http://dx.doi.org/10.1016/j.dajour.2023.100163
http://dx.doi.org/10.1016/j.finmar.2005.12.001
http://dx.doi.org/10.1016/j.finmar.2005.12.001
http://dx.doi.org/10.1016/j.finmar.2005.12.001
http://dx.doi.org/10.1111/0022-1082.00339
http://dx.doi.org/10.1080/1226508x.2010.483834
http://dx.doi.org/10.1080/1226508x.2010.483834
http://dx.doi.org/10.1080/1226508x.2010.483834
http://dx.doi.org/10.1016/j.gfj.2015.04.008
http://dx.doi.org/10.1016/j.jbankfin.2013.12.023
http://dx.doi.org/10.1016/j.jbankfin.2013.12.023
http://dx.doi.org/10.1016/j.jbankfin.2013.12.023
http://dx.doi.org/10.1002/for.3106
http://dx.doi.org/10.4236/jmf.2023.131007
http://dx.doi.org/10.4236/jmf.2023.131007
http://dx.doi.org/10.4236/jmf.2023.131007
http://dx.doi.org/10.1007/s10614-023-10387-2
http://dx.doi.org/10.1016/j.jfds.2018.02.002
http://dx.doi.org/10.1002/for.2813
http://dx.doi.org/10.1002/for.2813
http://dx.doi.org/10.1002/for.2813
http://dx.doi.org/10.1016/j.frl.2018.02.001
http://dx.doi.org/10.1016/j.frl.2018.02.001
http://dx.doi.org/10.1016/j.frl.2018.02.001
http://dx.doi.org/10.1002/for.2897
http://dx.doi.org/10.1007/s10614-023-10392-5
http://dx.doi.org/10.1007/s10614-023-10392-5
http://dx.doi.org/10.1007/s10614-023-10392-5


H.G. Souto and A. Moradi Decision Analytics Journal 12 (2024) 100512
[16] C. Zhang, Y. Zhang, M. Cucuringu, Z. Qian, Volatility forecasting with machine
learning and intraday commonality, J. Financ. Econom. (ISSN: 1479-8417) 22
(2) (2024) 492–530, http://dx.doi.org/10.1093/jjfinec/nbad005.

[17] H.G. Souto, Charting new avenues in financial forecasting with TimesNet: The
impact of intraperiod and interperiod variations on realized volatility prediction,
Expert Syst. Appl. (ISSN: 0957-4174) 255 (2024) 124851, http://dx.doi.org/10.
1016/j.eswa.2024.124851.

[18] R.L. D’Ecclesia, D. Clementi, Volatility in the stock market: ANN versus para-
metric models, Ann. Oper. Res. (ISSN: 1572-9338) 299 (1–2) (2019) 1101–1127,
http://dx.doi.org/10.1007/s10479-019-03374-0.

[19] J. Li, The comparison of LSTM, LGBM, and CNN in stock volatility prediction,
in: Advances in Economics, Business and Management Research, in: icfied-
22, Atlantis Press, (ISSN: 2352-5428) 2022, http://dx.doi.org/10.2991/aebmr.
k.220307.147.

[20] A. Vidal, W. Kristjanpoller, Gold volatility prediction using a CNN-LSTM ap-
proach, Expert Syst. Appl. (ISSN: 0957-4174) 157 (2020) 113481, http://dx.doi.
org/10.1016/j.eswa.2020.113481.

[21] Y. Zhang, Stock volatility prediction with hybrid model of FFNN and lightgbm,
in: 2022 7th International Conference on Intelligent Computing and Signal
Processing, ICSP, 2022, pp. 750–754.

[22] A. Bucci, Realized volatility forecasting with neural networks, J. Financ. Econom.
(ISSN: 1479-8417) 18 (3) (2020) 502–531, http://dx.doi.org/10.1093/jjfinec/
nbaa008.

[23] B. Lei, B. Zhang, Y. Song, Volatility forecasting for high-frequency financial
data based on web search index and deep learning model, Mathematics (ISSN:
2227-7390) 9 (4) (2021) 320, http://dx.doi.org/10.3390/math9040320.

[24] M. Gidea, Topological data analysis of critical transitions in financial networks,
in: Springer Proceedings in Complexity, Springer International Publishing, (ISSN:
2213-8692) ISBN: 9783319554716, 2017, pp. 47–59, http://dx.doi.org/10.1007/
978-3-319-55471-6_5.

[25] M. Gidea, Y. Katz, Topological data analysis of financial time series: Landscapes
of crashes, Phys. A (ISSN: 0378-4371) 491 (2018) 820–834, http://dx.doi.org/
10.1016/j.physa.2017.09.028.

[26] M.S. Ismail, M.S.M. Noorani, M. Ismail, F.A. Razak, M.A. Alias, Early warning
signals of financial crises using persistent homology, Phys. A (ISSN: 0378-4371)
586 (2022) 126459, http://dx.doi.org/10.1016/j.physa.2021.126459.

[27] W. Qiu, S. Rudkin, P. Dłotko, Refining understanding of corporate failure through
a topological data analysis mapping of altman’s Z-score model, Expert Syst. Appl.
(ISSN: 0957-4174) 156 (2020) 113475, http://dx.doi.org/10.1016/j.eswa.2020.
113475.

[28] E. Baitinger, S. Flegel, The better turbulence index? Forecasting adverse financial
markets regimes with persistent homology, Financial Mark. Portfolio Manag.
(ISSN: 2373-8529) 35 (3) (2021) 277–308, http://dx.doi.org/10.1007/s11408-
020-00377-x.

[29] A. Goel, P. Pasricha, A. Mehra, Topological data analysis in investment decisions,
Expert Syst. Appl. (ISSN: 0957-4174) 147 (2020) 113222, http://dx.doi.org/10.
1016/j.eswa.2020.113222.

[30] H.G. Souto, Topological tail dependence: Evidence from forecasting realized
volatility, J. Finance Data Sci. (ISSN: 2405-9188) 9 (2023) 100107, http://dx.
doi.org/10.1016/j.jfds.2023.100107.

[31] H.G. Souto, Corrigendum to ‘‘topological tail dependence: Evidence from fore-
casting realized volatility’’ [the journal of finance and data science 9 (2023)
100107], J. Finance Data Sci. (ISSN: 2405-9188) (2024) 100135, http://dx.doi.
org/10.1016/j.jfds.2024.100135.

[32] I. Fortin, C. Kuzmics, Tail-dependence in stock-return pairs, Intell. Syst. Account.
Finance Manage. (ISSN: 1099-1174) 11 (2) (2002) 89–107, http://dx.doi.org/10.
1002/isaf.216.

[33] F. Chesnay, E. Jondeau, Does correlation between stock returns really increase
during turbulent periods? Econ. Notes (ISSN: 1468-0300) 30 (1) (2001) 53–80,
http://dx.doi.org/10.1111/1468-0300.00047.

[34] Z. Gu, R. Ibragimov, The ‘‘cubic law of the stock returns’’ in emerging markets,
J. Empir. Financ. (ISSN: 0927-5398) 46 (2018) 182–190, http://dx.doi.org/10.
1016/j.jempfin.2017.11.008.

[35] R. Laudan, L. Laudan, A. Donovan, Testing theories of scientific change, in:
Scrutinizing Science, Springer Netherlands, ISBN: 9789400928558, 1988, pp.
3–44, http://dx.doi.org/10.1007/978-94-009-2855-8_1.

[36] W.D. Berry, M. Golder, D. Milton, Improving tests of theories positing interaction,
J. Polit. (ISSN: 1468-2508) 74 (3) (2012) 653–671, http://dx.doi.org/10.1017/
s0022381612000199.

[37] M.S. Ulriksen, N. Dadalauri, Single case studies and theory-testing: the knots and
dots of the process-tracing method, Int. J. Soc. Res. Methodol. (ISSN: 1464-5300)
19 (2) (2014) 223–239, http://dx.doi.org/10.1080/13645579.2014.979718.

[38] E. Sirakaya, A.G. Woodside, Building and testing theories of decision making
by travellers, Tour. Manag. (ISSN: 0261-5177) 26 (6) (2005) 815–832, http:
//dx.doi.org/10.1016/j.tourman.2004.05.004.

[39] E. Cerin, A. Barnett, T. Baranowski, Testing theories of dietary behavior change
in youth using the mediating variable model with intervention programs, J. Nutr.
Educ. Behav. (ISSN: 1499-4046) 41 (5) (2009) 309–318, http://dx.doi.org/10.

1016/j.jneb.2009.03.129.

12
[40] C. Press, D. Yon, C. Heyes, Building better theories, Curr. Biol. (ISSN: 0960-9822)
32 (1) (2022) R13–R17, http://dx.doi.org/10.1016/j.cub.2021.11.027.

[41] H. Edelsbrunner, J.L. Harer, ComputationalTopology: an Introduction, American
Mathematical Society, 2022.

[42] B. Rieck, Topological data analysis for machine learning lecture, 2, 2020, URL
https://bastian.rieck.me/talks/ECML_PKDD_2020_Lecture_2.pdf.

[43] M. Beine, A. Cosma, R. Vermeulen, The dark side of global integration: Increasing
tail dependence, J. Bank. Financ. (ISSN: 0378-4266) 34 (1) (2010) 184–192,
http://dx.doi.org/10.1016/j.jbankfin.2009.07.014.

[44] H. White, T.-H. Kim, S. Manganelli, VAR for VaR: Measuring tail dependence
using multivariate regression quantiles, J. Econometrics (ISSN: 0304-4076) 187
(1) (2015) 169–188, http://dx.doi.org/10.1016/j.jeconom.2015.02.004.

[45] K. Jebran, S. Chen, I. Ullah, S.S. Mirza, Does volatility spillover among stock
markets varies from normal to turbulent periods? Evidence from emerging
markets of Asia, J. Finance Data Sci. (ISSN: 2405-9188) 3 (1–4) (2017) 20–30,
http://dx.doi.org/10.1016/j.jfds.2017.06.001.

[46] C.M. Pereira, R.F. de Mello, Persistent homology for time series and spatial data
clustering, Expert Syst. Appl. (ISSN: 0957-4174) 42 (15–16) (2015) 6026–6038,
http://dx.doi.org/10.1016/j.eswa.2015.04.010.

[47] D. Shnier, M.A. Voineagu, I. Voineagu, Persistent homology analysis of brain
transcriptome data in autism, J. R. Soc. Interface (ISSN: 1742-5662) 16 (158)
(2019) 20190531, http://dx.doi.org/10.1098/rsif.2019.0531.

[48] L.Y. Liu, A.J. Patton, K. Sheppard, Does anything beat 5-minute RV? A compar-
ison of realized measures across multiple asset classes, J. Econometrics (ISSN:
0304-4076) 187 (1) (2015) 293–311, http://dx.doi.org/10.1016/j.jeconom.2015.
02.008.

[49] F. Corsi, A simple approximate long-memory model of realized volatility, J.
Financ. Econom. (ISSN: 1479-8417) 7 (2) (2009) 174–196, http://dx.doi.org/
10.1093/jjfinec/nbp001.

[50] M. Caporin, G.G. Velo, Realized range volatility forecasting: Dynamic features
and predictive variables, Int. Rev. Econ. Finance (ISSN: 1059-0560) 40 (2015)
98–112, http://dx.doi.org/10.1016/j.iref.2015.02.021.

[51] H. Asgharian, C. Christiansen, A.J. Hou, The effect of uncertainty on stock
market volatility and correlation, J. Bank. Financ. (ISSN: 0378-4266) 154 (2023)
106929, http://dx.doi.org/10.1016/j.jbankfin.2023.106929.

[52] A. Shojaie, E.B. Fox, Granger causality: A review and recent advances, Annu.
Rev. Stat. Appl. (ISSN: 2326-831X) 9 (1) (2022) 289–319, http://dx.doi.org/10.
1146/annurev-statistics-040120-010930.

[53] J.R. McCrorie, M.J. Chambers, Granger causality and the sampling of economic
processes, J. Econometrics (ISSN: 0304-4076) 132 (2) (2006) 311–336, http:
//dx.doi.org/10.1016/j.jeconom.2005.02.002.

[54] H. White, D. Pettenuzzo, Granger causality, exogeneity, cointegration, and eco-
nomic policy analysis, J. Econometrics (ISSN: 0304-4076) 178 (2014) 316–330,
http://dx.doi.org/10.1016/j.jeconom.2013.08.030.

[55] L. Lopez, S. Weber, Testing for granger causality in panel data, Stata J.: Promot.
Commun. Stat. Stata (ISSN: 1536-8734) 17 (4) (2017) 972–984, http://dx.doi.
org/10.1177/1536867x1801700412.

[56] M. Eichler, V. Didelez, On granger causality and the effect of interventions
in time series, Lifetime Data Anal. (ISSN: 1572-9249) 16 (1) (2009) 3–32,
http://dx.doi.org/10.1007/s10985-009-9143-3.

[57] V. Troster, Testing for Granger-causality in quantiles, Econometric Rev. (ISSN:
1532-4168) 37 (8) (2016) 850–866, http://dx.doi.org/10.1080/07474938.2016.
1172400.

[58] S. Weber, L. Lopez, Applied Econometric Analysis using Cross Section and Panel
Data, Springer Nature Singapore, ISBN: 9789819949021, 2024, pp. 539–570,
http://dx.doi.org/10.1007/978-981-99-4902-1_18.

[59] V. Pontines, D. Luvsannyam, G. Bayarmagnai, Money-output revisited: Time-
varying granger causality evidence from forty-three countries, Open Econ. Rev.
(ISSN: 1573-708X) (2024) http://dx.doi.org/10.1007/s11079-024-09764-7.

[60] C.W.J. Granger, Investigating causal relations by econometric models and cross-
spectral methods, Econometrica (ISSN: 0012-9682) 37 (3) (1969) 424, http:
//dx.doi.org/10.2307/1912791.

[61] V.R. Joseph, Optimal ratio for data splitting, Stat. Anal. Data Min.: ASA Data
Sci. J. (ISSN: 1932-1872) 15 (4) (2022) 531–538, http://dx.doi.org/10.1002/
sam.11583.

[62] M.Z. Naser, A.H. Alavi, Error metrics and performance fitness indicators for
artificial intelligence and machine learning in engineering and sciences, Archit.
Struct. Constr. (ISSN: 2730-9894) (2021) http://dx.doi.org/10.1007/s44150-021-
00015-8.

[63] C. Zhang, X. Pu, M. Cucuringu, X. Dong, Graph neural networks for forecast-
ing realized volatility with nonlinear spillover effects, SSRN Electr. J. (ISSN:
1556-5068) (2023) http://dx.doi.org/10.2139/ssrn.4375165.

[64] K.G. Olivares, C. Challu, G. Marcjasz, R. Weron, A. Dubrawski, Neural basis
expansion analysis with exogenous variables: Forecasting electricity prices with
NBEATSx, Int. J. Forecast. (ISSN: 0169-2070) 39 (2) (2023) 884–900, http:
//dx.doi.org/10.1016/j.ijforecast.2022.03.001.

[65] X. Wang, C. Li, C. Yi, X. Xu, J. Wang, Y. Zhang, EcoForecast: An interpretable
data-driven approach for short-term macroeconomic forecasting using N-BEATS
neural network, Eng. Appl. Artif. Intell. (ISSN: 0952-1976) 114 (2022) 105072,

http://dx.doi.org/10.1016/j.engappai.2022.105072.

http://dx.doi.org/10.1093/jjfinec/nbad005
http://dx.doi.org/10.1016/j.eswa.2024.124851
http://dx.doi.org/10.1016/j.eswa.2024.124851
http://dx.doi.org/10.1016/j.eswa.2024.124851
http://dx.doi.org/10.1007/s10479-019-03374-0
http://dx.doi.org/10.2991/aebmr.k.220307.147
http://dx.doi.org/10.2991/aebmr.k.220307.147
http://dx.doi.org/10.2991/aebmr.k.220307.147
http://dx.doi.org/10.1016/j.eswa.2020.113481
http://dx.doi.org/10.1016/j.eswa.2020.113481
http://dx.doi.org/10.1016/j.eswa.2020.113481
http://refhub.elsevier.com/S2772-6622(24)00116-4/sb21
http://refhub.elsevier.com/S2772-6622(24)00116-4/sb21
http://refhub.elsevier.com/S2772-6622(24)00116-4/sb21
http://refhub.elsevier.com/S2772-6622(24)00116-4/sb21
http://refhub.elsevier.com/S2772-6622(24)00116-4/sb21
http://dx.doi.org/10.1093/jjfinec/nbaa008
http://dx.doi.org/10.1093/jjfinec/nbaa008
http://dx.doi.org/10.1093/jjfinec/nbaa008
http://dx.doi.org/10.3390/math9040320
http://dx.doi.org/10.1007/978-3-319-55471-6_5
http://dx.doi.org/10.1007/978-3-319-55471-6_5
http://dx.doi.org/10.1007/978-3-319-55471-6_5
http://dx.doi.org/10.1016/j.physa.2017.09.028
http://dx.doi.org/10.1016/j.physa.2017.09.028
http://dx.doi.org/10.1016/j.physa.2017.09.028
http://dx.doi.org/10.1016/j.physa.2021.126459
http://dx.doi.org/10.1016/j.eswa.2020.113475
http://dx.doi.org/10.1016/j.eswa.2020.113475
http://dx.doi.org/10.1016/j.eswa.2020.113475
http://dx.doi.org/10.1007/s11408-020-00377-x
http://dx.doi.org/10.1007/s11408-020-00377-x
http://dx.doi.org/10.1007/s11408-020-00377-x
http://dx.doi.org/10.1016/j.eswa.2020.113222
http://dx.doi.org/10.1016/j.eswa.2020.113222
http://dx.doi.org/10.1016/j.eswa.2020.113222
http://dx.doi.org/10.1016/j.jfds.2023.100107
http://dx.doi.org/10.1016/j.jfds.2023.100107
http://dx.doi.org/10.1016/j.jfds.2023.100107
http://dx.doi.org/10.1016/j.jfds.2024.100135
http://dx.doi.org/10.1016/j.jfds.2024.100135
http://dx.doi.org/10.1016/j.jfds.2024.100135
http://dx.doi.org/10.1002/isaf.216
http://dx.doi.org/10.1002/isaf.216
http://dx.doi.org/10.1002/isaf.216
http://dx.doi.org/10.1111/1468-0300.00047
http://dx.doi.org/10.1016/j.jempfin.2017.11.008
http://dx.doi.org/10.1016/j.jempfin.2017.11.008
http://dx.doi.org/10.1016/j.jempfin.2017.11.008
http://dx.doi.org/10.1007/978-94-009-2855-8_1
http://dx.doi.org/10.1017/s0022381612000199
http://dx.doi.org/10.1017/s0022381612000199
http://dx.doi.org/10.1017/s0022381612000199
http://dx.doi.org/10.1080/13645579.2014.979718
http://dx.doi.org/10.1016/j.tourman.2004.05.004
http://dx.doi.org/10.1016/j.tourman.2004.05.004
http://dx.doi.org/10.1016/j.tourman.2004.05.004
http://dx.doi.org/10.1016/j.jneb.2009.03.129
http://dx.doi.org/10.1016/j.jneb.2009.03.129
http://dx.doi.org/10.1016/j.jneb.2009.03.129
http://dx.doi.org/10.1016/j.cub.2021.11.027
http://refhub.elsevier.com/S2772-6622(24)00116-4/sb41
http://refhub.elsevier.com/S2772-6622(24)00116-4/sb41
http://refhub.elsevier.com/S2772-6622(24)00116-4/sb41
https://bastian.rieck.me/talks/ECML_PKDD_2020_Lecture_2.pdf
http://dx.doi.org/10.1016/j.jbankfin.2009.07.014
http://dx.doi.org/10.1016/j.jeconom.2015.02.004
http://dx.doi.org/10.1016/j.jfds.2017.06.001
http://dx.doi.org/10.1016/j.eswa.2015.04.010
http://dx.doi.org/10.1098/rsif.2019.0531
http://dx.doi.org/10.1016/j.jeconom.2015.02.008
http://dx.doi.org/10.1016/j.jeconom.2015.02.008
http://dx.doi.org/10.1016/j.jeconom.2015.02.008
http://dx.doi.org/10.1093/jjfinec/nbp001
http://dx.doi.org/10.1093/jjfinec/nbp001
http://dx.doi.org/10.1093/jjfinec/nbp001
http://dx.doi.org/10.1016/j.iref.2015.02.021
http://dx.doi.org/10.1016/j.jbankfin.2023.106929
http://dx.doi.org/10.1146/annurev-statistics-040120-010930
http://dx.doi.org/10.1146/annurev-statistics-040120-010930
http://dx.doi.org/10.1146/annurev-statistics-040120-010930
http://dx.doi.org/10.1016/j.jeconom.2005.02.002
http://dx.doi.org/10.1016/j.jeconom.2005.02.002
http://dx.doi.org/10.1016/j.jeconom.2005.02.002
http://dx.doi.org/10.1016/j.jeconom.2013.08.030
http://dx.doi.org/10.1177/1536867x1801700412
http://dx.doi.org/10.1177/1536867x1801700412
http://dx.doi.org/10.1177/1536867x1801700412
http://dx.doi.org/10.1007/s10985-009-9143-3
http://dx.doi.org/10.1080/07474938.2016.1172400
http://dx.doi.org/10.1080/07474938.2016.1172400
http://dx.doi.org/10.1080/07474938.2016.1172400
http://dx.doi.org/10.1007/978-981-99-4902-1_18
http://dx.doi.org/10.1007/s11079-024-09764-7
http://dx.doi.org/10.2307/1912791
http://dx.doi.org/10.2307/1912791
http://dx.doi.org/10.2307/1912791
http://dx.doi.org/10.1002/sam.11583
http://dx.doi.org/10.1002/sam.11583
http://dx.doi.org/10.1002/sam.11583
http://dx.doi.org/10.1007/s44150-021-00015-8
http://dx.doi.org/10.1007/s44150-021-00015-8
http://dx.doi.org/10.1007/s44150-021-00015-8
http://dx.doi.org/10.2139/ssrn.4375165
http://dx.doi.org/10.1016/j.ijforecast.2022.03.001
http://dx.doi.org/10.1016/j.ijforecast.2022.03.001
http://dx.doi.org/10.1016/j.ijforecast.2022.03.001
http://dx.doi.org/10.1016/j.engappai.2022.105072


H.G. Souto and A. Moradi Decision Analytics Journal 12 (2024) 100512
[66] M. Han, Z. Su, X. Na, Predict water quality using an improved deep learning
method based on spatiotemporal feature correlated: a case study of the Tanghe
reservoir in China, Stoch. Environ. Res. Risk Assess. (ISSN: 1436-3259) 37 (7)
(2023) 2563–2575, http://dx.doi.org/10.1007/s00477-023-02405-4.

[67] H.G. Souto, A. Moradi, Introducing NBEATSx to realized volatility forecasting,
Expert Syst. Appl. (ISSN: 0957-4174) 242 (2024) 122802, http://dx.doi.org/10.
1016/j.eswa.2023.122802.

[68] F.X. Diebold, R.S. Mariano, Comparing predictive accuracy, J. Bus. Econom.
Statist. (ISSN: 0735-0015) 13 (3) (1995) 253, http://dx.doi.org/10.2307/
1392185.

[69] D. Harvey, S. Leybourne, P. Newbold, Testing the equality of prediction mean
squared errors, Int. J. Forecast. (ISSN: 0169-2070) 13 (2) (1997) 281–291,
http://dx.doi.org/10.1016/s0169-2070(96)00719-4.

[70] S.M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions,
in: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
R. Garnett (Eds.), Advances in Neural Information Processing Systems, Vol. 30,
Curran Associates, Inc., 2017, URL https://proceedings.neurips.cc/paper_files/
paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf.

[71] K.E. Mokhtari, B.P. Higdon, A. Başar, Interpreting Financial Time Series with
SHAP Values, IBM Corp., Toronto, Ontario, Canada, 2019, pp. 166–172.

[72] Y. Meng, N. Yang, Z. Qian, G. Zhang, What makes an online review more
helpful: An interpretation framework using XGBoost and SHAP values, J. Theor.
Appl. Electr. Commer. Res. (ISSN: 0718-1876) 16 (3) (2020) 466–490, http:
//dx.doi.org/10.3390/jtaer16030029.

[73] W.E. Marcílio, D.M. Eler, From explanations to feature selection: assessing SHAP
values as feature selection mechanism, in: 2020 33rd SIBGRAPI Conference on
Graphics, Patterns and Images, SIBGRAPI, 2020, pp. 340–347.
13
[74] M.L. Baptista, K. Goebel, E.M. Henriques, Relation between prognostics predictor
evaluation metrics and local interpretability SHAP values, Artificial Intelligence
(ISSN: 0004-3702) 306 (2022) 103667, http://dx.doi.org/10.1016/j.artint.2022.
103667.

[75] D. Wang, S. Thunéll, U. Lindberg, L. Jiang, J. Trygg, M. Tysklind, Towards better
process management in wastewater treatment plants: Process analytics based
on SHAP values for tree-based machine learning methods, J. Environ. Manag.
(ISSN: 0301-4797) 301 (2022) 113941, http://dx.doi.org/10.1016/j.jenvman.
2021.113941.

[76] K. Futagami, Y. Fukazawa, N. Kapoor, T. Kito, Pairwise acquisition prediction
with SHAP value interpretation, J. Finance Data Sci. (ISSN: 2405-9188) 7 (2021)
22–44, http://dx.doi.org/10.1016/j.jfds.2021.02.001.

[77] A. Wojtuch, R. Jankowski, S. Podlewska, How can SHAP values help to shape
metabolic stability of chemical compounds? J. Cheminform. (ISSN: 1758-2946)
13 (1) (2021) http://dx.doi.org/10.1186/s13321-021-00542-y.

[78] C. Cakiroglu, S. Demir, M. Hakan Ozdemir, B. Latif Aylak, G. Sariisik, L. Abuali-
gah, Data-driven interpretable ensemble learning methods for the prediction
of wind turbine power incorporating SHAP analysis, Expert Syst. Appl. (ISSN:
0957-4174) 237 (2024) 121464, http://dx.doi.org/10.1016/j.eswa.2023.121464.

[79] V. Vimbi, N. Shaffi, M. Mahmud, Interpreting artificial intelligence models: a
systematic review on the application of LIME and SHAP in Alzheimer’s disease
detection, Brain Inform. (ISSN: 2198-4026) 11 (1) (2024) http://dx.doi.org/10.
1186/s40708-024-00222-1.

[80] T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’16, ACM, 2016, http://dx.doi.org/10.1145/2939672.
2939785.

http://dx.doi.org/10.1007/s00477-023-02405-4
http://dx.doi.org/10.1016/j.eswa.2023.122802
http://dx.doi.org/10.1016/j.eswa.2023.122802
http://dx.doi.org/10.1016/j.eswa.2023.122802
http://dx.doi.org/10.2307/1392185
http://dx.doi.org/10.2307/1392185
http://dx.doi.org/10.2307/1392185
http://dx.doi.org/10.1016/s0169-2070(96)00719-4
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
http://refhub.elsevier.com/S2772-6622(24)00116-4/sb71
http://refhub.elsevier.com/S2772-6622(24)00116-4/sb71
http://refhub.elsevier.com/S2772-6622(24)00116-4/sb71
http://dx.doi.org/10.3390/jtaer16030029
http://dx.doi.org/10.3390/jtaer16030029
http://dx.doi.org/10.3390/jtaer16030029
http://refhub.elsevier.com/S2772-6622(24)00116-4/sb73
http://refhub.elsevier.com/S2772-6622(24)00116-4/sb73
http://refhub.elsevier.com/S2772-6622(24)00116-4/sb73
http://refhub.elsevier.com/S2772-6622(24)00116-4/sb73
http://refhub.elsevier.com/S2772-6622(24)00116-4/sb73
http://dx.doi.org/10.1016/j.artint.2022.103667
http://dx.doi.org/10.1016/j.artint.2022.103667
http://dx.doi.org/10.1016/j.artint.2022.103667
http://dx.doi.org/10.1016/j.jenvman.2021.113941
http://dx.doi.org/10.1016/j.jenvman.2021.113941
http://dx.doi.org/10.1016/j.jenvman.2021.113941
http://dx.doi.org/10.1016/j.jfds.2021.02.001
http://dx.doi.org/10.1186/s13321-021-00542-y
http://dx.doi.org/10.1016/j.eswa.2023.121464
http://dx.doi.org/10.1186/s40708-024-00222-1
http://dx.doi.org/10.1186/s40708-024-00222-1
http://dx.doi.org/10.1186/s40708-024-00222-1
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785

	A generalization of the Topological Tail Dependence theory: From indices to individual stocks
	Introduction
	Topological Tail Dependence Theory
	Research Design
	Sample
	Linear Regression Analysis
	Granger Causality Framework
	SHAP Values

	Empirical Experimentation
	Linear Regression Analysis
	Granger Causality Framework
	SHAP Values
	Summary

	Research Limitations
	Conclusion
	Data and Code Availability
	Declaration of competing interest
	Data availability
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Appendix A. Summary Statistics of S&P100 Dataset
	Appendix B. Data Sources of Considered Control Variables
	Appendix C. Hyperparameters Search Space for NBEATSx and NBEATSx-WD
	Appendix D. Optimal Hyperparameters for NBEATSx and NBEATSx-WD
	References


