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GALOIS ALGEBRAS I: STRUCTURE THEORY 

VYACHESLAV FUTORNY AND SERGE OVSIENKO 

ABSTRACT. We introduce a concept. anrl clevelop a theory of Galois s11balgebras in skew 
scmigroup rings. Proposed approach has a strong impact on the representation theory, 
first of all the theory of !Iarish-Chanrlra modules, of many infinite dimensional algebras 
including the Generalized Weyl algebras, the universal enveloping algebras of reductive 
Lie algebras, their quantizations, Yangians etc. In particular, we show how some of 
these algebras can be cmbeddccl into skew (semi)group rings. As one of the applications 
of the developed technique we reprove the Cclfand-Kirillov conjecture for the universal 
enveloping algebra of gin and verify it for the Yangians of gl2 and for the quantization of 
gl2, 
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Let r be an integral domain and U :) r an associative non-commutative algebra over 
a base field Ile A motivation for the study of such pairs "algcbra-su halgebra" comes from 
the "non-commutative algebraic geometry", whose algebraic part studies the structure 
of certain important non-commutative rings, and from the representation theory of Lie 
algebras, where U is the universal enveloping algebra of a reductive finite dimensional Lie 
algebra and r is its commutative subalgehra. For instance, the case when r is the universal 
enveloping algebra of a Cartan subalgebra leads to the theory of Barish-Chandra modules 
with respect to this Cartan algebra (so-called weight modules). Even in this category a 
classification of irreducible modules is only known in the case of finite-dimensional weight 
spaces (cf. [Fe] and [Mal). 

A more general class of Gclfand-Tsetlin representations was studied in [DFOl ]. This 
class is based on a natural generalization of Gelfand-Tsctlin basis for finite-dimensional 
representations of simple classical Lie algebras [GTs], [Zh], [M]. These representations are 
associated to a pair (U, r), where U is the universal enveloping algebra and r is a cer­
tain maximal commutative subalgcbra of U, called Gelfand-Tsetlin subalgebm. Such pairs 
were considered in [FM] in the connection with the solutions of Euiler equation, in [Vi] in 
the connection with subalgebras of maximal Gelfand-Kirillov dimension in the universal 
enveloping algebra of a simple Lie algebra, in [KW] in the connection with quantum me­
chanics, and also in [Gr] in the connection with general hypergeometric functions on the 
Lie group GL(n, q. 

A similar approach was used by Okunkov and Vcrshik in their study of the representa­
tions of the symmetric group Sn [OV], with U being the group algebra of Sn and r being 
the maximal commutative subalgebra generated by the Jucys-Murphy elements 

X; = (li) + ... + (i - li), i = 1, ... , n. 

The clements of Specm r parametrize irreducible representations of U. Another recent ad­
vance in the representation theory of Yangians ([FMO]) is also based on similar techniques. 

What is the intrinsic reason of the existence of Gelfand-Tsctlin formulae and of the 
successful study of Gp,Jfand-Tsetlin representations of various classes of algebras? An at­
tempt to understand the phenomena related the Gelfand-Tsetlin formulae was the paper 
[DF02] where the notion of Barish-Chandra subalgebra of an associatiYc algebra an the 
corresponding notion of a Harish-Chandra module were introduced. 

Current paper can be viewed on one hand as a development of the ideas of [DF02] 
in the "semi-commutative case" (non-commutative algebra and commutative subalgebra) 
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and, on the other hand, as an attempt to understand the role of skew group algebras iu the 
rnprcscntation theory of infinite dimensional algebras (e.g., sec [Ba]). \Ve make au obser­
vation that the Gelfand-Tsetlin formulae for gin define an embedding of the corresponding 
universal enveloping algebra into a skew group algebra of a free abelian group over some 
field of rational functions L (sec also [Kh]). The remarkable fact is that this field L is a 
Galois extension of the field of fractions of the corresponding Gelfand-Tsetlin subalgebra 
of the universal enveloping algebra. 

This simple observation has some amazing consequences. vVe show that many properties 
of representations of enveloping algebras can be considered in a much broader situation. 
This leads to a concept of Galois algebras defined as certain subalgebras in skew group 
rings. These algebras can be viewed as hidden skew group algebras. They are endowed with 
a Gclfanc!-Tsctlin subalgebra and posses an analogue of Gelfand-Tsetlin formulae. In the 
framework of "non-commutative algebraic geometry" a class of non-commutative Galois 
algebras can be effectively studied using the techniques of affine geometry and commutative 
algebra. 

Let r be a commutative finitely generated domain, J{ the field of fractions of r, ]( c L 
a finite Galois extension, C = G(L/ K) the corresponding Galois group, M C Aut L a 
submonoid. Assume that C belongs to the normalizer of M in Aut L and for m 1 , m2 E M 
their doable C-coscts coincide if and only if m1 = m~ for some g EC, where m~ = gmg- 1. 

If M is a group the last condition can be rewritten as Jv( n G = { e}. The action of G on 
M skew commutes with its action on L, hence G acts on the skew group algebra L * M by 
isomorphisms: g • (am) = (g • a)(g • m). Let L * M 0 be the subalgebra of G-invariants in 
L*M. 

We will say that an associative algebra U is a [-algebra, provided there is a fixed em­
bedding i: r -, U. The f-algebra U will be an algebra over r if the image of i belongs to 
the center of U. 

Definition 1. A finitely generated r -subalgebra U c L * M0 is called a Galois I'-algebra 
if KU = U I{ = L * Jv(G. 

A concept of a Galois I'-algebra can be viewed as a non-commutative version of a notion 
of f-order in L * M0 . 

Sometimes we will also say Galois algebra with respect to I' in this case. If r is fixed 
then we simply say that U is a Galois algebra. In this case r is a ma.ximal commutative 
subalgcbra in U and the center of U coincides with M-invariants in Un K (Theorem 4.1). 
Moreover, the set S = r \ {O} is an Ore multiplicative set (both from the left and from the 
right) and the corresponding localizations U[S- 1] and [S- 1]U arc canonically isomorphic 
to L * M 0 (Proposition 4.1). 

If a Galois algebra U allows the left and the right skew-field of fractions U then the 
center of U coincides with the invariants [(M (Theorem 5.1). 

The algebra L * Jv(G (and, hence, U[s- 1 ], [s- 1 ]U) has the canonical decomposition into 
the sum of pairwise non-isomorphic finite dimensional left (or right) K-vcctor spaces. In 
particular, in the case of U(gl

11
) these bimodules are parametrized by the orbits of the 
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action the group S\ X S2 X .•. X Sn-I on Z1 EBZ2 0 ·.·EB zn-l, where S; acts by permutation 
of coordinates in Zi, i = 1, 2, ... , n - 1. 

How big is the class of Galois algebras? We note that any commutative algebra is Galois 
over itself. Moreover if r c U C K and U is finitely generated over r, then U is a Galois 
f-algcbra. 

In Section 4.2 we define Galois algebras by generators and relations starting from so called 
balanced I'-birnodules. This approach based 011 the bimodule theory allows to construct 
many natural examples of Galois algebras, all of which admit similar techniques, developed 
in the paper, to study their representations. This deep relation between the Galois algebras 
and balanced f-bimodules will be discussed in a subsequent paper. 

Another important tool in the investigation of Galois algebras is their Gelfaud-Kirillov 
dimension which is studied in Section 6. Using this technique we show in Section 7 that 
the following algebras are Galois subalgebras in the corresponding skew-group rings: 

• Generalized Wey! algebras over integral domains with infinite order automorphisms 
which include many classical algebras, such as n-th \Vey! algebra An, quantum 
plane, q-deformed Heisenberg algebra, quantized Wey! algebras, Witten-Woronowicz 
algebra among the others [I3a], [BavO]; 

• The universal enveloping algebra U(gln) is a Galois algebra with respect to its 
Gclfand-Tsetlin subalgebra; 

• Restricted Yangians Yp(gl2) for gl2 with respect to its Gelfand-Tsetlin subalgcbras 
[FMO]; 

• Quantized enveloping algebra lfq(gl2) with respect to Gelfand-Tsetlin subalgebra 
[KS]. 

If the skew group algebra L * ]\{ is a domain which satisfies the left and the right Ore 
conditions then the skew field of fractions of U coincides with G-invariants of the skew 
field of fractions of L * ]\{ (Corollary 5.2). In particular case of U = U(gln) it leads to the 
equivalence between the Gelfand-Kirillov conjecture and the noncommutative Noether's 
problem for the invariants in the Wey! algebra Ak under the action of the symmetric group 
Sk (Corollary 8.3). We then prove the validity of the Noether's problem and hence obtain a 
new proof of the Gelfand-Kirillov conjecture for gin. The key part is the Theorem 8.1 which 
describes the invariant differential operators over certain localized rings. Similarly we show 
that the Gelfand-Kirillov conjecture holds for restricted Yangians of gl" (Corollary 8.5). 

We emphasize that the theory of Galois algebras unifies the representation theories 
of universal enveloping algebras and generalized Wey! algebras. For example the Gelfand­
Tsetlin formulae give an embedding of U(gln) into a certain localization of the Wey] algebra 
Am form= n(n+ 1)/2 (Remark 7.2, sec also [Kh]). On the other hand the intrinsic reason 
for such unification is a similar hidden skew group structure of these algebras as Galois 
algebras. 

We will discuss the representation theory of Galois algebras in part II of this paper. 
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2. PRELIMINARIES 

All fields in the paper contain the base algehrnically clo.sed field !k of characteristic O. 
All the algebras in the paper are &-algebras. If I< is a field then R will denote the algebraic 
closure of K. Unlcs., the opposite is stated all birnodules are assumed to be &-central. 

2.1. Skew (scmi)group rings. If a scrnigroup Jv( ac.:ts on a set S, M x S -4 S, from the 
left, then f (m, s) will be denoted either by m · s, or ms, or sm. In particular s"'rn' = (sm')m, 
m, m' EM, s E S. By S'111 we denote the subset of all M-invariant clements in S. 

Let R be a ring, M a semigroup and f : M -, Aut(R) a homomorphism. Then M 
acts naturally on R (from the left). In this case we will use the notation rg = f (g)(r) for 
g E M,r ER. 

The skew semigroup ring, R * M, associated with the left action of M on R, is a free left 
R-module, E9 Rm, with a basis M and with the multiplication defined as follows 

mEM 

(r1m1) · (r2mi) = (r1r;'11 )(m1m2), m1,m2 EM, r1,r2 ER. 

If M acts trivially on R then R * M coincides with the usual scmigroup ring R[M]. If M 
is finite and R is left noetherian then R * M is left noethcrian. If M is a group and R 
is simple then the ring R * M is simple. If the ring R is commutative and M is a group 
then the ring R * M has a natural involution (antiisornorphism) c: : R * M --+ R * M, 
r-m 1--, r"'-'1n·- 1• 

Assume, a finite group G acts by automorphisms on R and on M. 

Lemma 2.1. If there holds the following commuting relations 

(1) g · (m · r) = ((g • m), equivalently (g • r))(r171 )g = (r 9 )rn', 

for all g E G, m E J\1, and r ER, then the group G acts by automorphisms on R * M: 

(rm)g = r9m9 , r ER, m EM, g E G. 

Proof. Since the above action is additive we only need to check that 

(r1m1F(r2m2F = (r1m1r2m2)9. 

Indeed in the left hand side we have 

(r1m1)9(r2m2)9 = rfmfrJm~ = rf(r~rlmfm~. 

On the other hand, in the right hand side we have 

(r1r;'11 m1m2)g = rf(r;n1
)
9(m1m2)9. 

D 

Note that the commutativity condition 1 holds in the following important case 

Lemma 2.2. Assume a group G act8 on the monoid M by conjugations. Then the condi­
tions of ( 1) hold. 

!'roof. g(mr) = (gmg- 1)gr. D 
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We will assume that G act on M by conjugations. 
If (1) holds then one can consider the subring of G-invariant elements in R * M, denoted 

by (R * Jy()G or simply by R * Jv(G_ If R is simple and Jv( is a finit~~ outer subgroup then 

R * M 0 is simple. 
If x E R * M then we write it in the form 

]." = L Imm, 

mEM 

where only finitely many Xrn E JV( arc nonzero. We call the finite set 

suppx = {m E M[xm -1- O} 

the support of x. Hence x E R * Mc if and only if Xm• = x¥n for m. E M, g E G. If 

x E R * M 0 then supp x is a finite G-invariant subset in M. For rp E Aut R set 

(2) H<p = {h E Glrp" = rp}. 

Here we use the following agreement. If G is a finite group and JI is its subgroup then 

the notation F = L F(g) means, that g runs a set of representatives of the quotient 

gEG/ If 

G / H and F(g) does not depend on the choice of these representatives. In particular, the 

sum F is correctly defined. 
Let a E R. Then 

La9rp9 = L ( L agh)rpgh = L ( L a")YrpY. 

gEG gEG/H, hEll, gCG/IT, h([l0 

Since every coefficient :LhEH, a" belongs to the invariants :L Jlll,, we obtain a decompo­

sition of R * M 0 into a direct sum of left (right) R-subrnodules 

(3) 

where 

(4) 

R * M 0 = EB (R * JV[)~, where 
<pEG\M 

(R * M)~ = { L a9 rp9 [a E Ru,}= {[arp] I a E nu,}, 
gEG/H, 

gEG/H, 

for rp EM and a E R11
•. In particular [a9rp9) = [rrrp] for g E G. Obviously there holds 

(5) 'Y • [arp] = [(rr,)rp], [arp] · 1 = [(a,'P)rp], 1 E Re. 

Hence we have 

[a,rp1][a2rp2] = L ( L afrr~i
19

')T, 

rHJ102 91EG/I!_,,g,f,G/ll,2, 
ip~l :p~2 ==T 
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where CJ,.,, = M · 'P;, i = 1, 2. 
Analogously, one could also nsP the notation [ipa], tp E Aut R, a E R for the generators 

of R * M0 . We have · 

[aip] = L ag<pg = L ipY(gip-1g-1go.) = L ip9(a"'-')q = [ipa"'-']. 
gCG/II~ gEG/ll~ gEG/ll~ 

Every :1; E R * M 0 can be uniquely presented as the sum L [x,.,ip], X:p E RH,, which 
cpEM\G 

we call the canonical (left) presentation of x. In the same way, for a, b E RH~ denote 

(6) [aipb] = L a9cp9 /i9, so for 'YE R0 holds [aip] = [aipl], 
gEG/II~ 

'Y[aipb] = [('Ya)ipb] = [aip(b'Y'P-
1
)], [aipb]'Y == [aip(b,)l[('Y'Pa)ipb], 

since ip(R0 ), ip- 1 (Re) c R11~. Note that the expression [aipb] is bilinear in a and b. 
If R = L is a field and I{ = L0 t.hen 

(7) dim1<(L * M)~ = dim~(L * M)~ = [LII~ : K] = IG: H'i'I = ICJcpl• 

Let I{ C L be a finite Galois extension of fields, G = G(L/ K) the Galois group and z 
the canonical embedding J{ Y L. 

Definition 2. (1) Monoid JV( C Ant L is ca.lid separating (with respect to ]{) if for 
any m1, m2 E M from 

fallows m1 = m2. 
(2) An automorphism ip : L -t L is called separating {with respect to ]{) if the mono id 

generated by { ipq I g E G} in Aut L is separating. 

Remark 2.1. Jf 'Jv1 is separating then MnG = {c}. Moreover, ifM is a group, then these 
conditions are equivalent. 

Remark 2.2. The following conditions are equivalent 
(1) Monoid M is separating with respect to J(. 
(2) For any m E M, m i= e there exists 'Y E J{ such that ,m i= ,. 
(3) If Gm1 G = Gm2G J or some m 1, m2 E M, then there exists g E G such that 

m1 = mr 
Let J: I{ Y L be an embedding. Denote Stc(J) = {g E GlgJ = J}. 

Lemma 2.3. Let 'P, ip' E Ant L. If J = ipi, then St(J) = G(L/ip(K)) n G(L/ K), and 
.7 = cp'z only if ip' E <pG. Besides, L 5t (J) = ]{ · ip(K). 

Proof. 
g E St(J) {==} gcpi =<pi«=> tp- 1gtp E G <=> !J E (ipGip-1

) n G, 

that proves the first stakmc11t. Second Htaterncnt is obvious. D 
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Lemma 2.4. Let 'P E Aut L be separating, J = ,.,n. Then 

(1) J{'P = Stc(.7). 
(2) U = 1< <p(K) = J/1

~. 

Proof. OLviously H'P c Stc(J). Com-crscly, if g:pi = !.pt, then '{J-
1gr.pi = 1, hence <p- 1g<p = 

g1 EC and cp-· 1(g:pg·· 1) = g1g- 1• Thus <p and g'{!g- 1 coincide on I<, implyinp; gr.pg- 1 = cp 
and (1). The statement (2) follows from (1) and Lemma 2.3. D 

3. BALANCED 13IMODULES 

Let V = KVi< be a K-bimodulc and KVi- = V @KL. Then the Galois group G acts 
naturallv from the left on the K - L-birnodule I< i'L and the stable clements of this action 
coincide· with K Vg. We assume that the right action of L on V is K-diagonalizable from 
the left. Hence K Vi splits in the sum of K - L-bimodules, one dimensional as a right 
£-module. If V is indecomposable then there exists an crnbcdcling J : K '--+ L such that 

I( VL '.:::: EB Lg], 
gEG/ll 

where H = Ste J and L"' denotes a one-dimensional I< - L-bimodulr, which coirn:ides with 
L as a right £-module, with ,\ · l = cp(,\)l for all ,\ E I( and I E L. 

Denote LVL = L@K KVL, 

Definition 3. A I< -bimodulc I< Vg ·is called £-balanced over a finite Galois extension 
I< C L, if L VL is a direct sum of one-dimensional L-bimodulcs. A 1( -bi module K Vi< is 
called balanced if it is £-balanced over some finite Galois extension I< C L. 

Proposition 3.1. Let V be a .simple L-balanced K-bimodule, i : I( '--+ L the canonical 
embedding. Then there exists '-P E Aut L such that 

L VL '.:::: EB EB Lg<pg, 
gEG/ St(J) [/EG 

where J = cp o i, Stc(J) the stabilizer of J in G. Moreover, all summands in this decompo­
sition are non-isomorphic. 

Proof. Let L,, be any summand of L Vi, J = 1.pi. Consider two representatives 91 and 92 of 
different coclasses in C/St(J) and assume that 911.p,r/ = g2cpg", for some 91,911 EC. Then 
91] = 92] and hence g11g2 E St(J) which is a contradiction. Therefore all subscripts gtpg 
in the decomposition are different and the corresponding summands are non-isomorphic as 
L-birnodules. D 

Let cp E Aut L, J = cpi. Consider the I{ - L-bimodule L1 and let H = Stc(J). Then 
11 acts on L1 from the left. Denote by V(tp) = LJT the set of H-invariant elements of LJ' 
Then V(1.p) is obviously a right K-submodule in LJ' But also V(tp) is a left I<-submodule 
since 

(k · l) 9 = (l J(k)) 9 = [Y .7(k)9 = l J(k) = k · l, 
for all k EK, 9 EH, l E V(rp). Thus V(1.p) is a K-subbimodule of L1 . 
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Theorem 3.1. 
9EG/ 11 

(2) V(r.p) is a simple I<-bimodule. 

9 

(3) Let r.p, r.p' E A ut L. Then V( r.p) ~ V( r.p') if and only ij Gr.pl K = Gr.p'IK coincide, 
equivalently Gr.pG = Gr.p'G. 

(4) Let r.p EM for a monoid Mc AutL, a E LII, v = [ar.p] = L a9r.p9 EL* Jv[9_ 

gEG/ ll 

Then I<vl(::::: V(r.p) as 1(-b-irnodulcs. 

Proof. Denote by ](' the image r.p(K) c L and consider an induced isomorphism r.p' : 

I( ➔ K'. Then H' = ](~, can be viewed as a J( - K'-birnodule, and we have a canonical 

isomorphism LJ1 ::::: W 0K' L[i, via the map l i--+ 1 01, where i': K' '--+ L is a canonical 

embedding. Then we have the following chain of isomorphisms: 

V(cp) 01( L::::: L~1 0K L::::: W 0K' (L{,1 @KL)::::: W 01{' (tBgEG/J!Lg,')::::: ©gEG/HLg]' 

To prove simplicity of V(r.p) consider any nonzero x E LH. Then Kxl{ = xcp(K)J( = 
:r:LIT = Lil, that completes the proof. 

Assume V(r.p) ::::: V(r.p'). Then 1/(<p) @g L::::: 1/(cp') 0K L. Hence from (1) we obtain 

cp'i = gr.pi for some g E G. It proves that Gr.pi= G<p'i, equivalently Gr.pig= Gcp'IK• Thus 

cp-1gcplI< = i implying that cp- 1gr.p E G. The converse statement easily follows. 

Using the formulae (6) and Lemma 2.4, (2) we obtain K[cp]K = [Kr.p(K)cp] = [Llicp] 

which shows irmnecliately that [Lllcp]::::: V(cp). □ 

,1. GALOIS ALGEBRAS 

Por the rest of the paper we will assume that r is an integral domain, I( the field of 

fractions of r, I( c Lis a finite Galois extension with the Galois group G, i: K ➔ Lis a 

natural embedding, Jv( C Aut L is a separating monoid on which G acts by conjugations, 

f is the integral closure of r in L. 
We also fix a Galois algebra U with respect tor. Recall from the introduction that an 

associative non-commutative lk-algebra U containing r is called a Galois f-algebra if it is 

finitely generated r-subalgcbra in L * Jv[G and KU = U I(= L * M0 . Note that. following 

Lemma 4.1 below both equalities in this definition are equivalent. 

Example 4.1. (1) Let U = r[x; O'] be the skew polynomial ring over r, where O' E 
Aut K, X"f = O'('Y)x, for all"( Er. Denote ]V[ = {O'n, n = 0, 1, ... } C Aut K. Then 

U is a Galois r -algebra in I( * M: x 1--t 1 * O' {L = I(, G = { e} }; 
(2) Analogously the skew Laurent polynomial ring U = r[:r±1; O'j is a Galois algebra 

with ]V[ = { 0'71 I n E Z} with trivial G. 
(3) Iterated Ore extensions. Let 

R,, == lk[xi][x2; 0'2] ... [xn; O'nl, r = lk[xi], 

M; = {O';',n = 0, l, ... }, i = 2, ... ,n, Jv( = J'v(2 X ... X Mn::::: z•~- 1
. Then Rn is a 

Galois I'-algcbra, R,, C lk(1:1) * M. Also R11 is a Galois algebra with respect to lk, 

Rn C 1k * z:. All Rn are noetherian domains. 
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An e.rample of such ring is provided by the qwmtmn torn., which plays an impor­

tant role in the theory of extended affine Lie algebras. Let q = (q,1)nxn be a complex 

matrix such that q;; = 1, <J,J = <(i/. The associated qua:ntum torus 

A= ICq[x1, ... , Xn] = IC[x1][x2; a2] ... [xn; llnl, 

where a,(x1) = %X1, 1 ~ j ~ i - l. 

4. J. Characterization of a Galois algebra. A f-subbimodule of L * MG which for 
every m EM contains [b1m], ... , [bkm] where b1, ... , bk is a K-basis in £Hm will he called 
a r-form of L * Ma. We will show that any Galois subalgcbra in L * MG is its f-form. 

Lemma 4.1. Let u E U be a nonzern element, T = supp u, u = l)amm]. Then 
mET 

K(rur) = (f·ul')K = /(u/( '.:::'. EB V(m). 
mCT 

In particular U is a I'-form of L *MG. Besides, 

L(fur) = (rur)L = LuL = L Lm CL* M. 
mET 

Proof. Note first that all V(m) arc pairwise non-isomorphic simple K-bimodules. Indeed, 
if V(m) ::- V(m') for some m, m' E T, then GmG = Gm'G by Theorem 3.1 and, thus, m 

and m' arc conjugate (cf. Remark 2.2). Hence [m] = [m']. Since K[m]K ::' V(m), m ET, 
we have 

/(ul{ C L K[amm]K = EB K[amm]K ::' EB K[m]J( ::' EB V(rn). 

mET mET mE'T 

Since all V(m) are simple, then the image of Ku!{ in W = EBmcT V(m) generates H' 
as a K-bimodule. Hence /(u/{ '.:::'.Wand therefore J([amm]J( C /{ul{ for all m ET. For 

the rest of the proof it is enough to consider u = [am]. Then r[am]r = [r • m(r)am] and 
Kfm(f) = Krn(K). The first statement now follows from Lemma 2.4, (2). 

Obviously L[am] is a L-subbimodulc in I:mET Lrn. Since this sum is a direct sum of 

non-isomorphic simple L-bimodules, any its subbimodule has a form I:mET' Lm, T' C T. 
On the other hand supp[am] = T, and thus L[am] = LmET Lrn. □ 

As an application of Lemma 4.1 we will prove that L * Jvt:G is simple if M is a group. 

First we need 

(8) supp x1I'x2 = LJ supp X1rX2 = supp x 1 · supp x2 . 

')'Ef 

Proof. Obviously suppx1fx 2 c supp x1 · supp x2. On the other hand 

suppx 1fx2 = suppKx1f.T2K = suppx1I'x2[{, 
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since the right and the left multiplications on non-zero elements from !( do not change 

the support. I3ut K x 1 r :.cc I<.r.1 !( aucl I'x2I< = l(,1:21{. Hence it is enough to prove that 

supp[mi]·[m2] = supp[mi]•supp[m2]. But this follows immediately, since the c:haracteristics 

~k~Q D 

A submonoid H of M is called an ideal of M if MII C H and HM c H. 

Corollary 4.1. There is one-to-one co1'1'espondence between the two-sided ideals in L d\'(G 

and the G-invariant ideals in the monoid Jy[. This correspondence is given by the following 

bijection 

(9) If-> J = J(I) = LJ supp u, J i--t I= J(J) =LI< <pl<, 

uE/ 

where I C L * M0 , :J C M are ideals, I =f. 0, J is G-invariant. In particular, if M is a 

group then L * MG is a simple ring. 

Proof. Let I be a nonzero ideal in L * M0
. If O =f. u E I then 

J{uf{ :::c L V(,p) 
,pEsuppu/G 

by Lemma 4.1, and (/{[m]K)(I{uK) CI. fly Lemma 1.2 for every m E J\{ and <p E suppu 

there exists u' E I such that m<p E supp u' and there exists u" E I such that <pm E supp ·u". 

This gives the map 1 H J(/). Analogously, 1(3) is a two-sided ideal in L * M 0 and both 

maps are mutually inverse. D 

Let e E M be the unit clement, Le C L * M and U0 = Un Le. 

Theorem 4.1. Let U be a Galois su/)(Llgebra in L * M. Then 

(1) For every x E U holds :re E K and Ue C K. 
(2) The k-subalgebra in L * M generated by U and L coinc·ides with L * M. 
(3) Un K is a maximal commutative k-subalgebra in U. 
(4) The center Z(U) of algebra U equals Un KM. 

Proof. Let x E U and Xe = ,\, ).. E L. Then for any g E G holds ).. = Xe = (x9 )c = >-.9 . 

Hence ).. E LG = J<. 
To prove (2) consider any m E M and [am] E r, a =f. 0. Then K[am]K :::c V(m) and 

K[am]L is a K - L-subbirnodule in the sum of pairwise non-isomorphic simple K - L-

bimodules L m 9 L. Besides, all [am]m• == a9 -:J 0, hence [am]L coincides with this 

gEG/llm 

sum, hence m E [am]L c UL. 
Consider any x E L * M such that X"f = "fX for all ~/ E r. Assume x 9 =f. 0 for some 

9 =f. e and consider 'Y E r such that "(9 =f. "I- Then ('yx) 9 == "(Xg =f. "(9x9 = (:r,) 9 which is a 

contradiction. Hence x E Un Le= Uc C I{ which completes the proof of (:~). 

To prove (4) consider a nonzero z E Z(U). It follows from (3) that z E UnJ<. r-1orcover, 

z E rnz(U) if and only if for every [a,p] E U holds z[a,p] == [a,p]z, i.e. z = z'P, (see (G)). O 
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Theorem 4.1, (3) in particular shows that an associative algebra is never a Galois algebra 

with respect to its center. 

Example 4.2. Let g be a simple _finite-dimensiunal Lie algebra, fl a Cartan subalgcbrn of 

g, U(g) and U(H) are universal enveloping algebras of g and FI respectively. Since U(JJ) is 

not maximal comrrmtative subalgebrn of U(g) then U(g) is not a Galois algebra with respect 

to U(H) by Theorem 4-1, (3). 

Recall that if U is a domain then a multiplicative ,mbset 5 C U \ {O} satisfies a left 

(right) Ore condition if for any pair u E U, s E 5 there exists u' E U and s' E 5 such that 

us'= su' (s'u = ·u's respectively). 

Proposition 4.1. Let U be a Galois algebra with respect tor, 5 = r \ {O}. 

(1) The rrrnlt·iplicative set S satisfies both left and right Ore condition. Hence, there 

exist the classical rings of fractions U[S- 1], [s-1]U (see [St], Chapter II). 

(2) [s-1]U ~ U[s- 1] ~ L * JV[G_ 

Proof, Assumes E 5, u EU. Following Lemma 4.1, U contains a right K-basis u 1, ... , uk 
k 

of I<uI<. Hence in KuI< holds s-Lu = L un;s; 1 for some s; E 5, 'Yi E r, i = 1, ... , k. 

k 

Then in U holds u · (s1 ... sk) = s · (L U;"f;S1 ... s;_ 1s;+ 1 ... sk)- It shows (1). Following 

i~l 

Lemma 4.1, the canonical embedding U '----► L * JV[G satisfies the conditions Fl, F2, F3, [St], 

Chapter II, §1. Hence (2) follows. 0 

Corollary 4.2. The canonical embedding i : U y I,* JV[G induces an I( -bimodule isomor­

phism j : I< 0r U 0r I( ~ L * JV[G. 

Proof. Following Lemma 4.1, j is an epimorphism. If x E Ker j then there exist s 1, s2 E S 

such that s 1xs2 E Un Keri. Hence x = 0. D 

Theorem 4.2. The tensor product of two Galois algebras in a Galois algebra. 

Proof. Let U; be Galois suba!gcbra in skew-group algebra L; * M;, over f; with the fraction 

fields K;, G; = G(Ld I<;) i = 1, 2. Then M 1 x JV(2 acts on L 1 0k L2, (m1 , m2) · (11 012) = 
(m1/i,m2l2). Since 1k is algebraically closed, L1 0,c. L2 is a domain, hence JV(= M1 x M2 

acts on the fraction field. Set I( C L the field of fraction of 1(1 0k K 2 , which coincides 

with the field of fraction of r 1 0k 1'2 . The extension I< c L is a finite Galois extension 

with the Galois group G = G1 x G2 . consider the composition 

(10) i : U1 0l U2 -+ Li * M1 0k L2 * M2 ~ (L1 0,. L2) * (M1 X M2) y L * JV[_ 

The isomorphism above sends L1 * Mr' 0k L2 * M{2 into L * Mc, which endows U1 ®1<. U2 

with a structure of Galois algebra. To finish we shall to prove, that. K ·i(U10~ U2) = L*M0 . 

If :i: E L * JV[G, then multiplying on et E f 1 0k f 2 we can assume x E (L1 ®1< L2) * M. But 

(L1 0k L2) * J\1Y ~ L1 * Mf1 0k L2 * Mf' = KU1 ©k KU2, 0 
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4.2. Galois algebras via generators and relations. It is natural to ask how big is the 

da~s of Galois algebras with respect to r. In this section we explain how Galois algebras 

arc related to f-bimodules, providing a recipe to construct many natural examples of such 

a.lgebras. 
Let V be a torsion free f-bimodule such that 1,VK is a £-balanced K-birnodule. Then 

by Proposition 3.1, there exists an isomorphism 

(11) L VL '.:::'. E9 E9 E9 Lgcpg· 
cpCS gCG/ llp iiEG 

for a certain SC Ant L/G, where G acts on Ant L by conjugations. Given 'PE S, denote 

D,p = {g,.p.91, g E G/Hcp, g E G}. 

The diagonal morphism 6 : G -t G x G induces the action of G on the bi module ,Yr,, 

(12) 

defining K-bimodule isomorphisms T9 : L VL --t L V,,, g E G, 

Lemma 4.3. Let g E G, L V,, be L-balanced K-bimod-ulc, cp E Aut L. Assume that L"' C 

LVL is an L-subbimod-ule. Then T9(L"') '.:::'. L9 cp 9-1. 

Proof. I3y definition 1~(,,\1x>-2) = ,,\fT9 (x)>-~, ,,\1, >-2 E L, x EL V,,. Then 

,\T9 (x) = T9
(,,\ 9_, x) = 1~(x,,\"'9-

1
) = T9(x),,\9"'9-', g E G, ,,\EL, 

hence T9 (Lcp) '.:::'. Lgcpy-', which proves the statement. □ 

The group G acts on the set Dcp by conjugation. The orbits of G in rl are ('.)1/! = { 1/;9 I g E 

G}. Since all summands (11) are non-isomorphic, iV,, has a decomposition into a direct 

sum of G-invariant L-subbimodules: 

I,1fi=E9 E9 V{cp,1/;}, 
cpES 1/>E!J~/G 

where V{cp,1/;} = L T9 (L,J!), 1/; E Dcp/G. 

gEG/ llf 

For each cp E S choose 1/; E Dcp and consider the submonoid M = M(S) in Aut L 

generated by all the orbits ('.),p. In the skew semigroup ring L * M consider the direct 

summand 

of 1,Vi. 
Let 71's : L V,, --t L Vi(S) be the canonical projection. Fix a"' E L, denote a(S) = 

{ a,'P I (t) E S} and consider a G-equivariant L-bimodule monomorphism T<P : ,, Vi( cp) --t 

L * M, where 

(13) 
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It gives the chain of f-bimodule homomorphisms 

(11) 
·J( ·L EB,.,E '> ,,,, 

V ~ K Vi<~ L VL ~ L Vi(S) --------> L * M. 

Denote by Sv the composition of f-bimodulc homomorphisms a hove. 

Lemma 4.4. 

Sv(V) C 2)L'P] = (2)Lll"'P] I} CL* Jvt:0 . 
,pES ,pES 

Proof. By (3) for every v E KVi< holds Sv(v) = I;,pES[av'P] for some av E L 11•. □ 

The chain of f-bimodule morphisms (14) induces the chain of lk-algcbra homomorphisms 

of tensor algebras 

Denote by 9 the composition of these maps and consider its image 

U = U(V, S, a(S)) = Tr(V)/ Ker 9 ':cc. Im 9 c L * M. 

Proposition 4.2. Assume that the algebra UC L*Jvt:G is generated over r by the clements 
k 

u1, ••• , uk E U such that LJ supp ui contains a set of generators of '.M as a semigroup. Then 
i:::I 

U is a. Galois r -algebra. 

Proof. Consider a I<-subbimodule Ku 1I< + · • • + I<ukI< in L * Jvt:0 . By Lemma 4.1, this 
bimodule contains the elements [a1ip1], ... , [aN'PN], where ip1, ... , <{)N is a set of generators 
of Jvt:. Then by Lemma 4.2 for every m E JV( there exists nonzero am E £Hm such that 
[amm] E U. Since the bimodule V(m) is L-balanced then Lm = L • amm C L[amml, hence 
LU= L * M by Lemma 4.1. □ 

This proposition shows that the construction above gives just the same class of algebras. 
Hence we will understand a Galois algebra U both as a quotient of Tr(V) and as a k­
subalgcbra in L * M. 

If Vis the f-bimodule, then denote by V 0 the opposite bimodule 

V 0 = {11° Iv EV}, ,1v0 ,2 = b2v-yi) 0 ,'Y1,,2 E r,v EV. 

Example 4.3. Let V be an L-balanced r -bimodule with a simple K Vg = V ( <p), and 1, V1, == 

EB Lg,p· Then the opposite I'-bimodule V 0 is also L-balanced and L Vi, 0 == EB L,,,-19-1. 
~0~ ~0~ 

Fix a, b EL. The Galois algebra U(I', VE) V 0
, <p, cp- 1, a, b) is generated over r by [acp] and 

[brp- 1
]. In particular, one-dimensional bimodule corresponds to the case of Generalized 

Wey/ algebras, cf. Section 7.2. 
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4.3. Galois algebras with involution. In this section we consider a class of Galois 

algebras generated by a bimodnle V ED V 0
• Then the corresponding rnonoid Jy( is a group 

(cf. Example ,1.:3). 
Let U C L * Jv( is a such Galois algebra. Suppose there exists an anli-isomorphism of 

lk-algebras a : U •··--+ U, such that a 2 = idu, air= idr and such that for u E U, h E supp 'U 

if and only if h- 1 E suppa(u). In this case a is called an involution of U. 
Obviously, for an algebra with an involution holds suppu = (suppa(u)t 1. 

For every <p E Jy( choose nonzero A,p E Ln,, and define a map o : L * JV[ --+ L * Jy( as 

follows: 

for all <p E JV[ and a E L. Then 

and 
(b1/J)°(a<p) 0 = 1r

1<p- 1>.:b'P)..,pa. 

Hence o is an anti-homomorphism if and only if the elements A,p satisfy the condition 

>-.,p,;, = >-.,p>-.:. 
We will define formally )..9 = e for all g E G. In particular, e = AN-' = >.,p>-.~ .. 1 and thus 

>-.; 1 = >--:-,. Moreover, with this condition the map o becomes an involution of L * JV[; 

(a<p) H <p-l A,pa = >--:-! a,p-l <p-1 H ((JA,p-1>.r 1 a,p-l = <pa,p-l = a<p. 

On the set of involutions of L*M acts the group AutM L*M of M-graded automorphisms 

of L * M: 

f : o ~ f o r1, f E AutM L * M. 

Consider a restriction of o on L * JV[G_ Since 

[a<p]o = L (g<p-1g-1)>-.9,pg-1a9, 
gEG/lf,, 

then o induces an anti-homomorphism of L * JV[G if and only if 

Ag,pg-' = >.~, and then [a<p] 0 = [<p- 1 >-.,pa]. 

Therefore, a set of nonzero >-.,p E Lu,,, <p E M, defines an involution on L * M0 if and 

only if A,p,t, = >-.,p>.: for all <p, '1jJ E M and )..9,p9-, = >.~ for all <p E M and g E G. We will 

call a set of such clements >-.,p, <p E JV[, admissible. 

Proposition 4.3. Let U be a Galois algebra associated with r -bimodule V EB V 0
• If for an 

admissible set {>-.,p E £II,,, <p E Jv1}, [ a<p] E V implies [ ( a'P_, >.;\) <p- 1] E 1'0
, then it defines 

an involution on U. 

Proof. Let o be the involution on L* M defined by the admissible set above. The conditions 

in the proposition show that o induces an involution on the subspace \I @ \1° C lJ, which 

generates U. The statement follows. 0 
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Example 4.4. Consider the case of GWA, realized as Galois algebras in subsection 7.2 
( see Proposition 7.1). Then an involution on 1( * Z is obviously defined by ,\, E J( such 
that (of = a- 1 \,.. Then the condition, that o interchanges bijectively I\.X and I\.Y is 
equivalent to the condition a,\a-' E A•. In particular, the canonical involution X H Y is 

obtained in the case .\,,.-, = a- 1, equivalently ,\,. = aa. 

4.4. Galois rings of finite rank. Although all considered algebras arc defined over the 

base field lk, the construction below allows to use the same approach in a more general 

situation, since the rings of the form X = L * Mc, where M is a group, allow a simple 

direct construction. 
Let A be a commutative domain integrally closed in its fraction field L, 9 C Aut L a 

subgroup, which splits into the semi-direct product of its subgroups 9 = G 1>< M, where 

G is finite and M is finitely generated. Denote r = AG and K = L0
. Then A is just the 

integral closure of r in L and the action of G on L * M is defined as above. Consider the 

ring X = L * M0 and a finitely generated r-subring U c X such that KU = U I( = X. 

Such subring is called a Galois ring with respect to r. 
If M is a finite group then a Galois algebra U C K with respect to r will be called a 

Galois ring of finite rank. If in addition U is a lk-algebra then it will be called a Galois 

algebra of finite rank. 

Proposition 4.4. Let U be a Galois algebra of finite rank with respect to r and E = L9 . 

Then X is a simple central algebra with respect to E and dimE X = IMl2
. 

Proof. Theorem 5.1 gives the statement about the center, while Corollary 4.1 gives the 
statement about the simplicity. Now from formulas (3) and (7) we obtain 

(16) dimK X = dimK(L * M) 0 = L dimK(J< * M)~ = L l('.)"'I = IMI 
<,?EG\M \?EG\~{ 

both as a left and as a right K-spacc structure. On other hand, dimE I( = jMj, that 
completes the proof. D 

5. SKEW FIELDS OF FRACTIONS OF GALOIS ALGEBRAS 

Let U c L * M0 be a Galois algebra with respect to a subalgebra r. Assume that U 
is a domain such that the multiplicative set S = U \ {O} satisfies both left and right Ore 

conditions. Then U admits a skew field of fraction li. In particular, any noetherian domain 

(e.g. iterated Ore extension) admits a skew field of fractions. 
A natural question is what these skew fields look like. A knowledge of these rings gives 

a non-commutative version of "birational equivalence" for Galois algebras. Hence we will 

call two domains rationally equivalent if their skew fields of fractions are isomorphic. 

It is a classical result that the operation of taking the invariants of a finite subgroup of 

automorphisms of a commutative domain commutes with the construction of the fraction 

field. In non-commutative case we recall the following standard result ([Co]). 

Proposition 5.1. If a non-commutative domain A satisfies the left and the right Ore 
conditions and H is a finite subgroup of autorrwrplrisms of A with invertible llll then A 11 
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satisfies the left and the right Ore conditions and the skew field of fmctions of All consists 

of H -invariants of the skew fraction field of A. 

Since char 1k = 0 we can apply Proposition 5.1 in the case of A= L * M. 

Corollary 5.1. Let L * J\,{ be a domain satisfying the left and the right Ore conditions. 

Then L * Jv1G satisfies the left and the right Ore conditions, the skew field of fractions £., of 

L * JV( is endowed with the action of G and J:.,G coincides with the skew field of fractions of 

L * Jv1G. 

Moreover, one can describe the skew field of fractions of the Galois algebras. Namely, 

one has 

Corollary 5.2. Let Ube a Galois r-algebra. If the skew group algebra L*M allows a skew 

field of fractions£., then U = J:.,G, where U is the skew field of fractions of U. In particular; 

all Galois .mbalgcbras with respect to r in L * Mc are rationally equivalent. 

Proof. Clearly, UC J:.,G. Let x E £., be a G-invariant element. Then x = s-1u, s, u E L*M, 

s f- 0 and sx = u. By Corollary 5.1 there exist ii =I- 0, u E L * Jv1G such that sx = u and 

:r = (s)- 1-u. In fact, s = L )-.989 =I- 0, ii= L >.9u9 for some>. E L. The statement follows 

gEG gEG 

immediately from Proposition 4.1, (2). 
D 

5.1. Skew field centers of Galois algebras. It is well-known that if 9 is a semisimple 

or nilpotent Lie algebra then the center of the skew field of fractions of U(9) equals the 

field of fractions of the center of U(9) ([D], 4.3.6). In particular it holds for U(gln) since 

gl" is reductive. Herc we have the following generalization of this fact for Galois algebras. 

Let Uc L * MG be a Galois algebra with respect tor. I3y Theorem 4.1,(4), the center 

of U is Z(U) =Un J(M. Since UK= KU= L * MG the center of the skew group product 

L * :MG equals I(M_ Suppose that U allows the right and the left calculus of fractions. 

Denote by U the skew field of fractions of U and by Z the center of U. A natural question 

is whether Z is isomorphic to the field of fractions of Z(U). 

Assume that m- 1(r) c f (respectively m(r) c f) for all m E M. Let S c '.M be 

a finite G-invariant subset. Denote U(S) = {u E U I suppu C S}. Obviously, it is a 

f-suhbimodule in U. It will be convenient to consider the r-himodule structure on U as 

the r 0k I'-rnodule structure. 

Let J E r. Introduce the element f.~ c r 0k K (respectively fl, CK 01,c r) as follows 

ISi 
(17) 1; = nu 01-10 f'- 1

) == LflSl-i0T;, (To= 1). 
sES 

(respectively f;- = rl,c~(J• 01 - 10 J)). 
Prom now on we will consider the properties of f's- The case of f.~ can be treated 

analogously. 
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Since S is G-invariant, then all 1'; are G-invariant expressions, which arc integral over 

r. Therefore T; Er for all i and f 5 E r 0 r. 
We have the following lemma which describes the properties of JI-

Lemma 5.1. Let Sc J\1 be a G-invariant .,ubset and M(r) cf. For any subset X CM 

set fx = fx- Then 

(1) Let u EU. Then u E U(S) if and only if fs · u = 0 for every f Er. 
(2) Let u EU and T = suppu \ S. Then fr· u E U(S). 

n 

(3) Let Sc T be G-invariant subsets in M, f E r, h,s = L f; 0 g, E I' 0k r, a E L, 
i=l 

" 
m EM. Then h,s · [am] = [(L f;g7'a)m]. 

i=l 
n n 

(4) If f Er, S = {c} and fr,s = L f; 0 .Qi Er 0ir. r, then /T\S · u = (L f;g;)u. 
izl i=l 

(5) Let S be a G-orbit. The I'-bimodule homomorphism P'f : U(T) -t U(S), u H 

h\s · u is either zero or Ker Pf= U(T \ S) {both cases arc possible, cf. (1)). 
(6) Let S = S1LJ· • ·USn be the decomposition of Sin G-orbits and P§ : U(S) -► U(S;), 

i = 1, ... , n are defined in (5) nonzero homomorphisms. Then the homomorphism 

n 

(18) P5 
: U(S) -t EB U(S,), I'5 = (I'§,, ... , J\'-!J, 

i=l 

is a rnonornorphisrn. 

Proof. Consider any m E M, s E Ant L and a E L. Then 

(J 01 - 10 J5) ·[am]= [Jam] - [amf'] = [(f - r•)am] 

and 

sES sES 

If m Es, then one of the factors f - rn•-' is zero and, hence, ls· [am] = 0. 

To prove the statement "if" it is enough to show, that for any m r/. S there exists 

f E r, such that f # fms-, for all s E S. Since the action of JV( on L is separating, for 

every m E M, m # e the space of m-invariants rm # r. But over an infinite field the 

lk-vector space r can not be the union of a finite number of proper subspaces LJ rm_,-,, 
sES 

that completes the proof of (1). 
By definition u E U(suppu), hence fsuppu · u = 0 for any/Er. Then the statement (2) 

follows from (1) and from the equality /,uppu = fsf-r-
Thc statement (3) follows from the formulas (G) (page 5) and (,J) follows from (3). 
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Tl 

To prove (5) note that by (3), !r\s f 0 if and only if L f,g'(' f 0, and in the last 
i=l 

case fr\8 acts 011 U(S) injectivcly. Finally, the statement (6) follows from (5), since 

n~l Ker Pj,?; = 0. D 

Similar statements hold for the polynomial fi- Now we are in the position to prove 

Theorem 5.1. Let UC L * MG be a Galois algebra with respect to I' tlwt allows both left 

and right skew field of fractions 1L and M(f) C t. Then Z = J(M. 

Prnof. Let z = s-1u E Z, s, u E U, s, u =-J D. We can assume that the unit of M belongs 

to supp u. Indeed, let u = [am] + I":m'/m[am1 m'], a cf. 0. Then following Lemma 4.2 there 

exists [bm- 1] EU such that c E supp[bm-1l[mn.]. On the other hand e r/c supp[bm · 1][am,m'] 

and hence e E s11pp[bm- 1]u. Then we can change u to [bm-1]u ands to [bm- 1]s. 

Since sz = zs, we have s- 1u = u.s- 1. Then for any x E U holds xus- 1 = s-1ux, i.e. 

s.Tu = 11xs. Therefore, for any /i, g; E r, i = 1, ... , n holds 
n n 

s L fiU!Ji = u L fisg;. 

n n 

In particular, s 1 = L f;sg; = 0 if and only if s2 = L f;ug; = 0. It follows immediately 

i=l i=l 

from Lcnnna 5.1, ( l) that supp s = supp u. Since e E M belongs to this support and 

U, CK, then applying Lemma 5.1, (6) we conclude that there exist Ii, Yi Er, i = 1, ... , n 
such that both 8 1, s2 EK\ {O}. Hence s- 1u = s1s21 EK and thus Z C /(. Using the same 

reasoning as in the proof of Theorem 4.1, ( 4), we conclude that Zn J( =J(M completing 

the proof. D 

Remark 5.1. Note that Z in Theorem 5.1 is not necessarily isomorphic to the field of 
fractions of Z(U). 

6. GELFAND-Klll!LLOV DIMENSION OF GALOIS ALGEBRAS 

6.1. Growth of group algebras. Let S. = {S1 C S2 C • • • C SN C ... } be an increasing 

chain of finite sets. Then the growth of S. is defined as 

(19) growth(S.) = limlogN \SN\-
N->oo 

CX) 

Fors E S = LJ S; we say that deg s == i provided that s ES;\ S;_1 , i?: 1. 

i=O 
We will assume that the Gelfand-Kirillow dimension of r and the growth of J\1 both are 

finite. 

Let b1, ... , ,d be a set of generators of r. For NE N denote by rN Cr the subspace 

of r gcnernted by th<' products 1;1 ••• 1;,, for all t '.SN, i1 , .. -,it E {l, ... ,k}. Let 

dr(N) = rlirn1:rN and BN(r) a basis in rN (B1(I') = h1, ... ,,k}). 
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Fix a set of generators M of the form M 1 = { G · 'P1, ... , G · 'Pn}. For JV 2: 1, MN is just 
the set of words w EM such that l(w) :::; N, where l is the length of w, hence 

(20) MN+l = MN LJ ( LJ '-P ·MN). 
cpEM1 

Note that all sets MN are G-invariant. Denote the cardinality of :MN by dM(N). Let 
M. = {:M1 c M2 c · · · c MN c ... }. Then the growth growth(M) is by definition 
growth(:M.). 

Without loss of generality we will assume that the Galois algebra U is generated over r 
by a set of generators 9 = {[a1 tpi], ... , [an(fl,.]}. Set B 1 (U) = B1 (r) U 9. As above define 
the subspaces UN and dimensions du(N). For every N 2: 1 fix a basis BN(U) of UN. 

Let r[M] there is the group algebra. Then (in the notations above) the space r[M]N 
has a G-invariant basis 

(21) 
N 

BN(r[M]) = LJ LJ Bi(r)w. 
i=O wEMN-ll 

l(w)~N-i, 

Then by definition GKdimr[M] = growthB.(r[M]). The group G acts on the chain 
B.(r[M]), this action is induced by its action on the generators of M 1. Then the growth 
of the chain B.(f[M])/G is equal to the growth growth B.(r[M]), since 

IBN(r[M])I > IBN(r[M])/GI 2: l~I IBN(f'[M])I, 

Remark 6.1. Consider a chain in L * Mc formed by 

(22) 
N 

BN(r[[:M]]) = LJ LJ B;(f)[w], 
i=O wEMN-,/G, 

l(w)=N-i, 

N 2: 1. Then its growth equals GKdimr[:M]. It follows from the fact that 

I ( wEb!_,, B;(f)w) /GI = I wEM~;/G, B;(f)[w]j. 

l(w)=N-i, l(w)=N-i, 

(23) 

The following formula is well known ([MCR]) 

(24) GKdim r[:M] = GKdim r + growth(:M), 

e.g. it follows from the formula (21). 

6.2. Gelfand-Kirillov dimension. The goal of this section is to prove (under a certain 
condition) an analogue of the formula (24) for Galois algebras. 

We will enforce the following restriction 
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Condition 1. For every finite dimensional k-vector space i' C f the set M • \I ·is contained 
in a finite dimcn.~iona.l subspace inf. 

Obviously, it is enough to check this condition in the case when \I generates f 0\'cr k. 
The main result in this section is the following 

Theorem 6.1. Let Uc L*M be a Galois r-algebra satisfying Condition 1, Ma group of 
finite growth growth(M). Then 

(25) GKdim U:::: GKclim r + growth(M). 

The proof of this result is based on the following lemmas. 

Lemma 6.1. Suppose there exist p, q E N and C:::: 0 such that for any NE N holds 

(2G) du(pN + q) :::: Cdq:MJ(N). 

Then GKdimU:::: GKdimr[M]. 

Proof. 

(27) 

(28) 

(29) 

G Kdim A [M] = ltni logN dqll!J ( N) :S: lim logN du (pN + q) = 
N-+oo N---+oo 

- 1 -
lim logpN+q(du(pN + q))

1 ( N ) = lim logpN+q du(pN + q) :S: 
N-► oo ogN Ji + I] N->oo 

lim logN du(N) = GKdim U. 
N->oo 

D 

Lemma 6.2. Let degA be a degree on A defined by some set of generators ,\ 1, ... , ,\5 _ Then 
for any d :::: 0 there exists e ( = c( d)), such that, given 'Y E r, from deg A 'Y :S: d follows 
deg 'Y :S: c for the defined above deg in r. 

00 

Proof. Since Ad is finite dimensional and LJ r; = r then there exists e > 0, such that 

D 

Lemma 6.3. There exists p' ? l with the following property: if for some N, i :::: 0 the 
set UN contains all the elements [bmm], for some bm # 0, where m runs M;, then UN+p' 
contains [bmml, where m runs Mi+I with bm # 0. 

Proof. Let [acp] be a standard generator of U and [bmm] EUN as in the lemma. Obviously, 

LJ supp[cpl[m] = Mi+!· 
<pE{<p1, .. ,,<pk} 
mGM;\:M,_, 

Step I. We prove, that for some s (s does not depend on N) 

Mi+! C {supp u I u E UN+s}-

Let m' E supp[cpl[m]. We: cm1 assume without loss of generality that m' = tpm. Then 
the coefficient by cpm in [arpl[cm] equals 
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91EG/H,,g2EG/llm 

91 IPa'l 191mg; 1 -1.,:mi 

Note that if g1 E C / H,p is fixed in the surn above, then condition m 9' = ( cp-
1 

)
91 cpm 

defines a unique (if exists) g2 E C / Hm. Hence g2 is determined by 91, 92 = 92(91), and we 
can rewrite the formula ns 

(31) ([acp] · [cm]),pm = L a9 c"'" 9,(9)_ 

9(SCG/ IT,,, 

Since [acp]'y[cm] = [,'l'acpl[cm] for any I E r, we obtain 

(32) ([acp]'y[cm]),pm = L ,9'1'a9c'1''92(9)_ 

9ESCG/ II,,, 

All the automorphisms gcp, g E S are different. Hence there exists ,s E r such that 

9cp(,s), g E S, are mutually different. Let 

A - ((g 111 ((~J )))) V.s = (a9c,p"g,(g))gES· 
,· S -- r IS gES,j=O, ... ,ISl-1' 

The Vandermond determinant dct Xs, is nonzero. Hence there exists j, 0 ::::: j < ISi - 1 
such that 

(33) 
9ES,SCG/Tl,,, 

which is just the j-th element of the vector X 8 • vs # 0. Denote 

Hence, for every m' E JV(i+1 there exists u E UN+s such that m' E suppu and suppu = 
supp[cp] · supp[m] = supp(cpl[m] for some cp E M 1 and m E M;. 

Step 2. We prove, that for every k ~ O and every u E Ui with I supp nl :::; k, there exists 
t = t(k) such that for any 1/; E supp u, Ui+t contains an element of the form [bi/;] (t depends 
only on k). 

If suppu = C · 1/; then u = (b1j;], and there is nothing to prove. Assume u = [b'VJ] + .... 
For f E A1 consider the polynomial 

ISi 

(34) Is= rrw01-10J)=ET;0/18 l-i, (To==l), 
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where S == supp u \ G • 'l/1. Applying Lemma5.l we obtain 

23 

Since G1/J n S = 0, there exists f E 1'1 such that all factors in the last product are 

non-zero. Indeed, if f'' == JV' for every f E r 1, then s and 'ljJ differ by an element of G 

which is a contradiction. 
Fix such f and denote 

1s1 
(35) [b7/J] :== fs · 1t == ~T;u,rl8 1-i, where T; == 

TCS, 
T={ti , ... ,t,).ITl=i 

jl1 ••• /1• Er. 

Let C1 = max-yE':IHi clcg,.. 'Y (C1 is finite due to Condition 1). Then deg,.. T; $ iC1 $ kC1 

and dcg,../181-i $ kC1. Hence, dcgT; $ c(kC1) and dcgJISl-i $ e(kC1) by Lemma 6.2. 

Thus we can chose t(k) = 2e(kC1). 

Step 3. Fix s from Step 1 and t = t(IGl2
) from Step 2. Set p' = s + t(IGl 2

). Suppose that 

[cm] E UN for some m E M;. Then by Step 1 given cp E M 1 there exists u E UN+.s such 

that cprn E supp u. Moreover u can be chosen in the form u == [ucp]'Y[cm] for some 'YE r, in 

particular supp u C supp[cpl[m] $ IGl 2• Applying Step 2 we conclude that UN+p' contains 

an element of the form [bcpm] which completes the proof. □ 

Now we are in the position to prove Theorem 6.1. The space U1 contains elements of 

the form [a;cpi], where cp; runs over M 1/G. Hence, by Lemma 6.3, Up'(N-l)+l contains 

the set MN = {[cmrn] Im E MN, Cm f O}. On the other hand BN(r) C U1m+1 and 

hence U(v'+l)N+l contains rNMN· Moreover all clements from the last product arc linearly 

independent. But the set BN(f[[M]]) is embedded into rNMN by setting 'Y[w] H "flc,1,w], 

'YE rN, w E MN+!· Therefore, 

It remains to set p == p' + l, q = l, C == 1~1 and apply Lemma 6.1. Theorem is proved. 

7. EXAMPLES OF GALOIS ALGEBRAS 

7.1. Commutative case. Even though our goal was to introduce a class of non-commutative 

Galois algebras, this concept has a natural interpretation in the commutative case as well. 

Let U be a Galois subalgcbra with respect to r in L * J\,1c. If U is commutative, then 

M acts trivially on I(, hence M == { e}. Therefore 

r C U C L * MG = LG == J(. 

On the other hand any finitely generated over r subring in J( is a Galois r-algcbra. 
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7.2 . Generalized \Vey) algebras. In this section we realize the Generalized Wey! alge­
bras (G\VA) with infinite order automorphisms as Galois algebras. We recall the definition 
of GWA from [Ba]. 

Let D be a ring, Z(D) its center, a = (a1 , ... , o-n), a, E Aut D, a;o-J = aJai, a = 
(a1, ... , un), ai E Z(D) , i = 1, ... , n, such that a;(aj) = aJ, if 1: c/c: j. The generalized Wey! 
algebra D(o-, a) of degree n is the ring generated by D and X 1, .•. , Xn, Y1, ... , Yn subject 

to the relations: 
~X; = a; , X;}~ = ai(a;) , 

X;d = a;(rl)X;, Y;rl = a; 1(d)Y., 

for all d E D, and 

for all if j. 
For simplicity we consider only degree l generalized Wcyl algcbrns. 
Let A be an integral domain with the field of fractions I(, o- : A --t A is an automorphism 

of A of infinite order. If ip E Aut A then denote by A,, n A.-bimodule Av such that A · v = 
vip(.X) and v · .X = ip- 1 (.X)v for all ,X E A. 

Let X and Y be generators of the birnodules Aa-1 and /\" respectively, and let V = 
A11-• EB A". As a splitting field for the bimodule V we can choose I( itself. Then any 
structure homomorphism T : A[V] --t I(* < o-, o--1 > has n form 

X ~ axb'./0-- 1 , Y .......-► avby 1o-, 

for some ax,bx,ay,by EA\ {O}. Indeed, suppose T(X) = o:a + /Ja- 1 for some a,/3 EK. 
Then for any .XE A, 

AT(X) = .X(aa + /30-- 1) = o:aa(.X) + f-/a- 1a- 1(.X) = T(.XX) = 
T(Xa - 1(.X)) = (o:a + /3a - 1)a ·· 1(.X). 

Hence, a 2 (.X) = e for all .X E A, which is a contradiction . 
Without loss of generality we can assume ax = bx = l. Let U be a corresponding Galois 

algebra. The element a = ayby I defines a 2-cocyclc ( : Z x Z -; [(, such that ( ( -1, 1) = a. 

Proposition 7.1. Let a = a1,by1 E A. Then U is isomorphic to the generalized Weyl 
algebra generated over A by X, Y subject to the relation8 

X >,, = .X" X , .XY = Y .X", .X E A; 
(36) 

YX=a, XY=a" . 

Proof. Let A be the GWA, defined in (36). Then there exists the canonical epimorphism 
of rings 1r : A --t U. On the other hand, the algebra U has the following decomposition 
as A-bimodule: 

00 

U = A EB (ffi(AXi EB AYi)). 
;~1 

It implies that 7f is a monomorphism and A ::::: U. D 

Proposition 7.1 immediately implies 
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Corollary 7.1. Generalized Wcyl algebra A is a Galois subalgcbra of I<* Z. Moreover, if 

the cocycle ~ is invertible then A is isomorphic to A * Z. 

Remark 7.1. Note, that in the case if a finite order automorphism o the c01Tcsponding 

GWA is not a Galois algebra. 

Recall that GWA is endowed with tllf) canonical involution X HY (cf. 4.4). 

7.3. PBW algebras. Let U be an associative algebra over lk, endowed with an increasing 

filtration {U;};EZ, U_ 1 = {O}, Uo = lk, U;U1 C U,+J· Let V = grU be the associated graded 
00 

algebra V = ffi U;/U;-1-
i=O 

Recall that algebra U is called a PBW algebra if any clement of U can be written 

uniquely as a linear combiuation of ordered monomials in some fixed generators of U. 

We will assume for that U is a PBW algebra and that gr U is a polynomial algebra in n 

variables. A well known result of Gelfand and Kirillov states that U is an Ore domain and 

the field of fractions has dimension n. In particular, the Gelfand-Kirillov dimension of U 

equals n. 

Theorem 7 .1. Let U be a PB W algebra generated by the elements ui, ... , uk over r, gr U 

a polynomial ring inn variables, MC Aut L a group and f: U ➔ L*MG a homomorphism 

such that U; supp f ( u;) contains the generators of M. If GKdim r + growth M = n then f 

is an embedding and U is a Galois r -algebra. 

Proof. Since f (U) contains the generators of M then f(U) is a Galois r-algebra by Propo­

sition 4.2. Let I = Ker f I 0. Then 

n = GKdimU = GKdimgrU > GKdirngrU/ gr I= GKdimU/1 = GKdimf(U). 

On the other hand, 

n:::: GKdim U ~ GKdim f (U) ~ GKdim r + growth M = n 

by Theorem 6.1. Therefore GKdimf(U) = n which is a contradiction. Hence I= 0 and f 
is an injection. We conclude that U is a Galois r-algebra. 

D 

Theorem 7.1 will be applied to construct examples of Galois algebras. 

7.3.1. General linear Lie algebras. Consider the general lineal Lie algebra g\11 with the 

standard basis e;1,i,j = l, ... ,n, [e;J,eki] = Ojkeil - 0;1Ckj· Denote by Un= U(gln) its 

universal enveloping algebra. Let Zn be the center of Un, We identify glm for m :( n with 

a Lie subalgebra of gin spanned by { e;1 Ii, j = l, ... , rn}, so that we have the following 

chain of inclusions 
gll C gl2 C ... C gin. 

It. induces the inclusions U1 C U2 c ... C U11 • Denote U = U11 • The Gelfand-Tsetlin 

subalgebra r in U is generated by {Z111 lm === l, ... ,n}. Note that Z111 is a polynomial 
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algebra in m variables {cmk I k = 1, .. . , m}, 

(37) 
{i,, .. . ,ik)E {l, .. ,mj• 

and r is a polynomial algebra in n(n + l) variables {ciJ 11 ~ j ( i ~ n}, [Zh]. Let I< be 
2 

the field of fractious of r. 
Following [01:02] consider the space £., = 1k n(•~+i i of double indexed vectors f. = (f.;j) , 

f;i Elk, l ~ i ~ j ~ n, with the standard basis { c5ii }, where (c5ii)k1 = l if i = k, j = l and 

0 otherwise . Let .C0 C .C, .C0 '.:c:'. Z "1~,- n be a lattice generated by c5iJ , 1 ~ j ~ i ~ n - l. 
The product of symmetric groups §n = n;~l S; acts on£.,, if e = ( eij) E £., and s = . (s;) E 

Sn, i = 1, ... , n then (s · e);J = e,
1
(i)i · Also the group .C0 acts on £., by the shift fi'J · e = 

f. + <5iJ, c5ii E .Co. 
Let A be a polynomial algebra in variables { ,\ii I 1 ~ j ~ i ~ n} and L be the fraction 

field of A. We will identify .C and Specm A. Note that A is integrally closed in L and 

coincides with the integral closure of r in L. 
Let i : r--+ A be a lk-algebra monomorphism snch that 

m 1 
i(cmk) = Cmk(,\) = L (Arnd m)k fI(l - ,\ _ ,\ ). 

i=l j f. i mt mJ 

The image of i coincides with the subalgebrn of §,. -invariant polynomials AfJ,. in A ([Zh]). 
Choose t he generators {'Y;j} of I' such that i(,;i) == a;i(>.11 , Aj2, .. . , ,\i), l ~ j ~ i ~ n, 
where a;i is the i-th elementary symmetric polynomial in j variables. Thus we can identify 

f and A3" by mapping I f-----► i(,), 1 E f. Hence we can view t.he elements of f as 
polynomial functions on A. The homomorphism i can be extended to an embedding of the 
fields K --+ L, L!J,. =Kand G =§"is the Galois group G(L/ I() of the extension KC L. 

Denote by rr: Specrn A--+ Specm r the projection induced by t. 

Recall a construction of the Gelfand-Tsetlin basis for finite-dimensional gin-modules 
([Zh]). Denote z+ C k the set of nonnegative integers and consider .C + C .C, consisting of 
f such that f.mi - fm-1 i E z+, fm-l ;- f.m i+l E Z + for all possi blc i, m. Let 2l C kn consists 

of (X = (u1, ... ' Un) such that Q; - U;+1 E z+, i = 1, ... 'n - 1. Set for n E 2l 

.Ca={eE.Clf,.;=Q; for i= l, .. . ,n} and .C;'."=£.,on.c+. 

If M is a finite-dimensional irreducible U-modulc then (for some u E 2! which is deter­
mined by the central character of M) M prn;scsses a lk-base consisting of the elements [ f], 
e E .C~ . The action of the a lgebra U is defined by Cmk [ e) = Cmk ( e) [ f.], 1 ~ k ~ m ~ n and 

m 

E;[ f] = 2)!;(f.)[ e ± 0mi], 
i ce 1 

whcrn E'!;. = Cmm+I, E,;, = Cm+Im, rn = 1, ... , n - 1 and 
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Set M '--" £ 0 • Let e be the identity element of the group M. Note that all e;;, i = 1, ... , n 
arc in L. 

Let 1' be a free associative algebra generated over 1k by E;1 , i, j = 1, ... , n. Consider an 

algebra homomorphism t : T >---t L * M such that 

m m 

(38) t(Erm11) = CCmm, t(Ernm+1) = L 5miA;;,;, t(Ern+im) = L(omit 1A;;,i, 
i~l i~l 

where 

1
± I1/·\,11±1,j - Am;) 

J mi = =f · 
I1#;(Amj - A,m) 

Lemma 7.1. t(Emm+1) = [o"'1At,1L t(Em+lm) = [(0"'1)~ 1A;,1], in particular, t defines a 

homomorphism from T to L * Mc. 

Proof. To prove it note Ho"'' = §n-I C G, consisting of those permutations of G, which 

fix 1. Also it is easy to sec, that A;;;1 E L 11•'"'· Then for g E G, such that g(l) = i holds 

(om1)9 = o"'i and (A!1)9 = A!i, which implies the statement. 0 

Proposition 7.2. Denote p : T -t U the projection defined by E;j >---t eij· Then there 

exists an embedding of algebras i: U -t L * Mc, such that the diagram 

T P U 

~/ 
L*MG 

commutes. The embedding i turns U into a Galois algebra with respect tor. 

s 

Proof. Let z ET and t(z) = L[miai], mi E M, a; E L. Then there exists a dense subset 

i=l 

fl(z) of [e] E Ql, such that [e] is a basic vector of some finite dimensional U-module M and 
s 

p(z) . [eJ = L ai(e)[m; + eJ. 
i=l 

Let z E T be a Jacobson-Serre relation, [D]. Then it turns O in all finite dimensional 

representations of U. If [£] E fl(z) then ai(f) = 0 for all i. Since each ai is a rational 

function on Specm L it implies that a; = 0, and hence z E Ker t. Therefore, there exists a 

homomorphism i : U -t L * Mc, such that the diagram commutes. It remains to show 

that i is an embedding. Since U is a PI3W algebra and 

, . n(n+l) n(n-1) 
n 2 = GKdnn U(gl11 ) = GKdirn r + growth :M = 

2 
+ 

2 
, 

W<) conclude that i is an embedding. Moreover, by Proposition 4.2 and by Theorem 7.1 U 

is a Galois r-algcbra . □ 

Corollary 7.2. The univerwl enveloping algebra U(g1
11

) is a Galois subalgcbm of L * J\{. 
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Jlemark 7.2. The fact that th e homomorphism i : U -----t L * :Mc is ,m embedding follows 

also from the generalized Harish-Chandra theorem ~Ov]). 

Remark 7.3. Realization of U(gln) as a Galois algebra is equivalent to the embedding of 

U(g1,.) into a product of localized Wey[ algebras c011.strnctcd in [Khj. 

7.3.2. Restricted Yangians for gl2 • Let p be a positi\'e integer. The level p Yan­

gian Yp(gl2) for the Lie algebra gl2 can be defi11 ed as the algebra over 1k with generators 

t (l) t(p) . . - 1 2 b. h I· t. 
ij , .. . , ij , z, J - , , SU Ject to t e re ,l .10ns 

(39) [T;J(u), Tk1(v)] = _l._(Tkj(u) T;1(11) - Tkj(v) T;1(u)), 
u-v 

where u, v are formal variables and 

p 

T;j(u) = O;j uP + L tl? up-k E Y1,(g12)[u]. 
k= I 

It means 
min (r,s) 

[t
(r) t(s)] _ ~ (t(a-l)l(r+s- a) _ t(,·_+s-a)t(u ·-1)) 

ij , kl - ~ kj ii k; 'tl ' 

a=l 

where t;Jl = O;J and tl;l = O for r 2'. p + l. Note that the level 1 Yangian Y 1 (gl2 ) coincides 

with the universal enveloping algebra U(gl2). 

Denote by D(11) the quantum determinant 

D(u) = 1i1('u) T22 (u - 1)- T21(u) T12(u - 1), 

which is a polynomial in u of degree 2p, 

D(u) = u2
P + d1 u2v··1 + · · · + d2p, 

The coefficients d1, ••. , d2P are algebraically independent generators of the center of the 

algebra Yp(gl2). Denote by r the subalgebra of Yp(gl2) generated by the coefficients of 

D(u) and by the elements t~;i, k = 1, .. . ,p. This algebra is commutative Harish-Chandra 

subalgebra in Yp(gl2). 

Let A be a polynomial algebra in the variables b1, •.. , bp, g1, . . . g2p- Define a k-homo­

morphism i : r -t A by 

(40) i(t~;)) = ak,p(b1, . .. , bp), i(d,) = a;,2p(!/1, ... ,92p), 

where O';J is the i-th elementary symmetric polynomial in j variables. We will identify 

the elements of r with their images in A and treat them as polynomials in the variables 

b1, · · • , bp, 91, .. . 92p invariant under the action of the group Sp x S2P . Set f., = Specm A. 

We will identify f., with k 3P. If 

and 

then we shall write e = (fi , 1 ). The monomorphism i induces the epimorphism 

(41) i• : I..,-, Specm 1. 
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If CE£., and m = i'(C) then D(C) will denote the equivalence class of min 6(Yp(g12), r). 
Let '.Po <:;; £.,, '.Po'.::::'. :z.v, be the lat.tin: g<'fl('rat.ed by the elcmentH o; E lk3

" for i == 1, ... , p, 

where 
oi = (o;', ... , o?P), of = oij· 

Then '.P0 acts on£., by shifts o;(C) := f + o;. Furthermore, the group Sp x S2p acts on£., by 
permutations. Denote by S a multiplicative set in A generated by the clements b; - b1 - m 

for all i :f j and all m E Z and by lL the localization of A by S. 
For arbitrary 3p-tuplc C = (/3, 1) E £., set 

f3(u) = (u + /31) · · · (u + f3v), 1(11) = (11 + 11) · · · (u + 12p)-

Let le be the left ideal of Y p(gl2 ) generated by the coefficients of the polynomials T22( u) -
/3(11) and D(u) - 1(u). Define the corresponding quotient module over Yp(gl2) by 

(12) M(£) = Yp(g\2)/h 
We shall call it the universal module. It was shown in [FMO], that le is a proper ideal of 
Yp(gl2) and so A1(€) is a non-trivial module. 

Set '.P1 = Spccm [., ~ £.,, i.e. '.P1 consists of generic 3p-tuples e = (/3, 1) such that 

(43) /3; - (31 (/_ Z for all i "I j. 

If C E '.P1 then the modules from the category IHI(Yp(gl2), r, D(€)) are called generic 
Barish-Chandra modules. 

Theorem 7.2. (lFMO]) There exist vectors ((k), (k) E 7/J', which form a basis of M(e). 
Moreover, we have the formulas 

(44} 

(45) 

where 

and 

p 

T22(u) ((k) = IJ(u+/3;+k;) ~(k), 

i~l 

A;(k) = {l 
-1(-/3; - k;) 

B;(k) = { ~1(-(1; - k; + 1) 

if k; 2'. 0 

if k; < 0 

if ki > O 

if k;::; 0. 

The action of1'i1(11) is found from the relation 

(4G) (r11(u) 122(u - 1} -T:21 (11) T12(u - 1)) ~(k) = 1(11) ~(k)_ 
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Now quite analogous to 7.3.1 we can prove that Yp(gl 2) is a Galois r-subalgebra in 

L * Mc, where L is the field of fractions of A, M == '.P0 and G = S1, x S2r The formulae 

from Theorem 7.2 define the homomorphism i : Y,,(gl2) -, L * M0 . Note that Y1,(gl2) 

is a PD\V algebra and its GK-dimension equals 4p. On the other hand GKdimA 3p 

and growth '.Po == p. Theorem G.l shows that i is an embedding and Proposition 4.2 shows 

Yp(gl2) is l'-Galois. 

8. GELFAND-KIRILLOV CONJECTURE 

If g is a finite dimensional Lie algebra then its univernal enveloping algebra U(9) is a 

noctherian domain, and thus it admits a skew field of fractions. The celebrated Gelfond­

Kirillov conjecture ([GE], [DJ, Problems, I, 3, and 4.9.21) asserts that this skew field of 

fractions is isomorphic to the skew fraction field of a certain Wey! algebra over a purely 

transcendental field extension of k. This conjecture is known to be true in the case of 

9 == gin (or 9 == sin)- For other known cases, conntr,rcxamples and generalization for 

q11antiied algebras see [I3Gj and references therein. Using the technique of Galois algebras 

we reprove the Gelfand-Kirillov conjecture for gln and show it for the Yangians of gl2• 

8.1. Symmetric differential operators. Fix k, 1 .$ k .$ n - 1 and denote by Ak t.he 

k-th Wey! algebra generated over k by Xi, .•• , x, and D1 , ••• , [)k subject to the relations 

(47) x;xj = xjxi, D,Dj ""D1D;, D;x1 - xjai = i5ij· 

The symmetric group Sk has a natural action on ;h by permutation of variables x;'s and 

D/s simultaneously. 

Let A = lk[x1, ••. , xn], Consider the algebra D(/1) of differential operators on A, D(A) 

contains A as a subalgebra of the operators of multiplication by the elements of A. One can 

identify D(A) with the Wey! algebra An by the following isomorphism 11: we identify v(x;) 

with the operator of multiplication by x, and identify 11(8;), i = 1, ... , n with the operator 

of partial derivation by x;, Note also, that if A is a localizations of A then D(A) is gcnernte.d 

" 
over A by 81, ... , On subject to the same relations (47). In this case L Ao; c D(A) is just 

the Lie algebra of all !k;-derivations of A. 

The action of Sn on An induces the action of S,, on 

isomorphism v. Indeed for r. E Sm i, j = 1, ... , n, f E A 

(48) 

D(A) by conjugations via the 

Let a; be the i-th symmetric polynomial in x 1, .. , Xn, i l, ... , n, A5n = ik[a 1, ... , an] C 

A, i5 == TI (x; - XJ ), 6. = 62 E /15
" the discriminant and A,:, and Af" the locali:.mtions 

l,Si<j$n 

of corresponding algebras by the multiplicative set generated by 6.. 
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The canonical embedding i : A~• -'t At,. induces a homomorphism of algebras iv : 
D(At,.) 8

" -'t D(A~•). 
The key result of this section is 

Theorem 8.1. 'irJ is rm isomorphism. 

8.1.1. iv is an epimorphism. Since Af• is a localization of the polynomial ring !k[a1 , ... , on], 
the ring D(At,.)"" is generated over AI" by differentiations a;, ... , D~ such that a;(aj) = o;1, 
i, j = l, ... , n. Hence it is enough to construct Sn-invariant differentiations d1, ••• , dn 
At,. -+ At,. which in restriction on A~• coincide with a;, ... , a;,. 

n 

Let d = L f;D;, f; E At,., be a Sn-invariant differential operator. Then any f; should 
i:'.'.::l 

be invariant with respect to the stabilizer of i in Sn, i = 1, ... , n. Denote by a; the i-
th symmetrical polynomial in the variables x1 , ... , x1_1, xJ+1, ... , Xn, i = 0, 1, ... , n - 1, 
j = l, ... , n and consider then x n matrix X = (D1(a;))i,J=l, ... ,n· It is easy to see that 

X = (er{)i=O, ... ,n-1,· 
j=l, ... ,n 

If e; is the standard i-th basic vector and f; = (Ji;, ... , f ni) is a vector of solutions of 
n 

the system X f = c;, then the differential operator d; = L !k;Dk, with coeflicients from 
kc,\ 

lk.(x1, .•. , Xn), satisfies the relation d;(erj) = <\J- It remains to prove that d; E D(At,)5". 

Lemma 8.1. detX = o. 
Proof. 

1 1 1 

) ( a' 
a~ err 

(49) X= ;l 2 er" 02 2 

er;_l a~-1 ern-1 

□ 
. n(n - l) . 

Then <let X belongs to the space of homogeneous polynomials of degree 
2 

, if we 

set in this polynomial x; to be equal Xj for i f. j, i, j = l, ... , n it turns in 0, hence o is 
a divisor of <let X, moreover (due to the equality of degrees) dct X = .M, ,\ E lk.. Since 
in both of them the monomial xr-1x2-l ... x~=i enters with the coefficient 1, we conclude 

detX = o. 
Applying the Kramer rule we obtain 

Corollary 8.1. f;J E At,., d; E D(At,.)8", i, j = 1, ... , n. 

Proof. The first statement follows from the lemma above. It remains to prove that for a 
fixed i the ratioual functions fo, ... , fin form an orbit of the action of Sn. Denote er; the 
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'i-th column of the matrix X. Then for 1r E Sn there holds 1r · CJ; = CJ"(i), i = 1, ... , n and 
hence 

j 

(50) 
l t( I j-1 ~ j+l ") . . c e o , ... , a , Ci , a , ... , a __ 

(applymg 7r clement msc) 7r d ( 1 1_1 J J+l n) -
ct a , ... , a , a , a , ... , a 

j 

(51) 
det(CJ"(l) CJ"(j-1) ~ CJn(j+l) CJn(n)) 

'· · ·' . ' '.' . '· · ·' = (permuting columns with 1r) 
det(CJ"(1), ... '(Jrr(;-1), CJ"(J), (J,r(J+l), ... '(J,r(n)) 

,r(j) 

(52) 
_ sign 1r det(CJ1, ... , CJ"(j)-t, ~. CJ"(J)+l, •••,CJ") _ f . 
- sign1rdct(CJ1, ... ,a•U)-1,CJ1r(JJ,CJ1r(j)+1, ... ,CJ") - rn(1), 

which completes the proof. D 

8.1.2. id is a monomorphism . We need to show that for every DE D(A) 5
n there exists 

f E A8
n such that D(f) f- 0. 

For I= {i1, ..• ,'in} EN" denote x 1 = x~' ... x;~ and iJI = of' ... a:,n. We use the 
following degree deg on D(A): deg x 181 = IJI, where Ill = j 1 + · · · + jn for J = (.i1, • • •, jn)­
For D = L F.,D1

, F1 EA we set 
lENn 

supp D ={JEN" I F1 f O}. 

Remark 8.1. If for I, JEN" holds I> J then D1 (x 1) = [~1(J)x1- 1 , where 

n 

(53) P1(J) = ITP1,k(ik), P1,k(z) = z(z-l) ... (z-jdl), so degp1,k = jk, k = l, ... ,n. 
k=I 

If J E N" satisfies j 1 > j 2 > · · · > jn then such vector is called senior. Denote by§ the set 
of all senior vectors. For some F1 EA and J E § denote F1 D1 +·, • = L FJ 8171 E D(A) 8

". 

aE8·,i 

Let D E D(A) 8
n and assume that no J E supp D contains equal coordinates. Then 

D = L(F1D1 + ... ), where O consists of the senior representatives of the orbits of the 
JEO 

action of Sn on supp D. Analogously for a senior I we introduce x1 + • • • = L x"1 E A8". 

crESn 

Let D = L F181 E Ker id, D f 0. Possibly multiplying D from the left on 
./Esupp D a:1 

•.• 8~n + . . . for some k1 » k2 » · · · » k,. » O we can assume that D satisfies the 
condition above. In other words, for J E supp D and CJ E Sn, CJ J = J if and only if a the 
trivial permutation and D = L(F.,81 + ... ). 

lEO 
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Lemma 8.2. Let D = I:,(F.,D.1 + ... )and I> J (lexicogmphical) for any J E suppD. 

Then 

where FTJ = FJ. 

Proof. 

D(xl + ... ) = L, L, PrJ(aI)FTJxal-TJ, 

JEO a,rESn 

JEO a,rESn 

D 

We say that I E § is segregating for a set X = {K1, ... , Kt} provided that for any 

s = 1, ... , t holds 1 > 1(5 and all the vectors { a I+ T !(Ia, T E Sn} arc distinct. 

Let a1, ... , an! be all clements of S11 • The sequence of clements Ii< h <···<In, E Nn 

is called segregating for X, provided that every h is segregating for X and for any s E S11 ,, 

n! n! n! 

s i e, holds L, a;l; i L, a,(;if; (equivalently I:,(aJ; - a,(;if;) -:/= 0). 

i=I i=I i=l 

For D E D(J\) denote by X(D) c :zn the set of all di!Tercnccs M - J, where .l runs 

supp D and for a fixed J, M runs the degrees of monomials in FJ. We say that I is 

segregating for D provided I is segregating for X(D). 

Lemma 8.3. (1) Let X c zn and let 11 , ..• , In! be a '.JC-segregating seq1wnce. Then the 

matrix X = (x"i 1
' )i,j~i, ... ,n! is non-degenerate. 

(2) Let X C zn, s1 > s2 >•··>Sn> 1 a sequence of integers, l(t) = (t 8
', ••• ,t""), 

t E N and J E N". Then for any N 2 0 there exist integers l1 > · · · > ln! > N such 

that the sequence h = I(lk) - J, k = 1, ... , n! is '.JC-segregating. 

Proof. det X == L sign(s)x"•(llli ... x"''"'> 1
n!. By the definition of a segregating sequence 

sES'n! 

all the monomials in this sum are di!Tcrcnt implying (1). 

To prove (2) consider a (respectively /3), the maximal by absolute value coordinate in 

vectors from X (respectively J). Then I(t) will be X-segregating if t••n+I - t'" > 2lal + 1/31, 

since in this case It'• - t'• I > 2lal + 1/31 for all i -:/= j. 

Further, set 111! = N + 1. Assume 1;+ 1, ... , ln, arc constructed. Then/; should satisfy the 

condition 
n! 

1;n+ 1 
- lf" > 2(n! - i)(2lal + 1/31) + L l;'' 

tccci+l 
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and hence 
n! 

ll? - lf' I > 2(n! - i)(2lnl + lf:11) + L lZ 1 

l=i+I 

n! 

for every j f k. Assume that for some s E Sn!, s i e, holds 2)aJ(/;) - as(i)J(l;)) = 0. 
i=l 

Assume also that a
1
(k) i- as(i)(k) for some k, 1 '.S k '.Sn. Taking tho ai(k)-th coordinate 

in the sum above we obtain 
n' 

(55) L(aJ(l;) - Cls(i)l(l;))k = 0. 
i=l 

Let j be the index of the first nonzero summand here. Then 

n! 

hl(lj)k - as(j/(lj)kl > L l;1 > 
t=j+I 

n! 

L laJ(l;)k - Cls(i/(l;))kl :2: 0, 
i=k+I 

which is a contradiction. Thus the sum (55) is not zero. □ 
Let I E Nn be such that J > J for all J E supp D and assume that J is segregating for 

D. Then all the monomials whir.h appear in the summands in (54), have different degrees. 
Indeed, if M is a degree of a monomial in some F.,, then in (54) we have the monomials 
with degrees of the form TM+ (al -TJ) = al -f-T(M - .!) = al +TK for some J( E X(D), 
a, T E Sn, which are different for different pairs a, T. 

Hence the monomials xL(m,a,r) in D(x1 + ... ) are parameterized by a monomial m E A, 
that appears in some F.,, and by a pair a, T E Sn. The coefficient aL(m,a,r) E 1k by xL(m,u,r) 

is a polynomial in i1, ... , in- 1 

We choose -~1, ... , s,, E Z such that s(J) = S1) 1 + • •+snJn are different for all J E supp D 
and s1 > s2 > · · · > Sn > 1. Fix a senior .! E supp D with the maximal s(J) and denote 
I(t) = (t•1, ... , t5

"). Recall (Lemma 8.3) that for large t the vector I(t) is D-segregating. 
Then from (54) we obtain that the term of the highest degree oft equals 

(56) tsd1 +··•+snin L Fr;JXa(I(t)--J). 

aESn 

Hence for large enough t holds L Fr;JXa(I(t)-J) = 0. Note that F.,.1 does not depend on 
aESn 

t. But by Lemma 8.3, (2) we can construct a segregating sequence 11 , ... , In!, Ii = l(li) - J 

1Since those J's that segregate D, form a Zariski clrensr, set ink", we obtain that thrsc polynomials arc 
zero. 
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such that L F"Jx"(I,) = 0 for all k = 1, ... , n!. On the other hand (Lemma 8.3, (1)) 
(JC Sn 

the matrix (x"U.J)i=l, ... ,N;crESn is non-degenerated. Hence FJ = 0 which contradicts the 
assumption J E supp D. 

8.2. Case of U(gln). Using a realization of U(gl,.) as a Galois algebra (cf. section 7.3.1) 
we obtain an embedding 

U(glnl c (B * Z"'f, 
where m = n(n - 1 )/2, C = S1 x S2 x ... x Sn. Herc B is a certain localization of the 
polynomial ring in n(n + 1)/2 variables. Therefore U(gl

11
) has a natural embedding into 

Q _ As' r,, AS2 ,o, ,:,, ASn-1 ,o, '·[t / ],<;" 
- l '<Y 2 YY • • • 1o::Y n--1 '<Y ll\. I, · · · , n , 

where Ak is a certain localization of the k-th Wey! algebra Ak, The algebra Ak is a simple 
noetherian noncommutative domain. Denote by Lk the skew field of fractions of Ak, I3y 
Proposition 5.1 the skew field of fractions of Af • equals Lf •, k = 1, ... , n - 1. Hence 

Corollary 8.2. U(gln) and Q are rationally equivalent, i.e. the skew field of fractions of 
U(gl,,) i8 isomorphic to 

Lf1 @ ... @ L~'.'._"j 1 @ llc(t1, .. ,, In), 
where llc(t1, ... , tn) is the field of fractions of llc[t1, ... , tn]· 

The Gelfanc!-Kirillov conjecture is true for gl" and states that the skew field of U(gl11 ) 

is isomorphic to the skew field of Am over the field of fractions of the center Z(U(gln)). 
It is also known that if Af• is rationally equivalent to At@ llc[z1, ... z.,] (noncommutative 

Noet.her's problem) then t = k, s = 0, and Lf• ~ Lk [AD]. Therefore we conclude 

Corollary 8.3. The Gelfand-Kirillov conjecture for gin follows from the noncommutativc 
Noether's problem for A[•, k = 1, ... , n - 1. 

Our goal now is to prove that .cf• ~ Lk. 

Remark 8.2. As it was pointed to us by T.Levasseur the validity of the Gelfand-Kirillov 
conjecture for gin implies that qv ~ Lk, where W-:::: Sk is the Weyl group of gl 11 • But the 
problem here is with the identification of the explicit action of W on Lk, Our approach is 
based on the appl'imtion of the symmetric dif]erential operators. 

Corollary 8.4. Let Ln be the fraction field of An endowed with the induced action of Sn, 
Then Lf." ~ Ln. 

Proof. We use here the following facts 

(1) D(A)s ~ D(i\s) for a multiplicative set S. 
(2) If!::,. EA is a S,,-invariant element then D(A,-,J 5

n ~ (D(i\)5")t., 
(3) (A5"b-:::: (At.f". 
(4) D(At.f"" ~ D((i\5"))t., 
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The first statement can be found in [MCR], Theorem 15.1.25. If D E D(At:J5" then 
(as any differential operator nft.er localizntion) D1 = t:-,,kD E D(A) for some k :2: 0. Hence 
D1 is Sn-invariant, since both !::-,, and D arc, i.e. D1 E D(A) 8

" implying (2). The third 
statement is obvious and (4) follows from the previous statements and Theorem 8.1. 

Consider a commutative diagram 

s 

All the horizontal arrows in the diagram are just embeddings in the localization by !:,. ( the 
horizontal arrows on the front face are induced by the corresponding horizontal arrows on 
the rare face on Sn-invariants). The vertical arrow S: D(A) --4 £.,,, is just an embedding 
into the skew field of fractions. Other vertical arrows arc induced by localizations and 
taking Sn-invariants. All other arrows arc just embeddings of the Sn-invariants (the arrows 
on the right face are the localizations by !:,. of the arrows on the left face). 

By Proposition 5.1 the arrow S5• : D(A) 5• --4 £.,~• is just the embeddiug into the 
fraction field. On the other side D(A) 8• and (D(A) 5• )t:. have the same skew fraction field. 
Both J and Js. arc isomorphisms, since they are embeddings into the localization by an 
invertible element !:,.. Hence the skew field of fractions of (D(A) 5• )t:. is isomorphic to £.,~n. 

Then 

(58) 

(59) 

(D(A)"'•)t:. ~ (D(A)t:.) 8
• ~ D(At:.) 5

• ~ D((At:.) 5
•) ~ 

D(lk[0'1,,.,, O'nlt:.) ~ D(lk[0'1,.,., O'n])t,.. 

It implies that (D(A)"" )t:. is just a localization of the Wey! algebra An, and thus its skew 
fraction field is isomorphic to £.,n· It implies £.,;• ~ £.,n· 

□ 

Remark 8.3. Cornllaries 8.S and 8.4 give a new proof of the Gelfand-l(irillov conjecture 
for gl,,. 
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8.:3. Yangian. Suppose now U = Yp(gl2), the restricted Yangian of level p for gl2 (cf. 
section 7.3.2). Then U is a Galois subalgebra. in T, * (:l.P) 0 , where Lis the field of fractions 

of a polynomial algebra A in 3p variables and G = SP x S2p. Therefore 

Corollary 8.5. (1) The restricted Ynngian Y11 (gl2) is ra.tionn.lly equivalent to 

A;P 0 lk[x1, ... , x2vl, 

(2) The Gclfand-Kirillov conjecture holds for Y p(gl2) and its skew field of fractions is 
isomorphic to £.P 0 lk(x1, ... ,x2p), 

9. SOME REMARKS ON THE QUANTUM CASE 

9.1. Quantum algebras as subalgcbras in skew group algebras. In this subsection 

we discuss the possibility to realize quantizations of U(glnl• As in the classical case the 

existence of Gelfand-Tsetlin formulas is the main hint for the existence of the structure of 

a Galois algebra. We write down a conjectural presentation of some quantum algebras as 

Galois algebras and discuss possible consequences. The case n = 2 is considered in details. 

Denote by U(gln) ([KS], 7.3) the algebra, generated over lk(q 112
) by elements 

(60) E;, F;, Ki, Kt, i = 1, ... , n - l,j = 1, ... , n 

subject to the relations 

(61) 

J{ ,YJ{-1 _ q-o;;/2qo•i+i/2 p. 
i J i - 3, 

li-jl ~ 2, 

The Gclfand-Tsetlin bases of irreducible finite dimensional representations of gl,. arc 

parameterized by the families of IM) = (m;j)I'.:'.i'.:'.i'.:'.n E zn(n-I)/2 with some conditions of 

integrality, positivity and betweenness conditions ([KS], 7.3). Denote by Cij, 1 Si S j Sn 
the standard basic in zn(n-Il/2• 

The canonical embedding of the sets of generators induces the canonical embedding of 

the algebras ik : Uq(glk) '-+ Uq(glk+i), k ~ I, so we will assume !'.Tq(glk) C i\(gl,) fork S l. 
Denote Ly Zk the ceutcr of r\ (gld and by r = r n the Gelfancl-Tsetlin subalgcbra in [lq(gl,J 

generated by Z1, ... , Z,.. 
The Gclfand-Tsctlin formulae for the action of the generators (60) nm defined as 
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(G2) 
k k-1 

KklM) =- q"•12 llvl), ak = L mki - L mk-li 

, qX _ q-X 
where l;J = Tn;J - J and [x] = [:r:]q = 

1 
. 

q - q-
We rewrite these formulas without using the square bracket notations. We apply the 

following dictionary, where the first one implies the rest 

(63) 

ql,; 

[lik±I - l;k] 
[lik±l - l;k + 1] 
[lik±I - l;k - 1] 

+-----+ X iJ , 
+-----+ (q- q- 1)~ 1(X;k±i/X;k - X;k/Xik±J), 
+-----t (q - q- 1)~ 1(qX;k±i/Xik - X;k/qX;k±l), 
+-----+ (q - q-1)- 1(X;Hi/qXik - qX;k/X;u.1)-

It allows to rewrite the algebra [lq(gln) as follows. Let 

A= lk(q112)[X;] 112 ; 1 :::; i :::; j :::; n] 

~­and L denotes the field of fractions of A. Consider a free abelian group Jv( = Z 2 with 
a basis 6;j, 1 :::; i :::; j ::; n. Endow A with the action of Jv( as follows: 

1;2 { q1
1
2 x.112 if i = k, j = z, 

<5;j. )(kl = ,1/2 tJ 
xkl otherwise. 

Let A be a free associative algebra over 1k generated by the generators (GO) and 'P a 
lk-algebras homomorphism <I> : A -t L * Jv( defined by 

k k-1 

<I>(K ) = (qk/2 IT xl/2 IT x-:-1/2) e k tk ,k-1 , 1:::; k::; n, 
i=l i=l 

(64) ,T (E) ( -1)-1 ~ rt~} (Xik+i/Xjk - Xjk/Xik+1) r 
,,, 'k = I] - I] L., - ..cc:..:......:...--'-----'--......:...--'------,-~u j k, 

j=l fL11 (X;k/Xjk - Xjk/X;k) 

C:I:>(Fk) = t nt::-,1(.Xik-i/Xjk - Xik/Xik-d s~;, 
j=l [L;)X;k/Xjk - Xjk/X;k) J 

The proof of the next proposition is analogous to the proof Proposition 7.2. 

Proposition 9.1. The mapping <I> dr.fines n.n algebra embedding i : Z:fq(gl,J -t L * M. 
Besides L • Im(i) = L * M. 
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On the other hand, the group G = Sn-I x Sn--2 x · · · x 51 acts on A and on its field of 
fractions L, where "'2k+J = S2k+1, s2k = 82k X C}, CJ is a cyclic group of order 2, S; acts 
on X li, ... , Xii by permutations of the second indices awl ct acts by the change of sign 
X;k >-t -Xik for all i = 1, ... , k. Denote by [{ the field of invariants LG, r = AG. Uy the 
construction Im i C L * :M0

. 

Conjecture 1. The algebra [lq(gln) C L * MG is a Galois algebra with respect to the 
Gelfand-Tsetlin subalgebra r with the field of fractions K. 

9.2. Example of Uq(gl3). As an evidence of the conjecture above we consider the case 
of the quantized algebra Uq(gl2 ). Following (61) this algebra is defined by generators and 
relations 

(65) 

[{J(i = Kif(;, K;I<i- 1 = Ki- 1 K; = 1, i = 1, 2, 

K1E1 = Ei(q112 K1), K1Fi = F1(q- 1l2 K1), 

K2E1 = E1 (Kzq- 112), K2F1 = F1 (I(2q112 ), 
1(21(.-2 _ K-2 K:;2 

[E F] = l 2 l • 
1, 1 <J _ q-1 

Its easy to sec that the quadratic Casimir clement equals 

(66) C 
- E F q-l(Ki/ K2)2 + q(I<2/ Ki)2 - FE q(Ki/ I<2)2 + IJ-1(I<2/ K1)2 
- -'l 1 + ( I )2 - 1 I + ( -1 )2 ' q - q- q - (j 

Let us write the formulas for the mapping <I> 

(67) 

<P(I(1) = q112 x;{2 c, <I>(I<2) = q(X21X22) 112 x~112 e, 

<I>(E1)-::: -(q - q-1t 2(X2if X 11 - X11 /X21)(X2z/X11 - Xn/X22) c5ll, <P(F2) = 81/ 

and calculate <I> ( C). 

(68) 
<I>(C) = -(q- q-1t 2(X2i/X11 - Xn/X21)(X22/Xn -X11/X22)+ 

(q - q-1t 2(X?1/(X21X2z) + (X21X22)/Xl1) = (q- q-1t 2(X21/X22 + X.22/X.21), 

Hence, the image of the Gelfand-Tsetlin subulgcbra is generated by 

(69) X,1/2 xl/2vl/2 1x· X 
11 , 21 -"22 anc 21 + 22-

It means that the Galois group involved contains four elements and is generated by the 
transformations 

vl/2 x-1/2 . 1 \'.,1/2 vl/2 . - 1 2 
""2i f--+ 22-i• ,till • 2i +---t -,;2i ,i - , · 
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