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ABSTRACT. We introduce a concept, and develop a theory of Galois subalgebras in skew
semigroup rings. Proposed approach has a strong impact on the representation theory,
first of all the theory of Harish-Chandra modules, of many infinite dimensional algebras
including the Generalized Weyl algcbras, the universal enveloping algebras of reductive
Lie algebras, their quantizations, Yangians etc. In particular, we show how some of
these algebras can be embedded into skew (semi)group rings. As one of the applications
of the developed technique we reprove the Gelfand-Kirillov conjecture for the universal
enveloping algebra of gl and verify it for the Yangians of gl, and for the quantization of
gly.
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1. INTRODUCTION

Let T be an integral domain and U D T' an associative non-commutative algebra over
a base field k. A motivation for the study of such pairs ”algebra-subalgebra” comes from
the "non-commutative algebraic geometry”, whose algebraic part studies the structure
of certain important non-commutative rings, and from the representation theory of Lie
algebras, where U is the universal enveloping algebra of a reductive finite dimensional Lie
algebra and T is its commutative subalgebra. For instance, the case when I' is the universal
enveloping algebra of a Cartan subalgebra leads to the theory of Harish-Chandra modules
with respect to this Cartan algebra (so-called weight modules). Even in this category a
classification of irreducible modules is only known in the case of finite-dimensional weight
spaces (cf. [Fe] and [Ma]).

A more general class of Gelfand-Tsetlin representations was studied in [DFO1]. This
class is based on a natural gencralization of Gelfand-Tsetlin basis for finite-dimensional
representations of simple classical Lie algebras [GTs], [2h], [M]. These representations are
associated to a pair (U,T"), where U is the universal enveloping algebra and I is a cer-
tain maximal commutative subalgebra of U, called Gelfand- Tsetlin subalgebra. Such pairs
were considered in [FM] in the connection with the solutions of Euiler equation, in [Vi] in
the connection with subalgebras of maximal Gelfand-Kirillov dimension in the universal
enveloping algebra of a simple Lie algebra, in [KW] in the connection with quantum me-
chanics, and also in [Gr] in the connection with general hypergeometric functions on the
Lie group GL(n,C). ‘

A similar approach was used by Okunkov and Vershik in their study of the representa-
tions of the symmetric group S, [OV], with U being the group algebra of .S, and I being
the maximal commutative subalgebra generated by the Jucys-Murphy elements

Xi=(1)+...+(-1), i=1...,n

The clements of Speem I' parametrize irreducible representations of U. Another recent ad-
vance in the representation theory of Yangians ([FMO]) is also based on similar techniques.

What is the intrinsic reason of the existence of Gelfand-Tsetlin formulae and of the
successful study of Gelfand-Tsetlin representations of various classcs of algebras? An at-
tempt to understand the phenomena related the Gelfand-Tsetlin formulae was the paper
[DFO2} where the notion of Harish-Chandra subalgebra of an associative algebra an the
corresponding notion of a Harish-Chandra module were introduced.

Current paper can be viewed on one hand as a development of the ideas of [DFO2]
in the ”semi-commutative case” (non-commutative algebra and commutative subalgebra)
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and, on the other hand, as an attempt to understand the role of skew group algebras in the
representation theory of infinite dimensional algebras (e.g., see [Ba}). We make an obser-
vation that the Gelfand-Tsetlin formulae for gl,, define an cmbedding of the corresponding
universal enveloping algebra into a skew group algebra of a free abelian group over some
field of rational functions L (sce also [Kh]}. The remarkable fact is that this field L is a
Galois extension of the field of fractions of the corresponding Gelfand-Tsetlin subalgebra
of the universal enveloping algebra.

“This simple observation has some amazing consequences. We show that many properties
of representations of enveloping algebras can be considered in a much broader situation.
This leads to a concept of Galois algebras defined as certain subalgebras in skew group
rings. These algebras can be viewed as hidden skew group algebras. They are endowed with
a Gelfand-T'setlin subalgebra and posscs an analogue of Gelfand-Tsetlin formulae. In the
framework of ”"non-commutative algebraic geometry” a class of non-commutative Galois
algebras can be effectively studied using the techniques of affine geometry and commutative
algebra.

Let T be a commutative finitely generated domain, K the field of fractions of ', K € L
a finite Galois extension, G = G(L/K) the corresponding Galois group, M C AutlL a
submonoid. Assume that G belongs to the normalizer of M in Aut L and for my,me € M
their double G-coscts coincide if and only if m; = m$ for some g € G, where m§ = ging™*.
If M is a group the last condition can be rewritten as MN G = {e}. The action of G on
M skew commutes with its action on L, hence G acts on the skew group algebra L * M by
isomorphisms: g - (am) = (g-a)(g-m). Let L + M be the subalgebra of G-invariants in
LxM.

We will say that an associative algebra U is a ['-algebra, provided there is a fixed em-
bedding ¢ : T — U. The [-algebra U will be an algebra over I' if the image of ¢ belongs to
the center of U.

Definition 1. A finitely generated T-subalgebra U C L+ MC is called a Galois T™-algebra
if KU=UK = L* M.

A concept of a Galois T'-algebra can be viewed as a non-commutative version of a notion
of T-order in L + ME.

Sometimes we will also say Galois algebra with respect to I' in this case. If T' is fixed
then we simply say that U is a Galois algebra. In this case I' is a maximal commutative
subalgebra in U and the center of U coincides with M-invariants in U N K (Theorem 4.1).
Moreover, the set S = I'\ {0} is an Ore multiplicative sct (both from the left and from the
right) and the corresponding localizations U[S™!] and [S™')U are canonically isomorphic
to L = MP (Proposition 4.1).

If a Galois algebra U allows the left and the right skew-field of fractions U then the
center of U coincides with the invariants K™ (Theorem 5.1).

The algebra L« MS (and, hence, U[S™?], [S7!]U) has the canonical decomposition into
the sum of pairwise non-isomorphic finite dimensional left (or right) K-vector spaces. In
particular, in the case of U(gl,) these bimodules are parametrized by the orbits of the
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action the group Sy x Sy x -+ x S,_1 on Z! BZre---0Z™ 1, where S; acts by permutation
of coordinates in Z}, i = 1,2,...,n— 1.

How big is the class of Galois algebras? We note that any commutative algebra is Galois
over itself. Moreover if ' ¢ U ¢ K and U is finitely generated over I', then U is a Galois
[-algebra.

In Section 4.2 we define Galois algebras by generators and relations starting from so called
balanced T-bimodules. This approach based on the bimodule theory allows to construct
many natural examples of Galois algebras, all of which admit similar techniques, developed
in the paper, to study their representations. This deep relation between the Galois algebras
and balanced I'-bimodules will be discussed in a subsequent paper.

Another important tool in the investigation of Galois algebras is their Gelfand-Kirillov
dimension which is studied in Section 6. Using this technique we show in Section 7 that
the following algebras are Galois subalgebras in the corresponding skew-group rings:

o Generalized Weyl algebras over integral domains with infinite order automorphisms
which include many classical algebras, such as n-th Weyl algebra A,, quantum
plane, g-deforined Heisenberg algebra, quantized Weyl algebras, Witten-Woronowicz
algebra among the others [Ba], [BavOQJ;

e The universal enveloping algebra U(gl,) is a Galois algebra with respect to its
Gelfand-Tsetlin subalgebra;

» Restricted Yangians Y,{gl,) for gl, with respect to its Gelfand-Tsetlin subalgebras

[FMO};
¢ Quantized enveloping algebra Uq(glz) with respect to Gelfand-Tsetlin subalgebra
[KS).

If the skew group algebra L + M is a domain which satisfies the left and the right Ore
conditions then the skew field of fractions of U coincides with G-invariants of the skew
ficld of fractions of L + M (Corollary 5.2). In particular case of U = U(gl,) it leads to the
equivalence between the Gelfand-Kirillov conjecture and the noncommutative Noether’s
problem for the invariants in thc Weyl algebra Ay, under the action of the symmetric group
Sk (Corollary 8.3). We then prove the validity of the Noether’s problem and hence obtain a
new proof of the Gelfand-Kiritlov conjecture for gl,,. The key part is the Theorem 8.1 which
describes the invariant differential operators over certain localized rings. Similarly we show
that the Gelfand-Kirillov conjecture holds for restricted Yangians of gl, (Corollary 8.5).

We emphasize that the theory of Galois algebras unifies the representation theories
of universal enveloping algebras and generalized Weyl algebras. For example the Gelfand-
Tsctlin formulae give an embedding of U(gl,) into a certain localization of the Weyl algcbra
Ap form = n(n+1)/2 (Remark 7.2, sce also [Kh]). On the other hand the intrinsic reason
for such unification is a similar hidden skew group structure of these algebras as Galois
algebras.

We will discuss the representation theory of Galois algebras in part 11 of this paper.
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2. PRELIMINARIES

All fields in the paper contain the base algebraically closed field % of characteristic 0.
All the algebras in the paper are k-algebras. If K is a field then K will denote the algebraic
closure of K. Unless the opposite 1s stated all birnodules are assumed to be k-central,

2.1. Skew (semi)group rings. If a semigroup M acts on a sct S, M x S ER S, from the
left, then f(rn, s) will be denoted either by m-s, or ms, or s™. In particular s™™ = (s™)™
m,m' € M, s € 5. By S™ we denote the subset of all M-invariant clements in S.

Let R be a ring, M a semigroup and f : M — Aut(R) a homomorphism. Then M
acts naturally on R (from the left). In this case we will use the notation 9 = f(g)(r) for
geEM,re R.

The skew semigroup ring, B+ M, associated with the left action of M on R, is a frce left
R-module, @ I'm, with a basis M and with the multiplication defined as follows

meM

(mmy) - (rama) = (rrd)(maumy), mi,me €M, 11,72 € R
If M acts trivially on R then R + M coincides with the usual semigroup ring R[M]. If M
is finite and R is left noetherian then R * M is left noetherian. If M is a group and R
is simple then the ring R * M is simple. If the ring R is commutative and M is a group
then the ring R * M has a natural involution (antiisomorphism) ¢ : Rx M — R * M,
rmo—s ™ L,
Assume, a finite group G acts by auntomorphisms on R and on M.

)

Lemma 2.1. If there holds the following commuting relations
(1) g-(m-r)=((g-m), equivalently (g-r))(r™)* = (+*)",
forallge G, meM, and r € R, then the group G acts by automorphisms on R+ M:
(rm)f=r'mfreR,meM, geq.
Proof. Since the above action is additive we only need to check that
(rimy)? (romyp)? = (rymyrama)’.

Indeed in the left hand side we have

(rymy)? (ramy)? = rimdrdm$ = r{(r§)™ mim3.
On the other hand, in the right hand side we have

(rirfimymg)? = 1 (ry")? (mymg)°.
O
Note that the commutativity condition 1 holds in the following important case

Lemma 2.2. Assume a group G acts on the monoid M by conjugations. Then the condi-
tions of (1) hold.

Proof. g(mr) = (gmg~)gr. =
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We will assume that G act on M by conjugations.

If (1) holds then one can consider the subring of G-invariant elements in 12« M, denoted
by (R * M)C or simply by R * ME. If R is simple and M is a finite outer subgroup then
R« M€ is simple.

If z € R+ M then we write it in the form

where only finitely many z,, € M arc nonzero. We call the finite set
suppz = {m € Mz, # 0}
the support of z. Ience z € R * MC if and only if £, = 28, for m € M,g € G. If
£ € R*MC then suppz is a finite G-invariant subset in M. For ¢ € Aut R set
(2) H,={h e Gly" =y}
Here we usc the following agreement. If G is a finite group and H is its subgroup then

the notation F = Z F(g) means, that g runs a set of representatives of the quotient
geG/II
G/H and F(g) does not depend on the choice of these representatives. In particular, the
sum F is correctly defined.
Let a € R. Then

Zag(pﬂ = Z ( z )t = Z ( Z o,

9€G geG/H, heH, gCG/, heH,

Since every coefficient )=, a” belongs to the invariants 3 R"», we obtain a decompo-
sition of R * MY into a direct sum of left (right) R-submodules

R+M% = @ (R * M)g, where

weEG\M
3)
(R*M)S = { Z afla € R"*’} = {[ap]|a € R},
9€G/H,
where
(4) lopl = D %’ € RxME,
9€G/H,
for € M and a € R+ In particular [a9¢9] = [agp] for g € G. Obviously there holds
(5) 7~ [ag] = (@], lag] - v =[(a7")¢], 7 € R,

Hence we have

o0
[arpi][aaipa) = E ( g al'ay’ ”2>7,
7€0102 QIEG/IIWPQIG:G/”WQ,
eitedt =T
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where Oy, = M- @;, 1 =1,2.
Analogously, one could also use the notation {pa], ¢ € Aut R, a € R for the generators
of R* M%. We have

apl= > a’= > @geT'glga) = Y ¢%(e ) = [pa? ).
9CG/ 1, 9eG/ 1, 9€G/H,
Every z € R+ MS can be uniquely presented as the sum Z [zp¢), 2, € R"2, which
PEM\G
we call the canonical (left) presentation of x. In the same way, for ¢,b € RHe denote

(6) {aph] = Z a%@?h?, so for v € RE holds {ay] = [apl),
geG/H,
Ylagh] = [(va)eb] = [ap(dr¢ )], [apbly == [ap(b7)]i(v7a)et],

since p(R%), o~} (RF) C R'. Note that the expression [ae] is bilincar in a and b.
If R=Lis a field and K = L€ then

(7) dimfe(L * M)G = diml (L * M)§ = [LT : K] = |G : Hy| = |0,].
Let X C L be a finite Galois extension of fields, G = G(L/K) the Galois group and ¢
the canonical embedding K — L.
Definition 2. (1) Monoid M C Aut L is called separating (with respect to K ) if for
any my, me € M from
milk = malk
follows my = my.
(2) An automorphism ¢ : L — L is called scparating (with respect to K ) if the monoid
generated by {¢?]g € G} in Aut L is separating.

Remark 2.1. If M is separating then MNG = {c¢}. Moreover, if M is a group, then these
conditions are equivalent.
Remark 2.2. The following conditions are equivalent

(1) Monoid M is separating with respect to K.

(2) For any m € M, m # e there exists v € K such that v™ # .

(3) If GmyG = GmyG for some my,my € M, then there cxists g € G such that

m; = mg
Let 5: K < L be an cmbedding. Denote Stg(5) = {g € Glgs = 3}.
Lemma 2.3, Let ,¢' € AutL. If 3 = ¢, then St()) = G(L/@(K)) N G(L/K), and
1= ¢ only if ' € oG. Besides, L3V = K - p(K).
Proof.
GESL)) e g =g <= ¢ lgp € G <= g € (G ) NG,

that proves the first statement. Second statement is obvious. O
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Lemma 2.4. Lel p € Aut L be separating, j = @r. Then

(1) H, = St(y).
(2) I = Ko(K) = Lt

Proof. Obviously H, C Stg(y). Conversely, if gypr = ¢, then ¢~ lgwr = 2, hence =gy =
g € G and o7 (gpg™") = g1g~!. Thus ¢ and gpg™' coincide on K, implying gogl =
and (1). The statement (2) follows from (1) and Lemma 2.3. O

3. BALANCED BIMODULES

Let V = gV be a K-bimodule and V, =V @k L. Then the Galois group G acts
naturally from the left on the K — L-bimodule x Vi and the stable elements of this action
coincide with xVi. We assume that the right action of L on V is K-diagonalizable from
the left. Hence gV, splits in the sum of K — L-bimodules, one dimensional as a right
L-module. If V is indecomposable then there exists an embedding 7: K < L such that

Vi P Ly,

9€G/ T
where H = Stg 7 and L, denotes a one-dimensional K — L-bimodule, which coincides with
L as a right L-module, with A-l = @(A)l forall A € K and ! € L.
Denote 1V, = L ®k V5.

Definition 3. A K-bimodule Vi is called L-balanced over a finite Galois extension
K c L, if LVi is a direct sum of one-dimensional L-bimodules. A K-bimodule xVi 1s
called balanced if it is L-balanced over some finite Galois extension K C L.

Proposition 3.1. Let V be o simple L-balanced IC-bimodule, ©+ : K — L the canonical
embedding. Then there ezxists ¢ € Aut L such that

LVL ~ @ @ngg,

g€G/ St(y) 9€G

where 3 = p o1, Stg(y) the stabilizer of 7 in G. Moreover, all summands in this decompo-
sition are non-isomorphic.

Proof. Let Ly, be any summand of 1 Vy, 7 = y1. Consider two representatives g; and g of
different coclasses in G/ St(y) and assume that gipg’ = g209", for some ¢/, 9" € G. Then
917 = g27 and hence gl'lgg € St(j) which is a contradiction. Therefore all subscripts ]
in the decomposition are different and the corresponding summands are non-isomorphic as
L-bimodules. 0

Let ¢ € AutL, 3 = ¢1. Consider the K — L-bimodule L, and let H = Stg(y). Then
H acts on L, from the left. Denote by V(y) = LI the set of H-invariant elements of L;.
’Ijhen V() is obviously a right K-submodule in L,. But also V(p) is a left K-submodule
since

(1) = (L)% = 1 3(K)? = Ly(k) = k-1,
forall k€ K, g€ H,l € V(p). Thus V(p) is a K-subbimodule of L,.
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Theorem 3.1. (1) V(p) @k L ~ @ Ly
9€G/H
(2) V() is a simple K -bimodule.
(3) Let o, € AutL. Then V(o) =~ V(¢') if and only if Gplk = G|k coincide,
equivalently GG = G¢'G.
(4} Let ¢ € M for a monoid M C AutL, a € L7, v = [ap| = Z ad¢d € L+ M.

9eG/II
Then KvK =~ V(p) as K-bimodules.

Proof. Denote by K’ the image ¢(K) C L and consider an induced isomorphism ¢ :
K — K' Then W = K"p, can be viewed as a K — K'-bimodule, and we have a canonical
isomorphism LY ~ W @y LY/, via the map I +— 1®1, where ¢/ : K — L is a canonical
embedding. Then we have the following chain of isomorphisins:

V(p)®x L~ LI @k L~W ®x (Ll @« L) W @k (®geay1 Lgr) = gecynLys.

To prove simplicity of V() consider any nonzero x € L#. Then KzK = zp(K)K =
L™ = L¥ that completes the proof.

Assume V{yp) =~ V(¢'). Then V(p) ®x L =~ V(¢') ®x L. Hence from (1) we obtain
©'1 = ggn for some g € G. It proves that Gyr = Gy'r, equivalently Golx = G¢'|x. Thus
™ 9|k = 1 implying that ¢ gy € G. The converse statement easily follows.

Using the formulae (6) and Lemma 2.4, (2) we obtain K[p]K = [Ko(K)y] = [L¥y]
which shows immediately that [L7¢] ~ V(cp). O

4. GALOIS ALGEBRAS

For the rest of the paper we will assume that I' is an integral domain, K the field of
fractions of I', K C L is a finite Galois extension with the Galois group G,2: K = Lisa
natural embedding, M C Aut L is a separating monoid on which G acts by conjugations,
[ is the integral closure of I in L.

We also fix a Galois algebra U with respect to T'. Recall from the introduction that an
associative non-commutative k-algebra U containing I is called a Galois I'-algebra if it is
finitely generated I-subalgebra in L * MC and KU = UK = L » MC. Note that following
Lemma 4.1 below both equalities in this definition are cquivalent.

Example 4.1. (1) Let U = Tz;0] be the skew polynomial ring over T, where o €
AWK, oy = o(y)z, for all vy € T. Denote M = {o",n=0,1,...} CAut K. Then
U is a Galois D-algebra in K «M: z+ 1+0 (L= K,G = {e});
(2) Analogously the skew Laurent polynomial ring U = I'|z*!;0] is a Galois algebra
with M = {o™ |n € Z} with trivial G.
(3) Iterated Ore extensions. Let

R, = k[z1)[z2;09) . .. [Tn; o), T = klz4],

Mi={otn=0,1,..},i=2,...,n, M=Myx ... x M, =~ Zi'. Then R, is a
Galois T-algebra, R, C k(x;) * M. Also R, is a Galois algebra with respect to k,
Ry CkxZ%. All R, are noetherian domains.
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An ezample of such ring is provided by the quantum torus which plays an mpor-
tant role in the theory of cxtended affine Lie algebras. Let q = (qij)nxn be a complex
matriz such thal g; = 1, q; = qj“i‘. The assoctated quantum torus

A=Cylzy,. .., 2] = Clallzas 02] . {205 74,
where 0:(z;) = qjr;, 1< j<i— L

4.1 Characterization of a Galois algebra. A T'-subbimodule of L * ME which for
every m € M contains [bym], ..., [bxm] where by, ..., by is a K-basis in L will be called
a T-form of L » M®. We will show that any Galois subalgebra in L « ME is its [-form.

Lemma 4.1. Let u € U be a nonzero element, T = suppu, u = Z[amm]. Then
meT

K(Twl) = (Tul)K = KuK ~ P V(m).

mCT

In particular U is a I'-form of L * MC. Besides,
L(ful) = (Mul)L = LuL = Y Lm C L+ M.

meT
Proof. Note first that all V(m) are pairwise non-isomorphic simple -bimodules. Indeed,
if V(m) ~ V(m') for some m,m’ € T, then GmG = Gm'G by Theorem 3.1 and, thus, m
and m' are conjugate (cf. Remark 2.2). Hence [m] = [m']. Since K[m]K ~V(m), me T,
we have

Kul ¢ Y KlapmlK = @D Klanm)K = P Kin]K ~ P V(m).
meT meT meT met

Since all V(m) are simple, then the image of Kul in W = @, . V(m) gencrates W
as a K-bimodule. Hence KuK =~ W and therefore K[a,,m]K C KuK for all m € T. For
the rest of the proof it is enough to consider u = [am]. Then T{am|T" = [I' - m(I')am] and
KTm(T) = Km{K). The first statement now follows from Lemma 2.4, (2).

Obviously L[am] is a L-subbimodule in ¥, .7 Lm. Since this sum is a direct sum of
non-isomorphic simple L-bimodules, any its subbimodule has a form ZmeT, LmT cT.
On the other hand supplam] = T, and thus L{am] = 3", ., Lm. O

As an application of Lemma 4.1 we will prove that L « M% is simple if M is a group.
First we need

Lemma 4.2. For x; = [aynu), 22 = [aamy] € L * ME holds

(8) suppzI'zy = U SUpp £17YT9 = SUPD I - SUPD T2
~yel

Proof. Obviously supp z,T'z, C supp ) - supp 2. On the other hand

supp z;0'zy = supp Kz Tao I = supp 2, T’z KK,
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since the right and the left multiplications on non-zero clements from K do not change
the support. But Kz I = K2,;I and T'rp[¢ = Kz, K. Hence it is enough to prove that
supp[m]-[my) = supp{my]-supp{my]. But this follows immediately, since the characteristics
of k is 0. ]

A submonoid H of M is called an ideal of M if MH ¢ H and HM C H.

Corollary 4.1. There is one-to-one correspondence between the two-sided tdeals in Lx MC
and the G-invariant ideals in the monoid M. This correspondence is given by the following
bijection

(9) I+ 9=39(1) = Jsuppu, Ir—I=1(0) =) K¢K,
uel wed

where I € L*MC, 3 ¢ M are ideals, I # 0, J is G-invariant. In particular, if M is a
group then L «+ MY is a simple ring.

Proof. Let I be a nonzero ideal in L x M@, If 0 # u € I then
KuK=~ > V(p)

pesuppu/G

by Lemma 4.1, and (K [m]K)(KuK) C I. By Lemma 4.2 for every m € M and ¢ € suppu
there exists u' € I such that my € supp ' and there exists ©” € I such that ¢m € supp u”.
This gives the map I + J3(I). Analogously, I(3) is a two-sided ideal in L * ME and both
maps are mutually inverse. O

Let ¢ € M be the unit clement, Le C L * M and U, = U N Le.

Theorem 4.1. Let U be a Galois subalgebra in L+ M. Then

(1) For every z € U holds &, € I{ and U, C K.

(2) The k-subalgebra in L M generated by U and L coincides with L+M.
(3) UN K is a mazimal commutative k-subalgebra in U.

(4) The center Z(U) of algebra U equals U N K™,

Proof. Let z € U and 2z, = A\, A € L. Then for any g € G holds A = z. = (%), = A9,
Hence ) € L¢ = K.

To prove (2) consider any m € M and [am] € T, a # 0. Then K [am]K =~ V(m) and
Klam]L is a K — L-subbimodule in the sum of pairwise non-isomorphic simple K- L-
bimodules Z mfL. Besides, all [am}ne = af # 0, hence [am]L coincides with this

9€G/ Hnm
sum, hence m € [am]L C UL,

Consider any z € L * M such that 2y = 4z for all v € T. Assumc x4 # 0 for some
g # e and consider v € [ such that 47 # . Then (yz), = vz, # 792, = (27), which is a
contradiction. Ience z € U N Le = U, C K which completes the proof of (3).

To prove (4) consider a nonzero z € Z(U). It follows from (3) that z € UNK. Morcover,
z € TNZ(U) if and only if for every [ap] € U holds z{ayp] = [ay]z, ie. z = 2%, (sce (6)). O
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Theorem 4.1, (3) in particular shows that an associative algebra is never & Galois algebra
with respect to its center.

Example 4.2. Let g be a simple finite-dimensional Lie algebra, H a Cartan subalgebra of
g, U{g) and U(H) are universal enveloping algebras of g and H respectively. Since U(H) is
not mazimal commutative subalgebra of U(g) then U(g) is not a Galois algebra with respect
to U(H) by Theorem 4.1, (3).

Recall that if U is a domain then a multiplicative subset S C U \ {0} satisfies a left
(right) Ore condition if for any pair u € U, s € S there exists o' € U and ' € S such that
us' = su' (s'u = u's respectively).

Proposition 4.1. Let U be a Galois algebra with respect to I, s=T\/{0}.
(1) The multiplicative set S salisfies both left and right Ore condition. Hence, there
ezist the classical rings of fractions U{S™Y], {S™YU (see [St], Chapter II).
(2) [SU = U[S~} ~ L + MC.

Proof. Assume s € S,u € U. Following Lemma 4.1, U contains a right K-basis uy,.. ., us

k
of KuK. Hence in KuK holds s™lu = Zumsi‘l for some s; € S,v; € N,i=1,...,k

i1
k
Then in U holds u - (sy...8,) = 5 (Z UiYiSy - . . $io1Sit1 - - - k). It shows (1). Following

=1
Lemma 4.1, the canonical embedding U < L*M¢ satisfies the conditions F'1, F2, F3, [St],
Chapter I, §1. Hence (2) follows. O

Corollary 4.2. The canonical embedding i : U < LxM¢ induces an I -bimodule isomor-
phism §: K @ U ®p K ~ L« MS.

Proof. Following Lemma 4.1, j is an epimorphism. If 2 € Ker j then there exist 51,52 € S
such that s;zs, € U N Keri. Hence 2z = 0. o

Theorem 4.2, The tensor product of two Galois algebras in o Galois algebra.

Proof. Let U; be Galois subalgebra in skew-group algebra L; * M;, over T'; with the fraction
fields Ki, G,‘ = G(LI/IQ) 1= 1,2 Then Ml X JWQ acts on L] ®x LQ, (ml,mg) . (ll ® lz) =
(myly, maly). Since k is algebraically closed, Ly ® Lg is a domain, hence M = M, x M,
acts on the fraction field. Set K C L the field of fraction of K; ®x K3, which coincides
with the field of fraction of Iy ® ['>. The extension K C L is a finite Galois extension
with the Galois group G = G x (G3. consider the composition

(10) 1 UL @ Uy — Ly # My ®x Lo # My 2 (Ly ®x L) * (Mg x M) — L =M.

The isomorphism above sends L; % MIG‘ @ Ly *MS? into L+ME, which endows Uy ® Us
with a structure of Galois algebra. To finish we shall to prove, that K-1(Uy®xUz) = LxMC.
If z € L * M, then multiplying on « € Ty ® I'y we can assume z € (L) ® L) * M. But
(Ly ®i Lg) * M® = Ly + M @y Lo+ M5? = KUy @ KU 0
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4.2. Galois algebras via generators and relations. It is natural to ask how big is the
class of Galois algebras with respect to I'. In this section we explain how Galois algebras
are related to I-bimodules, providing a recipe to construct many natural examples of such
algebras.

Let V be a torsion free [-bimodule such that Vg is a L-balanced K-bimodule. Then
by Proposition 3.1, there exists an isomorphism

(11) LVLZ@ @ GBLW@"

@C8 gcG/H, §EG
for a certain § € Aut L/G, where G acts on Aut L by conjugations. Given ¢ € S, denote
Q, = {9¢dl, y € G/H,, j€G}.
The diagonal morphism A : G —» G x G induces the action of G on the bimodule 1V,

(12) g (h®rv®rlk)=H®rveri,
defining K-bimodule isomorphisms Ty : .V, — Vi, g € G.

Lemma 4.3. Let g € G, Vi be L-balanced K -bimodule, ¢ € Aut L. Assume that L, C
LV is an L-subbimodule. Then Ty(Ly) = Lyyg1.

Proof. By definition Ty (Az)2) = MTy(2)A3, A, A2 € L,z € LVp. Then
NTy(z) = T,(\ "' 2) = Ty(zA?97") = Ty(2)A%, g € G, A€ L,
hence Ty(L,) > Ly,

The group G acts on the set €, by conjugation. The orbits of G in (2 are Oy = {¥?lge
G}. Since all summands (11) are non-isomorphic, 1V;, has a decomposition into a direct
sum of G-invariant L-subbimodules:

I,‘/L:@ @ V{‘Pﬂ/)},

PES YeN, /G

where V{p,9} = Y Ty(Ly), ¥ € Q/G.

9eG/Hy
For each ¢ € S choose ¥ € £, and consider the submonoid M = M(S) in Aut L
gencrated by all the orbits Oy. In the skew semigroup ring L x M consider the direct

summand
LVi(S) = P LVifo v}

pEeS

—1, which proves the statement. |

of V.
Let 7g @ 1V — (VL(S) be the canonical projection. Fix a, € L, denote a(S) =

{ap]e € S} and consider a G-equivariant L-bimodule monomorphism 7, : V(o)
L M, where

(13) Les 31— %%, g€ G/H,, a, € L.
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It gives the chain of I'-bimodule homomorphisms

Docsrv
—————p

i ik e
(14) V—I-—)KVK——K%LVL——l—)LVL(S) L« M.

Denote by Gy the composition of T-bimodule homomorphisins above.

Lemma 4.4.

Su(V) © Y [Le) = {D_[L™w]|} c L+ ME.

wES pES
Proof. By (3) for every v € gV holds Gy (v) = 2%5[(1,1,97] for some a, € L. O

The chain of I-bimodule morphisms (14) induces the chain of k-algebra homomorphisms
of tensor algebras

| Klik)

il LD es7)
(15) Tr(V) "'ﬁ‘]“?TK(KVK)————-—% i pes T

TL(LVL)—-—LM—)TL(LVL(S)) )L*M

Denote by G the composition of these maps and consider its image
U=U{V,S,a(S))=Tr(V)/KerG~ImG C L+M.
Proposition 4.2. Assmnkc that the algebra U C LxMC is generated over I by the elements
Uy, .., ux € U such that Usupp u; contains a set of generators of M as a semigroup. Then

1=1

U is a Galois I'-algebra.

Proof. Consider a K-subbimodule Ku, K + -+ 4+ Kue K in L + M. By Lemma 4.1, this
bimodule contains the elements [ay1), ..., [anpn], Where @1, ..., @ is a set of generators
of M. Then by Lemma 4.2 for every m € M there exists nonzero a,, € L™ such that
[amm] € U. Since the bimodule V' (m) is L-balanced then Lm == L - apm C L{amm}, hence
LU = L*M by Lemma 4.1. d

This proposition shows that the construction above gives just the same class of algebras.
Hence we will understand a Galois algebra U both as a quotient of T(V) and as a k-
subalgebra in L M.

If V is the I-bimodule, then denote by V° the opposite bimodule

Ve={v|veV}, nv®r = (nwvn),mrelveV

Example 4.3. Let V be an L-balanced T-bimodule with a simple x Vi = V(p), and 1V}, =

@ Lg,. Then the opposite I'-bimodule V° is also L-balanced and L V;° = @ Lpm1g-1.
9€G/H, 9€G/H,
Fiz a,b € L. The Galois algebra U,V © V°, 0,07}, a,b) is generated over I' by [ag] and
[bp=']. In particular, one-dimensional bimodule corresponds to the case of Generalized
Weyl algebras, cf. Section 7.2.
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4.3. Galois algebras with involution. In this scction we consider a class of Galois
algebras generated by a bimodule V @ V°. Then the corresponding monoid M is a group
(cf. Example 1.3).

Let U ¢ L = M is a such Galois algebra. Suppose there exists an anti-isomorphism of
k-algebras o : U ~ U, such that o? =idy, ofr = idr and such that forw € U, I € suppu
if and only if h~! € supp o(u). In this case ¢ is called an involution of U.

Obviously, for an algebra with an involution holds suppu = (supp o(u))~".

For every ¢ € M choose nonzero A, € L and define amapo: LxM — L+ M as
follows:

ap —» <p'1)\(pa,
for all p € M and a € L. Then
(apb)® = 7™ Ayl
and
(b)°(ap)® = ¢ T AL Apa.
Hence o is an anti-homomorphism if and only if the elements ), satisfy the condition
App = ApAY.

We will define formally A, = e for all g € G. In particular, € = Agp-1 = /\q‘,)\g..1 and thus

/\;1 = )\ﬁ_,. Moreover, with this condition the map o becomes an involution of L xM:

(ap) = hpa =N a7t <p/\v,-u\$_1a“’_l =pa? =ap.

On the set of involutions of LM acts the group Auta L*M of M-graded automorphisms

of L x M:
fror> fo f feAuty LxM.
Consider a restriction of o on L MY, Since
[W]° = Z (g(p_lg—‘))‘gwg“laga
9€G/H,

then o induces an anti-homomorphism of L * M€ if and only if

Agpg-1 = A%, and then [ap]® = [p™' Asa].

Therefore, a set of nonzero A, € L, ¢ € M, defines an involution on L * M€ if and
only if Ay = A A% for all ¢, € Mand Agpe-1 = Mg, for all p € Mand g € G. We will
call a set of such clements A, ¢ € M, admissible.

Proposition 4.3. Let U be a Galois algebra associated with T-bimodule V@ V®. If for an
admissible set {\, € L, € M}, [ap] € V implies [(a"’_‘)\;ll) @ 1] € V°, then it defines
an involution on U.

Proof. Let o be the involution on L*M defined by the admissible set above. The conditions

in the proposition show that o induces an involution on the subspace V @ V° C U, which
generates U. The statement follows. 0
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Example 4.4. Consider the case of GWA, realized as Galois algebras in subseclion 7.2
(see Proposition 7.1). Then an involution on I  Z is obviously defined by X, € K such
that (0)° = o7 'X,. Then the condition, that o interchanges bijectively AX and AY 1s
equivalent to the condition al,~ € A*. In particular, the canonical involution X ¢ Y is
obtained in the case M,-1 = a~', equivalently Ay = a°.

4.4. Galois rings of finite rank. Although all considered algebras arc defined over the
base field k, the construction below allows to use the same approach in a more general
situation, since the rings of the form X = L * ME, where M is a group, allow a simple
direct construction.

Let A be a commutative domain integrally closed in its fraction field L, § C AutL a
subgroup, which splits into the semi-direct product of its subgroups § = G x M, where
G is finite and M is finitely gencrated. Denote I' = A% and K = L. Then A is just the
integral closure of T in L and the action of G on L * M is defined as above. Consider the
ring K = L «* M and a finitely generated I-subring U C X such that KU = UK = X.
Such subring is called a Galois ring with respect to T'.

If M is a finite group then a Galois algebra U € K with respect to I' will be called a
Galois ring of finite rank. If in addition U is a k-algebra then it will be called a Galois
algebra of finite rank.

Proposition 4.4. Let U be a Galois algebra of finite rank with respect to I' and E = L5.
Then X is a simple central algebra with respect to E and dimg X = |M|%.

Proof. Theorem 5.1 gives the statement about the center, while Corollary 4.1 gives the
statement about the simplicity. Now from formulas (3) and (7) we obtain

(16)  dimg X =dimp(L+ M) = Y dimg(K+M)G = > [0,] = M|

PEG\M PEG\M

both as a left and as a right K-space structure. On other hand, dimg K = |M|, that
completes the proof. |

5. SKEW FIELDS OF FRACTIONS OF GALOIS ALGEBRAS

Let U € L x M® be a Galois algebra with respect to a subalgebra I Assume that U
is a domain such that the multiplicative set S = U \ {0} satisfies both left and right Ore
conditions. Then U admits a skew field of fraction U. In particular, any noetherian domain
{e.g. iterated Ore extension) admits a skew field of fractions.

A natural question is what these skew fields look like. A knowledge of these rings gives
a non-commutative version of "birational equivalence” for Galois algebras. Hence we will
call two domains rationally equivalent if their skew fields of fractions are isomorphic.

It is a classical result that the operation of taking the invariants of a finite subgroup of
automorphisms of a commutative domain commutes with the construction of the fraction
field. In non-commutative case we recall the following standard result ([Co)).

Proposition 5.1. If a non-commutative domain A satisfies the left and the right Ore
conditions and H is a finite subgroup of automorphisms of A with invertible |H| then AY
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satisfies the left and the right Ore conditions and the skew field of fractions of A™ consists
of H-invariants of the skew fraction field of A.

Since chark = 0 we can apply Proposition 5.1 in the case of A = L « M.

Corollary 5.1, Let L *+ M be o domain satisfying the lefi and the right Ore condilions.
Then L « M satisfies the left and the right Ore conditions, the skew field of fractions L of
LM is endowed with the action of G and L€ coincides with the skew field of fractions of
L+ ME.

Moreover, one can describe the skew field of fractions of the Galois algebras. Namely,
one has

Corollary 5.2. Let U be a Galois T-algebra. If the skew group algebra LxM allows a skew
field of fractions & then U = LG, where U is the skew field of fractions of U. In particular,
all Galois subalgebras with respect to T' in L * M are rationally equivalent.

Proof. Clearly, U € L€. Let 2 € L be a G-invariant element. Then 2 = s, 8,u € LxM,

s # 0 and sz = u. By Corollary 5.1 there cxist § # 0,2 € I * M€ such that 5z = @ and

7= (5)"'u. Infact, 5= Z Ms9 £ 0, 4= Z Mu? for some A € L. The statement follows
9€G e

immediately from Proposition 4.1, (2).
o

5.1. Skew field centers of Galois algebras. It is well-known that if G is a semisimple
or nilpotent Lie algebra then the center of the skew field of fractions of U(9G) equals the
field of fractions of the center of U(S) ([D], 4.3.6). In particular it holds for U(gl,) since
gl, is reductive. Here we have the following gencralization of this fact for Galois algebras.

Let U ¢ L * MC be a Galois algebra with respect to I'. By Theorem 4.1,(4), the center
of Uis Z(U) = UNK™. Since UK = KU = L+ M the center of the skew group product
L * MC equals K™. Suppose that U allows the right and the left calculus of fractions.
Denote by U the skew field of fractions of U and by Z the center of U. A natural question
is whether Z is isomorphic to the field of fractions of Z(U).

Assume that m~Y(T) c T (respectively m(T') C T) for all m € M. Let § C M be
a finite G-invariant subset. Denote U(S) = {u € U|suppu C S}. Obviously, it is a
T-subbimodule in U. It will be convenient to consider the I'-bimodule structure on U as
the I’ ® I-module structure.

Let f € . Introduce the element [5 C I’ ®; K (respectively fi C K & D) as follows

15|
0 fr=TIUe1-10/) =3 P 6T, (=1

€S i=0

(respectively fi = [[,es(/*®1~1@ f)).
From now on we will consider the properties of f5. The case of f§ can be treated
analogously.
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Since S is G-invariant, then all 7} are G-invariant cxpressions, which are integral over
I. Therefore T; € ' foraliz and fo e '@ T.
We have the following lemma which describes the properties of f§.

Lemma 5.1. Let § € M be a G-invariant subset and M(I') C . For any subset XcM
set fx = f%. Then

(1) Letue U. Thenu e U(S) if and only if fs-u =0 for every f € I
(2) Letwe U and T = suppu\S. Then fr-u e U(S).

(3) Let S C T be G-invariant subsets in M, f €T, frs = Z fiogelel, a€l,

i=]

me M. Then frs- | Zf,]l a)m).

(4) Iff € F, S = {C} and fT\g = Zf, ®g; € r ®k thcn fT\q U = Zflgt)u
i=]
(5) Let S be a G-orbit. The T-bimodule homomorphism PY : U(T) —-> U(S), u
fr\s - u is cither zero or Ker PT = U(T'\ S) (both cases are posszble ef. (1))
(6) Let S = SyU- - -US,, be the decomposition of S in G-orbits and P§, : U(S) — U(Si),
i=1,...,n are defined in (5) nonzero homomorphisms. Then the homomorphism

(18) ) — @U = (P§,...,PL),

is a monomorphism.

Proof. Consider any m € M, s € Aut L and a € L. Then
(fe1-1@® f°)-[am] = [fam] = [amf*] = [(f - f™*)am]

and

fs-[am] = H(f @1-1® ) |lam] = [H(f ~ ™ Yam).
sES

sES

If m € S, then one of the factors f — f™ " is zero and, hence, fs - [am] = 0. .

To prove the statement “if” it is enough to show, that for any m ¢ S there exists
f €T, such that f # fm" for all s € S. Since the actlon of M on L is separating, for
every m € M, m # e the space of m-invariants I'™ # T. But over an infinite field the
k-vector space I' can not be the union of a finite number of proper subspaces U s

seS

that completes the proof of (1).

By definition u € U(supp ), hence fauppu - = 0 for any [ € I'. Then the statement (2)
follows from (1) and from the equality foppw = fsfr.

The statement (3) follows from the formulas (6) (page 5) and (4) follows from (3).
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To prove (5) note that by (3), frs # 0 if and only if }:f,gi"‘ # 0, and in the last
i=1
case frys acts on U(S) injectively. Finally, the statement (6) follows from (5), since
N, Ker P_g‘?‘i = 0. 0
Similar statements hold for the polynomial f5. Now we are in the position to prove
Theorem 5.1. Let U C L« M® be a Galois algebra with respect to I' that allows both left
and right skew field of fractions W and M(F) C T. Then 2 = K.

Proof. Let z = s7'u € Z, s,u € U, s,u # 0. We can assume that the unit of M belongs
to supp u. Indeed, let u = [am] + Zm,;ﬁm[amrm'], a # 0. Then following Lemma 4.2 there
exists [bm~!] € U such that ¢ € supp[bm™'][arn]. On the other hand e ¢ supp[bm *!][anm’]
and hence e € supp[bm=!Ju. Then we can change u to [bm™"Ju and s to [brm™']s.

Since sz = zs, we have s~'u = us~'. Then for any ¢ € U holds zus™ = s~
stu = uzs. Therefore, for any fi,¢; € I,i=1,...,n holds

n n
s E fing: = UZfiSQi-
i=1 i=1

In particular, s; = Zfisgi = 0 if and only if s; = Zf,-ugi = 0. It follows immediately

tuz, ie.

i=1 i=1
from Lemma 5.1, (1) that supps = suppu. Since ¢ € M belongs to this support and
U, C K, then applying Lemma 5.1, {6) we conclude that there exist fi,¢i €T, i=1,...,n
such that both s;, s, € K\ {0}. Hence s™'u = 8157 € K and thus 2 C K. Using the same
reasoning as in the proof of Theorem 4.1, (4), we conclude that Z N X =K™ completing
the proof. ]

Remark 5.1. Note that 2 in Theorem 5.1 is not necessarily isomorphic to the field of
fractions of Z(U).
6. GELFAND-KIRILLOV DIMENSION OF GALOIS ALGEBRAS

6.1. Growth of group algebras. Let S, = {$; C S, C--- C Sy C ...} be an increasing
chain of finite sets. Then the growth of S, is defined as

(19) growth(S,) = ;iix;log,\, 1Syl

o0
Forse § = US" we say that deg s = ¢ provided that s € S;\ Si-1, i 2 1.

=0
We will assume that the Gelfand-Kirillow dimension of I" and the growth of M both are
finite.
Let {v),...,%} be a set of generators of I'. For N € N denote by I'y C I the subspace
of T' generated by the products i, ...7v;,, for all t < N, 41,...,4 € {1,...,k}. Let
di(N) = dim Ty and By(I) a basis in Ty (By(T) = {71, .+, W})-
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Fix a sct of gencrators M of the form My = {G -1, ..., G-} For N > 1, My is just
the set of words w € M such that I(w) < N, where [ is the length of w, hence

(20) M1 =MNU< U «p-MN>.

wEM

Note that all sets My are G-invariant. Denote the cardinality of My by dy(N). Let
M, = {M, C My C--- C My C ...}. Then the growth growth(M) is by definition
growth(M,).

Without loss of gencrality we will assume that the Galois algebra U is generated over I’
by a set of generators § = {{m@1], .. -, [an@n]}. Set By(U) = B;(T')UG. As above define
the subspaces Uy and dimensions dyy(N). For every N > 1 fix a basis By (U) of Uy.

Let T'{M] there is the group algebra. Then (in the notations above) the space I'M]y
has a G-invariant basis

N
(21) By(DM) =] | U B{(INw.
=0 11(«5)}1—1171_—'{,

Then by definition GKdimI'[M] = growth B,(I'[M]}. The group G acts on the chain
B.(T[M]), this action is induced by its action on the generators of M,. Then the growth
of the chain B,(I'[M])/G is equal to the growth growth B,(T'[M)), since

By (TIM)| > |By(TM))/G) > |—é|13~<r‘[M1>l.

Remark 6.1. Consider a chain in L« M€ formed by

N
(22) BvTMD =L ] || BiDw),
i=0 ‘(I;(Eu::\;(gl.\./.'_/g,

N 2 1. Then its growth equals GKdimT'M]. It follows from the fact that

(23) [ ( | B,~(F)w)/G| = U B(Owl.
wEMpy i, wEMy /G,
(w)=N-i, l(w)=N-i,
The following formula is well known ([MCR])
(24) GKdim I'[M] = GKdimT + growth(M),

e.g. it follows from the formula (21).

6.2. Gelfand-Kirillov dimension. The goal of this section is to prove (under a certain
condition) an analogue of the formula (24) for Galois algebras.
We will enforce the following restriction
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Condition 1. For every finite dimensional k-vector space V C T the set M-V is contained
in a finite dimensional subspace in T

Obviously, it is enough to check this condition in the case when V gencrates T over k.
The main result in this section is the following

Theorem 6.1. Let U C L*M be a Galois I-algebra satisfying Condition 1, M a group of
finite growth growth(M). Then

(25) GKdimU > GKdimT + growth(M).
The proof of this result is based on the following lemmas.

Lemma 6.1. Suppose there ezist p,q € N and C > 0 such that for any N € N holds

(26) du(pN +q) 2 Cdrpy(N).

Then GKdimU > GKdimI'[M].

Proof.

{27) GKdimA[M] = mlog,\, drpng(N) < mlog,\, dy(pN +¢) =

%) T 08 (o +0)) s = T g du (o +0) <

(29) mlog ~ dy(N) = GKdim U.

|

Lemma 6.2. Let deg, be a degree on A defined by some set of generators Ny, ..., A,. Then
Jor any d > 0 there exists e (= e(d)), such that, given v € T, from degyy < d follows
degy < e for the defined above deg in I'.

o0
Proof. Since Ay is finite dimensional and UF" = T then there exists ¢ > 0, such that

i=0

AgnT = AgNT,. 0

Lemma 6.3. There exists p' > 1 with the following property: if for some N,i > 0 the
set Uy contains all the elements [bnm), for some by, # 0, where m runs M;, then Unypy
contains [bym], where m runs M;yy with by, # 0.

Proof. Let [ay] be a standard generator of U and [b,,m] € Uy as in the lemma. Obviously,

U supplellm] = My

PE{P1,0k}
mEM\M;-1

Step 1. We prove, that for some s (s does not depend on N)
Mis1 C {suppu|u € Unys}

Let m' € supp[p)[m]. We can assume without loss of generality that m’ = ¢m. Then
the coeflicient by wm in [ap][em] equals
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(30) ([a(p] : [C"n])cpm = Z ”’gl(:gl'\agflgz.

91€G/Hp 026G/ Hm
areg7 Lgamgs t —pm

Note that if g, € G/H,, is fixed in the sum above, then condition m? = (™) em
defines a unique (if exists) go € G/H,,. Hence gy is determined by gy, g2 = g2(g1), and we
can rewrite the formula as

(31) (lag] - [em))gm = Z adc909)

9¢SCG/H,

Since [aw]y[em] = [yPay]lem] for any v € T, we obtain

(32) (laplrvlem])om = Z A9 9?7 92(9),
9eSCG/N,

All the automorphisms gp,g € S are different. Hence there cxists ys € ' such that
99(7vs),9 € S, are mutually different. Let

Xg = ((g¢((7§))))geS,j:Ow,]S]—l’ vg = (ag(:wﬂgz(ﬂ))ges.

The Vandermond determinant det X, is nonzero. Hence there exists j, 0 < j < |S| -1
such that

(33) (ol lemlom = S (4% )afc?' s 0,
9€8,5¢cG/ 1,

which is just the j-th element of the vector X - vs # 0. Denote

— J — . ] 92\ . = 3 m).
si{p,m) = degylaply, sa(p,m) = max sip”, m?), and s = max o s2(ip, ™)
Hence, for every m' € M4, there exists u € Uy, such that m’ € suppu and suppu =

supply] - supp{m] = supp[y)[m] for some ¢ € M; and m € M.

Step 2. We prove, that for every k > 0 and every u € U; with |suppu| < k, there exists
t = ¢(k) such that for any ¢ € suppu, Uj 4, contains an element of the form {bi] (¢ depends
only on k).

If suppu = G - ¢ then u = {by], and there is nothing to prove. Assume u = Byl + ...
For f € Ay consider the polynomial

: is1

(34) fs=lre1-1ef)=> Ta ¥ (Th=1),
=0

s€S
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where S = suppw \ G - ¢. Applying Lemmad.1 we obtain

fsou=fs-Wol= S WU = =W 0 - 1)

9€G/Hy sCS SES

Since G NS = @, there exists f € I’y such that all factors in the last product are
non-zero. Indeed, if f¢ = f¥ for every f € Iy, then s and ¢ differ by an element of G
which is a contradiction.

Fix such f and denote

1!
(35) by] = fs u="_ TaufFI™, where T; = > fo. . f4erl.
i=0 TCS,
T:(h,...,l,,’),‘Ti:i
Let Cy = max,ear, degy v (Ch is finite due to Condition 1). Then deg, T; < iCy < kCy
and deg, 1517 < kCy. Hence, degTi < e(kCy) and deg f1¥1-* < e(kCy) by Lemma 6.2.
Thus we can chose t(k) = 2e(kC).

Step 3. Fix s from Step 1 and t = ¢(|G|%) from Step 2. Set p’ = s+t(|G[?). Suppose that
[cn] € Uy for some m € M;. Then by Step 1 given ¢ € M, there exists u € Up s such
that ¢m € supp u. Morcover u can be chosen in the form u = lagly{em] for some v €T, in
particular suppu C supp|p)[m] < |GJ%. Applying Step 2 we conclude that Uy, contains
an element of the form [bym] which completes the proof. O

Now we are in the position to prove Theorem 6.1. The space U; contains elements of
the form [a;y;), where ¢; runs over M,/G. Hence, by Lemma 6.3, Up(n-1)+1 contains

the set My = {[cmm]|m € My, cn # 0}. On the other hand By(I') C Upn41 and
hence Ug41yv+1 contains PnMpy. Moreover all clements from the last product are lincarly
independent. But the set By (I[[M]]) is embedded into [yMy by sctting v[w] - Fleww],
v €Ty, w € Mu4q. Therefore,

1
G|

It remainstoset p=p +1,g=1,C= ﬁ and apply Lemma 6.1. Theorem is proved.

dy((p' + )N +1) 2 [By(D[IMID] 2 =B (FMD)]-

7. EXAMPLES OF (GALOIS ALGEBRAS

7.1. Commutative case. Even though our goal was to introduce a class of non-commutative
Galois algebras, this concept has a natural interpretation in the commutative case as well.

Let U be a Galois subalgebra with respect to ' in L * MG, If U is commnutative, then
M acts trivially on I, hence M = {e}. Therefore

FrcUcLsMé =L =K.

On the other hand any finitely generated over I' subring in JC is a Galois I'-algebra.
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7.2. Generalized Weyl algebras. In this section we realize the Generalized Weyl qlge-
bras (GWA) with infinite order automorphisms as Galois algcbras. We recall the definition
of GWA {rom [Ba).

Let D be a ring, Z(D) its center, ¢ = (0y1,...,04), 0, € AutD, 0i0; = 030, ar =
{ay,...,an), a; € Z(D),i=1,...,n, such that o,(a;) = a;, ifi # . The generah’zed VYGyl
algebra D(0,a) of degree n is the ring generated by D and Xj,..., Xn, Yi,..., Ys subject
to the relations:

Y;)&’i = aj, 4¥i)/i = G,‘((li),
X,‘d = O'i(d)}\'i, Y,‘d = O'l_l(d))’l,
for all d € D, and
(X, Xj] = 13, V5] = [X, Y] = 0,
for all i # j.

For simplicity we consider only degree 1 generalized Weyl algebras. .

Let A be an integral domain with the field of fractions K, 0 : A — Alisan automorphism
of A of infinite order. If ¢ € Aut A then denote by A, a A-bimodule Av such that A-v =
ve(A) and v- A = 7 (A for all A € A. . ,

Let X and Y be generators of the bimodules Ay and A, respectively, and let V =
Ay-1 @ A,. As a splitting field for the bimodule V' we can choose K itself. Then any
structure homomorphism 7 : A[V] — Kx < 0,67! > has a form

1 - -1
Xr—)axbxla LY+ ayby'o,

for some ay, bx,ay, by € A\ {0}. Indecd, suppose 7(X) = ac + o~ for some o, B € K.
Then for any X € A,
M (X) = Mao + Bo™!) = aco(N) + Bo~lo7 (A =T(AX) =
7(Xo™' (V) = (ao + Bo " )o M (A).
Hence, 0%()\) = e for all A € A, which is a contradiction.

Without loss of generality we can assume ay = by = 1. Let U be a corresponding Galois
algebra. The element a = ayby' defines a 2-cocycle £ : Z x Z — K, such that £(—1,1) = a.

Proposition 7.1. Let a = aybj' € A. Then U is isomorphic to the generalized Weyl
algebra generated over A by X,Y subject to the relations
XA=XNX, AY =YX, A€l
YX=a XY=a
Proof. Let A be the GWA, defined in (36). Then there exists the canonical epimorphism

of rings 7 : A — U. On the other hand, the algebra U has the following decomposition
as A-bimodule:

(36)

U=Ao (@AX aAY?Y).
i=1
It implics that 7 is a monomorphism and A ~ U. U

Proposition 7.1 immediately implies
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Corollary 7.1. Generalized Weyl algebra A is a Galois subalgebra of K x Z. Moreover, if
the cocycle € is invertible then A is isomorphic to A x Z.

Remark 7.1. Nole, that in the case if a finite order automorphism & the corresponding
GWA is not o Galois algebra.

Recall that GWA is endowed with the canonical involution X ¢ Y (cf. 4.4).

7.3. PBW algebras. Let U be an associative algebra over k, endowed with an increasing
filtration {U;}iez, U_1 = {0}, Up = k, U;U; C Uyy;. Let U = grU be the associated graded
o0

algebra U = @ Ui /Ui

Recall that zglgebra U is called a PBW algebra if any element of U can be written
uniquely as a linear combination of ordered monomials in some fixed generators of U.
We will assume for that U is a PBW algebra and that grU is a polynomial algebra in n
variables. A well known result of Gelfand and Kirillov states that U is an Ore domain and
the field of fractions has dimension n. In particular, the Gelfand-Kirillov dimension of U

equals n.

Theorem 7.1. Let U be a PBW algebra generated by the elements uy, . .., ug over T, grU
a polynomial ring in n variables, M C Aut L a group and f : U — L+«MS a homomorphism
such that U; supp f(u;) contains the generators of M. If GKdimT' + growthM = n then f
is an embedding and U is a Galois I"-algebra.

Proof. Since f(U) contains the generators of M then f(U) is a Galois I'-algebra by Propo-
sition 4.2. Let I = Ker f # 0. Then

n = GKdimU = GKdimgrU > GKdimgrU/ gr I = GKdimU/I = GKdim F).
On the other hand,
n = GKdimU > GKdim f(U) > GKdimT + growth M = n

by Theorem 6.1. Therefore GKdim f(U) = n which is a contradiction. Hence I'=0and f

is an injection. We conclude that U is a Galois T-algebra.
O

Theorem 7.1 will be applied to construct examples of Galois algebras.

7.3.1. General linear Lie algebras. Consider the general lineal Lie algebra gl,, with the
standard basis e;,1,5 = 1,...,n, [eij,en] = §jxea — Sucx;. Denote by U, = Ul(gl,) its
universal enveloping algebra. Let Z, be the center of U,. We identify gl,, for m € n with
a Lic subalgebra of gl spanned by {e;|4,7 = 1,...,m}, so that we have the following
chain of inclusions
ghcegl,c...Cgl,.

It induces the inclusions U, € Uy € ... ¢ U,. Denote U = U,. The Gelfand-Tsetlin
subalgebra T in U is generated by {7, |m = 1,...,n}. Note that Z, is a polynomial
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algebra in m variables {cmi |k = 1,...,m},

(37) Cmk = E CiyiyCiziy - - - Cigins
Gtrorik)E{1,. M)k

and T is a polynomial algebra in LU—L—;—]Z variables {c;j|1 € j €@ < n}, {Zh]. Let K be
the ficld of fractions of T

Following [DFO2] consider the space L = k™2 of double indexed vectors Z = (i),
6i; €k, 1 € i< j< n, with the standard basis {69}, where (69)y =1if ¢ = k,j=1!and
0 otherwise. Let Lo C L, Ly =~ 75" be a lattice generated by 67, 1 < j<i<n—1

The product of symmetric groups S, = []f.., Si acts on £, if € = (¢;) € Land s = (s1) €
Sny i =1,...,n then (s €);; = &;(5);- Also the group Lo acts on L by the shift 69 - € =
£+ 84,67 € L. .

Let A be a polynomial algebra in variables {);;| 1 < j < ¢ < n}and L be the fraction
field of A. We will identify L and Specm A. Note that A is integrally closed in L and
coincides with the integral closure of I' in L.

Let 2 : I'— A be a k—algebra monomorphism such that

n(ntl
2

m 1
womt) = cme(A) = ZI(A,M- +m)* gtl )
= J7
The image of 2 coincides with the subalgebra of S, —invariant polynomials AP in A ([Zh]).
Choose the generators {7;;} of I' such that o(vy;) = 0i; (A, Ajy oy Ajs)y 1 ST <28 ™,
where 0;; is the i-th elementary symmetric polynomial in j variables. Thus we can identify
I and A% by mapping v — (), ¥ € I. Hence we can view the elements of T as
polynomial functions on A. The homomorphism 1 can be extended to an embedding of the
fields K — L, L% = K and G = §,, is the Galois group G(L/K) of the extension K C L.

Denote by 7 : Specrn A— Speem I the projection induced by .

Recall a construction of the Gelfand-Tsetlin basis for finite-dimensional gl,-modules
({Zh)). Denote Z* C k the set of nonnegative integers and consider L* C £, consisting of
£ such that £~ n_yi € ZF, byi— lmiyy € Z7 for all possible 7, m. Let & C k™ consists
of @ = (ay,...,a,) such that oy — o € 2%, i=1,...,n— 1. Set forax € A

Lo={el|by=0; for 1=1,...,n} and L} =LaNL".
If M is a finite-dimensional irreducible U~module then (for some o € 2 which is deter-

mined by the central character of M) M possesses a k—base consisting of the elements [£],
¢ € L}. The action of the algebra U is defined by e[ €] = eme(O)[£], 1 £ k <m < nand

m

En[6) = am(0)[e+6™),
i=1
where EF = emet, By = €mertm, m=1,...,n—1 and
i €m 1,7 Zmi
o (0 = 5 ol = Em)
I[j;&i([/mj - gw)
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Set M = Lg. Let e be the identity element of the group M. Note that all e, i =1,...,n
are in L.

Let T be a free associative algebra generated over k by Ey;, 4,5 = 1,...,n. Consider an
algebra homomorphism t : T —> L * M such that

m

(38) t'(1':111771) = €Cmm, t mm+1 Z 6’7”14:"17 m+1m) = Z(émz) iy

=1

where

H]'(Am;tl,j - /\mi)

H]‘;ﬁ(/\mj - )\mx) '

Lemma 7.1. t(Epme1) = [ AL t(Bmiim) = [(0™) 7 ARy, in particular, t defines a
homomorphism from T to L » MC.

Proof. To prove it note Hsgm = S,_; C G, consisting of those permutations of G, which
fix 1. Also it is casy to sce, that A}, € Lismt. Then for g € G, such that g(1) = ¢ holds
(™19 = ™ and (A},)9 = At,, which implies the statement. 0

Proposition 7.2. Denote p : T — U the projection defined by Eij — ei;. Then there
exists an embedding of algebras i : U — L MC, such that the diagram

T 2 U
N A
LM%
commutes. The embedding i turns U into a Galois algebra with respect to T'.

A =7

§

Proof. Let z € T and t(z) = Z[miai], m; € M, a; € L. Then there exists a dense subset

i=1
Q(z )yof €] € Q( such that [£] is a basic vector of some finite dimensional U-module A and

)-[€) = Za, [m; + £].

Let z € T be a Jacobson-Serre relation, [D]. Then it turns 0 in all finite dimensional
representations of U. If [¢] € (z) then a;(€) = 0 for all 7. Since each a; is a rational
function on Specm L it implies that a; = 0, and hence z € Kert. Therefore, there exists a
homomorphism i : U — L * MS, such that the diagram commutes. It remains to show
that 7 is an cmbedding. Since U is a PBW algebra and
nin+1) n(n-1)

7 2
we conclude that i is an embedding. Moreover, by Proposition 4.2 and by Theorem 7.1 U
is a Galois I'-algebra . a

Corollary 7.2. The universal enveloping algebra U(gl,) is a Galois subalgebra of L * M.

n? = GKdimU(gl,) = GKdim " + growth M =

)
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Remark 7.2. The fact that the homomorphism i : U — L+ MEC is an embedding follows
also from the generalized Hurish-Chandra theorem (10v]).

Remark 7.3. Realization of U(gl,) as a Galois algebra 1s equivalent to the embedding of
Ul(gl,) into a product of localized Weyl algebras constructed in [Kh].

7.3.2. Restricted Yangians for gl,. Let p be a positive integer. The- level p Yan-
gian Y,(gly) for the Lic algebra gl can be defined as the algebra over k with generators

tfjl-), . .,t,(f), i,7 = 1,2, subject to the relations

(39) (T3 (0), Taa(w)] = ——(Tig () Taw) = Ti(v) Tu(w),

Uu-—-v

where u, v are formal variables and

P
Tys(u) = 05 w? + Yt w2 € Yy (gla)[ul.

k=1
It means
min{r,s) ) (r4s—a) fa-1)
—1) (r+s- r+s—a) (e
[tﬁ’,t}ff]: > (tg Y — g TR,
a=1

where tE?) = §;; and tg) =0 for r > p+ 1. Note that the level 1 Yangian Yi(gl,) coincides
with the universal enveloping algebra U(gly).
Denote by D(u) the quantum determinant

D(u) = Ty (u) Taa(u ~ 1) — Tn (u) Tra(u - 1),
which is a polynomial in u of degree 2p,
D(w) =u? +dy u® 4+ dap, d; € Y,(gly)
The coeflicients dy,...,dy, are algebraically independent generators of the center of the
algebra Y,(gly). Denote by T the subalgebra of Y,(gl,) generated by the coefficients of

D(u) and by the elements t(z‘;), k=1,...,p. This algebra is commutative Harish-Chandra
subalgebra in Y,(gl,).

Let A be a polynomial algebra in the variables by,...,bp, g1, .- G2p- Define a k-homo-
morphism 2 : T' = A by

k
(40) ’(tgz)) = Okp(bi,- -0 bp)s o(dy) = Tigp(g1s -1 920)
where 0;; is the i-th clementary symmetric polynomial in j variables. We will identify
the elements of I' with their images in A and treat them as polynomials in the variables

bi,-.-,bp, g1, ... 0z invariant under the action of the group S, x Sa, . Set L = Specm A.
We will identify £ with k%. If

/B:(ﬁl!"'7ﬂ7l)v 7"_“(’71»-"772;1) an(l é:(ﬁlz~'~1ﬁp17h"'»72p)
then we shall write £ = (8,~). The monomorphisin ¢ induces the epimorphism

(41) '+ L — Speem T,
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If € L and m = ¢*(£) then D(£) will denote the equivalence class of m in A(Y,(gly),T').

Let Py C L, Py o~ ZP, be the lattice generated by the elements &; € k% fori=1,...,p,
where

61:((5},...,6;”’), 6 = 6.

Then Py acts on L by shifts 6;(¢) := £ + &;. Furthermore, the group S, x Sy, acts on £ by
permutations. Denote by S a multiplicative sct in A gencrated by the elements b; —b; —m
for all 2 # j and all m € Z and by L the localization of A by S.

For arbitrary 3p-tuple £ = (8,7) € £ set

Blu) = (u+ ) (u+ By Y(u) = (u+y) (U + Yap)-
Let I, be the left ideal of Y,(gl,) generated by the cocfficients of the polynomials Thy(w) —
B(u) and D(u) — y(u). Define the corresponding quotient module over Y,(gl,} by
(42) M(£) = Y,(gly)/ 1.

We shall call it the universal module. 1t was shown in [FMO)], that I, is a proper ideal of
Y,(gly) and so M(€) is a non-trivial module.
Set P; = Speem L C L, i.e. Py consists of generic 3p-tuples £ = (f,~) such that

(43) ﬂ,‘ - ﬂj ¢ Z forall 1 ;ﬁ ]
If £ € P; then the modules from the category H(Y,(gl,), I, D(¢)) are called generic
Harish-Chandra modules.

Theorem 7.2. ([FMO}) There exist vectors %), (k) € ZP, which form a basis of M(£).
Moreover, we have the formulas
P

(44) Tp(u) £€%) = [ (u+ B+ k) €,
=1
14
*) = , (ut By tki)- Ao (ut Bp+ k) (k480
- Ty (u) € ;Az(k) (ﬂl_ﬁi'("kl"ki)"'/\i"'(,@p_ﬂi'*‘kp'—ki)f )
h p
k) = , (wt Bt k) Ao (ut B+ k) (h—6:)
Tha(u) € —Z;B,(k) Bk B fit kB k=t
where
1 if k>0
Ai(k)_{—v(—b’i~ki) if k<0
and
oy =B~k 1) i k>0
Bilk) = {1 if ki <O0.

The action of Ty (1) is found from the relation

(46) (Tn(u) Tyl = 1) = Ty (10) Tia(u — 1)) €0 = () €5,
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Now quite analogous to 7.3.1 we can prove that Y,(gl,) is a Galois I-subalgebra in
L + MS, where L is the ficld of fractions of A, M = Py and G = §, x Sy,. The formulae
from Theorem 7.2 define the homomorphism @ Y,(gly) — L+ M. Note that Y, (gly)
is a PDBW algebra and its GK-dimension equals 4p. On the other hand GKdim A=3p
and growth Py = p. Theorem 6.1 shows that ¢ is an embedding and Proposition 4.2 shows

Y, (gly) is I-Galois.
8. GELFAND-KIRILLOV CONJECTURE

If G is a finite dimensional Lie algebra Lhen its universal enveloping algebra U(S) is 2
noctherian domain, and thus it admits a skew field of fractions. The celebrated Gelfand-
Kirillov conjecture ([GK], [D}, Problems, 1, 3, and 4.9.21) asserts that this skew field of
fractions is isomorphic to the skew fraction field of a certain Weyl algebra over a purely
transcendental field extension of k. This conjecture is known to be true in the case of
G = gl, (or § = slz). For other known cases, counterexamples and generalization for
quantized algebras see [BG} and references therein. Using the technique of Galois algebras
we reprove ihe Gelfand-Kirillov conjecture for gl, and show it for the Yangians of gl,.

8.1. Symmetric differential operators. Fix k,1 < k < n— 1 and denote by Ay the
k-th Weyl algebra generated over & by zy,..., Tk and &, ..., 0k subject to the relations
47 TiX; = T;T4, 8,0; = Ojai, E)i:zj - Ijai = 0jj.

‘The symmetric group S bas a natural action on Ay by permutation of variables z;'s and
;s simultancously.

Let A = klz1,..., 2], Consider the algebra D(A) of differential operators on A, D(A)
contains A as a subalgebra of the operators of multiplication by the elements of A. One can
identify D(A) with the Weyl algebra Ay by the following isomorphism v: we identify v(z;)
with the operator of multiplication by z; and identify v(8;), 1 = 1,...,n with the operator
of partial derivation by z;. Note also, that if Ais a localizations of A then D(A) is generated

n
over A by 81,...,0, subject to the same relations (47). In this case Z A8, € D(A) is just
the Lie algebra of all k-derivations of A. =
The action of S, on A, induces the action of S, on D(A) by conjugations via the
isomorphism #. Indeed for v € 8, 4,7 =1,...,n, f € A

(mu@)m W) = 7(@im ™ () = Taiin f

1 R e Y — 1,jf—=ﬂ'(’i) —1
(8™ )(z;) = Ti(1-15)) -.{ 0 G hence 787" = Op(i)-
Let o; be the i-th symmetric polynomial in zy, .. ., 2n, 1 =1,...,7, ASr =K|ay,...,00] C
A b= H (x; — z;), & = §2 € AS" the discriminant and A and A3 the localizations
15i<jgn
of corresponding algebras by the multiplicative set generated by A,

(48)
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The canonical embedding ¢ : A% — A, induces a homomorphism of algebras ip :
D(Ap)5 = D(A).
The key result of this scection is

Theorem 8.1. ip is an isomorphism.

8.1.1. ip is an epimorphism. Since A3" is a localization of the polynomial ring kloy,...,04],
the ring D(Aa)® is generated over A3 by differentiations 8, . .., @, such that di(a;) = &,

t,7 = 1,...,n. Hence it is cnough to construct S,-invariant differentiations d,...,d, :
Aa — A which in restriction on A‘Z" coincide with 81,...,0,
n

Oy

Let d = Zf,@i, fi € Aa, be a Sy-invariant differential operator. Then any f; should

=1
be invariant with respect to the stabilizer of ¢ in S,, ¢ = 1,...,n. Denote by o] the i-
th symmetrical polynomial in the variables zy,..., 21,2551, ...,2,, 4 = 0,1,...,n = 1,

j=1,...,n and consider the n x n matrix X = (9;(0;))ij=1,..n. It is easy to sce that

X = (0])iz0,.n-1,-
Jj=1,.,n

If e; is the standard i-th basic vector and f; = (fu,..., fas) is & vector of solutions of
n

the system X f = ¢;, then the differential operator d; = Z friOk, with coeflicients from
k=1
k(z),...,7,), satisfies the relation di(o;) = &;;. It remains to prove that d; € D(Aa)%".

Lemma 8.1. det X = 4.

Proof.
1 1 1
ol az o}
(49) _X = 0; Ty e U;
Onet Onoy On-1
O
) nn-1) ,
Then det X belongs to the space of homogencous polynomials of degree ————, if we

set in this polynomial z; to be equal z; for i # j,4,j = 1,...,n it turns in 0, hence '5 is
a divisor of det X, morcover (due to the equality of degrees) det X = Ad, A € k. Since
in both of them the monomial 72371 ... 27} cnters with the coefficient 1, we conclude
det X =94.

Applying the Kramer rule we obtain

Corollary 8.1. fij € Ap, d; € D(AA)S",’i,j =1,...,n

Proof. The first statement follows from the lemma above. It remains to prove that for a
fixed i the rational functions fir, ..., fin form an orbit of the action of S,,. Denote o' the
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i-th column of the matrix X. Then for 7 € S, there holds 7- o' = o™, i =1,...,n and
hence

/’j\
det(o!,...,0971, ¢, ol ... 0™) _

(50)  #fiy; = (applying = clement wise) « S s e e e S STy
;
(1) w(i-1) 7o gnli+1) #(n) )
{51) det(o™ ), .10 o G0 " O = (permuting columns with )
det(o™), ... o™= gald) gnli+1) . g7(v)
n(5)
. signm det(o!, ..., 0™ D=1 T o™ o
(52) = signmdet(ol,..., 001 g70) omD+L [ on) T fints)

which completes the proof. a

8.1.2. iy is a monomorphism . We nced to show that for every D € D(A)5" there exists
f € AS such that D(f) # 0.

For I = {i1,...,in} € N* denote 2/ = z%...zi» and &' = &i'...8». We usc the
following degree deg on D(A): degz!d’ = |J|, where |J} =14+ +in fOI J (1«5 Jn)-
For D = Z Fid7, Fy € A we set

Jekn
suppD = {J € N*| F; # 0}.

Remark 8.1. If for I,J € N* holds I > J then 8’ (z') = P;(I)z'~7, where

(53) Py(1 Hp]k (), parlz) = 2(2-1)...(z—je+1), so degpse =Jr, k=1,...,1n

If J € N satisfies j; > j, > -+ > jy, then such vector is called senior. Denote by S the set

of all senior vectors. For some Iy € A and J € § denote Fy07+--- = Z Fr977 ¢ D(A)®.
oeS,

Let D € D(A)> and assume that no J € supp D contains cqual coordinates. Then
D= Z(F_]OJ +...), where O consists of the senior representatives of the orbits of the

Jeo

action of Sy, on supp D. Analogously for a senior I we introduce 2/ +-+ - = Z 27 € A5
TESn

Let D = Z F;0’ € Kerig, D # 0. Possibly multiplying D from the left on

JéE€supp D
Off ... 0% + ... for some k; > kp > - > kn > 0 we can assume that D satisfies the
condition above. In other words, for J € supp D and ¢ € S, 0J = J if and only if ¢ the
trivial permutation and D = Z(F_ﬂ')" +...).
Jeo
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Lemma 8.2. Let D = Z(F_,O" +...) and [ > J (lezicographical) for any J € supp D.

, Jco
Then

(54) D@ +..) =3 3 PruloDFya™",

JEO 0,7€Sn

where Iy = FJ.

Proof.
D(a!+..)=D(Y )= (33 Fsd) (D =) =
oESn JEO TESy GESa
SN Fuat ) =Y Y PuleFus
JEO 0,7€5n JEO 0,7€8,

0O

We say that I € § is segregating for a set X = {KI,...,Kt} provided that for any
s=1,...,¢ holds I > K, and all the vectors {o] + 7K |o,7 € S,} are distinct.

Let o1, ..., om be all clements of 8,,. The sequence of elements L<lh< - <IpeN
is called segregating for X, provided that every Iy is segregating for K and for any s € Sy,

nt n! n!
s#e holds Y oili # > ounli (equivalently Y_(ail; = osp i) # 0)-
i=1 i=1 i=1
For D € D(A) denote by X(D) € Z" the set of all differences M - J, where J runs
supp D and for a fixed J, M runs the degrees of monomials in F;. We say that T is
segregating for I provided I is segregating for (D).

Lemma 8.3. (1) Let X C 2" and let I, . .., Iy be a K-segregating sequence. Then the
matriz X = (2°%); j-1,.ar is non-degenerate.
(2) Let K C Z", sy > 53 > -+ > s > 1 a sequence of integers, 1(t) = (t*,...,t™),
te N and J € N*. Then for any N > 0 there ezist integers [y > -+ > Ly > N such
that the sequence I, = I(ly) = J,k = 1,...,n! is K-segregating.

Proof. det X = Z sign(s)zsmh ., g7 By the definition of a segregating sequence
SESnt
all the monomials in this sum are different implying (1).

To prove (2) consider a (respectively ), the maximal by absolute value coordinate in
vectors from K (respectively J). Then I(t) will be X-segregating if ¢+ -t > 20|+ 18,
since in this case |t5 — %] > 2|a] + | 8] for all i # j.

Further, set L, = N + 1. Assume lj;1, ..., ln arc constructed. Then [; should satisfy the
condition

n!

) =i > 2(nt - i)(2al + 18) + D 1

t=itl
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and hence

7 = 13 > 2(nt = ) (2laf + 18) + D &
t=i41

for every j # k. Assume that for some s € Sy, s # ¢, holds Z(ail(li) — oyl (L)) = 0.

i=1
Assume also that o,(k) # oy;)(k) for some k,1 < k < n. Taking the o;(k)-th coordinate
in the sum above we obtain
(55) > (ol (1) = o5 I (1:))x = 0.
i=1
Let j be the index of the first nonzero summand here. Then

n!

loi 1 () = o (L)l > Y 1 >

t=j+1
!
Z losI (L) — o5 I (1))k] 2 0,
i=k+1
which is a contradiction. Thus the sum {(55) is not zero. O

Let I € N” be such that I > J for all J € supp D and assume that I is segregating for
D. Then all the monomials which appear in the summands in (54), have different degrees.
Indeed, if M is a degree of a monomial in some F, then in (54) we have the monomials
with degrees of the form TM +(of —7J) = ol +7(M — J) = oI +7K for some K € X(D),
0,7 € S, which are different for different pairs o, 7.

Hence the monomials z2(™7) in D(z’ +...) are parameterized by a monomial m € A,
that appears in some Fy, and by a pair 0,7 € S,. The coefficient a(n,q,r) € k by 207
is a polynomial in 4y,...,4,. !

We choose sy, ..., 8, € Z such that s(J) = sy, 4+ -+8,jn are different for all J € supp D
and s; > 85 > -+ > 5, > 1. Fix a senior J € supp D with the maximal s(J) and denote
I(t) = (t*,...,t**). Recall (Lemma 8.3) that for large ¢ the vector I(t) is D-segregating.
Then from (54) we obtain that the term of the highest degree of ¢ equals

(56) S1irttsndn Z FU-JZU(I(”"J),
o€Sn
Hence for large enough ¢ holds Z F,;2°U®=7) = 0. Note that F,; does not depend on

9ESH
t. But by Lemma 8.3, (2) we can construct a segregating sequence Iy, .. ., In, L=I()-J

1Since those I’s that segregate D, form a Zariski dense set in k™, we obtain that these polynomials are
Z€ro.
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such that Z Foyz°) = 0 for all k = 1,...,n!. On the other hand (Lemma 8.3, (1))
0CSn

the matrix (z°09) _ o is non-degenerated. Hence Fj = 0 which contradicts the

assumption J € supp D.

8.2. Case of U(gl,). Using a realization of U(gl,) as a Galois algebra (cf. section 7.3.1)
we obtain an embedding
U(' ) (B*Z"L)G,

where m = n(n — 1)/2, ¢ = 8 x S» x ... x S,. Here B is a certain localization of the
polynomial ring in n(n + 1)/2 variables. Therefore Uf{gl,,) has a natural embedding into

Q=A @A ® ... A @k, ..., 4],

n--1
where Ay, is a certain localization of the k-th Weyl algebra A;. The algebra Ay is a simple
noetherian noncommutative domain. Denote by Ly the skew field of fractions of Ay, By
Proposition 5.1 the skew field of fractions of Ai“ cquals L;fk, k=1,...,n—1. Hence

Corollary 8.2. Ufgl,,) and Q are rationally equivalent, i.e. the skew field of fractions of
Ulgl,) is isomorphic to
LI ®... LI @Kty .., t),
where k(ty,. .., ty) is the field of fractions of k{tq, ..., tn].
The Gelfand-Kirillov conjecture is true for gl, and states that the skew field of U(gl,)
is isomorphic to the skew field of A,, over the field of fractions of the center Z(U(gl,)).

It is also known that if A;* is rationally equivalent to 4, ® k[z1,.. . 25] (noncommutative
Noether’s problem) then ¢ = k, s = 0, and £3* ~ £; [AD]. Thereforc we conclude

Corollary 8.3. The Gelfand-Kirillov conjecture for gl, follows from the noncommutative
Noether’s problem for Ay, k=1,...,n~—1.

Our goal now is to prove that Ls" o~ L.

Remark 8.2, As it was pointed to us by T.Levasseur the validity of the Gelfand-Kirillov
congecture for gl,, implies that LY ~ L, where W ~ Sy is the Weyl group of gl,. But the
problem here is with the identification of the explicit action of W on Lg. Our approach is
based on the application of the symmetric differential operators.

Corollary 8.4. Let L, be the fraction field of A, endowed with the induced action of Sn.
Then L;‘f" ~ L.

Proof. We use here the following facts
(1

B

D(A)s £ D(As) for a multiplicative set S.
If A € Aisa Sy-invariant element then D(Ax)% o (D(A)%")a.
(A%)s > (Aa)™

)
|
) D(AAYS* = D((A%))a.

¢
3
(4
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The first statement can be found in [MCR], Theorem 15.1.25. If D € D(Ap)%* then
(as any differential operator after localization) D, = A*D € D(A) for some k > 0. Hence
Dy is Sp-invariant, since both A and D are, ic. Dy € D(A)® implying (2). The third
statement is obvious and (4) follows from the previous statements and Theorem 8.1.

Consider a commutative diagram

(57)
D(A) ? D(A)a
/ /
Sn
D(A)S : (D(A)*)a
s Sa
s3n
g5n ;
£Jn (Ln)A
r Pa
L5 (E3)a

All the horizontal arrows in the diagram are just embeddings in the localization by A (the
horizontal arrows on the front face are induced by the corresponding horizontal arrows on
the rare face on Sp-invariants). The vertical arrow S : D(A) —— L, is just an embedding
into the skew field of fractions. Other vertical arrows arc induced by localizations and
taking S,-invariants. All other arrows are just embeddings of the S,-invariants (the arrows
on the right face are the localizations by A of the arrows on the left face).

By Proposition 5.1 the arrow S5 : D(A)S» — L3 is just the embedding into the
fraction field. On the other side D(A)® and (D(A)}%*)4 have the same skew fraction field.
Both J and Js, are isomorphisms, since they are embeddings into the localization by an
invertible element A. Hence the skew field of fractions of (D(A)5*), is isomorphic to £57.

Then

(58) (D(A)*)a = (D(A)a)®" = D(Aa)> = D((Aa)*) =~
(59) D(kloy,...,00]a) = D(kloy,...,00))a.

It implies that (D(A)%)a is just a localization of the Wey! algebra A,, and thus its skew
fraction field is isomorphic to L,. It implies L5 &~ L,.

0
Remark 8.3. Corollaries 8.3 and 8.4 give a new proof of the Gelfand-Kirillov conjecture
f()T gln‘
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8.3. Yangian. Supposc now U = Y,(gl,), the restricted Yangian of level p for gl, (cf.
section 7.3.2). Then U is a Galois subalgebra in L+ (ZP)%, where L is the ficld of fractions
of a polynomial algcbra A in 3p variables and G = S, X Sy,. Therefore

Corollary 8.5. (1) The restricted Yangian Y,(gly) 1s rationally equivalent to
Agp ] ]k[.’L‘], e ,.'Ezp].

(2) The Gelfand-Kirillov conjecture holds for Yp(gly) and its skew field of fractions is
isomorphic to Ly @ k(zy,...,22).

9. SOME REMARKS ON THE QUANTUM CASE

9.1. Quantum algebras as subalgebras in skew group algebras. In this subsection

we discuss the possibility to realize quantizations of U(gl,). As in the classical case the

existence of Gelfand-Tsetlin formulas is the main hint for the existence of the structure of

a Galois algebra. We write down a conjectural presentation of some quantum algebras as

Galois algebras and discuss possible consequences. The case n = 2 is considered in details.
Denote by U(gl,) ([KS], 7.3) the algebra, generated over k(¢'/?) by elements

(60) E,F, K Kii=1,...,n-Lj=1,...,n

subject to the relations

KK = KK, KK'=K'K=1

KEK' = fl2q %0l E;, KGFKT = gt Ey,

KK ~ KK
g—q7

E!Eiq - (¢ + ¢ Y EEisi Ei + Bin B} = 0,

F2Fy — (g+ ¢ YEFuFi+ Fn FE = 0.

(61) (B, ) = 64

) [Eiij]z[FivF’j]:'Ov |Z—Jl227

The Gelfand-Tsetlin bases of irreducible finite dimensional representations of gl, are
paramecterized by the families of |M) = (mih<igi<n € ZMn=1/2 with some conditions of
integrality, positivity and betweenness conditions ([KS], 7.3). Denote by €;;,1 <1< j<n
the standard basic in Z""~1/2,

The canonical embedding of the sets of generators induces the canonical embedding of
the algebras ik : Uy(gle) < Uglglisy), k 2> 1, so we will assume Up(gly) C Uy(gly) for k <.
Denote by Zx the center of U, (gl) and by I = T, the Gelfand-Tsetlin subalgebra in U,(gl,,)
generated by Zy,. .., Zy.

The Gelfand-Tsetlin formulac for the action of the generators (60) are defined as
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(62)
k k-1
Kk|h[)—q“*/2|]\1 Qg Z ”ki_znlk-li
k k-rl k
L [liks1 — Lk k-1 =) 1y
= E R LLL I L2 § g Fi|M) ~—————IM €ks)s
g z;éj[llk ]k} | k} k| Z-l ,;éj[llk Jk]

T _ 4T

where lj; = m;; — j and [z] = [z], = %

We rewrite these formulas without using the square bracket notations. We apply the
following dictionary, where the first one implics the rest

ghs — Xy, )
(63) liksr = bx)  — (g- (I‘I)_](Xik;u/Xi’k - Xi’k/)&ik’il):
[Giker = Lix +1] = (90— ¢ ) Mg Xiksr/Xik — Xir/qXinz1),
Uiktr = lie = 1] +— (g— ¢ (Nigae1/qXix — ¢Xin/Xikx1)-

It allows to rewrite the algebra ﬁq(gln) as follows. Let
A=k(@)xE1<i<i<n)

. n{n-1) .
and L denotes the field of fractions of A. Consider a free abelian group M = Z~ 7 ~ with
a basis §;;,1 <1 < j < n. Endow A with the action of M as follows:

5y xe 2 L APXS ik =1,
v X,il/z otherwise.

Let A be a free associative algebra over k generated by the generators (60) and P a
k-algebras homomorphism ¢ : A — L «+ M defined by

D(Ky) = "/QHX”?Hka”f e, 1<k<n,
k
(Xixn/X k] Xik
(64) @ (E[c) (I q -1 Z 1 1 k+1/ ik — ]k/ k+1) 6jk,

I_L;] (Xie/ Xk = Xjn/Xix)

Z i (2 :k VX — Xiu/Xik-1) o1
p

j=1

.
Hé] 1k/-XJk_ jk/lYik) J
The proof of the next proposition is analogous to the proof Proposition 7.2.

Proposition 9.1. The mapping © defines an algebra embedding ¢ : Uq(gln) — L+ M.
Besides L -Im(i) = L « M.
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On the other hand, the group G = S % S, 2% - x 8 acts on A and on its field of
fractions L, where S'Qk,.] Sokt1, Sor = Sop X (,2, C~ is a cyclic group of order 2, S; acts
on Xy;,. ..,X“ by permutations of the second indices and C§ acts by the change of sign
Xig > =Xy forall i = 1,... k. Denote by K the field of invariants L¢, T = A%, By the
construction Imi ¢ L+ ME.

Conjecture 1. The algebra (V]q(gln) C L« MC is a Galois algebra with respect to the
Gelfand- Tsetlin subalgebra T with the ficld of fractions K.

9.2. Example of U,(gl,). As an evidence of the conjecture above we consider the case

of the quantized algebra U,(gl,). Following (61) this algebra is defined by generators and
relations

KK; = KK, KK7'=K7'K=1i=1,2,
K\E, = B\(¢"*K)), K\F\ = F(q7?K)),

(65) KBy = BEy(Kaq™V?), KB = Fy(Iq'/?),
2[5 - KRR
WL
-4

Its easy to sce that the quadratic Casimir clement equals

g I KQ)? + (K /K0)? q(K1/K2)? 4 q~ (K'.Z/Kx)2

66 C=EF+ . =R"E +

(66) o (g—q1)? w @-g¢7)
Let us write the formulas for the mapping @

(67)

B(K,) = ‘/'~’X1’{2 e, B(I,) = q(XnXa)2X[ e,
() = ~(g~ ¢ ) (Xa /X1 — Xt/ Xa)(Xnn/ X1y — X/ X2) 61, B(F2) = &
and calculate ®(C).

®(C) = —(q - ¢71) "2 (Xo1/ X1y — X1t/ X)X/ X1y — X1a/ Xa2)+
(4—9¢7 )X 11/(X21X22) + (X X2)/XT) = (0= ¢71) "2 (X21/ X2 + Xoo/ Xn).
Hence, the image of the Gelfand-Tsetlin subalgebra is generated by

(68)

(69) X2 X3P X0 and Xop + Xaa.

It means that the Galois group involved contains four elements and is generated by the
transformations

\’1/2 > /\%2 i and .\'.21{2 \';{2, b =1,2.
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