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ABSTRACT: The gauge/gravity duality is used to investigate the imaginary part of the
heavy quark potential (defined via the rectangular Wilson loop) in strongly coupled plas-
mas. This quantity can be used to estimate the width of heavy quarkonia in a plasma
at strong coupling. In this paper the thermal worldsheet fluctuation method, proposed in
[J. Noronha and A. Dumitru, Phys. Rev. Lett. 103 (2009) 152304], is revisited and general
conditions for the existence of an imaginary part for the heavy quark potential computed
within classical gravity models are obtained. We prove a general result that establishes the
connection between this imaginary part of the potential determined holographically and the
area law displayed by the Wilson loop in the vacuum of confining gauge theories. We also
determine the imaginary part of the heavy quark potential in a strongly coupled plasma
dual to Gauss-Bonnet gravity. This provides an estimate of how the thermal width of heavy
quarkonia changes with the shear viscosity to entropy density ratio, 7/s, at strong coupling.
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1 Introduction

One of the most important gauge invariant quantities defined in non-Abelian SU(V,) gauge
theories [1-3] is the Wilson loop

w(C) = NitrP exp [ig?écfl“dm“], (1.1)
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Figure 1. The rectangular Wilson loop, along with the choice of the coordinate system used.

where C' is a closed loop embedded in a 4-dimensional spacetime, P indicates path-ordering,
g is the coupling, 121“ is the non-Abelian gauge field potential operator while the trace is
performed over the fundamental representation of SU(N,) (other representations can also
be used but we will use the fundamental representation in this paper). In particular, the
case where C' is a rectangular loop of spatial length L and extended over 7 in the time
direction, as depicted in figure 1, has been extensively studied over the years. With this

contour, the limit 7 — oo of the vacuum expectation value of (1.1) gives

lim (W(C))o ~ e Vaalb), (1.2)
T—o0
where V5(L) is known as the heavy quark potential (the vacuum interaction energy be-
tween two infinitely massive probes in the fundamental representation). In the vacuum of a
confining gauge theory (W (C')) should obey an area law defined by im0 Vo(L)/L = o
with o being the string tension [1].

In the imaginary time formulation of thermal gauge theories [4], all bosonic fields are
required to be periodic (or anti-periodic in the case of fermionic fields) in the Euclidean
time 7 with period § = 1/T and the order parameter for the deconfinement phase transi-
tion in an SU(N,) theory without dynamical fermions is characterized by the path ordered
Polyakov loop [5-8]

L(Z) = Ni peioly" Ao@niar (1.3)
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This operator becomes gauge invariant (up to a phase) after performing the trace. In a
pure gauge theory there are also global gauge transformations that are only periodic up
to an element of Z(N.), which is the center of SU(N.). In this case, tr L transforms as
a field of charge one under the global Z(N.) symmetry, i.e., trL — €27*/Netr L where
a=0,...,N.—1. Below T, the system is Z(N.) symmetric, which implies that (tr L) = 0.
Above T, this global symmetry is spontaneously broken, (tr L) # 0, and the system lands
in one of the possible Z(N.) vacua. The thermal average of the Polyakov loop correlator
C(r,T) = (trLf(r) tr L(0)) is associated with the difference in the free energy of the sys-
tem due to the inclusion of an infinitely heavy QQ pair separated by a distance r in the
medium [9]. Such a formulation has been used to define a heavy quark potential at finite
temperature on the lattice [10, 11].

However, the rectangular Wilson loop can also be computed in gauge theories at finite
temperature. In this case, the expectation value of the Wilson loop operator for the
same rectangular contour can be evaluated in a thermal state of the gauge theory with
temperature 7' (in Minkowski spacetime) and the 7 — oo limit

lim (W(C)) ~ e Vaq(ET) (1.4)

T—o00
defines a quantity VQQ(L, T') which we call here the “heavy quark potential at finite tem-
perature”. In general, this heavy quark potential in QCD can have an imaginary part, as
shown in [12-21], while the quantity defined using the Polyakov loop correlator is neces-
sarily real. The imaginary part of the potential defines a thermal decay width which, at
weak coupling, is related to the imaginary part of the gluon self energy induced by Landau
damping and the QQ color singlet to color octet thermal break up.

In this paper we shall elaborate on the method proposed in [22] to estimate the thermal
width of heavy quarkonia at strong coupling using worldsheet fluctuations of the Nambu-
Goto action associated with the heavy quark pair in the gauge/gravity duality [23-26].
In this approach, the thermal width of heavy quarkonium states stems from the effect of
thermal fluctuations due to the interactions between the heavy quarks and the strongly
coupled medium. This is described holographically by integrating out thermal long wave-
length fluctuations in the path integral of the Nambu-Goto action in the curved background
spacetime. At sufficiently strong coupling, this calculation can be done analytically and a
simple formula for the imaginary part of the Wilson loop can be found in this approach
that is valid for any gauge theory that is holographically dual to classical gravity.! The
formula is used to revisit the calculation of the thermal width in strongly coupled N' = 4
Super Yang-Mills (SYM) theory done in [22]. Moreover, we compute the imaginary part
of the potential for a strongly-coupled conformal field theory (CFT) dual to Gauss-Bonnet
(GB) gravity. We also prove a general result that establishes the connection between the
thermal width and the presence of an area law for the Wilson loop at zero temperature in
gauge theories with gravity duals, which may be useful for the study of the imaginary part
of the heavy quark potential in confining gauge theories dual to gravity.

The background metric has to fulfill certain conditions for the method to be applicable. This is shown
in section 2.



This paper is organized as follows. In the next section we will revisit the general
setup concerning the holographic calculation of Wilson loops. In section 3 we discuss the
holographic calculation of Re Vj5, which is necessary to derive our main formula for the
imaginary part of the potential in section 4. In section 5 we apply the formula to compute
the imaginary part in two different strongly coupled gauge theories with gravity duals. We
finish with our conclusions and outlook in section 6.2

2 Holographic setup

After the original calculation of the rectangular Wilson loop in the vacuum of strongly
coupled N’ = 4 SYM theory® by Maldacena [27] and its generalization to finite temperature
in [28, 29], rectangular Wilson loops have been extensively studied in strongly coupled gauge
theories using the gauge/gravity duality.

According to the gauge/gravity prescription [27], the expectation value of W (C') in a
strongly coupled gauge theory dual to a theory of gravity is

<W(C)> ~ Zstr7 (2'1)

where Zg, is the generating functional of the string in the bulk which has the loop C at
the boundary. In the classical gravity approximation

Lstr ~ eiSStrv (22)

where Sg; is the classical string action propagating in the bulk evaluated at an extremum,
0Sstr = 0. In the case of a rectangular Wilson loop at nonzero T’ other extrema can become
relevant as one increases the value of LT [30]. In this paper we are only interested in deeply
bound states where LT < 1 and this question becomes less important.* In the classical
approximation the worldsheet action Sy, may be taken as the Nambu-Goto action®

1
Sstr = Sng = Y /dadT\/—det(GwaaX“abX”)7 (2.3)
where X#(7,0) are the worldsheet embedding coordinates, u,v = 0,1,...,4, a,b = o, T,

and o/ = 12, where I, is the string length.

Therefore, the Wilson loop in the strongly coupled gauge theory can be determined
using the classical solution of (2.3) which has the loop C' as the boundary of the clas-
sical string worldsheet. For the case of rectangular Wilson loops one can then calculate
Voo(L,T) (see figure 2). We will consider an effective 5-dimensional curved spacetime,
which will describe the gravity model dual to the gauge theory.® Finite temperature effects

20ther aspects of the calculations are presented in appendices A to D.

3Note that in N/ =4 SYM the Wilson loop operator also contains the 6 adjoint scalars.

“We shall come back to this point when discussing the calculation of the imaginary part later in section
5 and also in appendix D.

5For gravity duals derived within string theory, supersymmetry requires the presence of fermions on the
worldsheet but those only enter as an A correction to the action and can be neglected in the supergravity
limit in which o/ — 0.

5In the case of AdS x S5 we choose a fixed configuration in Ss for the compact string coordinates.
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Figure 2. The Maldacena prescription for the calculation of Wilson loops via the gauge/gravity
duality. In (a) we present the situation for an arbitrary loop C. In (b) we consider rectangular
Wilson loops with 7 — oco. In both cases U}, is the position of the horizon of the black brane and
U, denotes the bottom of the sagging string in the bulk.
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Figure 3. A slice of the string worldsheet for the rectangular Wilson loop at fixed time t.

are taken into account by introducing a near-extremal black brane in the gravity dual and
we assume that the metric of the gravity dual has the following general form

ds®> = —Goo(U)dt? + G0 (U)dZ? 4+ Gy (U)dU?, (2.4)

where ¥ = (z, vy, z) denotes the usual spatial coordinates while U is the radial direction. The
metric (2.4) is assumed to have an asymptotic boundary at U — oo. The position of the



horizon of the black brane, Uy, is given by the (first simple) root of Gpo(U) = 0 starting from
the boundary and we will also assume here that Gyy(Uy) — oo, with Goo(Up)Guu(Up)
finite. The black brane temperature 7' (which is a function of the position of the horizon,
T = T(Uy)) corresponds to the temperature of the thermal bath in the gauge theory. Also,
note that the thermal state of the gauge theory considered here is assumed to be invariant
under spatial SO(3) rotations and the QQ pair is at rest in the local rest frame of the plasma.

3 Real part of the heavy quark potential

The calculation of the real part of the potential within the gauge/gravity duality is well-
known and can now be found in textbooks [31]. However, some of the formulas that appear
in this calculation will be used in the determination of the imaginary part of the potential
and thus, for the sake of completeness, we shall briefly review the necessary details here.
The reader who is familiar with this subject may skip it and go directly to section 4.

For the rectangular Wilson loop, we choose the coordinate system shown in figure 1 in
which the string worldsheet coordinates are written in static gauge, X* = (¢, x,0,0,U(x, t)),
7 =t and ¢ = x. Furthermore, since 7 — 00, any slice of the worldsheet with constant ¢
has the same form (as shown in figure 2(b)) - this means that we can take U(x,t) = U(x).
We present a sketch of a fixed t slice of the string worldsheet in figure 3. With these choices
and the general metric (2.4), the action (2.3) takes the form

L/2
[ e+ VT, (3.)

—L/2

where U’ = dU/dx, M(U) = GooGyy and V(U) = GooGrz- For the models considered in

this work, we will always have M (U) > 0. The action (3.1) is only implicitly dependent on

S p—
NG 2ma!

x and, thus, the associated Hamiltonian is a constant of motion
V(U)
HNg =
VMU)U)?+V(U)

where U, = U(z = 0) and also U’(0) = 0 (since the string has its minimum at z = 0). We

= const. = /V(U,), (3.2)

can solve (3.2) for U’ and obtain

av [V(U)<V(U) _1>T/2_ (3.3)

de | MU) \V(U,)
Since the endpoints of the string are located at x = —L/2 and x = L/2, we integrate (3.3)
to obtain a relation between U, and L,

g _ 7dU VM(U) [V(U) < ACH 1)] " (3.4)

V(Uy)

We may deduce another consequence of (3.3) which will be useful later. In fact, differen-
tiating (3.3) with respect to  and then setting = 0 and U = U, one finds
(o) = LV/(U)
2M(U,)’

(3.5)



where V/(U) = dV(U)/dU. Since z = 0 is a minimum, U”(0) > 0, and one can see that
V/'(Uy) > 0.

Finally, we use (3.3) to obtain an expression for the action (3.1) evaluated at the
classical solution of the equations of motion

vo) TV

o
Sur = % / AU /M) VV ((UU* )) (3.6)
U
The (yet to be regularized) real part of the heavy quark potential is simply given by
lim7 00 Sstr/7T - The equations (3.4) and (3.6) (minus the regularization) solve the problem.
To obtain Re VQQ as a function of L and T we either eliminate U, from both equations or,
when this is not possible, parametrize both L and Re V5 as functions of U..

Note that (3.6) is UV divergent. This UV divergence, which is characteristic of Wilson
loops, appears in the holographic approach from the fact that the string must stretch from
the bulk to the boundary. Note that this is the same type of UV divergence found in
N =4 SYM at T = 0 [27], which is to be expected since in thermal gauge theories all
UV divergences must come from the vacuum contribution [4]. This implies that the same
regularization chosen for the vacuum can be used to render the T' = 0 potential finite. The
regularized real part of the potential at nonzero temperature can be written as

/ U U ‘1/2
v M —/My(U)

RN b VM (3.7)
0

o/

ReVE(L,T) = — / dU

where My(U) = limy_oo M (U). This temperature independent regularization scheme for
the real part of the potential is well defined for any asymptotically AdSs geometry, even
in the case in which the dual gauge theory displays confinement at 7= 0 (in the sense of
an area law for the rectangular Wilson loop in the vacuum).”

The expectation value of the Polyakov loop |(tr L)| can be easily extracted from (3.7) by
assuming that when L — oo, U, — Uy, and Re Vgg — 2F, 8. This gives the (regularized)
heavy quark free energy

1
2ma!

" IRT) (38)

FEAT) = 5oy [0 (VAT - VD) -

2ma/

and the Polyakov loop [(tr L(T"))| = exp{—Fgg(T) /T'}. While this simple procedure gives
the correct expression for F, reg(T) [32, 33] in this type of gravity duals, we note that other

"As explained in [30], the regularization scheme involving the subtraction of the contribution coming
from two “straight” strings running from U, to U — oo is temperature dependent. Moreover, since the
connected U-shaped contribution to the potential is of order N and this kind of disconnected contribution
involving the two straight strings is of order N2 [30], it becomes problematic to use the latter to regularize
the heavy quark potential in the large N. limit where these classical gravity calculations are performed.
Therefore, in this paper we opted to use the expression in eq. (3.7), which is well defined in the large N limit.



configurations for the string worldsheet besides the U-shaped one must be taken into ac-
count when LT > 1 [30, 34]. In the following we will always consider the regularized
expressions for the quantities discussed above and, thus, the superscript “reg” will be
omitted from the formulas in the rest of the text.

For further use, let us also recall the properties that the background metric must dis-
play in order for the rectangular Wilson loop to display an area law at 7' = 0 [35, 36]. For
the general metric in eq. (2.4), it was shown in [35, 36] that if there is a Uy such that V(U)
has a minimum or M (Uy) diverges (with V(Up) # 0), then the theory linearly confines with
string tension o = ﬁ\/ V(Up). As one pulls the quarks apart and L — oo, the bottom of
the classical string becomes flat at Uy and cannot penetrate any further into the geometry.
In the deconfined phase of a (T = 0 confining) gauge theory, however, Uy is hidden by the
horizon and o = 0.

4 Thermal worldsheet fluctuations and the imaginary part of the heavy
quark potential in strongly coupled plasmas

We now generalize the procedure proposed in [22] to extract the imaginary part of heavy
quark potential, Im Vi,5, using the gauge /gravity correspondence. After deriving a formula
for Im Vi, using the saddle point approximation, we discuss its limitations and present
some general conditions for the existence of such an imaginary part in this setup. We
remark that other approaches have been proposed to extract the imaginary part of the
potential using holography in [37, 38]. These different methods give results that are qual-
itatively equivalent in the case of N/ = 4 SYM theory. The method discussed in detail in
this section has the advantage of being of easy implementation in comparison to the other
schemes since Im Viy5 for a generic gravity dual (2.4) can be directly computed using the
formula in eq. (4.15) derived below.

4.1 The saddle point approximation

In the previous section, we saw that the classical solution to the Nambu-Goto action (2.3)
can be used to compute the real part of the heavy quark potential. To extract Im V55 (L, T)
we have to consider the effect of thermal worldsheet fluctuations about the classical con-
figuration U = U.(x). Such fluctuations, although taken here to be small, may turn the
integrand of (3.1) negative near x = 0 and generate an imaginary part for the effective
string action. The corresponding physical picture is that some part of the string, through
thermal fluctuations, may reach the horizon (see figure 4).

Therefore, we shall consider the effect of worldsheet fluctuations U (z) (6U(+L/2) =
0) around the classical configuration U, (z)

U(x) =Uc(z) = U(z) =Usx) 4+ 6U (x). (4.1)

The classical configuration U.(x) solves Sng = 0. For simplicity, the fluctuations 6U(x)
are taken to be of arbitrarily long wavelength, i.e., %x(x) — 0. The string partition

function that takes into account the fluctuations is then

D ~ / DU ()i NG Ue@)+0U (@), (4.2)
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Figure 4. An illustration of the effect of thermal fluctuations (dashed line) around the classical
string configuration (solid line). If the bottom of the classical string solution is close enough to the
horizon, thermal worldsheet fluctuations of very long wavelength may be able to reach the black
brane horizon at Uy,.

If §U(x) is such that the integrand in Sxg acquires an imaginary part then, by consider-
ing (1.4) through (2.2), Im Vi) (L, T') # 0. Note that we are assuming that the fluctuations
are not strong enough to allow for transitions to different classical extrema of Zg..

We proceed by dividing the interval —L/2 < x < L/2 into 2N points z; = jAz
(j=—N,—N+1,...,N) with Az = L/(2N) and then take the N — oo limit in the end
of the calculation. Then, Zg, becomes

Zstr ~ A}im d[oU(x_nN)]...d[6U(xn)] exp z'TAf zj: \/]\4((]]‘)(%’»)2 +V(Uj)|, (4.3)

—0o0 2T

where U; = U(x;) and Uj = U’(x;). The thermal fluctuations are most important around
x = 0 where U = U,, which means that it is reasonable to expand U, (z;) around z = 0
and keep only terms up to second order in ;. Since U.(0) = 0 we have that

22
Ud(z;) ~ U, + EJU!(O). (4.4)

Since the string worldsheet fluctuations which will be more important in generating an
imaginary part are those near the black brane horizon (as will be discussed more fully
in 4.2), we can consider only small fluctuations around the bottom of the string. Taking



this into account, we expand the classical solution around x; = 0, the bottom of the classi-
cal solution, and consider small fluctuations around it. The inclusion of these small higher
order corrections to the imaginary part, which are associated with the small fluctuations
away from the bottom of the string, could in principle be considered, although the calcu-
lations become considerably more involved. As we are considering only small fluctuations
around the classical configuration, we expand V(U(z;)) = V(Uc(x;) + 0U(x;)) in x; and
60U, keeping only the terms up to second order in the monomial a:}”éU”
! i /x? 5U2 i

V(U;) = Vi + 06UV, + U, (O)V*? + TV* , (4.5)
where V., = V(U,), V] = V'(U,), and etc. The function M (U) admits the same expan-
sion as V(U) but, in the action (3.1), M (U) appears only via M (U)(U’(z))?. Using (4.4)
we see that U'(z) ~ x;U(0) and, therefore, U’(z)? is already a term of second order in
:c?”&U ™. Then, we consider only the zeroth order term in the expansion of M (U), i.e.,
M(U) ~ M(U,). Combining this with eqgs. (4.4) and (4.5) we can approximate the expo-

nent in (4.3) as
J Ax
NG _ fev 2
Sj = orad 011‘]- + Cy (4.6)

where U0
Cy = 2( ) [2M,U!(0) 4 V/] (4.7)
and
! 6U2 "

where we defined M, = M (U,). Since U”(0) > 0 and M, V, > 0, one sees that C; > 0.

If the function in the square root of (4.6) is negative then SJN G contributes to
ImVyg(L,T) # 0. The next step consists in determining when this happens and what
the corresponding contribution to Zg, is. In order to do that, let us isolate the j-th such
contribution to Zg,

6Uj'maz
T Az
I; = / d(0Uj) exp [z o \/W]’ (4.9)
6Ujmin

where 6Ujmin, 0Ujmaz are the roots of C’l:z?—kCg in 0U. For 0Ujpmin < U < 0Ujpmqs We have
Clx? + O < 0, which means that (4.9) is exactly the contribution to Im V55 (L, T) # 0 we
were looking for - the total contribution for all z; is []; I;.

The integral in (4.9) can be evaluated using the saddle point method in the classical
gravity approximation where o/ < 1. The exponent has a stationary point when the

function
D((SU]) = Cl.$? + CQ((SU]) (4.10)
assumes an extremal value. This happens for
V!

~10 -



Requiring that the square root has an imaginary part implies that D(6U;) < 0 — —z. <

1 [V
o= e e v e

We take z. = 0 if the square root in (4.12) is not real. Under these conditions, we can
approximate D(6U) by D(—V//V/) in (4.9)

A VP2
Ij ~ exp [iT x\/01x§+m -

x; < x. where

2ral 2V (4.13)

Since the total contribution to the imaginary part is given by H]- I, returning to the
continuum limit and invoking the prescription (2.1), we find

1 ) VP2

|| <z

Evaluating the integral in (4.14) [39] and using (3.5) and (4.7) we finally find a closed
expression for Im V5

1 v, Vi
ImVy5 = ————+/ M, . 4.15
e T TS e [W v} (419)

Eq. (4.15) reduces to the result derived in [22] where it was assumed that the
background metric was such that M(U) = 1. The only difference between the general
formula in (4.15) and the previous one found in [22] is the presence of the factor /M, (M
gives an idea of how much warped the space-time is in the bulk). Also, note that Im Voo
is UV finite. Moreover, the fluctuations also change the real part of the potential. This is
discussed in appendix A.

An important condition that must be satisfied in order for the saddle point calculation
shown here to be applicable is V" # 0. If V' = 0 then (4.10) does not have extrema and
higher orders terms in 6U must be kept in the expansion (4.5) for V, which signals the
breakdown of the saddle point approximation.

Finally, an alternative derivation of the imaginary part of Vj,5 using a covariant back-
ground expansion of the Nambu-Goto action is given in appendix A.

4.2 The relationship between Im V(,5, confinement, and the black brane

A first glance into the derivation of eq. (4.15) may give the misleading idea that the presence
of a black brane is not necessary in order to have ImVy5 # 0. However, the absence of
a black brane implies that Im V55 = 0, as we shall explain below. Moreover, when the
metric satisfies the conditions for the presence of an area law for the rectangular Wilson
loop mentioned in section 3 one can show that Im Vi55(L — o0) = 0. These results are exact
within the semiclassical approximation used for the string partition function in eq. (4.2).

- 11 -



The existence of a black brane is necessary for Im V5 7# 0. As mentioned
in section 2, for the general metric in eq. (2.4) Goo(Uy) = 0 and Gyy(Up) — oo, with
Goo(Un)Guu(Up) being finite. Therefore, M (U) is finite and positive for every U and
V(U) > 0if U > Uy, but V(Up) = 0. The important point here is that for U < U}, it is
possible that V(U) < 0.

In (4.2), requiring that the square root possesses an imaginary part means that K(U) =
M(U)(U")?+V(U) < 0 for some U. Since M (U),V(U) > 0 for U > Uy, for any worldsheet
fluctuation dU such that U(z) = U.(x) + 6U(x) > Uy one has K > 0 for every = €
[—L/2,L/2]. However, if the fluctuation is such that U < Up, V(U) may be negative
and K(U(x)) < 0 for some interval in x even though M(U) > 0. In other words, if the
worldsheet fluctuations are such that a portion of the string reaches the horizon and probes
the black brane, then an imaginary part for the heavy quark potential may be generated.
This is illustrated in figure 4. Therefore, in this approach an imaginary part for Voo
appears when we consider worldsheet fluctuations in which §U < 0.

On the other hand, if a black brane horizon is not present and the metric (2.4) is
regular everywhere we have that Gog, Gyy is positive for every U > 0. Then, we have
M(U),V(U) > 0 and, thus, K(U) > 0 for every U > 0. This implies that Im Vj,5 = 0,
exactly. Therefore, in our approach the heavy quark potential can develop an imaginary
part due to the thermal worldsheet fluctuations induced by the presence of a black brane.

If the rectangular Wilson loop displays an area law then Im Vj5(L — o0) = 0.
Suppose that M (U) diverges at the confinement scale Uy (with V' (Up) # 0). In this case,
for large L we have U, ~ Uy. Moreover, in this case when L — oo the string worldsheet
lays nearly flat at Uy. We may write U.(z) ~ Uy — €, where ¢ < Uy. Finally, since M (Up)
is large we may neglect the second term in the expression of K(U). Therefore, for long
wavelength fluctuations 6U’ = 0 the Nambu-Goto action in (4.2) takes the form

L/2
T
SNG ~ ool / dl'UO\/M(UO—G—F(SU) (416)
—L/2

Note that now we cannot consider fluctuations such that U > e since then we would be
taking M past its divergence. Therefore, only fluctuations with dU < € are allowed in this
case. However, note that this implies that M > 0 and, thus, the square root that appears
in the evaluation of the potential is always real. Therefore, in this situation Im V55 = 0.

Alternatively, suppose now that M does not diverge at Uy but rather that V(U) has a
minimum at Up. For small fluctuations about U,.(z) = Uy where U.(0) =U/(0) =... =0
(since the string lays nearly flat at Up) one finds

1
V(Up 4 6U) = V(Up) + 5V”(Uo)5U2, (4.17)

where V" (Uy) > 0. Thus, V(U) > 0 in the neighborhood of U = Uy, z = 0 and K (U) > 0.
Therefore, Sxg is real and Im V55 = 0. We then conclude that Im VQQ(L — o00) = 0 if
the background metric is such that the rectangular Wilson loop displays an area law.
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We may summarize these results as follows. Suppose that Uy is the value of the U
coordinate at which the metric satisfies the conditions for confinement and that Uy, is the
position of the black brane horizon. If Uy > U}, then the classical string cannot go past Uy.
As discussed above, we cannot consider fluctuations beyond Uy. Effectively, Uy acts as a
“barrier” for the classical string. However, if U, > Uy, the horizon hides this barrier and
we may have fluctuations that reach Up. Both cases are sketched in figure 5.

4.3 Using Im V(5 to estimate the thermal width of heavy quarkonia at strong
coupling

In the next section we will compute Im V5 in two different conformal plasmas using the
prescription derived above. To estimate the thermal width I'5 of the heavy QQ pair we
will use a first-order non-relativistic expansion

Log = —(WIm Vg (L, T)[4), (4.18)

where

1
N

is the ground-state wave function of a particle in a Coulomb-like potential of the form
V(L) = —K/L and ag = 2/(mgK) is the Bohr radius (mg is the mass of the heavy quark
@ such that mg/T > 1). Even though the real part of the potential at finite temperature

(Flp) = e~r/a0 (4.19)

for the cases studied here is not given by just the ~ 1/L term, this provides the leading
contribution for the potential between deeply bound Q@ states in a conformal plasma,
which justifies the use of Coulomb-like wave functions to determine the width. Moreover,
in potential models of the bottomonium spectrum, the T(15) state is mostly bound due
to the Coulomb part of the Cornell potential. The thermal width is then given by
Poo = —— [ L 12e26/% 1 Voo (L, T 4.2

00 = a%/o e m Voo (L, T). (4.20)
Actually, as it will be discussed shortly, we should take (4.20) as representing a lower
bound for the heavy quarkonia thermal width computed within the thermal worldsheet
fluctuation method presented here. We emphasize that this approximation to the thermal
width of heavy quarkonia is made using the imaginary part of the heavy quark potential
as an input for a potential model in QCD, in a phenomenological approach. Also, for
very heavy states, the distance between the quarks in the meson can be so small that
perturbative QCD effects are not negligible.

5 Calculation of Im V{4 in some gravity duals

An overview of the models. Using the general framework described in the previous
section, we shall now study the imaginary part of the heavy quark potential and the
corresponding heavy quarkonia thermal width in two different strongly coupled plasmas
dual to theories of classical gravity. In particular, we will consider the following models:
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Figure 5. An illustration of the relationship between thermal worldsheet fluctuations and confine-
ment. Figure 5(a) shows that when Uy > U}, the classical string worldsheet, even with the inclusion
of thermal fluctuations, cannot go beyond Uy. On the other hand, figure 5(b) shows that when
Uy < Uy, the horizon hides the “barrier” at Uy and the thermal fluctuations can reach the horizon.

1. Strongly coupled, thermal N' = 4 SYM at large N.. This case was already studied
in [22] but here we shall perform a more complete study of the imaginary part of
the potential and revisit the estimate for the thermal width of heavy quarkonia at
strong coupling done in [22].

2. Gauss-Bonnet gravity [40—42]. This model includes Riu Ap terms in the gravity dual
action corresponding to higher order derivative corrections to the supergravity action.

In appendix C we discuss some other results involving Wilson loops and compute
Im Vi) for simple models of non-conformal strongly plasmas.

51 N =4SYM

The metric for a near-extremal black-brane in AdSs x S5 is given by

R2

1t = - L jwyae + Lar + dU? + R*d9 (5:1)
= 59 ’

R2 U2 f(U)
where R is the common radius of S5 and AdSs, f(U) =1 — U;‘L‘/U‘L, dQ? corresponds to
the S5 part of metric and, as before, Uj, is the position of the black brane horizon. The
boundary gauge theory is N' = 4 SYM with N. — oo. The 't Hooft coupling in this
strongly coupled gauge theory is given by A = R*/a/?2 > 1. The temperature of the black
brane (and of the dual gauge theory) is given by

U

T = —.
mR?

(5.2)

In the following we always choose a fixed configuration for the string coordinates in S5 and,
thus, all the calculations are effectively done only using the AdS5 piece. For this metric
M(U)=1and V(U) = (U*-U})/R%.
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Heavy quark potential in the vacuum. The expressions for L (3.4) and S™™¢ (3.6)
turn, in this case, into

o0

L R? / 1
—=— [ dy——— and (5.3)
2 U, / y2 y4 -1

s = (5.4)

T
1 v
where we made the change of variables U — y = U/U,. Note that the integral (5.4)

diverges linearly when y — oo and this is the UV divergence we already expected. The
regularized potential is

Vop = 2 7d v ), (5.5)
QR ™ o Y /7y4_1 . .

1

The integrals in (5.3) and (5.5) can be done in terms of the beta function, as described
in appendix B. After integration, one obtains

R? 2\/2rw

= T T(ap (5.6)
and /o
27

In this particular case, it is possible to eliminate the parameter U, from (5.6) and (5.7) to

obtain the potential as an explicit function of L [27]
Ar* R*1

Voo=—"7—75—+- 5.8

QT T(1/4)t o L (58)

From (5.8) we obtain an estimate for the Bohr radius that will be used throughout

this work, ag = I'(1/4)*/(mg272V/\). For the case of a bottom quark m; ~ 4.7 GeV and,

using A\ = 9 [43, 44], one finds ag ~ 0.6 GeV 1.

Thermal N/ = 4 SYM. We start by computing the heavy quark free energy from
eq. (3.8). For its regularization we use half of the regularization term used for the potential
at T' = 0, which gives

Un
Fr— — , )
< 2ra! (5:9)
Using (5.2) we can write (5.9) as
F, A
Fo _ VA (5.10)

T 2

This result [28, 29] is consistent with the fact that the only scale available in the calculation
of the Polyakov loop in a thermal N/ =4 SYM theory is the temperature 7.
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For the rectangular Wilson loop at finite 7" we use the same regularization employed
for the T'= 0 case. The resulting expressions for L and Re V55 may be written as [28, 29]

2 T d
LT(yn) = —yny/1 = yi/ \/ Y (5.11)
1

—1] -1 (5.12)

where y, = Uy, /U, and 0 < yp, < 1.
These integrals can be calculated in terms of hypergeometric functions [37] as shown
in appendix B. One finds that

2V/2m 135
LT = 1—ydoF |2, 5 S0yt d 5.13
(yh) F(1/4)2yh yh2 1 |:274a47yh:| al ( )

ReV,5 2 213 1 1 11
@Q :_7R v2rs —oF) | ==, == = yh| - (5.14)

T of T(1/4)2 yp, 2 474

These equations cannot be solved exactly and must be analyzed as a function of y;. How-
ever, when LT < 1 it is possible to expand both expressions in powers of (LT)*, obtaining,
to first order (appendix B)

ReV,5 42/ N
QQ 4
= — 1 LT 1
T r(1/4)*LT [ +e(LT) ] ’ (5.15)
where 5
_ 8

The fact that the potential only depends on the combination LT is expected since N' = 4
SYM is a conformal plasma.

Let us examine (5.13). In figure 6 we plot LT as a function of y,. One sees that
there is a maximum value of y5, Ynmaee = 0.85, and that LT is a decreasing function of
yn for yn > Ynmae- Physically, this means that for y, > yp maz, one has to take into
account highly curved configurations for the string worldsheet which are not solutions of
the Nambu-Goto action but are important for y, > yp mae [30]. In fact, a calculation of the
curvature scalar associated with the worldsheet metric in appendix D shows that it diverges
for y, — 1. Therefore, we can only trust this U-shaped classical solution up to yu maa-
For further reference, the corresponding value of LT is LTnax = LT (Yh,maz) ~ 0.28. From
figure 6 we also see that for y;, ~ 0, LT = byy,, where b = 2v/27/T'(1/4)? ~ 0.38.

We show in figure 7 the real part of the potential ReVyg /T computed in an
analogous fashion (using only the allowed interval 0 < yn < Ynmaz), along with the
vacuum result (5.8) and the LT < 1 approximation (5.15). One can see that the vacuum
contribution is very close to the thermal one. Also, the LT < 1 approximation is excellent
for all values of LT in the allowed interval.
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Figure 6. LT as a function of y;, for the case of N'= 4 SYM at strong coupling. For ys > yn maz ~
0.85 the solution of the classical Nambu-Goto action is not the dominant configuration and other
connected configurations must also be taken into account [30].
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Figure 7. The potential Re V5 /T for strongly coupled N' = 4 SYM (normalized by the 't Hooft
coupling v/\) as a function of LT, considering the exact solution given by (5.13) and (5.14) (solid

black curve), the approximation (5.15) valid for LT < 1 (dotted-dashed red curve), and the vacuum
limit given by (5.8) (dashed blue curve).

Estimating the Debye mass. We now shall describe a way to estimate the Debye
screening mass mp directly from the real part of the heavy quark potential. This approach
is simple and driven primarily by phenomenological reasons. Yet, it provides results
qualitatively similar to more refined estimates involving, for example, the lightest CT-odd
supergravity mode [30].
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One may define the Debye mass mp(7T) as the screening mass in the QQ potential of
the Karsch-Merh-Satz (KMS) model [45]

ReV,5(L, T _ »,—mp(T)L ~
Q\Qﬂ() _ —cleT + miD (1 - e*mD(T)L) + Oy, (5.17)

where C is a Coulomb coupling constant, Cs is a constant that appears due to the reg-
ularization procedure, and o is the string tension (normalized by v/A). The model (5.17)
describes, for mp ~ 0, a Cornell-like potential and, for o — 0 but mp # 0, a Debye screened
Coulomb potential. For nonzero mp and o the result interpolates between both limits. For
a conformal field theory, such as N' = 4 SYM, we can take o = 0. Also, we know that in such
theories Re Vi) /T can only depend on LT'. With this in mind, we write (5.17) in the form
ReVpg - e 0D
Var (LT

where mp/T must be a temperature independent constant in a conformal plasma and &

+ Cy, (5.18)

is an adjustable parameter. A similar function has been used to fit lattice data for the
potential (see the review in [11]).

In the following we will use (5.18) to obtain an estimate for mp through a fit to the
numerical results for Re V5 /T as a function LT. However, we must stress that this is
only a very rough estimate. First, equation (5.17) is only a phenomenological model for the
effect of Debye screening in non-Abelian gauge theories. Second, and most importantly, the
solution (5.13) and (5.14) imply that Re Vy5/T computed using the classical string does not
show exponential screening. This can be easily seen using a property of the derivative of the
hypergeometric function (as discussed in appendix B). Nevertheless, this is a very simple
way to estimate mp and moreover (5.18) provides a reasonable description of Re Voo /T.

The numerical procedure is to fit (5.18) to the exact result given by (5.13) and (5.14)
using C1, 6, and mp as fitting parameters (C’g = —1 is fixed by our regularization
procedure). We obtain

mp/T =11.92  C,=0.72, 6=0.74. (5.19)

The exact result and the fitted function are shown in figure 8. As a comparison, the
calculation of the screening mass using the lightest CT-odd mode of type IIB supergravity
gives mp /T = 10.694 [30].

Imaginary part of the heavy quark potential in N/ = 4 SYM. From the general
formula in eq. (4.15) we obtain

ImVQQ _ _77\5 Syﬁ—l.
T 24v2  yn

(5.20)

The condition Im VQQ < 0 implies yn > Ynmin = 371/4 ~ 0.760. This translates into
LT > LTin = 0.266. For LT < LT, Im VQQ = 0. As before, we can trust this solution
only if yn, < Yn,maz- FOr Yn > Yh.mae We should consider other connected contributions and
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Figure 8. A comparison of the exact result for ReVyo/T' (solid black curve) and the fitted
function (5.18) (dashed blue curve) for strongly coupled NV = 4 SYM.
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Figure 9. The imaginary part of ImVy5/T as a function of LT. The solid black curve is the
result using equation (5.11) to eliminate yp, considering only LT < LTy.x. The dashed blue
curve is obtained using the approximation by, ~ LT, which ignores the fact that one should not
trust (5.20) when LT > LTp,ax. Using this approximation, the root of (5.20) is shifted to the right.

the formalism developed above to determine Im Vi, is not valid. It should also be noted
that Im V55 /T depends only on LT (via yp), as expected to occur in a conformal plasma.
One can now use (5.11) and (5.20) to determine the behavior of Im V)5/T as a func-
tion of LT. This is shown in figure 9 considering only LT < LTy.x. We also show the
result obtained using the approximation LT & by, which ignores the fact that we should
trust (5.20) only for yp, < yp mas (in this case the root of (5.20) is shifted to the right).
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From figure 9 we conclude that we are only able to reliably calculate Im V55 using
(5.20) in a small range of LT. The approximation by, ~ LT is poor for two reasons. First,
it is being used in a region of y;, near yj ymq.. Second, the extrapolation performed in the re-
gion yn > Yn maz is done beyond the trusted region for y;,. Nevertheless, the linear behavior
of Im V() seen in figure 9 agrees, qualitatively, with other calculations for Im Vi, [37, 38].

Estimating ' for the Y (15) state in a strongly coupled N =4 SYM plasma.
We may rewrite the estimate (4.20) in a dimensionless form

o0
Yoo -4 [ 32 210Voo
T (T'ag)? T
0

(w), (5.21)

where w = LT. In the case of N' = 4 SYM, since Im V,5/T is only a function of w =
LT the only dependence of I'p5/T on the temperature is via the weight factor p(w) =
exp (—2w/Tag)w?. The position of the “strip” in figure 9 is independent of T'ag. Note that
as we increase (decrease) T', p(w) shifts to the right (left, respectively).

We will adopt two approaches to estimate the thermal width. The first one consists of
using only the “strip” in figure 9 - this means that we will neglect the region LT > LT«
where our framework does not provide Im V5. We call this the “conservative” approach.
The second one consists in using the approximation LT ~ by in (5.20), ignoring the
fact that for LT ~ LT, this approximation ceases to be valid - this will be called the
“extrapolation”.®

In figure 10 we show I'5 /T for the T(15) state as a function of T'ag for A = 9. We see
that the conservative approach gives a thermal width that can be three orders of magnitude
smaller than that computed using the extrapolation. For ag ~ 0.6GeV~!, T ~ 0.5 GeV,
the thermal width varies from 0.5 MeV to 1.5 GeV between the conservative approach and
the extrapolation. Therefore, the extrapolation considerably overestimates the thermal
width while the conservative approach only gives a lower bound for this quantity.

The result for the conservative approach, shown in more detail in figure 11, can be
understood qualitatively as follows: the weight factor p(w) samples only the small region
of LT in which Im V)5 # 0. As one increases the temperature, p(w) shifts to the right.
For LT in.maz ~ Tao the overlap between p(w) and Im VQQ = 0 happens at the maximum
of p(w) at w = Tagp - this corresponds to the maximum in figure 10. By increasing T
even further, the overlap occurs before the maximum of p(w) and I'gq decreases. The
temperature dependence of I' 5 /T found in this case is qualitatively similar to that found
in recent lattice calculations [46].

5.2 (Gauss-Bonnet gravity

Action and metric. We now consider a class of bulk theories that includes curvature
squared corrections to the supergravity action for which the conjectured viscosity bound

8The authors of [22] used this second approximation. However, the fact that we must impose Im Voo <0
was not considered - the expression (5.20) was used (for a fixed T') from L = 0 to L — oo instead from Lmin
t0 Lmax. Excluding from the integration the region 0 < L < Luyin we obtain that the estimate of I'vy(;g)
in [22] is increased from 48 MeV to 165 MeV.
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Figure 10. The thermal width I' 4 of the T(15) state in N’ = 4 SYM divided by the temperature
T as a function of T'ag in a logarithmic scale (the t'Hooft coupling is A = 9). The solid black curve

corresponds to the conservative approach and the dashed blue curve is the extrapolation explained
in the text.
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Figure 11. The same as in figure 10 but this time the result for the conservative approach is shown
in detail.

n/s > 1/4m [47] can be violated. The action for these models, called Gauss-Bonnet
gravity [40-42], is

! 5 12
5—16WG5/d v/ G[<R+R2>+

AGB

3

R* (R? — AR R™ + Rouwpe R | (5.22)

where G5 is the five dimensional Newton constant, R, is the Riemann tensor, R, is
the Ricci tensor, R is the Ricci scalar, and Agp is a constant. The first parenthesis is the
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usual Einstein-Hilbert + cosmological constant action. The second parenthesis gives the
curvature squared corrections. For this particular choice of curvature squared corrections,
metric fluctuations in a given background have the same quadratic terms as Einstein
gravity. The action (5.22) has an exact black-brane solution [48] given by

U? dU?
ds®> = —a® U)dt? + = dz> 5.23
T e T ey %)
where
1
a? = (1 + /11— 4)\GB) and (5.24)
Uz 1 U
U)= ——— [1—4/1—4) 1— L. 5.25

The black brane horizon is the simple root of fgp(U), U,. The plasma temperature is
T = aUy/(7R?). From (5.23) we see that the AdS radius is given by aR instead of just
R. In particular, the 't Hooft coupling of the dual strongly coupled CFT is given by
A = a*R*/a’. The functional form of a and fgp implies that Agp < 1/4. However, in
practice A\gp < 9/100 to avoid causality violation at the boundary [49, 50].

The constant Agp is related to the ratio of the shear viscosity 1 and the entropy
density s by [49-51]

g - i(l — 4Xgn). (5.26)
For A\gp > 0 the viscosity bound for gauge theories with gravity duals, n/s > 1/4mx, is
violated. The constraint Agp < 9/100 implies that 4“7’7 > 16/25.

The evaluation of the real part of the heavy quark potential in the strongly cou-
pled plasma dual to Gauss-Bonnet gravity (5.23) was already performed in [52] (see
also [53, 54]). In this section we extend the analysis of [52] to include the numerical
evaluation of Re V)5 and also the calculation of the imaginary part of the potential using
the worldsheet fluctuation method. Moreover, we give an estimate of the dependence of
the Debye screening mass in this theory as a function of 7/s.

Polyakov loop and the real part of the heavy quark potential. Using the formu-
las (3.4), (3.7), and (3.8) one obtains for the regularized heavy quark free energy

Fo  R? VA

v __ Y2 2
T 20/ 2a? (5.27)
while
oo
2a 7 = = F ~1/2
LT (yn) = ﬂyh\/QfGB(layh))‘GB/ [v® fes(L,yn)? — v* faB (v yn) fas (1, yn)] /2 (5.28)
1
and the real part of the heavy quark potential is given by
oo 1/2
ReVps RZ%1 1
QQ
e _ - 1+ 1] -1 .
T o yp /dy + y*feB(y:yn) (5:29)

faB(Lyn)

- 29 —



0.30}
0.25}
0.20}

=0.15}
0.10}
0.05}

0.00L, . . . . ]
0.0 0.2 0.4 0.6 0.8 1.0

Yn

Figure 12. LT as a function of y; in the CFT dual to Gauss-Bonnet gravity. The solid black
curve is the result for A\gp = 0 (47n/s = 1); the dashed blue curve is the result for A\gp = —0.25

(47n/s = 2).

where fap(y,yn) is a reduced form of fop(U) defined by

4
7 Y
fes(y,yn) =1 - \/1 —4XgB < - yfj) (5.30)
For A\gp # 0, both (5.28) and (5.29) cannot be evaluated in terms of hypergeometric

functions. In the limit LT < 1 one can show [52] that

Re VQQ L A2/ N (1 . c
T  T(1/4)4LT abv/1—4Xgp

where c is the constant given by (5.16).

(LT)4> , (5.31)

We can also evaluate (5.28) and (5.29) numerically by fixing A\gp and using y;, as a
parameter. In figure 12 we show LT as a function of y, for A\gg = 0 (47n/s = 1) and
A = —0.25 (47 /s = 2). We see that increasing Agp (decreasing 71/s) lowers yp, mae and
LT nax. However, as shown in figure 13, the behavior of Re V()5 as a function of LT does
not change significantly with Agp. Moreover, one sees that the approximation in (5.31) is
excellent for the values of A\gp considered here. In the end, the main effect of increasing
AaB 1s to reduce the allowed interval for LT.

Estimate of the Debye mass and its dependence on 7/s. Using the simple fitting
procedure described in section 5.1 we can obtain a simple estimate for the Debye screening
mass in GB gravity and its dependence with 7/s. We use, as before, the model (5.18)
(with o = 0). Since we do not have exact expressions for LT and Re V55 /T in this case,
we cannot prove whether the real part of the potential computed using the classical string

In [52] this corresponds to eq. (34), which can be obtained after some manipulations involving gamma
functions. Here we have not performed the entropy subtraction done in [52] to obtain their eq. (35).
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Figure 13. ReVy/T as a function of LT in the CFT dual to Gauss-Bonnet gravity. The solid
black curve is the result for Agp = 0 (47n/s = 1); the dotted-dashed red curve is the result for
Agp = —0.25 (47n/s = 2); the dotted blue curve corresponds to the approximation in (5.31).

shows exponential Debye screening or not. In any case, the cautionary remarks previously
made for N/ =4 SYM are still applicable here and must be kept in mind.

The fitting procedure is done as before for the case of SYM. Varying the values of A\gp
(therefore, 1/s) we obtain the results for mp shown in figure 14 (the parameters § and
C) do not vary appreciably with respect to those found in the SYM calculation). Here we
consider both positive Agp (corresponding to 47n/s < 1) and negative Agp (47n/s > 1).
In figure 14, the shaded region denotes the result for mp computed using values of A\gp that
lead to problems with causality. One can see that mp decreases with increasing 7/s for the
allowed values of Agp. This result is reasonable since larger 7/s in general means weaker

coupling, which in turns implies that heavy quark pairs are less screened by the medium.

Imaginary part of the heavy quark potential in GB gravity. Using eq. (4.15) we
can calculate Im V55 in this theory and study its dependence on 7 /s. The full expression,
while easy to derive, is rather cumbersome and therefore omitted in the text. However, a
simple expansion for Agp < 1 results in a more useful expression

T 24+/2 Yn

Ag
(Byih — 1) + =57 (9 — 349 +99)°)| + ONEp)-  (5.32)

For A\gp = 0 we recover the N' = 4 SYM result (5.20). As before, enforcing Im Vi < 0
gives a lower limit for y, while the condition regarding the validity of the classical string
calculations gives a maximum value of y;, (figure 12). In figure 15 we show the numerical
results for Im Voo /T for A\gp = —0.25. Only a small interval of LT is allowed in the
conservative approach and increasing Agp shifts this interval to the left. We also see
that (5.32) is a satisfactory approximation to the numerical result for Agp = —0.25.
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Figure 14. An estimate for the Debye screening mass mp as a function of 47n/s in the strongly
coupled conformal plasma dual to Gauss-Bonnet gravity. The shaded blue region can be excluded
since mp in this region was determined using values of A\gp that lead to problems with causality.

5.3 Thermal width of Y(1S) and its dependence on 7/s

In figure 16 we present a lower bound for the thermal width I'gq of the T(1S5) state as
a function of n/s for A = 9 and T" ~ 300 MeV. Since changing 1/s changes the sampling
region for L, we have again that the shape of figure 16 reproduces the shape of the
associated ground-state Coulomb wave function. The shaded blue region denotes the
values of the width computed using values of Agp that lead to causality violations in the
gauge theory. Note that the thermal width, normalized by the value found in strongly
coupled SYM, decreases with increasing 7/s.

6 Conclusions and outlook

In this paper we used the gauge/gravity duality to study the imaginary part of the heavy
quark potential in strongly coupled plasmas. This imaginary part can be used to estimate
the thermal width of heavy quarkonia in strongly coupled plasmas, which may be seen
as the strongly coupled analog of the Landau damping induced thermal width found
in perturbative QCD calculations [12-15]. The thermal worldsheet fluctuation method,
originally developed in [22], was used here to obtain a lower bound for the thermal width
of heavy quarkonium states, such as the Y(1S5), in 2 different holographic toy models of
the strongly coupled quark-gluon plasma (QGP): strongly coupled N' = 4 SYM at large
N, and the strongly coupled CFT dual to GB gravity. Moreover, we proved a general
result using the thermal worldsheet fluctuation approach that establishes the connection
between the imaginary part of the heavy quark potential at nonzero temperature and the
area law of the Wilson loop at zero temperature.
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Figure 15. ImV,5/T as a function of LT in the CFT dual to Gauss-Bonnet gravity. The full
black curve is the result for Agg = 0; the dashed blue curve is the result for Agg = —0.25; and the
dashed-dotted red curve corresponds to the approximation in eq. (5.32).
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Figure 16. Lower bound for T(1S) thermal width I'pg computed via Gauss-Bonnet gravity,
normalized by the N' = 4 SYM result. We used the gauge theory coupling A = 9 and T' = 300 MeV.
The shaded blue region denotes the values of the width computed using values of Agp that lead to
causality violations in the gauge theory.

In the case of strongly coupled SYM we found that the thermal width of T(15) is actu-
ally very small in comparison to the plasma temperature for reasonable (and large) values
of the t'Hooft coupling. The estimates previously made for this quantity in [22] have been
improved in the present paper and the nontrivial consistency conditions, discussed at length
in this manuscript, have conspired to bring down the previous value of the thermal width
to values that may be consistent with recent phenomenological models for the quench-
ing of heavy quarkonia in the QGP [55, 56]. It would be interesting to use the imaginary
contribution to the heavy quark potential found here to study other quarkonium states [57].
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Moreover, even though the real part of the heavy quark potential (computed with the
classical string approximation) does not show explicit exponential screening in a strongly
coupled N’ =4 SYM plasma, a simple phenomenological estimate for the Debye screening
mass can still be extracted via a fit to the real part of the heavy quark potential. Surpris-
ingly enough, this rough estimate for the Debye screening mass is still in fair agreement
(within ~ 11%) with the result obtained using the lightest CT-odd supergravity mode [30].

We remark that in our estimate for the imaginary part of the heavy quark potential
in N = 4 SYM is proportional to 72, which was also obtained in other non-perturbative
calculations such as the holographic computations based on complexified worldsheet coordi-
nates [37] or the calculation performed using particular choices of worldsheet configurations
in [38]. This behavior is in stark contrast with the 7" scaling of the imaginary part found
in pQCD calculations [12-15]. In [58], the thermal width of mesons in N' =4 SYM was
computed within the D7 flavor brane setup and, in this calculation, a nonzero thermal
width for mesons arises from worldsheet instantons being exchanged between the tip of the
D7-brane and the black hole horizon. This method can be used to understand the momen-
tum dependence of this instanton-induced thermal width of a meson that is moving relative
to the thermal bath. In our method, the nontrivial D-brane dynamics associated with the
inclusion of fundamental flavor is not included. Therefore, the 1/v/A effects found in [58]
cannot appear in our approach. Rather, our calculation of the width is to be interpreted as
an estimate for this quantity in the limit where the mass of the quarks is very large (static
meson approximation), in the same spirit of refs. [37] and [38].

We also computed the thermal width of heavy quarkonia in the CFT dual to GB
gravity to study its dependence with n/s. For a fixed temperature of T = 0.3 GeV
the width has a maximum around 7n/s = 1/47 and decreases for larger values of 7/s.
Following the phenomenological procedure to extract the Debye mass from the real part
of the potential described above, we obtained an estimate for the dependence of mp with
n/s in this gravity model. Our results suggest that Debye screening effects decrease with
increasing 7/s in a strongly coupled plasma.

In this paper we assumed that the plasma is isotropic and conformal'® and that the
QQ pair is at rest with respect to the thermal bath. It would be interesting to generalize
the calculations for the imaginary part of the heavy quark potential performed here by con-
sidering gravity models dual to plasmas where these conditions are dropped. For instance,
one could compute the thermal width in an anisotropic strongly coupled plasma [59, 60]
or in non-conformal gravity models of the QGP such as [61, 62].

Note added: after this paper was submitted to the arxiv we became aware of refs. [63, 64]
where the imaginary part of the heavy quark potential was computed in a strongly coupled
anisotropic plasma using the method described here.

10Simple non-conformal models and the respective results for the imaginary part of the potential can be
found in appendix C.
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A Covariant expansion of the Nambu-Goto action around the classical
solution

Expansions of the string action around a given classical solution of the equations of mo-
tion, X}'(7, o), are somewhat nontrivial since the worldsheet fluctuations §X# (7, o) do not
transform simply under reparametrization [65]. Thus, the way the fluctuations around the
classical solution were included in section 4, though correct, are not manifestly covariant.
In this section we perform a covariant expansion of the determinant of the worldsheet
metric around a generic solution of the classical string equations of motion.

A fluctuation of the string worldsheet can be written as [65]

XO +0XI = Xg +¢" - %F;&(Xo)ff’@ +0(&%) (A1)

where &#(7,0) transforms as a vector under reparametrization (which plays the role of
Riemann normal coordinates [66]). Derivatives with respect to the worldsheet variables 7
and o are given by

Du(XH +0XM) = 0, X + Dol + %Rﬁ A(X0)E7EP0, X + O(£%), (A.2)

where R’Ij o\ is the Riemann curvature tensor and D, is defined as
Dy = 0, + Tl (3, X)E . (A.3)

Note that using the chain rule one obtains D,&” = D,,£"9, X}, where D, is the usual space
time covariant derivative with an affine connection. This motivates the definition (A.3) as
the covariant derivative of £ on the worldsheet. The expansion for the background metric
becomes

Gy (X0 +) = Gy X0) = 3Ry (X0)€76* + O(6"). (A4)

Using the equations (A.2) and (A.4) we obtain for the induced metric on the worldsheet
hap = G 0a XHOp, XY, up to second order in &,

hay = B9 + 08 + 12 1 0(?) (A.5)

where
hY = 8,X, - 9,Xo, (A.6)
h) = 0,X0 - Dyé + B Xo - Duf and (A.7)
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h((jj) = Dy§ - Dp§ + 8aX(’]‘8bX(‘)’RW,\§”§’\. (AS)

where the inner product here is defined with respect to the background metric, i.e, A- B =
G, A'BY. Eq. (A.5) takes into account the effect of worldsheet fluctuations on the induced
worldsheet metric in an explicitly reparametrization invariant manner.

To show that this procedure yields the same results as the non-covariant approach
developed in the main text, we use the AdSs-Schwarzschild metric (5.1) in the formulas
above. We also use the static gauge for the worldsheet embedding functions and, thus,
7 =t and 0 = x and the classical solution is X} = (¢,2,0,0,U(z)). As before, the
fluctuations are § X* = (0,0,0,0,5U(x)). Then, using the inverse of (A.1) into (A.5) and
evaluating the induced metric determinant h = det hy, we obtain in the end

L <dUc(x))2+ 1, . AU3 602

. 2a(U = Up) + = oU + Faw +0(6U3). (A.9)

The saddle point approximation for e VB can also be obtained by taking the extremum
of h with respect to 6U. The extremum of (D.1) occurs at U = —U/3, which yields

_ dU.(x)\? U*-3U?
—h:< di )> +—3m h, (A.10)

Now, dU,/dx is given by the classical solution (3.3) and, thus, we obtain the following
expression for the (regularized) effective action after integrating over 7 and defining the
dimensionless variables y = U/Uy, and y;, = U /U

T v -u) 2 v -y T
—M’U*/l dy{\/<y4—1> 3yt =1 —yp) 1} vl (A-11)

Eq. (A.11) gives both the real and imaginary parts of Vj,5. Note that second term

inside the square root above represents the contribution from worldsheet fluctuations and
this term only becomes relevant close to the bottom of the classical string solution at U,
(also, see that this term is well behaved in the UV, y — oo, which is expected since it
comes solely from thermal effects). The shift in ReV,; due to fluctuations is easier to
obtain in the covariant approach and it can be determined from eq. (A.11). For T' = 0
(i.e., yn = 0), (A.11) can be evaluated in terms of hypergeometric functions as explained
in appendix B. The result is

Voo =

472 2 1 112]1
R [ ] (A.12)

Fy|—=—= 22 =
T/t |2 443 L

Since o F1[—1/2,—1/4;1/4;2/3] = 1.38, we see that long wavelength worldsheet fluctuations
change the vacuum result for ' = 4 SYM by ~ 40% (which can be accommodated, for
instance, by rescaling the t'Hooft coupling).

In figure 17 we show the effect of fluctuations on the real part of the potential while
in figure 18 we compare the results for the imaginary part of the potential computed using
the covariant method and the non-covariant method developed in the main text. The real
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Figure 17. Re VQQ/(T\[\) as a function of LT for the strongly coupled N’ = 4 SYM plasma.
The solid line is the real part calculated without considering thermal fluctuations on the string
worldsheet while the dashed line is the real part of the potential including the fluctuations.
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Figure 18. Im VQQ/(T\A) as a function of LT for the strongly coupled N' =4 SYM plasma. The
solid (dashed) line is the result from the non-covariant (covariant) method, respectively.

part of the part of the potential changes slightly due to fluctuations while the imaginary
part is almost unaffected by the choice of method. This is expected since in the non-
covariant approach we focus mainly on fluctuations near the bottom of the string while in
the covariant approach long-wavelength fluctuations along the whole worldsheet are taken
into account. Since the imaginary part is generated by the fluctuations near the bottom of
the string both approaches are equivalent to determine Im V5.
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B Some useful formulas for the evaluation of Wilson loops

In this appendix we present some useful techniques to evaluate the integrals found in the
calculation of Wilson loops via the gauge/gravity correspondence. All the integrals and
properties studied in this section can be found, for example, in [39]. The main idea is to
use integral representations of the beta and the (Gaussian) hypergeometric functions to
perform the integrals that appear in the study of holographically computed Wilson loops.

Beta function. A recurring integral found in these calculations is the beta function

1
B(a, b) = / 1 (1 — )P g (B.1)
0
with Re(a), Re(b) > 0. This function satisfies the reflection property
B(a,b) = B(b,a) (B.2)

and is related to the gamma function by

I'(a)L'(b)

B(a,b) = Tath)

(B.3)

For example, for N = 4 SYM at strong 't Hooft coupling (and 7' = 0) one finds that
the relation between U, and L is given by eq. (5.3)

L R 1
—=— [ dy————. (B.4)
2 U, / y2 /y4 -1
Therefore, changing variables to t = 1/y* and using (B.1) one finds
L R?1 R2T(1/2)T'(3/4)
—=—-B@3/4,1/2) = ——————= B.5
2 U4 (3/4,1/2) U. T(5/4) (B.5)

To simplify (B.5) a bit further it is useful to remember that the gamma function satisfies

I'(z+1)=2I'(2) and (B.6)
I(1—2)(z) = Sin?m). (B.7)

Therefore, T'(1/2) = /7. Moreover, we have that I'(3/4) = +/27/I'(1/4) and
T'(5/4) = '(1/4)/4. We finally obtain (5.6)

L R?\2r3/?

2 = T TR (B.8)

The same procedure can be applied to V5 in eq. (5.5). To avoid having a or b with
a negative real part, one introduces a factor 7 in the integrand, performs the integration,
and then takes v — 0. This gives the expression in eq. (5.7).
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Gaussian hypergeometric function. The Gaussian hypergeometric function 9 F; can
be defined by the power series

ab ala+1)b(b+1) 4
Fi(a,b;c;2) =1+ —
2Fi(a,biciz) =L+ et 2le(c+1) i

a(a+1)---(a+n)bb+1)---(b+n) ,
Tt ( )n!cEc—l—l))--('(c-i-)n) ( )Z to (B.9)

where a, b, ¢, z are real numbers, with ¢ # —1,—2,---. The series converges for |z| < 1
while for the rest of the complex plane o F} is obtained by analytic continuation.
We are mainly interested in the following integral representation of o F}

1

2F1(a,b;c;2) = B(b—cb)

/1 711 — 1)1 — zt) 7t (B.10)
0

This representation is valid for |z| < 1 and for Re(¢) > Re(b) > 0. This relation follows
immediately from the binomial theorem and eq. (B.1).
Eq. (B.10) was used in (5.11) for thermal N = 4 SYM at strong 't Hooft coupling to find

2 T dy
LT(yn) = —yn\/1 —yj, : (B.11)
G ’H/ o b -

)

Applying the change of variables t = 1/y* we find that

24/ 21 1 35
LT(yh) = 11(17/4)2% 1- y% o [2, Z; 439;11] . (B-12)

The same procedure can be applied to determine ReVy5/T in eq. (5.12), which leads
to (5.14)

ReVpo 2 3
e _ R vamd 1 L1 11 (B.13)
T o T(1/4)2 g, 2 41

The series definition of o F} (B.9) also simplifies the derivation of the series expansion
in (5.15). For example, for LT < 1 we find, up to linear terms on yj,

LT T(1/4)? 1
For Re Vjg/T in (B.13) we obtain
Re Vg of T(1/4)2 1
_ Q& _ 14
T R2 \/57_‘_3/2 Yn 1 + 2yh (B15)

Therefore, after multiplying (B.14) and (B.15) and using (B.14) to zeroth order in y} we
obtain the following expression valid to order (LT)* (5.15)

ReVoo = 4n?VX

T = i e, (B.16)
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with ¢ = 3T'(1/8)%/(5 - 2772). The same reasoning also shows that the series expansion of
Re Vio/T is of the form [1+ aq(LT)* + ag(LT)* +---] /(LT).
As a last remark, note that the derivative of o F} with respect to z is

d b
d—gFl(a,b;c;z) = a—gFl(a—i-l,b—i- Lic+1;2). (B.17)
z c
If the real part of the potential has the general form V o e~"2/T(LT) /(L T) then
d % mp %
—— |(LT)’ = | = = (LT)’ .. B.1
d(LT) [( ) T] T (LT) T (B.18)

However, by (B.17), the holographically computed potential given by (B.12) and (B.13)
does not satisfy this condition because

mp

6ReVQQ
T —_—.

T

A e S

T d(LT)/dy} 7

(LT) (B.19)

d(LT)
C Some other results involving Wilson loops

In this section we apply the formalism developed in the main text to calculate heavy quark
potentials and their imaginary parts in a slightly more general class of gravity duals which
include, as an interesting subset, the low energy theories of coincident stacks of Type II
Dp-branes. While some of these results were initially discussed in [67], as far as we know,
a complete evaluation of V()5 and its imaginary part have not been presented before.

This section is organized as follows. First we present the class of metrics we use. We
then calculate the Polyakov loop and Re V5. An approximation for small L is discussed.
Finally, we show the results for the imaginary part of V55 in these theories.

C.1 Gravity duals considered

We consider the gravity duals described by the following metric (in the string frame)'!

= () o) o () - (5) ]

where R is a constant, ¢ runs from 1 to D —1 and D is the total number of dimensions of the

dU? (C.1)

corresponding gauge theory. From the confinement criteria [35], we see that as long as a >
the theory does not confine (in the sense of an area law for the rectangular Wilson loop).
The black brane temperature is

U a+§—2
a h
T = — —_— .2
2R ( R) (C.2)
and the entropy density is
3a
1 (Up\?2
=— | = . C.3
* 7 4G, (R) (C.3)

1n principle, we could generalize this metric a bit further by making the change 2a — ~ in the exponent
of the terms inside the square brackets. However, the expressions obtained cannot be integrated using the
method discussed in B. Moreover, the analysis of the UV divergence gets more involved since in this case
the metric is not asymptotic AdS. For these reasons, we keep the form of the metric shown in (C.1).
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Polyakov loop. We start by calculating the Polyakov loop in this class of theories. The
unregularized expression for the heavy quark free energy is given by

1 _B-a_ 2ta=B [ 4.5
Fp® = Rz U, 2 / y 2z dy. (C.4)
Yh

2ma!

We have three possibilities. If a—f5 < —2, then there isno UV divergence. If a—f = —2, the
integral diverges logarithmically. If «—f > —2 the UV divergence is worse than logarithmic.
If a— 8 > —2 we use the temperature independent regularization fooo dy y(a*B)/ 2 and, with
this choice, the final regularized expression for Fy is the same regardless of the sign of a—

| RESSUST e
2 * o= .
@ 2ta-pg T eTfz (©5)

—Fq/T

Fo=-—

and the Polyakov loop is simply [(tr L(7))| = e

Real part of the heavy quark potential. We can now proceed to the calculation of
the real part of the heavy quark potential. Using (3.6) and adopting the regularization
used for F, we have

a—B

atB ©0
L R = / Yy 2
5 == ey 1— y}%a/dy (06)
U, 2 / \/ (y*

. -y (y2e — 1)

and
B—a 2+‘1—ﬁ o0

Rz U, * a—p Y2 — e 2
- d Y Z0h )| - —=2 1 .
ReVoq e’ /yy ’ y?e—1 a—fF+2 (C.7)
1

The evaluation of the integrals in both (C.6) and (C.7) proceed as discussed before.
The results are

a+p
L RS 1_/ba—B-21 1 5a—f—-2 Ta—F-2 ,
Qa3 [ ) 1 ; sy | (C.8
PR I 34 < 1o ’2)2 1[2’ da 0 1o | (©8)
and
R U 1 (8 5 5
2 U, 1 —a—2 1 1 8—a—2 at+p-2 ,
ReV,p=—— 2* g (2Z97% 2 p|-= : 2ol
©reQ o/ 20 < 4o ’2)21[ 2" da 7 Ao ’yh} (€-9)

Imaginary part of the heavy quark potential. We can also calculate Im V5 via
equation (4.15) and obtain

a—pB
) 1 1/U\ 2 U, 1 %0
ImVQQ:_Wa<R> y°‘é’”m-2[(4o‘_2>yh “2a+2] (C10)
h

['he condition Im VQQ < 0 implies that
1 z
a — 2a
. C.11
Yh > <2a — 1) ( )

Note that one must require that a > 1/2 for (C.11) to be well defined. One can check that
the formulas above give the correct AdSs limit given by o = 5 = 2.
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C.2 Expansion for small yp

at+pB—2

The expressions for L and Re Vi) in (C.8) and (C.9) can be expanded for small LU, *  ~
LT. This amounts to an expansion in small y;. By the same procedure applied before we
obtain in this approximation

Re Vpg (14 cuprLas=), (C.12)

a—p+2

a+pB—2
where ¢ is a positive constant. The gauge theory has conformal behavior (i.e., Voo x
(1/L)(1 4 ¢(LT)%) only when o = 3 = 2, which corresponds to the gravity dual in AdSs.

C.3 Results for Dp-branes

The results of the previous sections can be applied to a special class of metrics corresponding
to the (near horizon) supergravity solutions of stacks of Dp-branes in type II superstring
theories. We start by writing the supergravity metric (in the string frame) for NV coincident
near-extremal black Dp-branes in the near-horizon limit [68],

52 U(FTP) DV - dio-dt R(%)dUQ
== — t sdat =
2=(7) e+ () T
+ gy NUT A2, (C.13)
where i runs from 1 to p,
7—p
R72 =gypy de, (0.14)
13—2p
9—p ol1=2p ==
d, = < 5 ) 9 ) and (C.15)
U\ P
fU)=1- <h> . (C.16)
U
The dilaton field ¢ is given by
R (771))4(3711)
e? = (2m)2Pg,, <U> . (C.17)

Note that taking p = 3 in (C.13) corresponds to the AdSs case. Only in this case the
geometry separates in a product of a p+ 2 dimensional spacetime and an 8 — p dimensional
sphere. In the following we assume a fixed configuration for the compact coordinates.
Also, note that if p # 3 the dilaton runs and, thus, the dual gauge theory is not conformal
even in the vacuum.

The metric is now of the form (C.1) with a« = § = (7 — p)/2. The results of the
previous sections then apply and the (regularized) heavy quark free energy is

1
Fo = U (C.18)

2ma/
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while

L R 1 6—p 1 1 6-p 19-3p -_
EZUs;p\/l—yh ppr <7—p’2 2F1 5’?;0; 14_2p§yhp (C.19)

and the real part of the potential is

U, 1 11 1 1 5-p o
ReVpp = ——— B (- R Y ol .20
CreQ T T T —p ( 7—1;)’2)2 1[ 2 T—p la—2ph ] (€-20)

Moreover, one can use (4.15) to find

1 1 Uy,
42 (6-p)(T—p) yn
For the last equation to be valid the following condition must be satisfied

yh>< oop )7;. (C.22)

12— 2p

Tm Vg = [(12 —op)y P -5+ p} . (C.21)

D Curvature scalar on the string worldsheet

In this appendix we study the curvature scalar R associated with the induced metric on
the string worldsheet. As a specific example, we will focus on the Schwarzschild/AdSs
metric (5.1). Our main aim is to evaluate the curvature scalar at the bottom of the string
at finite LT, R(LT), and compare it with the corresponding 7' = 0 result, R(0). If
R(LTmax) > R(0), this signals that near the maximum of LT, LT ,ax, highly curved string
worldsheet configurations start to become relevant. This, in particular, means that one
should take care in interpreting LTax as a screening length of the quark-antiquark pair.
For the metric (5.1), the induced metric hgp = G0, X#0p X" on the string worldsheet
configuration for the rectangular Wilson loop (in the static gauge) is given by

hor = 0 (ks — V).

1 o AR*U(2)%U'(x)?
hgo——@ <U<$) + U(aj’)4—Ué and

hro = hgr = 0. (D.1)

Computing the curvature scalar R using this metric and using the equation of motion (3.3)
to remove U'(z) and U”(x) from the resulting expressions, one finds

R_2R6 (R (3Uh4(JL(];)7)UgZ—U(z> ) 42U (2)* (UgiU(x)8)+(Uh*U(z) )(GUhU@)U;UU(;) —3U8) (U (=) —U*))
S(U(2)4_U4 2
U(x)* (U} = U(x)*)? <(U;[§£4j)((z)]’§_[,]j(l)4) +U(z)t - Uﬁ)
(D.2)
At the bottom of the string, U(0) = U,. Then, (D.2) reduces to (y, = Up/U.),
4RS (yt +1
R(yn) = Bl 7)) (D.3)

US (1-y1)°
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Figure 19. The ratio of curvature scalars R(yy)/R(0) as a function of y, associated with the
worldsheet metric for the strongly coupled N/ = 4 SYM plasma. The ratio diverges when the
bottom of the string reaches the horizon (where y;, = 1).
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Figure 20. The ratio of curvature scalars R(LT)R(0) as a function of LT, up LT ax, associated
with the worldsheet metric for the strongly coupled A’ = 4 SYM plasma. The vertical line denotes
LT = LTax where R(LTmax) ~ 10R(0).

The T = 0 curvature scalar is found by fixing y, = 0 in the equation above. In this case,
we may use (5.6) to obtain R explicitly as a function of L and obtain

r(H° e
1024712 R10°

One can see that the curvature scalar is well behaved for any finite L when T = 0.
The ratio between the curvature scalars for 7' # 0 and T = 0 at the bottom of the
string is given by

R(T =0) = (D.4)

R(yn) _ 1+,
RO)  (I-y)?

(D.5)
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Note that this ratio diverges for y;, — 1. This means that a string worldsheet that stretches
up to the horizon is highly curved and must receive quantum corrections. In other words,
the classical configurations with 5, > Y4 maee = 0.85 are highly curved and must be dealt
with care. Already for ¥, = yn maz, We have R(Ynmaz) ~ 15R(0). In figure 19 we present
a plot of the ratio R(yp)/R(0) as a function of y,.

Now we can use (5.13) to solve for yj as a function of LT in the branch 0 < y < yp
and evaluate R as a function of LT, up to LT, as in figure 20. We see that for
LT ~ LTmax, R(LT) ~ 10R(0), which corresponds to a situation of high curvature on
the string worldsheet.
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