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A method of continuously monitoring animal mass would aid producers by ensuring all pigs
are gaining mass and would increase the precision of marketing pigs. Therefore, the devel-
opment of methods for monitoring the physical conditions of animals would improve animal
well-being and maximise the profitability of swine production. The objective of this research
was to validate the use of depth images in predicting live animal mass. Seven hundred and
seventy-two depth images and mass measurements were collected from a population of grow
—finish pigs (equally divided between barrows and gilts). Three commercial sire lines
(Landrace, Duroc, and Yorkshire) were equally represented. The pigs' volumes were calcu-
lated from the depth image. Linear equations were developed to predict mass from volume.
Independent equations were developed for both gilts and barrows, each of the three
commercial sire lines used, and a global equation for all combined data. Efroymson's algo-
rithm was used to test for differences between the global equation and the two equations for
the gilts and barrows and between the three commercial sire lines. The results showed that
there was no significant difference between the global equation and the individual equations
for barrows and gilts (p < 0.05), and the global equation was also no different from individual
equations for each of the three sire lines (p < 0.05). The global equation was developed to
predict mass from a depth sensor with an R? of 0.9905. In conclusion, it appears that the depth
sensor would be a reasonable approach to continuously monitor pig mass.

© 2018 Published by Elsevier Ltd on behalf of IAgrE.

1. Introduction

The main objective of most animal production companies is to
provide a product that meets the demands of the customer at

becoming more well-defined: e.g. the meat industry pays
more to producers for animals within a specified range of
mass and composition. Another example is the dairy industry,
which pays more or less to milk producers according to the
quality and composition of the product (Frost et al., 1997).

a price that allows profit. These demands, however, are
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The inability of the producer to obtain, with precision and
control, the variables that affect the conformation and fat
levels of animals can cause the failure to meet the market's
demands. Taking into consideration that farms have increased
in size, even small changes in production practices can have a
major impact on the global income (Kashiha et al., 2014).

Knowledge of the daily variation of the animals' mass in
real time would allow producers to improve the animal well-
being and production. It would be possible to use this infor-
mation to improve nutritional management practices, predict
and control the mass at slaughter and, potentially, serve as a
monitor for disease outbreaks (Brandl & Jorgesen, 1996;
Kashiha et al., 2014).

Weighing animals is typically done manually, a process
that often requires two workers and can take three to five
minutes per animal. This practice can be stressful for both
animals and workers, time consuming, and represents an
ergonomic risk (Brandl & Jorgesen, 1996).

Therefore, an automated system to determine the animals'
mass has the potential to assist producers to classify them to
market and minimise the number of pigs marketed outside
specification, improving the yield of production. Many attempts
have been made to find an alternative to manual weighing.

Essentially, two approaches have been studied: automated
weighing systems combined with individual animal identifi-
cation equipment and indirect determination of mass using
the animals' dimensions.

In general, the automatic weighing systems involve direct
contact with the animal. They can be used in the form of semi-
automatic scales (Smith & Turner, 1974), significantly
reducing the time of weighing, in the form of automatic
feeders with automatic scale (Ramaekers et al, 1995;
Schofield, Whittemore, Green, & Pascual, 2002; Slader &
Gregory, 1988), and can be successfully used for individual
monitoring of pigs in a herd, reducing the time spent on the
process. Problems with this approach involve the presence of
more than one animal or other material on the scale during
weighing, and material under the feeder, which could
generate measures that cannot always be trusted.

The significant correlation between mass and pigs' di-
mensions has led many authors to study the possibility of
estimating body mass using such a relationship (Brandl &
Jorgensen, 1996). Some methods of indirect measurement of
mass, through pigs' dimensions, using tapes and callipers have
been widely used by producers. Although these are faster
methods than manual weighing, they still require that the pigis
immobilised and they do not provide mass with great accuracy.
Alternatively, several authors (Frost et al., 1997; Kashiha et al.,
2014; Schofield, 1990; Schofield, Marchant, White, Brand, &
Wilson, 1999; Wang, Yang, Winter, & Walker, 2008;
Whittemore & Schofield, 2000) have developed techniques for
obtaining animals' dimensions from digital images, and this
has been shown to be an efficient non-invasive method.

In general, the difficulty with the determination of mass
through images is that, to extract the dimensions of the pig, its
colour must be different from the colour of the environment.
Dark skinned, stained, or dirty pigs make this approach very
difficult to automate. In addition to the colour of the animal,
the presence of adequate light is critical for this application.
Kashiha et al. (2014) found good illumination values within

the range of 40—150 lux. Wu et al. (2004) sought to solve this
problem by developing a system for capturing images with six
high-resolution cameras (3032 x 2028 pixels) and three flash
units to obtain the 3D shapes of live pigs. One problem with
this approach was the large amount of equipment and the
high costs involved, which makes this type of image capture
difficult on an industrial scale.

Finally, Kongsro (2014) proposed the use of a Microsoft®
Kinect® sensor to obtain depth images. The Kinect® is a sensor
that serves as a 3D measurement device and it has been
receiving the attention of several authors due to its low cost,
reliability and speed of measurement (Smisek, Jancosek, &
Pajdla, 2013, pp. 3—25). The Kinect® sensor is a compound
device consisting of a digital colour RGB camera, an infrared (IR)
emitter, an infrared depth sensor, four microphones, a three-
axis accelerometer and a tilt motor (Microsoft®). The sensor
provides three images: infrared, colour and depth. The benefit
of using a depth sensor instead of a digital camera is that depth
sensors are not as prone to effects of lighting or shadows.
Kongsro (2014) showed that the volume of the animal obtained
through these images was correlated with the mass of Land-
race and Duroc boars. This system could estimate the mass of
the boars with an error between 4 and 5%. This work leaves the
question, would there be a different correlation for barrow or
gilts and is there a significant difference between sire-lines?

The objective of this study was to extract pigs' mass data
from depth images, using a low-cost depth sensor and test for
the effect of commercial sire lines (Duroc, Landrace, and
Yorkshire) and sexes (gilts and barrows).

2. Material and methods

The experiment was conducted in a grow-finish building of
the U.S. Meat Animal Research Center, from the Agriculture
Research Service-ARS of United States Department of Agri-
culture — USDA (—98.13°W, 40.52°N). Animal mass and digital
and depth images were collected from a population of grow-
finish pigs at four distinct time points through the grow-
finish period. All animal procedures were performed in
compliance with federal and institutional regulations
regarding proper animal care practices (FASS, 2010).

2.1.  Animal specifics

Two hundred and thirty-four grow—finish pigs (equally
divided between barrows and gilts) were sampled at each of
four approximate ages: 8-, 12-, 16- and 21-weeks old. The pigs
represented three commercial lines sire lines (Landrace,
Duroc and Yorkshire). The maternal line was a mix of
Landrace x Yorkshire; each of the sire lines were equally
represented in the sample. Pigs were housed in standard
grow-finish type arrangement, with 39 pigs pen?
(0.93 m? pig™!), and had ad libitum access to feed and water
through the growing period.

2.2. Image acquisition

An image acquisition program was developed in MATLAB
software, version R2015b to acquire data from a Kinect®
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sensor (Version 1) and deployed to a laptop for data collection.
The Kinect® sensor was mounted on the wall above the ani-
mal scale (Fig. 1). Both digital colour images (Fig. 2a) and depth
images (Fig. 2b) were acquired from the Kinect® sensors at
approximately 1-sec intervals. The digital RGB colour image
was saved in a png (portable network graphics) format; the
values from the depth image were saved in a space-delimited
text file (txt). Digital colour RGB images were used for animal
identification. As the pigs walked on to the scale, their number
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Fig. 1 — Mass and images were captured on individual pigs
using a standard pig weighing scale and Kinect® sensor,
version 1. The Kinect® sensor was mounted on the wall
directly above the centre of the scale.

was written on a small white board and held in front of the
camera to ensure each image could be identified. The depth
image was used for acquiring the animals' volumes.

2.3. Image processing

Pig volumes were found through the processing of the depth
images using a program developed in MATLAB software,
version R2015b. The depth map was imported to the software
using the ‘importdata’ function (Fig. 2b). The distance from
sensor to animal was converted into the animal's height by
subtracting the distance between sensor and floor (Zf) from
the distance between sensor and animal (Za), (Fig. 3). Then,
the values were selected within a limit, covering 50% of the
approximate height of the animal (which was found with the
sensor), setting pixels outside that limit equal to zero using a
logical ‘if/else’ test (Fig. 2c).

Later, possible noise signals (e. g. parts of the scale) were
eliminated, making the values of rows and columns around
the animal equal to zero. The resulting matrix was trans-
formed into a binary image (‘im2bw’) and the object with the
largest area on the image was selected using the ‘bwareafilt’
function (Fig. 2d). Then, the animal was rotated to be in a
horizontal position in the image.

The head and tail regions were then eliminated, making
their values equal to zero to obtain better correlation with the
mass of the animal (Schofield, 1990). The tail and the head
were removed automatically by algorithms developed from a
subset of 300 images, randomly selected from all for periods of
measurements, representing the 3 sire-lines and two sexes of
animals (Fig. 4). To remove the tail, the following algorithm

Fig. 2 — Images collected using a Kinect® sensor, version 1, positioned directing above the scale as the animals were being
weighed (a) RGB image and (b) depth image processed using Matlab software, version R2015b (c) shows the elimination of
areas in the depth image that were outside a pre-established value (range of 20 cm greater or less than the pig's height) (d)

indicates the selected pig after eliminating head and tail.
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Fig. 3 — Height of the animal was determined by
subtracting the distance to the floor (Zg) and the distance to
the animal (Z,).

was completed. Step 1, the centroid of the animal was found
(using ‘regionprops’ function); Step 2, the hip of the animal
was located by finding the widest column between the
centroid and edge of the image, found using the ‘sum’ func-
tion; Step 3, the base of the tail was determined by adding 60%
of the width of the hip, in pixels, to column number con-
taining the hip; and, Step 4, make all columns after the col-
umn containing the base of the tail equal to zero (Fig. 4).

To remove the area of the image that contained the head,
the following algorithm was completed. Step 1, the width of
the hip, in pixels, was multiplied by 3; Step 2, this number was
subtracted from the column number that contained the base
of the tail; Step 3, all columns after this number were turned
into zeros. The largest area on the image was selected again
using the ‘bwareafilt’ function, to make sure that parts of the
ear were eliminated.

The final step in the image process was to apply the binary
image as a mask on the original map to select only the region
of interest values. The projected volume of the pig (Fig. 5) was
determined by summing all the pixels that were under the
binary mask. For simplification, this projected volume will be
referred to as volume throughout the manuscript. These
pixels contain the height of the pig at each point and their sum
corresponds to a measurement of the volume of the projection
of the pig, without head and tail. This volume value obtained
was adjusted for the distance from camera to object, using Eq.
(1); to obtain a corrected volume of the projection, in cm?.

V =V x 647774 x 1078 x Z!85304 (1)
where:
V = corrected volume, in cm?3;

Vo = Volume, in pixels x cm;
Z = distance between sensor and object, in cm.

Fig. 4 — Head and tail removal. (a) “c” represents the centroid of the pig, “W” is the width of the hips, found as the column
with more number “ones” from the centroid to the edge of the image, “T” is the distance from the hip to the tail of the
animal, found as 60% of the width of the hip, and “L” is the length of the animal, measured from the base of the tail to the
base of the neck, found as 3 times the width of the hip. (b) shows the resulting image after removal of the columns that are
outside the length of the animal from the base of the neck to the base of the tail.

Fig. 5 — (a) Top image of the pig. (b) volume of the projection of the pig. Each pixel on the top image has the height from the
back of the pig to the floor. The values of each pixel are summed to obtain a volume measure.
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2.4. Statistics

Linear equations were developed for each sire-line and one
global equation by using regression procedure in SAS. The
general linear model procedure in SAS was used to test the
effects of pig volume, sire-line and the interaction of pig vol-
ume and sire-line on the mass of the pigs. Similarly, linear
equations were developed and tested with general linear
model for barrows and gilts.

To test the error associated with the model, a multiple
linear regression equation was developed using the software
Microsoft® Excel® 2016 to describe the effects of volume (cm?)
on the mass of the pigs (kg). A 60% random sample of the data
was used in the initial development of the equations and the
remaining 40% was used for testing the accuracy of the model.

Efroymson's algorithm (stepwise regression; Efroymson,
1960), was used to test the level of significance of sex and
sire line in the multiple linear regression equation. The null
hypothesis considered the reduced model equivalent to the
global model and the alternative hypothesis considered the
global model different from the reduced model. The global
model was developed in Microsoft® Excel® 2016 software and
considered the effects of the sexes and the commercial sire
lines used, using dummy variables (Draper & Smith, 1998). The
test statistic is given in Eq. (2).

(s@ - 5Q,) / (DF, - DF,)
sQ, /DF,

F(n,d) =
where:

SS, = sum of the squares of the residue of the reduced
model,;
SSy = sum of the squares of the residue of the global
model,
DF, = degrees of freedom of the residue of the global
model,;
DF, = degrees of freedom of the residue of the reduced
model.

Then, the chosen model was evaluated by Pearson's cor-
relation I and determination (R? coefficients. In addition, to
assess the accuracy of the model, the model was tested on the
remaining 40% of the data to compare estimated mass and
actual mass. The generated equation was used in these data,
comparing the predicted mass with the estimated mass, and
then, the Willmott's concordance index (d; Willmott, 1981) and
the refined Willmott's index (dr (Willmott, Robeson, &
Matsuura, 2012); were calculated, according to Egs. (3) and
(4), respectively.

PO » 1L o) - (3)
L (|Pi— 0| +0: - 0])

where:

d = Willmott's concordance index;
P; = i-th predicted variable;

O; = i-th observed variable;

O = Observed variables average.

Z?—l Pi_oi‘ & Z —

1-——5———— wh P,-0;1 <2 P;-0

T e "ol
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(4)

where:

d, = refined Willmott's index;

P; = i-th predicted variable;

O; = i-th observed variable;

O = Observed variables average.

3. Results and discussion

A total of 772 digital and depth images, each from a unique
animal and/or time point, were captured and analysed in this
project. A number of images were not analysed, as they were
not of sufficient quality. The pigs weighed 17.6 + 2.87,
44.7 + 4.84,72.0 + 7.48 and 100.6 + 9.75 kg at each of the four
time points, respectively. The algorithm, developed using
MATLAB software, version R2015b, calculated the volume of
the pigs using only a top view image. The volumes and mass
were manually matched for this project.

It was found that the mass of growing-finishing pigs varied
with the volume obtained through depth image analysis
(Fig. 6). Visually, the animals' mass varies linearly with the
volume obtained by image analysis, which is proved by Pear-
son's correlation coefficient (0.9952; Table 1). The result of the
Efroymson's algorithm (p = 0.8237) showed that the effects of
sex and commercial line do not need to be considered in the
prediction equation, indicating that the reduced equation is
sufficient for mass prediction of the three commercial lines
used for both gilts and barrows.

It was found that mass was significantly affected by the pig
volume (p < 0.0001). No significant effects of sire line
(p = 0.3405), sex (p = 0.1852), volume by sire line (p = 0.4622) or

140.0
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60.0

40.0
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Fig. 6 — The relationship of grow-finish pigs' volume as
obtained through depth analysis provided by a Kinect®
sensor, and the mass of the pigs obtained through a
conventional scale.
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Table 1 — Linear regression model's coefficients
(W = a + bV), where: W = estimated weight (kg)
V = volume of the animal obtained through image

analysis (cm®), b and a = estimated coefficients; N:
number of data pairs used to fit the model; R?: coefficient
of determination.

Intercept Coefficient N R?
a b
Global —375+024 (673.6+24) x10°° 772  0.9907
Sire-lines
Duroc —442 +044 (6787 £4.2) x 10°° 244  0.9909
Landrace —3.52 + 0.42 (672.4 + 4.3) x 107 251 0.9898
Yorkshire ~ —346+0.39 (670.0+3.8)x10°° 277 09912
Sex
Barrows —418+0.36 (678.2+3.4) x 10°° 423  0.9895
Gilts —3.29 + 0.31 (667.0 +3.2) x 10°© 349 0.9921

volume by sex (p = 0.0635) were found. The coefficients ob-
tained are shown in Table 1.

The global equation presents an R? of 0.9907; indicating
that 99.07% of the variability of the mass of the animals can be
explained by volume obtained through the data provided by
the Kinect® sensor. This value is greater than that obtained by
Kashiha et al. (2014) for both a linear (R?> = 0.871) and a SISO TF
model (R? = 0.975), by Brandl and Jgrgensen (1996); (R* = 0.98)
and by Slader and Gregory (1988) (R? = 0.98), on the prediction
of mass of pigs through its area (acquired with images). In
addition, this is also equal to the value obtained (R? = 0.99) by
Kongsro (2014) for boars.

The Pearson's correlation coefficient obtained (0.9952) in-
dicates that there is a strong positive linear correlation be-
tween the volume and the mass of the animal. This value is
greater than the one found (r = 0.97) by Schofield (1990) for
correlation between pigs' mass and its area on a digital colour
image.

The standard error of the estimate for the global equation
was 3.13 kg, when compared to the 60% of data that was used
to develop the equation. This value is smaller than the ob-
tained by Kashiha et al. (2014), for a linear model (SE = 4.52 kg),
but greater than the SE obtained by the same authors for
predicting pigs' mass from its body area using a non-linear
model (SE = 2.68 kg) and a SISO TF model (0.82 kg). This
shows that the current method has the potential to present
smaller errors if other models are used to analyse the data.
Brandl and Jgrgensen (1996) found standard errors ranging
from approximately 2.3 to 8.5 kg, using spline functions to
predict body mass from body area; the errors were dependent
on the weight range of the animals; heavier pigs (around 95 kg)
had bigger errors than lighter pigs (25 kg).

When the global equation is compared to the test data (40%
of the data), plotting the actual weight of the animals versus
the predicted weight (Fig. 7), the standard error found was
3.01 kg. Kongsro (2014), who also used a Kinect® sensor to
predict weight through pigs' volume, found a slightly larger
error (3.38 kg) for a linear regression that represented the
actual weight plotted against the predicted weight. The higher
error found by Kongsro (2014) could be explained by the lack of
correction of the volume measure for the distance from the
sensor to the animal.

140.00
y = 0.9916x + 0.6095
R* =0.99094

120.00

100.00

80.00

60.00

Predicted Mass (kg)

40.00

20.00

0.00
0.00 20.00 40.00 60.00 £0.00 100.00 120.00 140.00

Actual Mass (kg)

Fig. 7 — Actual versus estimated mass (in kg) of growing
and finishing pigs to three sire lines (Landrace, Duroc and
Yorkshire); R? is 0.9909 and the standard error is 3.0121 kg.

Using the test data set (40% of the data), the global equation
predicted mass using calculated volumes with an average
absolute residual of 4.6% or 2.2 kg. This value was not
consistent among all mass ranges. The smallest mass range
(10—39 kg) had an average absolute residual of 5.6% or 0.97 kg.
The mass range of 39.1-68 kg had an average absolute resid-
ual of 5.4% or 2.55 kg. The next mass range (68.1-96 kg) had an
average absolute residual of 2.7% or 2.9 kg, and the largest pigs
or a mass range of 96.1-125 kg had the smallest percent ab-
solute residual of 2.8% but a large absolute residual (2.9 kg).
Some of these values are smaller and some are greater than
the value (3.07%) found by Wang et al. (2008) for a walk-
through image system, using neural network that correlated
the area of the pigin the image with its mass. It has to be taken
into consideration that these authors used the average of
several areas obtained for the same pig while it was walking
through an alleyway; this possibly reduced the error of the
system, as already pointed by Schofield (1990), who found
errors of 6.2% (for pigs weighing around 75 kg), 8.5% (for pigs
weighing around 52 kg) and 15.4% (for pigs weighing around
30 kg) if a single image was used to predict the mass of the pig
from its area on the image, but found that if the average area
of 6 images were used, this errors dropped to 2.5, 3.6 and 6.3%,
respectively. Schofield et al. (1999) found errors of 5.3-7.3%
(for pigs weighing around 45 kg) and of 1.3—3% (for pigs
weighing around 60—90 kg), depending on the sire line ana-
lysed (Landrace, Large White or Meishan), using the correla-
tion between the area of the pig in the image and its mass.
Brandl and Jgrgensen (1996) found an error of 10% for the
correlation of pigs' area with its mass. Kashiha et al. (2014)
obtained an error of 10.04% (or 4.52 kg) for the mass estima-
tion using area if a linear model was used and an error of
1.82% (or 0.82 kg) when a SISO TF model was used. Kongsro
(2014) found an error of 4.6—4.9% (or 3.2—3.8 kg) for boars'
mass prediction using volume obtained with a Kinect® sensor.
These values are greater than the ones found in this study.

The Willmott's indexes are close to 1.0000 (0.9910 and
0.9731). As this index is given by a mathematical approxima-
tion that evaluates the accuracy, the dispersion and the dis-
tance of the predicted values compared to observed, it can be
concluded that the method of prediction used can estimate
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pigs' mass in a very similar way to the scale. This is illustrated
in Fig. 7, where actual mass (measured on the scale) and
estimated mass (by volume) have a high R? (R? = 0.9909) when
plotted against each other.

Overall, the proposed method showed a satisfactory per-
formance in the estimation of the mass of grow-finishing pigs.
The responses obtained are as good or better than those ob-
tained by other authors who correlated the mass of animals
with dimensions obtained from images. The method proved
to be fast and efficient. The Kinect® sensor cannot obtain
reliable depth data in excessively lit environments, however
this is generally not a problem in swine facilities. To develop a
system that can be implemented within a commercial swine
facility, carefully choice of the area in which to collect images
would be necessary. Placing the sensor over the drinker area
would offer the advantage of having the pig's head in a
somewhat consistent orientation and generally having only
one pig in the image. Additional processing would be neces-
sary to eliminate images with more than one pig, especially if
the pigs were touching each other.

Currently, there is commercial interest in quickly and
accurately acquiring pig mass estimates. There are several
commercial products that are currently being developed using
depth images. Most of these current commercial products are
being developed as hand-held units, which require personnel
to walk among the pigs and acquire the mass. Some of the
units are using a different algorithm for each different breed
of pigs. No details on the image analysis are available for any
of these products.

4, Conclusions

A validation of the use of depth images in predicting live an-
imal mass was done in this study. It was possible to obtain
grow and finishing pigs' mass from three sire lines (Landrace,
Yorkshire and Duroc) and two sexes (gilts and barrows) using
volume obtained from depth images acquired with a Micro-
soft® Kinect® sensor.

For the volume acquisition, an algorithm was developed in
MATLAB® software, version R2015b. The algorithm selects the
pigs in the image by height difference, deletes head and tail by
a relationship with the width of the hip and the length of the
animal, then acquires the volume of the pig by summing its
pixels. This volume was then corrected for unit trans-
formation and, correlated with the pig's mass by linear
regression. A multiple linear regression considering sex and
sire line effects was compared against a simple linear
regression that did not consider these effects. The test showed
that both regressions could be considered as equal in their
prediction of mass using volume data. Results showed that
the mass can be predicted with an average error of 4.6%, or
2.2 kg. It is believed that this can be improved using other
modelling methods including multi-linear regression, or arti-
ficial neural network. These methods should be evaluated to
find the correct parameters and the modelling methods to
reduce the average error.

The method developed and used to obtain volumes of pigs
using depth images in this study has the potential to be auto-
mated, using both the program and the equation developed.
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