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This study investigates the Topological Tail Dependence (TTD) theory’s applicability to individual stock
volatility and high dimensions. Utilizing a comprehensive dataset from the S&P 100, the research employs
various methodologies to test the predictions and implications of the TTD theory. The theory’s main prediction
of Wasserstein Distance’s predictive utility, particularly in nonlinear models during volatile periods, is
confirmed. The research suggests extending the TTD theory’s application to various financial instruments and

incorporating dynamic topological features to enhance understanding market dynamics. This study validates
the TTD theory for individual stocks and highlights the necessity of topological considerations in financial
modeling, promising advancements in financial econometrics and risk management strategies.

1. Introduction

The intricate dynamics of financial markets and their suscepti-
bility to external shocks have perennially captivated the interest of
researchers and practitioners alike [1-3]. For instance, Cetorelli and
Gambera [4] explores the how the structure of the banking finan-
cial markets plays a crucial role in shaping the dynamics of capital
accumulation and economic growth, while [5,6] and [7] studies the
phenomenon of volatility spillovers between financial markets, espe-
cially in the context of globalized economies. The insights provided
by these studies are directly relevant to understanding and exploiting
the nature of current global financial markets, where this paper also
contributes to.

Within this realm, the forecasting of stock realized volatility remains
a cornerstone of financial econometrics, portfolio management, and
risk assessment [8-10]. For example, Atkins et al. [11] demonstrates
that news-derived information significantly improves the prediction of
volatility movements over price movements, highlighting the impor-
tance of qualitative factors in volatility forecasting. Similarly, Bonato
et al. [12] shows that realized skewness and kurtosis enhance the pre-
diction of realized volatility across multiple time horizons, underscor-
ing the value of incorporating higher moments of return distributions
in forecasting models.

Moreover, Basta and Molnar [13] explores the comovement of
volatility between the equity and oil markets, finding that such rela-
tionships are time-scale dependent, which further complicates volatility
forecasting but also opens up new avenues for more nuanced models.
Expanding on these themes, Liu et al. [14] introduces an innovative
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approach by decomposing trading volume to improve volatility fore-
casts, thereby providing a fresh perspective on the volume-volatility
relationship. In the context of advanced forecasting techniques, Tang
et al. [15] employs optimized deep learning models to predict Bitcoin
volatility, achieving significant improvements in accuracy, while Zhang
et al. [16] highlights the superiority of neural networks over traditional
models in forecasting intraday realized volatility by capturing complex
latent interactions.

Incidentally, in the last years, the amount of attention paid to
machine learning models for forecasting stock realized volatility in the
scientific literature has considerably increased [17-19]. To give a few
examples, Souto [17] evaluates the TimesNet model for forecasting
realized volatility and shows that it is not superior to existing bench-
mark models, highlighting the ongoing need for model enhancements
in volatility forecasting, while [20] introduces a novel Convolutional
Neural Network (CNN)-Long Short Term Memory (LSTM) hybrid model
specifically designed for predicting gold volatility, achieving substantial
improvements over benchmark models in this task. This work under-
scores the effectiveness of hybrid architectures in capturing both static
and dynamic characteristics of time series data, similar to how [21]
combines Feedforward Neural Networks with LightGBM to improve the
accuracy and robustness of volatility predictions. Both studies illustrate
the power of combining different machine learning techniques to tackle
the complex and nonlinear nature of financial data.

Finally, Bucci [22] and Lei et al. [23] both emphasize the superi-
ority of deep learning models like LSTM and Temporal Convolutional
Networks (TCN) over traditional econometric methods.
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These and other studies collectively represent the many develop-
ments in both theory and practice have been done in the realized
volatility literature, though among all these developments, the use of
Persistent Homology (PH) theory and derived techniques is presumably
one of the most extraordinary and interesting, with its successful appli-
cation ranging from corporate and systemic financial stability [24-27]
to investment strategies [28,29] and stock realized volatility forecasting
[30,31]. Nonetheless, it was not until the work of Souto [30] that the
literature had a proposed theory to explain the success of the use of
PH in portfolio and risk management. He introduces the Topological
Tail Dependence (TTD) theory to explain this success by connecting
the mathematical theory behind PH and the finance tail dependence
theory [32,33].

This paper expands the work of Souto [30] by testing the TTD
theory not only using stock indices. Although the assumption that
findings applicable to stock indices can be seamlessly extrapolated to
individual stocks often holds true, at times it can overlook the nuanced
and often divergent behaviors between these two entities, influenced by
idiosyncratic factors, sectoral dynamics, and investor sentiment [34].
This distinction underscores the necessity of validating the TTD theory’s
efficacy at the individual stock level, ensuring that its predictive capa-
bilities are not confined to the aggregated market movements reflected
in indices. Moreover, though [30] affirms that the TTD theory could be
seen as a generalization of the finance tail dependence theory for high
dimensions, his paper only uses six dimensions (stock indices) when
putting the TTD theory to the test. As a result, by exploring a great
number of individual stocks, one could also test whether the TTD theory
indeed works for high dimensions (e.g., above 20 stocks).

Consequently, given the current gap in the finance literature of
testing the TTD theory with individual stocks and in high dimensions,
this study aims to close this gap and contribute to the theoretical
development of the realized volatility literature. Adopting a rigorous
empirical approach, this study employs a comprehensive dataset com-
prising realized volatility measures of 80 individual stocks present in
the S&P 100, meticulously selected to ensure continuity and represen-
tativeness. The empirical investigation unfolds through a three-pronged
methodology: a linear regression analysis, a Granger causality frame-
work adapted for both linear and nonlinear models, and an innovative
application of Shapley Additive Explanations (SHAP) values within a
machine learning context to test one of the main implications of the
TTD theory.

This research endeavors to make two scientific contributions to
the realized volatility literature. Firstly, by testing and extending the
TTD theory to individual stocks and in high dimensions, allowing
researchers and practitioners to use the TTD theory to enhance their de-
cision making regarding portfolio and risk management. Secondly, this
research gives more evidence for the TTD theory, proving further indi-
cation that an exploration and even extension of this theory can likely
yield promising results for researchers regarding the understanding of
the stock market and for practitioners concerning the use of topological
information for better decision making in the context of portfolio and
risk management. On the other hand, the potential skepticism regarding
the novelty of this research is addressed by emphasizing the critical
need for theory validation across different financial securities. The gen-
eralization of the TTD theory to individual stocks and high dimensions
not only tests the theory’s veracity and robustness but also expands its
applicability, thereby enhancing its utility for a broader spectrum. Such
validation exercises are indispensable in the iterative process of theory
refinement and development in scientific inquiry [35-40]. Last but not
least, although this paper and [30] both explore the TTD theory, this
paper distincts itself by testing TTD for individual stocks and in high
dimensions and utilizing a more robust testing methodology, which
exploits a robust linear regression analysis method, a modified Granger
causality framework, and SHAP values.

Finally, the remainder of this paper is structured as follows: Sec-
tion 2 presents a brief description of the TTD theory and important
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concepts for its understanding, such as PH and Wasserstein Distance
(WD). Section 3, on the other hand, thoroughly explain the methodol-
ogy used in this study to put the TTD theory to the test in the context
of individual stocks and high dimensions. While Section 4 presents and
discusses the results of the empirical tests performed to test the TTD
theory, Section 6 concludes the paper by summarizing the key findings
of this research and their implications, and by proposing future research
avenues that researchers can follow based on the results of this study.

2. Topological tail dependence theory

Before going into the TTD theory, concepts such as Betti numbers,
PH and WD should be understood. Hence, if the reader is not familiar
with these concepts from Topology theory, please see [41] and [30].
However, a brief revision of these concepts can be found below:

PH is a methodological process for uncovering the topological char-
acteristics of data. This process involves: (1) plotting the data points,
(2) enveloping these points with disks or spheres of diameter ¢, and
establishing connections between points when their respective spheres
intersect, (3) estimating the quantity of d-dimensional holes using Betti
numbers, (4) iterating this procedure for a range of ¢ values, and
finally (5) constructing a PH diagram that chronicles the emergence
and resolution of each Betti number across dimensions for varying e
values. This process can also be visualized in Figs. 1, 2, and 3, which
is an example based on the lecture of Rieck [42].

Subsequently, the topological attributes of two datasets or time
frames can be compared by evaluating their respective PH diagrams
using the WD metric in order to model the topological change in time
or dataset.

Now considering the TTD theory, only a brief explanation of this
theory is presented in this paper to ensure sparsity. If the reader is
interested in the details behind this theory, please see [30].

The TTD theory exploits the phenomenon suggested by the Financial
Tail Dependence Theory [33,43,44] that there is an increase in absolute
stock correlations during financial downturns and also preceding such
downturns as discovered by Jebran et al. [45]. In other words, not
only do the absolute stock correlations increase in magnitude during
financially stressful times as the Financial Tail Dependence Theory
predicts, but also preceding such periods, albeit to a less extent. A real
life example of the COVID financial crisis can be found in Figs. 4, 5, and
6 when considering the stock indexes Standard and Poor’s 500 (S&P
500), Dow Jones Industrial Average (DJIA), and Russell 2000 Index
(RUT).

Hence, the variation in absolute stock correlations between two dis-
tinct periods could serve as a predictive marker for impending financial
turbulence by establishing a threshold during regular periods. However,
this method’s efficacy is limited by the ‘curse of dimensionality’ (thus,
not being useful for portfolio management of portfolios with a great
number of stocks) and fails to discern nonlinear and intricate rela-
tionships within the data [46,47]. Such limitations are circumvented
through the adoption of PH techniques, utilizing WD or L" norms of
Persistent Landscapes (which remain unaffected by such challenges
[46,47]) to properly model the phenomenon found by Jebran et al. [45]
and use this information for better decision making and forecasting
tasks. This explains for the success of the adoption of PH methods
in recent studies to foresee financial volatile periods [24-27] and
better perform portfolio management [28,29] and realized volatility
forecasting [30,31].

As a result of this theory, we can anticipate a positive relationship
between lagged WD and realized volatility. This is the case since prior
to and during financial downturns, equities exhibit a fast increase in
their joint correlation, and this increase in joint correlation can be
effectively captured through the use of WD as a measure of market
structure change, even in high dimensions where other methods fail due
to the aforementioned curse of dimensionality. Since WD captures the
extent of structural changes in the market, including increased stock
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Fig. 1. Data points enveloped by spheres of different diameters (inspired by Rieck [42]).
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Fig. 2. 1st Betti number for each e (inspired by Rieck [42]).
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Fig. 3. Persistence homology graph for g, (inspired by Rieck [42]).
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Fig. 4. 3D scatter plot from 16 December 2019 until 16 January 2020 (Normal Period)
[30,31].
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Fig. 5. 3D scatter plot from 17 January 2020 until 19 February 2020 (Preceding
Period) [30,31].
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Fig. 6. 3D scatter plot from 20 February 2020 until 23 March 2020 (Turbulent Period)
[30,31].

correlations and clustering during high volatility periods, its lagged,
and especially top percentile, values correlates positively with realized
volatility. As market structures become more interdependent prior to
turbulent periods, the WD becomes more pronounced, indicating that
higher realized volatility values are likely to occur on the upcoming
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days. It is worth mentioning that while there is a fast increase in the
interdependence of stock prior to turbulent periods, the converse is
not true from turbulent periods to normal periods as the transition is
smoother and takes longer.

3. Research design
3.1. Sample

This study employs a comprehensive dataset comprising daily re-
alized volatility (RV) measures from individual stocks to rigorously
examine the applicability of the TTD theory beyond the realm of stock
indices. Specifically, the dataset encompasses daily realized volatility
data for a total of 80 constituents stocks from the S&P 100 index
that have maintained continuous trading activity during the period
from July 1, 2007, to June 30, 2021. This timeframe was deliberately
chosen to encapsulate a broad spectrum of market conditions, including
periods of financial stability and turbulence, thereby providing a robust
foundation for evaluating the predictive efficacy of WDs of PH graphs
in forecasting stock realized volatility as proposed by the TTD theory.

The dataset’s RV measurements are based on high-frequency data
within the day, namely 5-min data, sourced from the LOBSTER
database. This database is renowned for its accuracy in providing limit
order book data, ensuring the reliability and consistency of the RV
assessments. The calculation of RV metrics, on the other hand, was
conducted using the approach introduced [48]. For further information
on this technique, refer to [48].

Additionally, a table of the considered stocks, together with a
detailed statistical summary of their daily 5-min RV figures, is pro-
vided in A. The table includes a detailed array of statistical data such
as the mean, median, and standard deviation, among other crucial
statistical measures, offering a preliminary insight into the volatility
characteristics of each stock included in the study.

Lastly, concerning the estimation of PH diagrams and WD values for
the 80 stocks together, the algorithm proposed by Souto [30] is used.
In essence, this algorithm estimates PH diagrams using last business
month’s returns of all considered stocks, yields one PH diagram per
day, and estimates the WD value for a certain day as the WD of the PH
diagram of that certain day and the PH diagram of the preceding day.

3.2. Linear regression analysis

This subsection delineates the linear regression framework adopted
to empirically investigate the predictive power of WDs in forecasting
next-day stock realized volatility, something predicted by the TTD
theory [30,31]. Grounded in the Heterogeneous Autoregressive (HAR)
model as proposed by Corsi [49], our study extends this model to
incorporate WDs as a novel explanatory variable, alongside a suite of
control variables, to assess their collective impact on realized volatility.

The augmented HAR model, henceforth denoted as HAR-WD, ex-
tends the traditional HAR model by incorporating WDs, alongside a
carefully curated set of control variables, to capture the multifaceted
influences on stock realized volatility. The model is specified as:

k
RV =By + B RV, + ﬁZRVt(W) + ﬁSRVrO") +rWD,+ Z 6;CV + €1 @

i=1

where RV, denotes the realized volatility at time 7 + 1, RV,, RV,"“),
and RV,('") represent the daily, weekly, and monthly realized volatil-
ities, respectively, and WD, is the Wasserstein Distance at time 7.
The term Zf.‘zl 7;CV,, captures the influence of k control variables
selected based on theoretical relevance and empirical validation, with
€,41 representing the error term.

Incidentally, we check the assumptions underlying linear regression
are upheld. This involves checking whether the assumption of the linear
regression theory are met and utilizing only the results of the stocks
that meet these assumptions (unless if only the homoskedasticity of the
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residuals assumption is not met, then the Estimated Generalized Least
Squares (EGLS) method is employed instead of Ordinary Least Squares
(OLS) method). Besides this approach, multicollinearity is checked with
Variance Inflation Factor (VIF) and handled by using a basic feature
selection, which was enough for this study given the considered control
variables, by excluding variables with VIF values higher than 10 and
that do not have a statistically significant T-value and/or were highly
correlated with another control variable.

Moving to the control variables, initially, a broad array of con-
trol variables was considered, drawing from established literature to
capture various market and financial dynamics [30,31,50,51]. These
variables, along with their respective proxies, are outlined below while
the data sources where the historical values for these variables can be
found in Appendix B:

Log of VIX close price and VIX close price, serving as a proxy for
market volatility expectations [30,31,50,51].

US dollar foreign exchange index value (DXY), reflecting the
strength of the US dollar in global markets [50].

American credit spread, proxied by the Term Premium on a
10 Year Zero Coupon Bond (THREEFYTP1), to capture the risk
perception in credit markets [50].

American term spread, represented by the difference between 10-
Year Treasury Constant Maturity and 3-Month Treasury Constant
Maturity (T10Y3M), to gauge the yield curve’s shape [50].
Treasury-EuroDollar (TED) rate, indicating the credit risk in the
banking sector [51].

Fama-French five factors, extending the original three-factor
model to include RMW (Robust Minus Weak) and CMA (Conser-
vative Minus Aggressive) factors, reflecting a broader spectrum of
market anomalies [30,31].

Post the multicollinearity assessment and feature selection, the final
set of control variables incorporated into the HAR-WD model includes:

RV, =a+ PRV, +yWD, +5/ACS,_, +8,DXY,_; + 6,TED,_,
5
+ Z O3k FF5 1 + €41, (@)
k=1
where ACS,_, denotes the lagged American credit spread, DXY,_, the
lagged US dollar foreign exchange index value, TED,_; the lagged
TED rate, and FF5;, | the lagged values of the Fama-French five
factors. This refined model respects the assumptions behind the lin-
ear regression theory and do not contain strong multicollinearity. By
implementing this model and performing a linear regression analysis,
we aim to evaluate to what extent one of the implications of the
TTD theory, namely the statistically significant predictive power of WD
lagged values for realized volatility [30,311, holds for individual stocks.

3.3. Granger causality framework

The Granger causality approach constitutes the second pivotal
methodology in our exploration of the TTD theory and its predictions
concerning the relationship between WD values and next-day stock
realized volatility. Granger causality, a cornerstone in econometric
literature [52-59], assesses the predictive ability of one time series
over another, thereby enabling the inference of potential causal re-
lationships within temporal data sequences [60]. Our application of
this methodology is twofold, encompassing both linear and nonlinear
paradigms since the TTD theory states that there is only a strong
positive relationship between WD values and next-day stock realized
volatility close to volatile periods [30,31]. Hence, nonlinear models
would be able to capture this nonlinear relationship better than linear
models, albeit linear models ought to be able to capture this relation-
ship partially. Thus, the use of linear models has also the objective to
compare the gain in predictive power with the addition of WD as an
exogenous variable of the linear model and nonlinear model; if the gain
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in forecasting accuracy for the nonlinear model is considerably higher
than for the linear model, this is also another evidence that the TTD
theory is likely to be correct regarding the aforementioned implication
of the theory.

The data split used for training and testing both linear and non-
linear models is 70%,/30%. This division follows standard forecasting
practices, ensuring enough model training and reliable performance
evaluation [61]. Additionally, four error measures are used to assess
the forecasting accuracy of the models in the testing sample: Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), Quasilikelihood
(QLIKE), and Mean Percentage Absolute Error (MAPE). These metrics
are defined as follows:

RMSE = \J Z Z(y” iR 3
_/ 1i=

MAE_sanZI’Z|y” y’f‘ “
QLIKE = ii(y’—’-l g<ﬂ>-1> ()]
sXn oa \ iy Vij
MAPE = 22 y” ﬁ” (6)
- Xn

where y; ; is the actual observation, y; ; the forecasted value, n the total
observations, and s the number of stocks. Together, these measures
offer a complete evaluation of the forecasting power of the models
[62,63].

In the realm of linear models, we employ the HAR model, as
delineated by Corsi [49] and its augmented form with the incorporation
of WD as an external variable. This extension aims to capture the linear
predictive influence of WD on stock realized volatility, adhering to the
traditional Granger causality framework that evaluates the statistical
significance of added predictors. Eqgs. (7) and (8) present the original
HAR model and the HARX model respectively [49]:

RV,yy = fo+ BRV, + [RV," + RV ™ + ¢,y @

RV,y; = fo+ B RV, + BRV ") + RV "™ + yW D, + €14y, (8)

To transcend the limitations of linear assumptions and capture the
positive nonlinear relationship between WD values and next-day stock
realized volatility as proposed by the TTD theory [30,31], we incor-
porate nonlinear models through the cutting-edge NBEATSx neural
network [64]. This model is employed in two configurations: one uti-
lizing historical values of stock’s realized volatility, henceforth named
NBEATSx, and another extending the input space to include WD values,
henceforth named NBEATSx-WD. The choice of the NBEATSx model
over other nonlinear models is motivated by its superiority over other
models in various forecasting tasks [64-66], including stock realized
volatility forecasting [67]. To ensure sparsity of this paper, we opt to
not mathematically and conceptually explain the architecture behind
the NBEATSx model and refer readers interested in this architecture
to [64].

The nonlinear nature of these models necessitates a departure from
conventional Granger causality testing [60], leading to the adoption
of the Diebold-Mariano (DM) test, initially devised by Diebold and
Mariano [68] and improved by Harvey et al. [69]. This test evalu-
ates the null hypothesis of equal predictive accuracy between models,
enabling us to ascertain the incremental predictive value of WD in a
nonlinear context. This adaptation is crucial for evaluating the TTD the-
ory’s premise that WD values, particularly during financially turbulent
periods, hold enhanced predictive power for stock realized volatility. It
is worth mentioning that the DM test is done for each considered error
metric and stock individually for a more granular Granger causality
testing while the p-value threshold is the standard threshold of 0.05.

To specifically address the TTD theory’s implications, we also focus
our analysis on the top ten percentile of trading days characterized by
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elevated market realized volatility. This selective approach allows us
to scrutinize the theory’s assertion that proximity to volatile financial
periods magnifies the predictive relevance of WD, providing a nuanced
understanding of its utility in forecasting stock realized volatility under
stress conditions [30,31]. This comprehensive Granger causality frame-
work, encompassing both linear and nonlinear models and tailored to
the idiosyncrasies of financial market data, allows us to rigorously test
the TTD theory. By evaluating the predictive enhancement offered by
WD, particularly during periods of financial turbulence, we effectively
put the TTD theory to the test for individual stocks.

Lastly, in the context of nonlinear models, the task of ascertaining
the most suitable hyperparameters entails a rigorous and systematic
exploration, encompassing a dedicated validation phase. During this
validation phase, a portion equivalent to 28.5% of the training dataset
is set aside for the purpose of fine-tuning the considered hyperparam-
eters of the NBEATSx model, which can be found in Appendix C. This
meticulous procedure entails the execution of a total of 40 distinct
trials, each probing diverse hyperparameter configurations, and an
additional set of 20 trials dedicated exclusively to the identification
of the optimal random seed for maximal effectiveness. Finally, the
optimal hyperparameters for NBEATSx and NBEATSx-WD can be found
in Appendix D.

3.4. SHAP values

In our quest to empirically validate the TTD Theory, the third
and concluding methodological facet employs SHAP (SHapley Additive
exPlanations) values [70] to elucidate the impact of WD on the pre-
dictability of next-day stock realized volatility. SHAP values, rooted in
cooperative game theory, offer a powerful framework for interpreting
complex machine learning models by quantifying the contribution of
each feature to the model’s prediction for a given observation [70].
This interpretability tool has gained widespread recognition in ma-
chine learning literature for its ability to provide transparent and
comprehensible explanations of model predictions, thereby bridging
the gap between advanced machine learning techniques and practical
decision-making [71-79].

The core idea of SHAP values hinges on the Shapley value, a
concept that allocates payouts to players based on their contribution
to the total payoff of the coalition they form. The Shapley value for a
player (independent variable in our context) is computed as the average
marginal contribution of this independent variable across all possible
sets of considered independent variables for the model. Mathematically,
the Shapley value ¢, for feature i in a coalition of N features is defined
as [70]:

Z [SIIANT =S| = D!

¢:(v) = V]!

WS U {ih) —ov(s)), €)]

SCN\{i)
where v(S) represents the prediction function’s value for a subset of
features S, and v(S U {i}) denotes the value of the function when

feature i is added to the subset .S. The term W ensures

an equitable distribution, accounting for the number of permutations
that include feature i in a coalition of size |S|. In the specific context
of forecasting stock realized volatility using machine learning models,
SHAP values offer a nuanced understanding of how lagged values of
for instance realized volatility and WD influence the forecast. Con-
sider a model predicting next-day volatility RV,,; based on features
{RV,,RV,_y, ..., WD,}:

RV, = f(RV,RV,_,,...,WD,), (10)

where f represents the predictive model. The SHAP value for W D,,
for instance, quantifies the marginal contribution of the WD feature to
the difference between the forecasted volatility KV, and the average
forecast over all data points. This insight is invaluable, especially
when evaluating the TTD theory’s assertion regarding the predictive
significance of WD in proximity to volatile financial periods [30,31].



H.G. Souto and A. Moradi

Table 1
Linear regressions results using Eq. (2).
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Metric

Value

Number of stocks where EGLS was used instead of OLS due to heteroscedasticity
Number of stocks where the residuals autocorrelation assumption was not met

RZ

Adjusted R?

Number of stocks where F-statistics p-value was below 0.01
WD (t-1) coefficient value

Number of stocks where T-statistics p-value for WD (t—1) was below 0.01

79 (out of 80)

1 (out of 80)
73.43% + 5.5%
73.50% + 5.52%
79 (out of 79)
0.0041 + 0.0004
79 (out of 79)

Presented values for R?, Adjusted R, and WD (t-1) coefficient value have the following format: mean value + standard

deviation value.

Visualizing these SHAP values, particularly through scatter plots with
WD values on the X-axis and SHAP values on the Y -axis, elucidates the
relationship between WD and its impact on volatility forecasts. Such
visualizations can confirm or refute theoretical predictions of the TTD
theory.

For this analysis, we employ the XGBoost (eXtreme Gradient Boost-
ing) algorithm [80], due to its predictive power and compatibility
with the ‘shap’ Python library (the Python library used in this study
for the estimation of SHAP values). To ensure sparsity, this paper
does not delve into the XGBoost’s architecture and refers readers in-
terested in it to Chen and Guestrin [80]. Consistent with the Linear
Regression Analysis, the input variables for the XGBoost model include
the same control variables found in Eq. (2), and, crucially, the WD
values. This consistency ensures a harmonized basis for comparison
across our methodological approaches. Our approach involves con-
ducting separate regressions for each stock using the XGBoost model,
followed by the computation of SHAP values for the WD variable.
This individualized analysis allows for a nuanced understanding of the
WD’s predictive influence across different stocks. To synthesize these
insights, we compute the mean SHAP values for the WD variable,
facilitating a consolidated view of its impact. The culmination of our
SHAP value analysis is a scatter plot that visualizes the relationship
between WD values (X-Axis) and their corresponding SHAP values
(Y-Axis).

This visualization strategy is designed to test the TTD theory’s
assertion regarding the behavior of the importance of WD values (here
represented by SHAP values) for RV forecasting in relation to WD mag-
nitudes. According to the theory, for WD values below the around 90th-
percentile threshold, SHAP values are expected to exhibit a random
distribution around zero, indicative of the WD’s negligible predictive
value in these ranges [30,31]. Conversely, for WD values surpassing
this threshold, SHAP values should manifest as positive and significant,
underscoring the enhanced predictive utility of WD in forecasting
stock realized volatility during periods proximal to financial turbulence
[30,31].

4. Empirical experimentation
4.1. Linear regression analysis

Table 1 presents the aggregated main results of the linear regres-
sions for all considered stocks using Eq. (2), while Tables 2 and 3
present the coefficient values and their standard deviations for the
explanatory variables other than WD (t — 1), as well as the significance
of the T-statistics p-values for these explanatory variables, respectively.

It can be seen that virtually all linear regressions possess het-
eroscedasticity in their residuals, demanding the use of EGLS instead of
OLS. Interestingly, the only model that does not have heteroscedasticity
in its residuals is also the same model where the residuals autocorre-
lation assumption is not met. As a result of the latter fact, this model
is not considered for the henceforth analysis of the linear regressions
results. The R? and Adjusted R? are relatively high, albeit there exists
a considerably high variation among the stocks. Given the Anderson—
Darling test statistic result of 0.580 for both variables and assuming that

Table 2
Other explanatory variables coefficient values and their standard deviations.

Variable Coefficient value

D (t-1) coefficient value

Mkt _RF (t—1) coefficient value

SMB (t—1) coefficient value

HML (t-1) coefficient value

RMW (t—1) coefficient value

CMA (t-1) coefficient value

Credit spread (t—1) coefficient value
TEDRATE (t-1) coefficient value

Dolar index value (t—1) coefficient value

0.7495 + 0.0452
—0.0002 + 0.0001
—0.0001 + 0.0001
—4.8e-05 + 8.7e-05
0.0002 + 0.0002
0.0001 + 0.0002
0.0001 + 0.0003
0.0014 + 0.0005
—4e—-06 + 2.6e-05

Table 3

Number of stocks where T-statistics was significant for other explanatory variables.
Variable p-value = 0.05 p-value = 0.01
D (t-1) 79 (out of 79) 79 (out of 79)
Mkt RF (t-1) 72 (out of 79) 66 (out of 79)
SMB (t—1) 21 (out of 79) 14 (out of 79)
HML (t-1) 8 (out of 79) 0 (out of 79)
RMW (t-1) 21 (out of 79) 7 (out of 79)
CMA (t-1) 5 (out of 79) 0 (out of 79)

22 (out of 79)
79 (out of 79)
31 (out of 79)

13 (out of 79)
79 (out of 79)
22 (out of 79)

Credit spread (t—1)
TEDRATE (t-1)
Dollar index value (t—1)

they are random variables, we can construct 99.7% confidence intervals
using the normal distribution as a basis. As a result, we can claim
that our linear regression model will likely have a R?> and Adjusted
R? between 56.93% and 89.93%, and 56.94% and 90.06% respectively
for a given American stock, showing the heterogeneity present in the
considered sample.

Incidentally, all linear regressions present a F-statistics p-value be-
low the conservative threshold of 0.01, showing the all considered
models pass the standard F-statistics check. Last but not least, all linear
regressions present a T-statistics p-value for WD (t — 1) below the
conservative threshold of 0.01 and all the coefficients of WD (t — 1)
are positive, showing that the prediction of the TTD theory regarding
the significant and positive relationship between WD values and next
day’s realized volatility is correct. Consequently, not only do the results
of the Linear Regression Analysis in this study not allow us to falsify the
generalization of the TTD theory for individual stocks, but it also serves
as evidence that the TTD theory could likely be correct, albeit further
analysis with the Granger causality and SHAP values methodologies are
needed to affirm this with certainty.

Lastly, when considering the results present in Tables 2 and 3,
the significance of the other explanatory variables, and thus their
importance for a proper linear regression analysis, becomes empirically
clear, with the exception of HML (t — 1) and CMA (t — 1). However,
an in-depth analysis of and financial economic explanation for the
coefficient values is omitted to ensure the sparsity of this paper and
due to the fact that it lies outside the scope of this paper.
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Number of stocks where the model using WD is statistically inferior for RMSE
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Fig. 7. DM tests results for RMSE.

Table 4

Error measures relative results.
Model RMSE MAE QLIKE MAPE
HARX (full testing sample) 99.59% 100.03% 99.32% 100.53%
NBEATSx-WD (full testing sample) 96.37% 99.97% 95.40% 103.16%
HARX (10th most volatile percentile of testing sample) 99.10% 99.64% 96.69% 100.56%
NBEATSx-WD (10th most volatile percentile of testing sample) 88.68% 90.00% 78.55% 92.16%

Presented values are relative values, in the sense that they are divided by the error metrics values of the models without WD (t—1) in order to facilitate

the analysis and interpretation of the results.

4.2. Granger causality framework

The error metrics relative results for both linear and nonlinear
models and considering the full testing sample or only the top 10th
most volatile percentile of the testing sample can be found in Table 4.
It is worth mentioning that the present values are relative values,
meaning they are normalized by dividing them by the error metrics
values of the models without WD (t — 1). This normalization facilitates
the analysis and interpretation of the results. Mathematically, this can
be expressed as:

Value with WD (t - 1)
Value without WD (t— 1)

This formula ensures that the values are easier to compare and
interpret by providing a consistent basis for evaluation.

It can be seen that for the linear models (HAR and HARX), there
is barely no improvement in the predictive power with the addition of
WD (t — 1) information for the full testing sample and to some extent
for the 10th most volatile percentile of the testing sample, with the
exception of the QLIKE error measure. Regarding the nonlinear model
(NBEATSx and NBEATSx-WD), on the other hand, there is a more clear
improvement in the predictive accuracy with the addition of WD (t —
1) information, especially for the 10th most volatile percentile of the
testing sample. This is exactly what the TTD theory predicts, namely
that there exists a significant nonlinear relationship between WD values
and next day’s realized volatility, which implies that the addition of
WD (t — 1) information for forecasting models would be beneficial
especially for nonlinear models and during volatile periods. Despite
these primary results, statistical testing with the DM test is still required
to validate the results and conclusions from Table 4.

Fig. 7 depicts the aggregated results of DM tests for RMSE. It is
worth noting that the results shown in Fig. 7 and subsequent figures in
this chapter are based on the number of stocks where the p-value for the
DM test is below the standard p-value threshold of 0.05. Interestingly,
it can be seen that the incorporation of WD (t — 1) information to both
the linear and nonlinear models led to a statistical superiority of the
models in forecasting accuracy, with the nonlinear model following the
prediction of the TTD theory of the model with WD (t — 1) performing
better in volatile times while the linear model not. However, this can
also be explained by another implication of the TTD theory, namely the
nonlinear relationship of WD values and next day’s realized volatility,
which needless to say can only be properly captured by nonlinear
models.

Relative Value =

The DM tests results for MAE can be seen in Fig. 8. Now, a clear and
statistically significant improvement of forecast precision is observed
only for the nonlinear model and during volatile periods, as predicted
by the TTD theory.

Moving to the results of the DM tests for QLIKE, which can be found
in Fig. 9, the situation is almost identical to the DM tests results for
RMSE. Hence, the same conclusions drawn for RMSE are applicable
here.

Lastly, Fig. 10 shows the results the DM tests for MAPE. Inter-
estingly, in both cases the models without WD (t — 1) information
perform statistically better considering the whole testing sample. Yet,
when considering volatile periods, the incorporation of WD (t — 1)
information leads to a superiority of the nonlinear model and an
equality for the linear model. The superiority of the models without
WD (t — 1) information, when considering the whole testing sample,
can presumably be explained by the fact that the MAPE error measure
considers the relative error (i.e., the error normalized by the real value),
which makes this error metric to treat errors in volatile and non-volatile
periods with the same weight. Therefore, not only is the increase in
forecasting power through the addition of WD (t — 1) information not
perceived when considering the whole testing sample, but also the
incorporation of WD (t — 1) information has a negative impact on the
forecasting power of the models during non-volatile periods. This is
explained by the TTD theory’s implication of the nonlinear positive
relationship between WD values and next day’s realized volatility,
which is only present during periods preceding (and during as well)
volatile times. Thus, the models using WD (t — 1) information likely
detect and utilize a spurious relationship between WD values and next
day’s realized volatility for non-volatile periods during the training
stage, which lead to a relatively poorer performance of these models for
predictions for non-volatile periods in the testing sample. In conclusion,
although the results presented in Fig. 10 might at first seem to be
against the predictions of the TTD theory, after a good look, they are
actually evidence for the TTD theory.

4.3. SHAP values

Fig. 11 shows a scatter plot with a histogram of the normalized WD
(t = 1) values in the X-axis and SHAP values for WD (t — 1) in the Y-
Axis. As predicted by the TTD theory, the importance of the relationship
between WD values and next day’s realized volatility is non-existent
and becomes positive and significant for the top percentiles of WD
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Fig. 8. DM tests results for MAE.
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Fig. 9. DM tests results for QLIKE.
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Fig. 10. DM tests results for MAPE.

values. This can be seen by the fact that for the greatly majority of
WD values (values roughly below the 90th percentile threshold), the
SHAP values for WD (t — 1) are centered between 0 and approximately
distributed as a normal distribution, showing that the estimated SHAP
values are likely noise and there is indeed no relationship between WD
values and next day’s realized volatility. Incidentally, this is also an
evidence for the proposed explanation for the results of Fig. 10. On
the other hand, for a small minority of WD values (values roughly
above the 90th percentile threshold), the SHAP values for WD (t
— 1) are clearly positive, demonstrating the positive and significant
relationship between WD values and next day’s realized volatility for
the top percentiles of WD values.

4.4. Summary

Table 5 summarizes the methods used to test the TTD theory and
their respective conclusions. It can observed that each method provided
compelling evidence supporting the theory.

Regarding the linear regression analysis, the analysis revealed a
significant positive relationship between WD values and the next day’s

Table 5
Methods used to test the TTD theory and their respective conclusions.

Method

Linear regression
analysis

Conclusion

Significant positive relationship between WD
values and next day’s realized volatility, as
predicted by the TTD theory.

Granger causality
framework

Significantly improvement in predictive accuracy
for nonlinear models, especially during volatile
periods, as predicted by the TTD theory.

SHAP values Positive and significant relationship between WD
values and next day’s realized volatility for top
percentiles of WD values, as predicted by the TTD

theory.

realized volatility. This result aligns with the TTD theory’s prediction
that higher WD values are associated with increased volatility, con-
firming the theory’s applicability at the individual stock level. Moving
to the Granger causality framework, the framework showed a notable
improvement in predictive accuracy for nonlinear models, particularly
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Fig. 11. Scatter plot of WD (t — 1) SHAP values and WD (t — 1) values.

during volatile periods. This finding supports the TTD theory’s assertion
of a nonlinear relationship between WD values and subsequent realized
volatility. Finally, the SHAP values analysis demonstrated a positive
and significant relationship between WD values and next day’s realized
volatility for the top percentiles of WD values. This result further
substantiates the TTD theory, highlighting the importance of WD values
in predicting volatility, especially for extreme values, as predicted by
the theory.

Collectively, the results from these methods provide strong evidence
in favor of the TTD theory. They demonstrate that the theory not
only holds true for individual stocks but also generalizes well to high
dimensions, involving numerous stocks. This reinforces the robustness
and broad applicability of the TTD theory in different market conditions
and across various financial instruments.

5. Research limitations

While the empirical results indicate a significant relationship be-
tween WD and realized volatility, this finding should be approached
with caution. The linear regression analysis demonstrates that WD (t
— 1) has a positive and statistically significant impact on next-day
realized volatility. However, this relationship may not fully capture
the complexity of market dynamics. Alternative explanations for the
observed relationship could include omitted variable bias or other
latent factors influencing both WD and volatility. For instance, market
microstructure effects or varying liquidity conditions might also play
roles that were not explicitly modeled in this study. Additionally,
the nonlinear Granger causality framework further supports the TTD
theory’s prediction that the relationship between WD and realized
volatility intensifies during volatile periods. Nonetheless, the limited
improvement in predictive power for linear models incorporating WD
suggests that the full explanatory power of WD may only be realized in
more complex, nonlinear models.

Incidentally, this study acknowledges several critical assumptions
that underpin the analysis, including those related to heteroscedas-
ticity. The extensive presence of heteroscedasticity in the residuals
necessitated the use of Estimated Generalized Least Squares (EGLS)
instead of Ordinary Least Squares (OLS) for 79 out of the 80 stocks
analyzed. Although EGLS addresses heteroscedasticity, it introduces
complexity and potential sensitivity to model specifications.

Another crucial assumption involves the linearity of the models used
in the initial regression analysis. Given the evidence of nonlinearity in
the relationship between WD and realized volatility, as highlighted by
the improved performance of nonlinear models, the reliance on linear
models may limit the scope of the findings. The nonlinear nature of
the relationship suggests that further exploration with more sophisti-
cated and nonlinear models could yield deeper insights. Moreover, the

Decision Analytics Journal 12 (2024) 100512

potential for sample selection bias and model specification errors must
be considered. The dataset comprises stocks from the S&P 100 index,
which may not be representative of the broader market. This limitation
could restrict the generalizability of the findings. Additionally, the
choice of control variables, while based on established literature, might
omit other relevant factors, leading to omitted variable bias.

The discussion on assumptions and limitations emphasizes the need
for cautious interpretation of the results. Future research could ben-
efit from expanding the dataset to include a wider array of stocks
and incorporating additional control variables to mitigate potential
biases. Moreover, employing advanced econometric and machine learn-
ing techniques could provide a more nuanced understanding of the
complex dynamics at play.

In summary, while the study provides evidence supporting the
TTD theory’s predictions, the limitations related to model assump-
tions, potential biases, and the inherent complexity of financial mar-
kets suggest that these findings should be interpreted as indicative
rather than definitive. Further research is warranted to validate and
extend these results in different contexts and with more sophisticated
methodologies.

6. Conclusion

This study embarked on an empirical journey to explore the appli-
cability of the Topological Tail Dependence (TTD) theory to individ-
ual stock realized volatility, employing a multifaceted methodological
approach encompassing linear regression analysis, Granger causality
framework, and SHAP value analysis. The findings unveil that the TTD
theory can successfully be generalized to individual stocks and in high
dimensions, allowing for the use of the temporal moving Wasserstein
Distance (WD) estimations of Persistent Homology (PH) diagrams to
better model and forecast stock realized volatility and volatile periods.

The Linear Regression Analysis revealed a significant and posi-
tive relationship between WD and subsequent day’s realized volatility,
lending empirical support to the TTD theory’s prediction of the sig-
nificant relationship between WD and next day’s realized volatility.
The Granger causality approach, on the other hand, further nuanced
our understanding, particularly through the lens of nonlinear models
like NBEATSx, which demonstrated a marked improvement in pre-
dictive accuracy upon the inclusion of WD, especially during periods
of heightened volatility. This finding resonates with the TTD theory’s
assertion of a significant positive nonlinear relationship between WD
and future realized volatility, suggesting that WD’s predictive utility is
only present preceding and under turbulent market conditions. Finally,
the SHAP value analysis provided a granular view of this relationship,
revealing that the impact of WD on volatility predictions is predom-
inantly pronounced for values in the upper percentiles, aligning with
the TTD theory’s propositions. This observation not only corroborates
the theory’s validity but also highlights the importance of considering
topological features in volatility forecasting, particularly in the context
of volatile periods.

The practical implications of these findings are manifold. Firstly, the
demonstrated relationship between WD and realized volatility provides
a novel predictive tool for market participants. By incorporating WD
into predictive models, financial analysts and traders can potentially
improve the accuracy of their volatility forecasts, particularly dur-
ing volatile market conditions. This enhancement in forecasting can
lead to more informed trading strategies, better risk management,
and improved portfolio optimization. Moreover, the ability to predict
periods of heightened volatility with greater precision can aid in the
development of dynamic hedging strategies, reducing the potential for
significant financial losses during turbulent periods.

Additionally, the insights gleaned from this study open several
avenues for future research. Extending the analysis to a broader ar-
ray of financial instruments, including derivatives and fixed-income
securities, could provide a more comprehensive understanding of the
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Table 6
Summary statistics of 5-min realized volatility daily values.

Tickers Mean Std Min 25% 50% 75% Max
AAPL 1.32% 0.74% 0.27% 0.84% 1.12% 1.57% 6.08%
ABT 1.07% 0.51% 0.35% 0.75% 0.94% 1.22% 5.70%
ACN 1.15% 0.63% 0.37% 0.76% 0.96% 1.33% 7.28%
ADBE 1.42% 0.70% 0.40% 0.96% 1.24% 1.66% 6.64%
ADP 1.04% 0.57% 0.32% 0.70% 0.89% 1.18% 6.56%
AMGN 1.26% 0.55% 0.40% 0.90% 1.13% 1.46% 5.71%
AMT 1.27% 0.74% 0.43% 0.83% 1.05% 1.45% 7.17%
AMZN 1.57% 0.86% 0.33% 1.01% 1.36% 1.89% 7.71%
AXP 1.43% 1.05% 0.35% 0.80% 1.07% 1.63% 9.31%
BA 1.40% 0.85% 0.36% 0.88% 1.16% 1.61% 9.37%
BAC 1.75% 1.36% 0.32% 1.01% 1.34% 1.92% 11.45%
BDX 1.06% 0.50% 0.36% 0.74% 0.93% 1.22% 5.27%
BMY 1.20% 0.55% 0.29% 0.85% 1.07% 1.39% 5.43%
BSX 1.57% 0.81% 0.45% 1.07% 1.38% 1.83% 7.31%
C 1.80% 1.48% 0.39% 1.00% 1.35% 1.98% 15.64%
CAT 1.47% 0.79% 0.39% 0.97% 1.26% 1.70% 6.62%
CB 1.11% 0.76% 0.27% 0.66% 0.86% 1.27% 7.59%
CI 1.61% 1.01% 0.43% 1.01% 1.32% 1.81% 12.53%
CMCSA 1.34% 0.73% 0.34% 0.88% 1.15% 1.57% 6.84%
CME 1.48% 0.94% 0.43% 0.92% 1.17% 1.65% 8.21%
cop 1.53% 0.87% 0.40% 0.99% 1.31% 1.80% 8.50%
COST 1.07% 0.57% 0.31% 0.73% 0.92% 1.21% 5.32%
CRM 1.79% 0.89% 0.47% 1.20% 1.55% 2.15% 7.76%
CSCo 1.25% 0.65% 0.37% 0.84% 1.07% 1.45% 6.42%
CvVs 1.29% 0.65% 0.39% 0.87% 1.10% 1.47% 6.02%
CVvX 1.35% 0.79% 0.38% 0.85% 1.13% 1.57% 6.77%
D 0.94% 0.52% 0.27% 0.63% 0.80% 1.07% 5.11%
DD 1.37% 0.71% 0.37% 0.90% 1.17% 1.59% 6.46%
DHR 1.16% 0.60% 0.35% 0.78% 0.99% 1.32% 5.96%
DIS 1.25% 0.73% 0.34% 0.83% 1.07% 1.44% 7.38%
DUK 0.94% 0.49% 0.30% 0.63% 0.79% 1.06% 5.24%
FIS 1.18% 0.70% 0.39% 0.77% 0.98% 1.32% 7.74%
FISV 1.14% 0.63% 0.38% 0.76% 0.96% 1.30% 7.17%
GE 1.49% 0.85% 0.36% 0.93% 1.23% 1.73% 7.54%
GILD 1.37% 0.70% 0.39% 0.90% 1.16% 1.59% 6.75%
GOOGL 1.37% 0.72% 0.39% 0.90% 1.17% 1.60% 7.02%
GS 1.65% 1.03% 0.44% 1.02% 1.35% 1.90% 9.45%
HD 1.25% 0.67% 0.38% 0.84% 1.07% 1.43% 6.93%
HON 1.17% 0.63% 0.38% 0.80% 1.00% 1.31% 6.52%
IBM 1.21% 0.66% 0.36% 0.82% 1.04% 1.38% 6.89%
INTC 1.39% 0.73% 0.39% 0.90% 1.17% 1.62% 7.13%
INTU 1.27% 0.63% 0.39% 0.86% 1.10% 1.47% 6.13%
ISRG 1.58% 0.82% 0.47% 1.05% 1.35% 1.84% 6.78%
JNJ 0.97% 0.49% 0.31% 0.68% 0.83% 1.08% 5.44%
JPM 1.59% 1.09% 0.38% 0.93% 1.23% 1.79% 10.12%
KO 0.90% 0.48% 0.30% 0.63% 0.78% 1.00% 5.33%
LLY 1.23% 0.65% 0.38% 0.84% 1.06% 1.39% 6.90%
LMT 1.12% 0.61% 0.35% 0.76% 0.95% 1.26% 6.33%
LOW 1.30% 0.72% 0.35% 0.89% 1.11% 1.48% 7.23%
MA 1.39% 0.77% 0.38% 0.91% 1.17% 1.62% 7.41%
MCD 0.98% 0.54% 0.30% 0.67% 0.83% 1.10% 5.66%
MDT 1.10% 0.54% 0.36% 0.77% 0.96% 1.25% 5.96%
MMM 1.04% 0.58% 0.29% 0.68% 0.90% 1.22% 5.49%
MO 1.05% 0.55% 0.25% 0.72% 0.92% 1.20% 6.18%
MRK 1.13% 0.60% 0.35% 0.76% 0.96% 1.32% 5.49%
MS 1.90% 1.42% 0.44% 1.12% 1.48% 2.08% 15.72%
MSFT 1.20% 0.61% 0.34% 0.82% 1.04% 1.38% 5.44%
NFLX 2.15% 0.95% 0.60% 1.46% 1.94% 2.60% 8.48%
NKE 1.26% 0.65% 0.38% 0.86% 1.07% 1.42% 6.87%
NVDA 2.04% 0.98% 0.63% 1.35% 1.79% 2.44% 8.42%
ORCL 1.22% 0.64% 0.27% 0.81% 1.07% 1.43% 6.52%
PEP 0.89% 0.48% 0.25% 0.61% 0.76% 1.00% 5.17%
PFE 1.12% 0.54% 0.37% 0.76% 0.97% 1.29% 5.09%

(continued on next page)

TTD theory’s applicability across the financial spectrum. Exploring
the integration of alternative topological estimations instead of WD,
for instance, L" norms of Persistent Landscapes, could yield more
sophisticated models capable of better capturing the multifaceted na-
ture of market dynamics. Moreover, the nuanced role of WD during
volatile periods invites further investigation into the temporal aspects
of topological dependence, potentially leading to dynamic modeling
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Table 6 (continued).

PG 0.88% 0.47% 0.30% 0.62% 0.76% 0.99% 5.50%
PNC 1.54% 1.11% 0.40% 0.89% 1.17% 1.74% 11.58%
QCoOM 1.39% 0.71% 0.32% 0.90% 1.22% 1.66% 6.38%
SBUX 1.35% 0.79% 0.42% 0.84% 1.11% 1.57% 7.84%
SO 0.97% 0.49% 0.34% 0.68% 0.85% 1.10% 5.86%
SYK 1.15% 0.59% 0.29% 0.78% 0.99% 1.32% 6.94%
T 1.05% 0.61% 0.29% 0.69% 0.87% 1.18% 5.53%
TGT 1.35% 0.78% 0.34% 0.87% 1.11% 1.53% 7.18%
TJX 1.34% 0.72% 0.40% 0.87% 1.11% 1.59% 7.32%
TMO 1.23% 0.61% 0.39% 0.84% 1.07% 1.41% 6.25%
TXN 1.36% 0.68% 0.41% 0.92% 1.19% 1.60% 6.89%
UNH 1.41% 0.83% 0.40% 0.88% 1.16% 1.60% 7.13%
UNP 1.39% 0.77% 0.37% 0.91% 1.18% 1.58% 6.66%
UPS 1.10% 0.60% 0.31% 0.71% 0.94% 1.31% 5.51%
USB 1.42% 1.07% 0.37% 0.79% 1.08% 1.63% 9.41%
VZ 1.03% 0.57% 0.31% 0.70% 0.88% 1.15% 5.70%
WEC 1.58% 1.23% 0.33% 0.85% 1.18% 1.80% 10.07%
WMT 0.96% 0.50% 0.34% 0.67% 0.82% 1.08% 5.09%

approaches that adapt to changing market conditions. Lastly, the ap-
plication of advanced topological data analysis techniques, beyond
PH, could uncover deeper insights into the structural intricacies of
financial markets, offering novel perspectives on risk management and
investment strategy formulation.

In conclusion, this research not only affirms the potential of the
TTD theory in enhancing our understanding of stock volatility but also
underscores the importance of topological considerations in financial
modeling. The practical applications of these findings are significant,
offering new tools and strategies for market participants to navigate
volatility more effectively. The evidence presented herein, while sup-
portive of the TTD theory, also highlights the complexity of financial
markets and the need for continued innovation in analytical method-
ologies. As we advance the frontier of financial econometrics, the
integration of topological data analysis (TDA) with traditional and ma-
chine learning approaches promises to enrich our toolkit for navigating
the ever-evolving landscape of financial volatility.
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See Table 6.
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Table 7

Data sources of considered control variables.
Variable Data source
VIX close price Yahoo Finance API
DXY MarketWatch
THREEFYTP1 FRED Economic Data
T10Y3M FRED Economic Data
TED rate FRED Economic Data
Fama-French five factors Kenneth R. French Website

Table 8
NBEATSx hyperparameters search space.

Hyperparameters Options

n_inputs [3, 5, 10, 15, 21, 42, 84]

mlp_units [[[712, 712], [712, 712]], [[512, 512], [512, 512]], [[250, 250], [250, 250]], [[100, 100], [100, 100]]]

epochs [50, 100, 150, 250, 350, 450, 550, 650, 750]

learning_rate [0.0005, 0.0001, 0.00005, 0.00001]

num_Ir_decays [5, 3, 2, 1]

scaler_type [“robust”, “standard”, “minmax”’]

losses [MSE(Q), MAE(), MQLoss(level = [80, 90]), DistributionLoss(distribution = ‘StudentT’, level = [80, 901)]

n_harmonics [0, 0, 1, 1]

n_blocks [[1, 11, [2, 21, [3, 31, [5, 511

n_polynomials [0, 1, 0, 1]
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