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A B S T R A C T

This paper presents a novel extended isogeometric boundary element formulation (XIGABEM)
for three-dimensional linear elastic fracture mechanics. The formulation utilises the Dual BEM
to accommodate coincident geometries for opposing crack surfaces, and inherits the well-
known advantages of the NURBS basis as other isogeometric implementations. The originality
herein involves the extension of the above-mentioned scheme to 3D using enrichment functions
derived from asymptotic solutions for near-field crack tip displacements, in which Williams’
expansions are used on the crack surfaces and on the boundaries crossed by the crack
front. Besides, Heaviside functions enrich external boundaries and allow the displacement
discontinuity modelling. As with most enriched formulations, additional degrees of freedom are
introduced; novel strategies are presented for the generation of auxiliary equations to recover
a square system.

Another key element of the proposed scheme is that the stress intensity factors are
recovered directly from the solution vector and no post processing is required. Four applications
demonstrate the formulation robustness, with results of models having comparatively few
degrees of freedom comparing well against classical and other published results.

1. Introduction

The correct prediction of the mechanical behaviour of cracked materials and structures is of great interest to engineers owing
to the influence of cracks on material failure mechanisms. Fracture is a severe mode of failure because it can occur suddenly
and catastrophically, often without warning. In studying crack behaviour, Linear Elastic Fracture Mechanics (LEFM) provides a
method of assessment for problems in which the fracture process zone (FPZ) is negligible. The assumption that the plastic region
arising at a crack tip is small is often valid for brittle materials, hydraulic fracture and for linear fatigue life cycle analysis, for
instance. There exist several examples of numerical analysis formulations (some of them enriched) for planar components under the
LEFM assumption, and this is satisfactory for the assessment of cracks in plane structures. However, some industry sectors involve
mechanical components that require a fully three-dimensional formulation to represent their mechanical fields. Therefore, there is
a need for effective and accurate numerical formulations capable of determining the response of these three-dimensional bodies
considering LEFM, which can contribute to safe and economic design.
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The crack stability criteria in the LEFM demand the computation of stress intensity factors (SIFs) that characterise the complexity
f the crack tip stress field. In a numerical analysis, such as those based on finite elements or boundary elements, it typically requires
pecific techniques that accommodate the singular behaviour of the stress field. J integral methods [1–3] are path-independent,
recise approaches, in which a closed contour integral is performed around the crack tip to assess the SIFs. However, in three-
imensional approaches, this task becomes computationally prohibiting. Other methods, such as the Displacement Correlation
echnique [4] and special crack tip elements [5], can be applied, however, with lower accuracy.

The Finite Element Method (FEM) is the most widespread numerical method for the solution of elasticity problems. Classical
EM formulations assume the displacement to be represented using polynomial functions, so they struggle in representing the
ingular stress field at the crack tip. Another drawback of the finite element approach is the requirement of a complex and time-
onsuming re-meshing at each crack growth step for this type of analysis. On the other hand, alternative numerical approaches arise
o successfully circumvent these problems, such as peridynamics [6–9] and phase-field models [10–12]. The comparison between
hese two methods performed by Dielh et al. [13] highlights as advantages of both methods: ability to capture crack initiation,
he dismissal of an additional criterion to describe crack growth and their applicability in multi-field fracture. However, these two
ethods are computationally expensive and, as a plausible consequence, there are few three-dimensional researches based on these

wo approaches. Moreover, the peridynamics approach can allow mechanical effects to propagate too quickly through media since
echanical interactions are instantaneous over a finite horizon.

Efforts to overcome the limitations of describing a singular stress field using polynomials led to the development of the
Xtended/Generalized Finite Element Method (XFEM/GFEM). In this approach, the displacement is expanded in a set of functions
rawn from an a priori known expected behaviour in the response. The implementation in existing FEM codes is relatively
traightforward since these additional functions generate only an augmented algebraic system while preserving the standard
EM contribution. The introduction of the Williams solution [14] (according to Aragón and Duarte [15]) and the discontinuous
Heaviside) [16] functions in the approximation space of the two-dimensional XFEM/GFEM allows the crack to exist and propagate
n a geometry completely independently of the FEM mesh. The seminal work of Sukumar et al. [17] incorporated these enrichment
unctions for three-dimensional analysis. Based on these strategies, several applications of the XFEM/GFEM were successful for
racture mechanics problems, such as in dynamic crack propagation [18], higher order functions in XFEM/GFEM [19], crack
nitiation [20], among others [21–24]. Moreover, XFEM/GFEM obtains optimal convergence in LEFM problems in both 2-D [19,25–
8] and 3-D [29,30] applications. However, it is important to use techniques such as these with caution because of the consequent
ll-conditioning in the stiffness matrix caused by the enrichment contributions, which can compromise solution accuracy if not
uitably treated.

The Boundary Element Method (BEM) has become popular as a robust approach for LEFM problems. The advantages of the BEM
rise from the boundary-only mesh requirement, which allows a straightforward introduction of the crack and also simplifies the re-
eshing process during crack propagation. The reduction of the problem dimensionality simplifies the mesh generation task. Another

dvantage of the BEM in the fracture mechanics is the absence of domain interpolation, which permits an accurate determination of
he mechanical fields even close to the crack tip despite the singular behaviour at this region. The dual BEM formulation [31] allows
he BEM to be used effectively for fractured media. This strategy consists of using two linearly independent boundary equations, one
t each of the opposing crack faces, overcoming the singularity in the algebraic system. Due to the these characteristics, the BEM
as been successfully explored for two-dimensional crack problems [32–36], and also for three-dimensional applications [37–41].
n the three-dimensional context, there are some strong singularities and hyper-singularities that demand semi-analytical treatment,
s presented in [42,43].

In contrast to the wide body of literature in the XFEM/GFEM, the use of enrichment functions to extend BEM approximations
s comparatively in its infancy. The pioneering works of Simpson and Trevelyan [44,45] utilised the concept of Partition of Unity
o expand the displacement field with the Williams solution for displacements in two-dimensional fracture problems, resulting in
ighly accurate stress intensity factor solutions from coarse models. Besides, the availability of SIFs directly from the solution vector,
ith any post-processing cost, is a considerable advantage. This has been demonstrated for 2-D isotropic [46] and anisotropic [47]
edia. In addition, a Heaviside enrichment function for 2-D LEFM problems [48] in the XBEM dismisses the re-meshing task when

he crack intersects the external boundary. Once the crossing in this case is a point-line intersection, the re-meshing would not
e as cumbersome as in 3-D applications. The sole study considering 3-D XBEM [49] introduces the direct extraction of SIF by
he Williams solution for displacements, in which only the analysis of non-inclined cracks is present. Therefore, the proposition of
nrichment functions for three-dimensional extended BEM formulations is a novel aspect that is the main objective of this work.

Recently, since the proposition of the Isogeometric Analysis (IGA) by Hughes et al. [50], this paradigm has increasingly
ecome a powerful tool in the numerical methods context. By applying the approximation functions of Computer-Aided Design
CAD) geometries, the numerical methods inherit several improvements. The approximation functions can possess a high degree
f continuity, which allows the exact representation of complex curves as circles and ellipses. Another improvement relies on the
irect use of the CAD geometry as the mesh, which can minimise one of the most demanding tasks of industrial structural analysis.
urther, there is a large body of literature showing that the smoothness and non-negativity of the IGA basis functions frequently
ives improved convergence properties over the classical piece-wise polynomial approximation space. The use of IGA for fracture
echanics has been widely explored, in which phase-field modelling [51–53] and the eXtended IGA (XIGA) approach [54–59]
emonstrate the robustness of using IGA basis functions on Finite Element procedures.

In the BEM framework, the IGA concept becomes even more appealing because the CAD geometry mesh, which is purely a surface
n 3-D models, is directly the boundary-only mesh. In elasto-statics, the IGABEM starts with the work of Simpson et al. for 2-D
2

pplications [60], while Scott et al. [61] extend this framework for 3-D geometries by using unstructured T-splines. Beer et al. [62]
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present the foundations of the IGABEM, as well as its application in a plethora of engineering problems. The use of enrichment
functions in 2-D IGABEM also permitted the direct extraction of LEFM relevant parameters, such as SIFs in homogeneous media [63],
and SIFs and T-stresses for bi-materials [64]. It is relevant to mention that these enriched approaches align with the Geometry
Independent Field approximaTion (GIFT) paradigm [65], firstly introduced by Marussig et al. [66] for elasticity applications with
IGABEM. This strategy consists of using a different set of approximation functions in the geometry and in the approximation fields. As
a consequence, it becomes possible to refine the mechanical fields without changing the geometry. Following studies have shown the
advantages of GIFT for 2-D and 3-D elasto-statics [67–69], fluid mechanics [70], and potential problems [71] in the BEM framework.

For three-dimensional fracture mechanics, the IGABEM has been successfully applied by Peng et al. [72] and further explored
s in [73–76]. Still, in all these works the boundary element formulation gives a non-physical displacement jump at the crack tip so
hat, although the J-integral can provide good SIFs, the local displacement field is incorrectly represented. Moreover, the IGABEM
emands a mesh alignment between the external boundary and the crack mesh to allow the numerical method to capture the
orrespondent discontinuous field. However, this can lead to a re-meshing procedure that may be impractical for NURBS surfaces,
nce they are based on a tensor-product of two uni-variate NURBS curves, which represent a large portion of the solid.

In this study we present for the first time a XIGABEM formulation for three-dimensional LEFM problems capable of directly
xtracting SIFs, reducing the errors on the mechanical fields description at the crack front, dismissing the requirement for mesh
lignment at the intersection between crack and external boundary, and also improving the convergence rate. These capabilities
erive from the use of three different types of enrichment functions: (i) over fully cut external boundary meshes a Heaviside function
s introduced to account for the discontinuity in the displacement field, (ii) over partially intersected boundary faces the leading
rder term in the Williams solution is used to capture both the displacement discontinuity across opposing crack faces and also the
𝑟 behaviour observed in the displacement field, (iii) over the crack surfaces themselves an enrichment also based on the Williams

olution allows the introduction of the SIFs as system unknowns in the main BEM solution vector. Another advantage of these novel
ormulations, as in the XFEM/GFEM, is the possibility of their coupling to existing IGABEM codes without changes in the existing
nfluence matrices.

This work is organised in the following manner. Section 2 defines the enrichment functions and how they are incorporated in the
GABEM framework, with a remark on the additional equations required to generate a square system. Next, Section 3 discusses some
pecific implementation aspects required by the enrichment function. Then, Section 4 presents four LEFM numerical applications
emonstrating the improvements of the XIGABEM when compared against the standard IGABEM framework.

. Enrichment strategies on 3-D IGABEM for fracture mechanics

This section discusses the enrichment schemes adopted in the proposed extended IGABEM for linear elastic fracture mechanics.
t constitutes several advances in the well-established IGABEM formulation for three-dimensional elasto-statics, which is presented
n Appendix A.

.1. Heaviside enrichment for strong discontinuities

As well understood in eXtended Finite Element Method (XFEM) research, a Heaviside function is useful to represent strong
iscontinuities in the displacement field for fully intersected boundaries. Once NURBS surfaces represent large portions of the
iscretised domain, it becomes complex or even unfeasible to align a mesh given by a CAD model with an intersecting edge crack.
herefore, this enrichment allows strong discontinuities on these cut surfaces to be captured successfully without re-meshing. In
his approach, the standard IGABEM displacement field, Eq. (A.7), expands in a manner as follows:

𝑢𝛾𝑘(𝜉1, 𝜉2) =
𝑛𝛾
∑

𝛼=1
𝜙𝛾𝛼(𝜉1, 𝜉2)𝑑

𝛽
𝑘 +

𝑛𝛾
ℋ
∑

𝛼=1

[

ℋ (𝜉1, 𝜉2) −ℋ𝛼
]

𝜙𝛾
ℋ

𝛼 𝑑
𝛽
𝑘 (1)

where 𝑢𝛾𝑘(𝜉1, 𝜉2) is the displacement at the enriched NURBS surface 𝛾ℋ . ℋ represents the Heaviside function, which takes the value
−1.0 before the crossing and 1.0 after it. ℋ𝛼 is the Heaviside function at the corresponding collocation point 𝛼. The subtraction of
the enrichment function by this term triggers the shifting approach [77]. In this initial proposition, the need for blending elements is
avoided. This implies that the Heaviside enrichment on fully cut faces should consider shifted basis functions. Further, for partially
cut faces including a crack tip, in Section 2.2, the entire face is enriched with the Williams solution and no shifting is considered. 𝜙𝛾

ℋ

𝛼
s the basis function contained in the set of 𝑛𝛾ℋ enriched functions, which is reduced because of the local support of the Heaviside
nrichment. Lastly, displacement coefficients 𝑑

𝛽
𝑘 come as additional unknowns that represent the jump in displacements at the

enriched surface.
The introduction of the expanded approximation for 𝑢𝛾𝑘 (Eq. (1)) on the BIEs, by applying the same procedure that obtains the

standards IGABEM Displacement BIE (DBIE) and Traction BIE (TBIE), Eq. (A.10), leads to the modified discretised equations as:

𝑐𝓁𝑘(𝐱̂)
𝑛𝛾
∑

𝛼=1
𝜙𝛾̂𝛼(𝐱̂)𝑑

𝛽
𝑘 +

𝑁𝑆
∑

𝛾=1
T∗𝛼𝛾
𝓁𝑘 𝑑

𝛽
𝑘 +

𝑁𝑆
∑

𝛾=1
Th

𝛼𝛾
𝓁𝑘𝑑

𝛽
𝑘 =

𝑁𝑆
∑

𝛾=1
U∗ 𝛼𝛾
𝓁𝑘 𝑝

𝛽
𝑘

𝑐𝓁𝑘(𝐱̂)
𝑛𝛾
∑

𝜙𝛾̂𝛼(𝐱̂)𝑝
𝛽
𝑘 + 𝑛𝓁(𝐱̂)

𝑁𝑆
∑

S𝛼𝛾𝑘𝓁𝑗𝑑
𝛽
𝑘 + 𝑛𝓁(𝐱̂)

𝑁𝑆
∑

Sh
∗ 𝛼𝛾
𝑘𝓁𝑗 𝑑

𝛽
𝑘 = 𝑛𝓁(𝐱̂)

𝑁𝑆
∑

D∗ 𝛼𝛾
𝑘𝓁𝑗 𝑝

𝛽
𝑘

(2)
3

𝛼=1 𝛾=1 𝛾=1 𝛾=1
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in which solely Th
𝛼𝛾
𝓁𝑘

and Sh
∗ 𝛼𝛾
𝑘𝓁𝑗

emerge from enrichment function influence, being:

Th
𝛼𝛾
𝓁𝑘 =

𝑛𝛾ks
∑

ks=1

𝑛𝛾
ℋ
∑

𝛼=1
∫𝛬

𝑇 ∗
𝓁𝑘𝜙

𝛾ℋ
𝛼

(

ℋ −ℋ𝛼
)

𝐽ks
𝛾 𝑑𝛬

Sh
∗ 𝛼𝛾
𝑘𝓁𝑗 =

𝑛𝛾ks
∑

ks=1

𝑛𝛾
ℋ
∑

𝛼=1
∫𝛬

𝑆∗
𝑘𝓁𝑗𝜙

𝛾ℋ
𝛼

(

ℋ −ℋ𝛼
)

𝐽ks
𝛾 𝑑𝛬

(3)

The definition of the enriched basis functions is directly related to the number of added degrees of freedom. The set 𝜙𝛾
ℋ

𝛼 consists
f all non-null basis functions of each knot-span crossed by the crack. The implementation details associated to this task in the
sogeometric context are presented in Section 3.1. A key complication is that the introduction of the unknowns 𝑑

𝛽
𝑘 does not naturally

ome with additional equations, which leads to an ill-posed system containing an insufficient number of equations. Strategies to
btain the auxiliary equations required for this, and other enrichment strategies of this study, are presented in Section 2.4. Note
hat all terms arising from a standard IGABEM analysis are still present in the augmented system, highlighting the straightforward
ntroduction of enrichment in pre-existing IGABEM codes.

The shifting procedure removes the requirement for the CPV in the DBIE and for HFP in the TBIE in the SST for the strongly
ingular and hypersingular integrals. Consequently, the SST for the 𝑆∗ kernel does not require the first derivative of the enrichment
unction, which constitutes an advantage of this approach compared against the use of unshifted enrichment functions. Additionally,
he influence of the Heaviside enrichment on the jump term cancels out as a consequence of the shifting procedure.

Another aspect of the integration of the kernels in Eq. (3) is its discontinuous nature over the crossed knot-span. In this case, as
tandard for the GFEM/XFEM [25],its accuracy depends on an element subdivision scheme to correctly account for each continuous
ontribution. More details of the generation of a cell-based subdivision and integration are presented in Sections 3.1 and 3.2.

.2. Williams solution enrichment for
√

𝑟 behaviour on cut surfaces

Edge cracks present an enormous challenge for boundary-based methods, because of the requirement of aligned meshes between
he external boundary and crack surfaces. In addition, the displacements over the crack surface exhibit a classical

√

𝑟 behaviour
found in LEFM, with 𝑟 being the distance from the crack front. Standard NURBS basis functions and the Heaviside enrichment
cannot precisely capture this for the external boundary partially cut by the crack, which leads to a sub-optimal convergence. In
this context, this study proposes a displacement field enrichment for partially cut surfaces based on the leading order term of the
Williams expansion [78]. This expansion leads to the augmented displacement field as:

𝑢𝛾
𝒯

𝑘 (𝜉1, 𝜉2) =
𝑛𝛾
∑

𝛼=1
𝜙𝛾𝛼(𝜉1, 𝜉2)𝑑

𝛽
𝑘 +

𝑛𝛾
∑

𝛼=1
𝜙𝛾𝛼(𝜉1, 𝜉2)𝑅𝑘𝑞𝜓

𝛾
𝑞𝑀𝑑

𝛽
𝑀 (4)

in which the additional unknowns 𝑑𝛽𝑀 represent the magnitudes related to the enrichment function 𝜓𝛾𝑞𝑀 . 𝑅𝑘𝑞 is a rotation matrix
from the local coordinate system at the crack front, where 𝜓𝛾𝑞𝑀 is defined, to the global coordinate system, according to Fig. 1. The
Williams-based enrichment function, 𝜓𝛾𝑞𝑀 , is:

𝜓𝑞𝑀 =

⎡

⎢

⎢

⎢

⎣

𝜓𝑛𝐼 𝜓𝑛𝐼𝐼 𝜓𝑛𝐼𝐼𝐼
𝜓𝑏𝐼 𝜓𝑏𝐼𝐼 𝜓𝑏𝐼𝐼𝐼
𝜓𝑡𝐼 𝜓𝑡𝐼𝐼 𝜓𝑡𝐼𝐼𝐼

⎤

⎥

⎥

⎥

⎦

𝜓𝑛𝐼 = 1
2𝜇

√

𝑟𝑡

2𝜋
cos

(

𝜃𝑡

2

)[

𝜅 − 1 + 2 sin2
(

𝜃𝑡

2

)]

𝜓𝑛𝐼𝐼 = 1
2𝜇

√

𝑟𝑡

2𝜋
sin

(

𝜃𝑡

2

)[

𝜅 + 1 + 2 cos2
(

𝜃𝑡

2

)]

𝜓𝑏𝐼 = 1
2𝜇

√

𝑟𝑡

2𝜋
sin

(

𝜃𝑡

2

)[

𝜅 + 1 − 2 cos2
(

𝜃𝑡

2

)]

𝜓𝑏𝐼𝐼 = − 1
2𝜇

√

𝑟𝑡

2𝜋
cos

(

𝜃𝑡

2

)[

𝜅 − 1 − 2 sin2
(

𝜃𝑡

2

)]

𝜓𝑡𝐼𝐼𝐼 = 1
2𝜇

√

𝑟𝑡

2𝜋
4 sin

(

𝜃𝑡

2

)

𝜓𝑡𝐼 = 𝜓𝑡𝐼𝐼 = 𝜓𝑛𝐼𝐼𝐼 = 𝜓𝑏𝐼𝐼𝐼 = 0

(5)

in which 𝑟𝑡 is the distance to the crack tip, 𝜃𝑡 is the angle between the tangent vector in the local coordinate system and the vector
𝐫𝐭 , as defined in Appendix C. 𝜅 is the Kolosov constant, being 𝜅 = 3− 4𝜈 for plane-strain and 𝜅 = 3−𝜈

1+𝜈 for plane-stress and 𝜇 = 𝐸
2(1+𝜈)

is the shear modulus. This proposition is similar to the Oden–Duarte [14,79] enrichment, but with the major difference that here all
4

enrichment functions are combined based on the rotation matrix to become a single function multiplying each additional unknown.
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Fig. 1. Local coordinate system at the crossing between crack and external face.

In this study a Williams-based enrichment is applied to all NURBS basis functions on the partially cut surface, which justifies
the use of 𝜙𝛾𝛼 on both standard and enriched terms of Eq. (4). Then, the substitution of the expanded displacements in Eq. (4) on
the BIEs results in a similar equation to that in the standard IGABEM, Eq. (A.10), but with an additional kernel, as:

𝑐𝓁𝑘(𝐱̂)
𝑛𝛾
∑

𝛼=1
𝜙𝛾̂𝛼(𝐱̂)𝑑

𝛽
𝑘 + 𝑐𝓁𝑘(𝐱̂)

𝑛𝛾
∑

𝛼=1
𝜙𝛾̂𝛼(𝐱̂)𝑅𝑘𝑞(𝐱̂)𝜓

𝛾
𝑞𝑀 (𝐱̂)𝑑𝛽𝑀

+
𝑁𝑆
∑

𝛾=1
T∗𝛼𝛾
𝓁𝑘 𝑑

𝛽
𝑘 +

𝑁𝑆
∑

𝛾=1
Tt
𝛼𝛾
𝓁𝑘𝑑

𝛽
𝑘 =

𝑁𝑆
∑

𝛾=1
U∗ 𝛼𝛾
𝓁𝑘 𝑝

𝛽
𝑘

𝑐𝓁𝑘(𝐱̂)
𝑛𝛾
∑

𝛼=1
𝜙𝛾̂𝛼(𝐱̂)𝑝

𝛽
𝑘 + 𝑐𝓁𝑘(𝐱̂)

𝑛𝛾
∑

𝛼=1
𝜙𝛾̂𝛼(𝐱̂)𝑅𝑘𝑞(𝐱̂)𝜓

𝛾
𝑞𝑀 (𝐱̂)𝑝̂𝛽𝑘

+𝑛𝓁(𝐱̂)
𝑁𝑆
∑

𝛾=1
S𝛼𝛾𝑘𝓁𝑗𝑑

𝛽
𝑘 + 𝑛𝓁(𝐱̂)

𝑁𝑆
∑

𝛾=1
St

∗ 𝛼𝛾
𝑘𝓁𝑗 𝑑

𝛽
𝑘 = 𝑛𝓁(𝐱̂)

𝑁𝑆
∑

𝛾=1
D∗ 𝛼𝛾
𝑘𝓁𝑗 𝑝

𝛽
𝑘

(6)

in which Tt
𝛼𝛾
𝓁𝑘

and St
∗ 𝛼𝛾
𝑘𝓁𝑗

are new kernels originated from the Williams-based enrichment, being:

Tt
𝛼𝛾
𝓁𝑘 =

𝑛𝛾ks
∑

ks=1

𝑛𝛾
∑

𝛼=1
∫𝛬

𝑇 ∗
𝓁𝑘𝜙

𝛾
𝛼𝑅𝑘𝑞𝜓

𝛾
𝑞𝑀 𝐽ks

𝛾 𝑑𝛬

St
∗ 𝛼𝛾
𝑘𝓁𝑗 =

𝑛𝛾ks
∑

ks=1

𝑛𝛾
∑

𝛼=1
∫𝛬

𝑆∗
𝑘𝓁𝑗𝜙

𝛾
𝛼𝑅𝑘𝑞𝜓

𝛾
𝑞𝑀 𝐽ks

𝛾 𝑑𝛬

(7)

Analogously to the Heaviside enrichment (Section 2.1), the Williams-based expansion of the displacements does not change the
standard IGABEM coefficients, which are retained in the BEM matrices, while introducing additional parameters to the discretisation.
Thus, it shares the capability of being directly incorporated into existing IGABEM computational codes. Additional equations are
necessary due to the addition of new unknowns, similarly to the Heaviside enrichment, and this is tackled in Section 2.4. Another
similarity comes from the discontinuous nature of the term sin 𝜃

2 , requiring integration over a cell-based subdivision, as detailed in
Section 3.1.

In this study, the main focus is the first development of the extended IGABEM for 3D fracture mechanics and the calculation of
SIFs from the crack front enrichment depicted in Section 2.3. A simple unshifted Williams enrichment is applied on the partially
crossed faces. Since the shifting approach has not been applied for the Williams solution enrichment, singularities arise and they
must be treated accordingly by using the SST, as detailed in Appendix B. Then, derivatives of both 𝜓𝑞𝑀 and 𝑅𝑘𝑞 are required with
respect to the parent coordinate space, where integration is carried out. Their expressions are in the Appendix C.

2.3. Crack front enrichment for the direct SIF extraction

The enrichment strategy for the introduction of SIFs as additional unknowns consists of using the Williams-based enrichment
5

function (Eq. (5)) on the crack surfaces. In addition, these parameters are interpolated by uni-directional NURBS basis functions
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Fig. 2. Local coordinate system for crack front enrichment.

ver the crack front, which leads to the following enriched displacement field for the crack surface:

𝑢𝛾
+∕−

𝑘 (𝜉1, 𝜉2) =
𝑛𝛾
∑

𝛼=1
𝜙𝛾

+∕−
𝛼 (𝜉1, 𝜉2)𝑑

𝛽
𝑘 +

𝑛𝛾𝐾
∑

𝑠=1
𝜙̃cf
𝑠 (𝑣)𝑅

cf
𝑘𝑞𝜓

̄𝛾cf

𝑞𝑀 𝐾̃
𝑠 cf
𝑀 (8)

in which 𝜙̃cf
𝑠 (𝑣) is the uni-directional NURBS basis functions over the crack front cf that interpolates the SIFs coefficients 𝐾̃𝑠 cf

𝑀 .
This set of basis functions comes from the corresponding univariate NURBS curve in the crack front that generates the crack surface
𝛾+∕−. Thus, each crack front introduces 𝑛𝛾𝐾 additional unknowns related to the distribution of SIFs along the front. The incorporation
of Eq. (8) in the BIEs yields to:

𝑐𝓁𝑘(𝐱̂)
𝑛𝛾
∑

𝛼=1
𝜙𝛾̂𝛼(𝐱̂)𝑑

𝛽
𝑘 + 𝑐𝓁𝑘(𝐱̂)

𝑛𝛾𝐾
∑

𝑠=1
𝜙̃cf
𝑠 (𝑡(𝐱̂))𝑅

cf
𝑘𝑞(𝐱̂)𝜓

̄𝛾cf

𝑞𝑀 (𝐱̂)𝐾̃𝑠 cf
𝑀

+
𝑁𝑆
∑

𝛾=1
T∗𝛼𝛾
𝓁𝑘 𝑑

𝛽
𝑘 +

𝑁𝑆
∑

𝛾=1
Ts
𝑠 cf
𝓁𝑘 𝐾̃

𝑠 cf
𝑀 =

𝑁𝑆
∑

𝛾=1
U∗ 𝛼𝛾
𝓁𝑘 𝑝

𝛽
𝑘

𝑐𝓁𝑘(𝐱̂)
𝑛𝛾
∑

𝛼=1
𝜙𝛾̂𝛼(𝐱̂)𝑝

𝛽
𝑘 + 𝑐𝓁𝑘(𝐱̂)

𝑛𝛾𝐾
∑

𝑠=1
𝜙̃cf
𝑠 (𝑡(𝐱̂))𝑅

cf
𝑘𝑞(𝐱̂)𝜓

̄𝛾cf

𝑞𝑀 (𝐱̂)𝐾̃𝑠 cf
𝑀

+𝑛𝓁(𝐱̂)
𝑁𝑆
∑

𝛾=1
S∗𝛼𝛾𝑘𝓁𝑗𝑑

𝛽
𝑘 + 𝑛𝓁(𝐱̂)

𝑁𝑆
∑

𝛾=1
Ss
𝑠 cf
𝑘𝓁𝑗𝐾̃

𝑠 cf
𝑀 = 𝑛𝓁(𝐱̂)

𝑁𝑆
∑

𝛾=1
D∗ 𝛼𝛾
𝑘𝓁𝑗 𝑝

𝛽
𝑘

(9)

in which, analogously to both Heaviside and Williams-based enrichment, a new kernel arises in each BIE as:

Ts
𝑠 cf
𝓁𝑘 =

𝑛𝛾(cf)
ks
∑

ks=1

𝑛𝛾𝐾
∑

𝑠=1
∫𝛬

𝑇 ∗
𝓁𝑘𝜙̃

cf
𝑠 𝑅

cf
𝑘𝑞𝜓

𝛾(cf)
𝑞𝑀 𝐽ks

𝛾(cf) 𝑑𝛬

Ss
𝑠 cf
𝑘𝓁𝑗 =

𝑛𝛾(cf)
ks
∑

ks=1

𝑛𝛾𝐾
∑

𝑠=1
∫𝛬

𝑆∗
𝑘𝓁𝑗 𝜙̃

cf
𝑠 𝑅

cf
𝑘𝑞𝜓

𝛾(cf)
𝑞𝑀 𝐽ks

𝛾(cf) 𝑑𝛬

(10)

This integration takes place at the enriched crack surface. The kernels make use of the uni-directional coordinate 𝑡 for the crack
ront projection at each Gauss point, which is obtained by a point projection algorithm [80].

Special care must be taken in the rotation matrix definition. For a crack front, Fig. 2 defines the local coordinate system of the
illiams solution, which may change depending on the crack geometry. The present research applies the Frenet–Serret frame [81,82]

o accurately determine both the rotation matrix and its derivatives based on the crack front NURBS parametrisation, as shown in
ppendix C. For flat cracks, the rotation matrix is simplified by having 𝑇 parallel to the crack front, 𝑁⃗ aligned to the normal outward
ector of the upper crack surface (over which we apply the DBIE), with 𝐵⃗ = 𝑇 × 𝑁⃗ .

Besides allowing a direct determination of the SIFs, and thereby precluding post-processing tasks, this strategy also introduces
he

√

𝑟 behaviour in the formulation, giving rise to accuracy improvements. The enrichment is applied over the entire crack surface,
nstead of solely at the portion closest to the crack front. Extending the enrichment over the whole crack surface gives rise to no
dditional degrees of freedom. To accommodate the new unknowns that are proxies for the SIFs, Section 2.4 presents a specific
cheme to generate auxiliary equations using crack front tying to enforce displacement continuity at the crack front. This results in
he SIFs becoming available in the solution vector as terms 𝐾̃𝑠 cf

𝑀 .
The SIF determination occurs in a straightforward manner by simple interpolation at the crack front from the obtained unknowns

𝐾̃𝑠 cf
𝑀 . In this matter, it is worth mentioning the differences between the approach herein and the special crack tip element successfully

proposed by Li, Mear and Xiao [83] in the Symmetric Galerkin BEM approach. Their study proposed a different set of basis functions
containing the

√

𝑟 behaviour for the crack front elements, which culminates in a change in the construction of the H and G influence
matrices. On the other hand, the present study allows the direct introduction of the SIF parameters without changes in the existing
H and G matrices from IGABEM.
6
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2.4. Additional equations and XIGABEM algebraic system

The use of enrichment functions in addition to the standard NURBS basis functions introduces new unknowns. Unlike Galerkin-
ased schemes, this becomes challenging in a collocation-based IGABEM formulation because collocating only at the existing
ollocation points will produce an insufficient number of equations given the increased number of unknowns. In this study,
he additional equations for the three-dimensional XIGABEM come from two different procedures: one for both Heaviside and

illiams-based enrichment and another one for the crack front enrichment that directly contains the SIFs.
The strategy associated with the Heaviside and Williams-based enrichment functions applies the TBIE on the collocation points

hose basis functions are enriched (in addition to the DBIE already used). Then, these collocation points receive simultaneously DBIE
nd TBIE, and, due to the linear independence nature of these two integral representations, the resulting equations are not redundant.

feasible alternative strategy might be additional collocation points [44], but the TBIE approach dismisses the requirement to
etermine a suitable location for additional collocation points.

emark. The SST of the TBIE requires Hölder continuity at the collocation point, in which the first derivative of the displacement
ield (for the 𝑆∗ kernel) must be 𝐶1 continuous at the singular point. However, for degree 1 NURBS surfaces, the Greville Abscissae
cheme locates these points where the basis functions are 𝐶0. Then, the sole application of the SST is not sufficient for the accurate
valuation of the hypersingular integrals. To overcome this issue, the rigid body motion approach [84] is a useful alternative to
ompute the missing contribution. This strategy considers a body under no traction in its boundary, which leads to a constant
isplacement 𝑢RBM

𝑘 field in the body. Additionally, once the parameters introduced by the extended IGABEM are associated to crack
pening and to the asymptotic behaviour at the crack, they do not exist in a rigid body motion context, hence being zero. In this
ontext, the TBIE becomes:

(

𝑛𝓁(𝐱̂)
𝑁𝑆
∑

𝛾=1
S∗ 𝛼𝛾𝑘𝓁𝑗

)

𝑢RBM
𝑘 = 0𝑘 (11)

Considering that Eq. (11) holds for any arbitrary 𝑢RBM
𝑘 , the terms inside the parentheses must be zero. Therefore, it is possible

o find the missing terms that must be spread over the contributions associated to the 𝑆∗ kernel as:
(

−𝑛𝓁(𝐱̂)
𝑁𝑆
∑

𝛾=1
S∗ 𝛼𝛾𝑘𝓁𝑗

) 𝑛𝛾
∑

𝛼=1
𝜙𝛾̂𝛼(𝐱̂)𝑑

𝛽
𝑘 + 𝑐𝓁𝑘(𝐱̂)

𝑛𝛾
∑

𝛼=1
𝜙𝛾̂𝛼(𝐱̂)𝑝

𝛽
𝑘

+𝑛𝓁(𝐱̂)
𝑁𝑆
∑

𝛾=1
S𝛼𝛾𝑘𝓁𝑗𝑑

𝛽
𝑘 + 𝑛𝓁(𝐱̂)

𝑁𝑆
∑

𝛾=1
Sh

∗ 𝛼𝛾
𝑘𝓁𝑗 𝑑

𝛽
𝑘 = 𝑛𝓁(𝐱̂)

𝑁𝑆
∑

𝛾=1
D∗ 𝛼𝛾
𝑘𝓁𝑗 𝑝

𝛽
𝑘

(12)

which must be applied specifically for 𝑝 = 1 or 𝑞 = 1 NURBS patches in the XIGABEM scheme. The algebraic system receives this
correction term after the integration of the boundary, in which Eq. (11) determines its corresponding sum.

For the direct SIF enrichment scheme applied on the crack surfaces, the additional equations are obtained by considering
compatibility at the crack front. Both upper and lower crack faces are expected to experience identical displacement at the crack
front. However, the discontinuous BEM approach for fracture mechanics cannot guarantee this behaviour. In two-dimensional
analysis, it has been shown that a ‘tying equation’ enforcing displacement continuity at a crack tip is a simple approach to provide
an additional equation, but it is also advantageous in that the unknowns 𝐾̃𝑠 cf

𝑀 from Eq. (8) become good approximations to the
IFs [46,48]. In the three-dimensional scope that is the focus of the current work, the crack front is a curve, and a weak-form
trategy is presented to enforce compatibility as:

∫𝛤 cf
𝑠

[

𝜙𝛾̄
+
𝛼 (𝜉1, 𝜉2)𝑑

𝛽+
𝑘 − 𝜙𝛾̄

−
𝛼 (𝜉1, 𝜉2)𝑑

𝛽−
𝑘

]

𝜙̃cf
𝑠 (𝑣)𝑑𝑣 = 0𝑘 (13)

in which 𝛤 cf
𝑠 is the line describing the crack front. 𝜙̃cf

𝑠 is the weighting function chosen for this weak-form compatibility; here we
adopt the NURBS function that interpolates the SIFs.

The final extended IGABEM algebraic system assumes its form by augmenting the standard IGABEM algebraic matrix, Eq. (A.15)
with the effects of the enrichment functions on the BIEs, which are Eq. (2), Eq. (6) and Eq. (9). By introducing also the additional
equations as described, the XIGABEM system becomes:

⎡

⎢

⎢

⎢

⎣

𝐇 𝐇h 𝐇t 𝐇s

𝐇T 𝐇T
h 𝐇T

t 𝐇T
s

Φs 𝟎 𝟎 𝟎

⎤

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐝

𝐝
𝐝̂
𝐊̃

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎣

𝐆
𝐆T

𝟎

⎤

⎥

⎥

⎥

⎦

{

𝐩
}

(14)

in which 𝐇, 𝐆, 𝐝 and 𝐩 refer to the standard IGABEM contributions. The subscript h refers to the contribution from the Heaviside
enrichment for fully cut faces in the external boundary, Eq. (2). In addition, the terms with the subscript t contain the results from
the Williams-based enrichment for partially cut faces, coming from Eq. (6). The subscript s stands for the crack front enrichment
contributions, Eq. (8). The superscript 𝑇 indicates the TBIE coefficients when applied at the collocation points whose basis functions
are enriched. Φs is the sub-matrix containing the contributions from Eq. (13). Lastly, 𝐝, 𝐝̂ and 𝐊̃ are the additional unknowns from
he Heaviside, Williams-based and crack front enrichment strategies, respectively. By applying the boundary conditions on Eq. (14)
7
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Fig. 3. Mid-points at each crack edge that search their correspondent external boundary face.

n the same manner as for the standard IGABEM, a linear system 𝐀𝐱 = 𝐛 is obtained, and use of a standard solver recovers all
standard displacement and traction parameters in the solution vector 𝐱, as well as the unknowns associated with the enrichment
functions.

3. Implementation aspects

3.1. Crossing detection between crack face and cut face

The detection of the crossings between the crack faces and the external boundary is fundamental to the extended IGABEM, as it
allows the crack surface geometry to be fully defined and completes the definition of the enriched basis functions. It also provides
important geometric information on the crossed NURBS patch. This task consists of searching the external boundary NURBS surfaces
that contain the mid-point of each upper crack face edge (those with the DBIE applied), as depicted in Fig. 3. This search algorithm
makes use of a Newton–Raphson method to find the associated parametric coordinates that give the geometric coordinates of each
mid-point. Then, each NURBS surface found is then classified as enriched, in which either the Heaviside or the Williams-based
functions will be applied, the choice depending on whether the face is fully or partially cut. Similarly, a search for the corresponding
lower crack face edge takes place to define the pair of crack face edges that account for the enrichment.

The next step is to project the crack edge on the enriched NURBS surface. Then, the intersecting NURBS curve on the crossed
surface has the same degree, knot-span and number of control points as the univariate NURBS curve that generates the upper crack
face and crosses the external boundary, as in Fig. 3. The objective is to generate a NURBS curve for the crack edge in the parametric
space of the enriched NURBS surface, so that further geometric procedures will be taken directly on the external boundary NURBS
parametric space. To find the corresponding control points in the parametric space, a sample of 𝑡𝑠 anchor points on the crossing
crack edge are first defined, based on the Greville Abscissae. For each anchor point, the NURBS basis functions are computed, and
also the parametric coordinates in the projected NURBS surface, which results in the following algebraic system:

𝑛
∑

𝑘=1
𝜙𝑘(𝑡𝑠)

̃
𝜉𝑠1 = 𝜉1(𝑡𝑠)

𝑛
∑

𝑘=1
𝜙𝑘(𝑡𝑠)

̃
𝜉𝑠2 = 𝜉2(𝑡𝑠)

(15)

n which the pair (
̃
𝜉𝑠1, ̃

𝜉𝑠2) refers to the control points written in the parametric coordinates of the enriched patch, and the pair
𝜉1(𝑡𝑠), 𝜉2(𝑡𝑠)

)

refers to the parametric coordinate on the enriched patch that returns the same geometric position in the physical
pace as 𝑡𝑠 from the NURBS curve. Lastly, 𝜙𝑘(𝑡𝑠) is the basis function value. In this procedure, each new control point inherits its
eight from that of the corresponding control point from the univariate edge NURBS curve.

Additionally, it is helpful to detect the intersection between the projected NURBS curve and the knot-span limits at the enriched
atch. These points are further needed to define the sub-cells for integration, as well as to classify the face as fully or partially
ut, and to define the enriched basis functions for the Heaviside enrichment. This detection consists of a marching through the
arametric coordinate of the projected NURBS curve in incremental steps of 𝛿 = (𝑡𝐿 − 𝑡𝐹 )∕𝑛𝑠, in which 𝑡𝐹 and 𝑡𝐿 are the first and

last knots, and 𝑛𝑠 is the number of divisions. For each 𝑡𝑖 = 𝑡𝐹 + 𝑖𝛿, the obtaining of the pair
(

𝜉1(𝑡𝑖), 𝜉2(𝑡𝑖)
)

allows the detection of its
orresponding knot-span in each univariate direction. When there is a change in the knot-span from 𝑡𝑖+1 compared against 𝑡𝑖 in the
irection dir, a crossing occurs for a NURBS curve parametric coordinate 𝑡𝑐 such as 𝑡𝑖 ≤ 𝑡𝑐 ≤ 𝑡𝑖+1. Then, a local Newton–Raphson
rocedure determines 𝑡𝑐 , in which the associated residual is 𝐸(𝑡) = 𝜉𝑆dir − 𝜉dir(𝑡), where 𝜉𝑆dir is the known parametric coordinate at
he external boundary surface. By expanding 𝐸(𝑡) in its first term of Taylor Series, the increment 𝛿𝑡𝑘 is:

𝛥𝑡𝑘 =
𝐸(𝑡𝑘)
𝜕𝐸 |

(16)
8
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Fig. 4. Possible cases for entirely crossed knot-span, in which the crack is indicated by red and the knot-span sub-divisions are represented in dashed green.

Fig. 5. Knot-span subdivision for crack ending inside its domains.

in which there is an update as 𝑡𝑘+1 = 𝑡𝑘+𝛥𝑡𝑘 until the residual is smaller than a given tolerance. The derivative 𝜕𝐸∕𝜕𝑡 is the tangent
vector component in the dir direction.

If one of the ends of the NURBS curve that represents the crack lies inside the enriched surface, this patch can be defined as
partially cut, and all basis functions on the patch will be enriched by the Williams-based enrichment function. On the other hand,
when both ends of the NURBS curve cross the NURBS surface edges, it is a fully cut face. For this fully cut patch, all non-null basis
functions at

(

𝜉1(𝑡𝑘𝑐 ), 𝜉2(𝑡
𝑘
𝑐 )
)

, in which 𝑡𝑘𝑐 = (𝑡𝑘+1𝑐 + 𝑡𝑘𝑐 )∕2, are enriched by the Heaviside function. This represents the influence zone
required for the Heaviside enrichment at the crossing, once 𝑡𝑘𝑐 lies exactly on the crack.

The numerical integration of the kernels arising from the enrichment strategy demands a sub-cell approach to account separately
for the contribution of each term due to the discontinuous nature of the enrichment functions. Therefore, the intersection between the
NURBS curve that represents the crack and each knot-span allows the generation of sub-cells, over which Gauss–Legendre integration
can safely be applied independently. There are six possible cases for the generation of the sub-cells in entirely crossed knot-spans,
which are shown in Fig. 4. In addition, when the crack ends inside a knot-span there are four possible sub-cell configurations,
illustrated by Fig. 5.

Since the Heaviside function ℋ takes a constant value over each sub-cell, it only needs to be computed once for the cell and
do not require assessment separately at each Gauss point, accelerating the integration procedure for the associated enriched kernel.
The value of ℋ can be easily computed as the dot product sign between the vector that goes from one of the crack ends pointing to
the interior of the sub-cell (Fig. 6) and the normal outward vector of the upper crack face. The obtaining of ℋ𝛼 for each collocation
oint proceeds analogously, by defining the vector from one of the crack ends to the collocation point.

In the context of the integration requiring the SST, the sub-cells of the same knot-span that share the same ℋ are merged. This
llows the use of the SST parameters on the whole face, and also reduces loss of accuracy that could be caused by nearly singular
9

ntegration of these parts.
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Fig. 6. Heaviside function determination based on dot product between upper surface normal outward vector and internal vector. In this scheme, sub-cells A
nd B receive 𝐻 = +1.0 while cells C and D have 𝐻 = −1.0.

3.2. Numerical integration of sub-cells

The sub-cell integration requires a specific treatment due to the triangular shape of the cells adopted. Moreover, some cells
have the crack curve as one of its edges, which must be accounted for in this process. In this context, this study proposes a
polar transformation to perform this task. Three additional mappings are used for relating the NURBS parametric space to the
integration space where the Gauss quadrature is performed. This procedure also holds for the singular integration, in which the
polar transformation is intrinsically part of the SST.

This strategy starts by defining a pole in which the polar parameters 𝜌 and 𝜃 are defined. In the non-singular integration, the
ole is at the farthest vertex to the crack curve, while in the singular integration the pole is the collocation point.

The first mapping relates a point from the Gaussian space {𝜉1, 𝜉2} ∈ 𝛬 |𝛬 = {[−1; 1] × [−1; 1]} to the first auxiliary space
𝑃
1 =

{

[𝑡1, 𝑡2] × [0, 𝜌̂]
}

as:

𝐓𝑃1 ∶ (𝜉1, 𝜉2) → (𝑡, 𝜌)

𝑡 =
(𝑡2 − 𝑡1)𝜉2

2
+

(𝑡2 + 𝑡1)
2

𝜌 =
𝜌̂(𝑡)𝜉1
2

+
𝜌̂(𝑡)
2

(17)

in which 𝑡 refers to the parametric coordinate on the NURBS curve that defines the crack crossing, 𝑡1 and 𝑡2 are the corresponding
ends for this coordinate at the sub-cell, and 𝜌̂(𝑡) is the distance between the pole and the point given by 𝑡 at the NURBS curve. All
hese variables are illustrated in Fig. 7. Also, 𝜌̂(𝑡) expression is:

𝜌̂(𝑡) =
√

[

𝜉1(𝑡) − 𝜉01
]2 +

[

𝜉2(𝑡) − 𝜉02
]2 (18)

in which (𝜉01 , 𝜉
0
2 ) is the parametric coordinates of the pole in the patch.

The second transformation 𝐓𝑃2 consists of defining the polar coordinate 𝜃 in terms of (𝜉1(𝑡), 𝜉2(𝑡)) as:

𝐓𝑃2 ∶ (𝑡, 𝜌) → (𝜃, 𝜌)

cos 𝜃 =
𝜉1(𝑡) − 𝜉01
𝜌̂(𝑡)

sin 𝜃 =
𝜉2(𝑡) − 𝜉02
𝜌̂(𝑡)

𝜃 = arctan

(

𝜉2(𝑡) − 𝜉02
0

)

(19)
10

𝜉1(𝑡) − 𝜉1
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Fig. 7. Variables in 𝐓𝑃1 mapping.

Lastly, 𝐓𝑃3 is the transformation that obtains the parametric coordinates pair (𝜉1, 𝜉2) at the patch from the polar parameters 𝜌
nd 𝜃, as:

𝐓𝑃3 ∶ (𝜃, 𝜌) → (𝜉1, 𝜉2)

𝜉1(𝜌, 𝜃) = 𝜉01 + 𝜌 cos 𝜃

𝜉2(𝜌, 𝜃) = 𝜉02 + 𝜌 sin 𝜃

(20)

The Jacobian of each transformation enables the integration in the Gauss space going from the NURBS parametric space, and
hey are:

𝐽𝑃𝛾1 =
𝜌̂(𝑡)
2

(𝑡2 − 𝑡1)
2

𝐽𝑃𝛾2 = d𝜃
d𝑡

𝐽𝑃𝛾3 = 𝜌

(21)

nd the total 𝑑𝛤𝛾 becomes:

𝑑𝛤𝛾 =
‖

‖

‖

‖

‖

𝜕𝐫
𝜕𝜉1

× 𝜕𝐫
𝜕𝜉2

‖

‖

‖

‖

‖

𝑑𝛬

𝑑𝛤𝛾 = 𝐽𝑃𝛾1 𝐽𝑃𝛾2 𝐽𝑃𝛾3 𝐽 𝛾2 𝑑𝛬
(22)

in which 𝐽𝑃𝛾2 comes from the chain rule as:

d𝜃
d𝑡 = 𝜕𝜃

𝜕𝜉1

𝜕𝜉1
𝜕𝑡

+ 𝜕𝜃
𝜕𝜉2

𝜕𝜉2
𝜕𝑡

(23)

n which 𝜕𝜉1∕𝜕𝑡 and 𝜕𝜉2∕𝜕𝑡 are the components of the NURBS curve tangent vector, and the derivatives in respect to 𝜃 are:

𝜕𝜃
𝜕𝜉1

= −1

1 +

[

𝜉2(𝑡) − 𝜉02
𝜉(𝑡) − 𝜉01

]2

𝜉2(𝑡) − 𝜉02
[

𝜉1(𝑡) − 𝜉01
]2

=
𝜉02 − 𝜉2(𝑡)

[

𝜉1(𝑡) − 𝜉01
]2 +

[

𝜉2(𝑡) − 𝜉02
]2

⇒

𝜕𝜃
𝜕𝜉1

=
𝜉02 − 𝜉2(𝑡)

𝜌̂(𝑡)2
= − sin 𝜃

𝜌̂(𝑡)

𝜕𝜃
𝜕𝜉2

= 1

1 +

[

𝜉2(𝑡) − 𝜉02
𝜉1(𝑡) − 𝜉01

]2
1

𝜉(𝑡) − 𝜉0
=

𝜉(𝑡) − 𝜉01
[

𝜉1(𝑡) − 𝜉01
]2 +

[

𝜉2(𝑡) − 𝜉02
]2

⇒

𝜕𝜃
𝜕𝜉2

=
𝜉1(𝑡) − 𝜉01
𝜌̂(𝑡)2

= cos 𝜃
𝜌̂(𝑡)

(24)

We remark that this scheme holds for triangles which do not have a NURBS curve as one of the edges. In this case, this edge
arametrisation consists of a straight line between each edge of the opposite side, and also 𝑡 = 0.0 and 𝑡 = 1.0.
11

1 2
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Fig. 8. (a) Geometry and loading conditions for penny-shaped crack and (b) Control points position for penny-shaped crack mesh.

4. Numerical applications

4.1. Penny-shaped crack

The first application of this study is a penny-shaped circular crack with radius 𝑅 = 1.0 embedded in an infinite domain, subjected
to a remote uniaxial stress 𝜎0 = 1.0, according to Fig. 8(a). Since the Dual BEM formulation herein applied requires the discretisation
of the external boundary, the crack is located inside a cube of side 200𝑅. The material properties are 𝐸 = 1.0 and 𝜈 = 0.0. It is
noteworthy that the proper choice of the local coordinate system performs a major role for the crack front enrichment scheme
when its front is curved. Thus, this application allows the evaluation of the Frenet–Serret frame, especially for mixed mode I/II/III
problems. In addition, the analysis of both in-plane and inclined cracks allows the evaluation of a pure mode I and a mixed mode
I/II/III in a problem whose enrichment function does not match with the analytical solution. For the pure mode I problem, both
SIFs and the 𝑢2 displacement at the crack have a reference solution [85] as:

𝑢2(𝑥1, 𝑥2, 𝑥3) =
−2𝑛2(1 − 𝜈)𝜎0

𝜋𝜇

√

𝑅2 − (𝑥21 + 𝑥
2
3)

𝐾𝐼 =
2𝜎0
𝜋

√

𝜋𝑅

𝐾𝐼𝐼 = 𝐾𝐼𝐼𝐼 = 0

(25)

in which 𝜎0 is the remote traction applied. For the crack inclined through an angle 𝜃𝑖, the corresponding SIFs are:

𝐾𝐼 =
2𝜎0
𝜋

√

𝜋𝑅 cos2 𝜃𝑐

𝐾𝐼𝐼 =
4𝜎0

𝜋(2 − 𝜈)

√

𝜋𝑅 cos 𝜃𝑖 sin 𝜃𝑖 cos 𝜃𝑐

𝐾𝐼𝐼𝐼 =
4𝜎0(1 − 𝜈)
𝜋(2 − 𝜈)

√

𝜋𝑅 cos 𝜃𝑖 sin 𝜃𝑖 sin 𝜃𝑐

(26)

in which 𝜃𝑐 is the angle of the crack front position taken in the crack plane.
The discretisation adopted for this application consists of an external boundary composed of 6 NURBS surfaces with degree

𝑝 = 𝑞 = 1 Constant boundary conditions are responsible for representing the uniform stress state in the far field, in which the bottom
face (𝑥2 = −100.0) has nil displacements in all directions and there is a traction 𝑡2 = 1.0 applied over the top face (𝑥2 = 100.0). For
the crack faces, five 𝑝 = 𝑞 = 2 degree NURBS surfaces describe each face, as illustrated in Fig. 8(b). Each of the four patches
that compose the circular crown receive the crack front enrichment, while the central circle remains with only the NURBS basis
functions. The circular crown length is set as 𝑅∕5, based on the analysis performed with the Displacement Fitting Technique [73],
and the crack front increment chosen by Peng et al. [72] in their penny-shaped crack growth analysis. In addition, a Lagrangian BEM
analysis considers a 9-node quadrilateral quadratic element to compare the XIGABEM and IGABEM results against the conventional
BEM.

The in-plane crack deformed shape presented in Fig. 9 compares the responses from the extended IGABEM approach and
the standard IGABEM for the most refined mesh. A jump in the displacement field at the crack front is evident in the standard
formulation, in contrast to the XIGABEM results. For the standard formulation, as previously obtained by Peng et al. [72], the major
contribution for the error is at the crack front. The absence of a displacement jump in the XIGABEM solution is a direct consequence
of the tying equations.
12
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Fig. 9. Deformed shape for penny shaped crack using (a) conventional IGABEM and (b) extended IGABEM.

Fig. 10. 𝐿2 norm of error in displacements for in-plane penny-shaped crack.

The convergence analysis in the 𝐿2 norm of error presented in Fig. 10 demonstrates the improvements in the convergence rate for
the XIGABEM responses against the standard IGABEM and the Lagrangian BEM. By adding a small number of degrees of freedom,
in addition to directly returning the SIFs, there is both a reduction in the 𝐿2 norm of error and an increase in the convergence
rate. These outcomes are associated to the asymptotic behaviour introduced by the enrichment, as well as the tying at the crack
front. Optimal convergence for collocation methods in the BEM context still has open questions [86,87], but for a smooth problem,
Marussig et al. [87] achieved convergence rates of (𝑁−𝑝) in the 𝐿2 norm, with 𝑁 being the number of degrees of freedom. For
fracture mechanics, this behaviour does not hold, as can be seen in Peng at al [72] and the standard IGABEM simulations used
for comparison in Fig. 10 of the present study. On the other hand the XIGABEM approach described herein delivers improved
convergence rates over standard IGABEM, both for smooth solutions [87] and for fracture problems.

As widely presented in the literature for the GFEM/XFEM, enrichment strategies can cause an increase in the condition number,
which has the potential to become problematic for the system solution. Based on the condition number growth shown in Fig. 11,
it is noteworthy that the extended IGABEM formulation for the crack front enrichment improves the overall conditioning when
compared against its standard version, instead of worsening it.

Table 1 shows the average relative error for all SIFs to be in excellent agreement with the reference solution, being below 5.10−3

for 𝐾1. Additionally, 𝐾2 and 𝐾3 are below 4.10−10 for all meshes except the most refined one, in which the effect of near-singular
integrals on the evaluation of the BIEs kernels start to influence the overall precision. These results can be improved by an enhanced
integration scheme for those integrals, but this is beyond the scope of the present research.
13
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m
t

Fig. 11. Condition number growth for in-plane penny-shaped crack.

Fig. 12. Stress intensity factors for penny-shaped crack inclined by 𝜋∕4 rad.

Table 1
Average SIFs error for in-plane penny-shaped crack.

Degrees of freedom avg. error in 𝐾1 avg. error in 𝐾2 avg. error in 𝐾3

378 4.689e−03 −2.47e−11 −3.00e−13
600 2.936e−03 −4.11e−11 3.67e−12
882 2.267e−03 3.85e−10 −1.59e−12
1224 1.776e−03 −5.09e−12 4.59e−11
1626 1.432e−03 4.04e−07 −1.22e−11

The numerical analysis for an inclined penny-shaped crack permits the proposed formulation accuracy assessment in the mixed-
ode context. For 𝜃𝑖 = 𝜋∕4, Fig. 12 shows the SIFs for the most refined mesh. It is noticed that all SIFs vary in agreement with

he reference solutions, with relative errors below 2.03e − 3. Additionally, the 𝐿2 norm of error converges in a faster rate than the
14

SIFs, mainly associated to the correction of the non-physical displacements at the crack front given by the IGABEM formulation. In
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Fig. 13. (a) Geometry of elliptical crack and (b) Mesh and control points for in-plane elliptical mesh.

summary, it is evident that the XIGABEM formulation for a circular crack obtains highly accurate results with an increase of only
a few degrees of freedom in comparison to standard approach.

4.2. Elliptical crack

An elliptical crack embedded in an infinite domain and subjected to a far-field uniaxial stress 𝜎0 = 1.0 is the second application
considered. The crack has semi-major and semi-minor axis dimensions 𝑎 = 10.0 and 𝑏 = 5.0, respectively, as depicted in Fig. 13(a).
Similarly to Section 4.1, the truncated domain that represents an infinite medium is a cube with side 200𝑎. In this application, the
mechanical properties are 𝐸 = 1.0 and 𝜈 = 0.3. Besides encompassing all the characteristics of Section 4.1 in respect to the definition
of the local coordinate system, 𝐾1 is no longer constant, which constitutes an important behaviour to capture by the enrichment
scheme. The analytical solution for this case, which also considers the inclination angle 𝜃𝑖, is [85]:

𝐾𝐼 =
𝜎0
2
(1 + 2 cos 2𝜃𝑖)

√

𝑏𝜋𝑓 (𝜃𝑐 )
𝐸(𝑘)

𝐾𝐼𝐼 =
𝜎0
2
(sin 2𝜃𝑖)

√

𝑏𝜋𝑘2𝑏∕𝑎 cos 𝜃𝑐
𝑓 (𝜃𝑐 )𝐵(𝑘)

𝐾𝐼𝐼𝐼 =
𝜎0
2
(sin 2𝜃𝑖)

√

𝑏𝜋𝑘2(1 − 𝜈) sin 𝜃𝑐
𝑓 (𝜃𝑐 )𝐵(𝑘)

𝑘2 = 1 −
( 𝑏
𝑎

)2

𝑓 (𝜃𝑐 ) =
[

sin2 𝜃𝑐 +
( 𝑏
𝑎

)2
cos2 𝜃𝑐

]1∕4

𝐵(𝑘) = (𝑘2 − 𝜈)𝐸(𝑘) + 𝜈
( 𝑏
𝑎

)2
𝐾(𝑘)

𝐾(𝑘) = ∫

𝜋∕2

0

1
√

1 − 𝑘2 sin2 𝜃𝑐
𝑑𝜃𝑐

𝐸(𝑘) = ∫

𝜋∕2

0

√

1 − 𝑘2 sin2 𝜃𝑐𝑑𝜃𝑐

(27)

in which 𝜃𝑖 = 0 for an in-plane situation. Particularly, for the in-plane case, the 𝑢2 displacements are:

𝑢2(𝑥1, 0, 𝑥3) =
2(1 − 𝜈)𝜎0

𝜇
𝑏

𝐸(𝑘)

√

1 −
𝑥21
𝑎2

−
𝑥23
𝑏2

(28)

The crack mesh consists of 5 bi-quadratic NURBS surfaces for each face, in which the internal ellipse is scaled by 80% from the
total crack size, as shown in Fig. 13(b). In addition, the external boundary mesh has 6 bi-linear NURBS surfaces. For the convergence
study, a knot-insertion strategy is used to increase uniformly in each parametric direction the number of basis functions only at the
crack surfaces.
15
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Fig. 14. 𝐿2 norm of error in displacements for in-plane elliptical crack.

Fig. 15. Condition number growth for in-plane elliptical crack.

The convergence analysis in Fig. 14 demonstrates again an increase in the order of convergence rate for the XIGABEM in
comparison to the standard formulation. However, for the most refined mesh, the near-singular integral precision starts to have
a mild effect on the solution accuracy. In addition, Fig. 15 shows that the condition number remains similar to the standard
formulation. Moreover, the SIFs directly obtained as degrees of freedom, presented in Fig. 16, are in accordance with the analytical
solutions for the in-plane case. Thus, the enrichment scheme is also capable of capturing the trigonometrical variation for all three
SIFs of this application.

The elliptical crack inclined through angle 𝜃𝑖 = 𝜋∕6 permits an analysis of a complex crack geometry in a mixed-mode loading
case. The extracted SIFs are depicted in Fig. 17, in which again the formulation precisely captures the expected behaviour for all
three SIFs. In addition, Table 2 compares the SIFs relative errors with Peng et al. [72], when the analytical SIF is non-nil. The
enriched formulation provides lower errors for both cases in all SIFs. Specifically, for 𝐾𝐼 and 𝐾𝐼𝐼𝐼 , an improvement of one order
of magnitude is found in the relative error.
16
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𝐸
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Fig. 16. Stress intensity factor 𝐾𝐼 for in-plane elliptical crack.

Fig. 17. Stress intensity factors for elliptical crack inclined by 𝜋∕6 rad.

Table 2
Relative error for SIFs in elliptical crack inclined by 𝜃𝑖 = 𝜋∕6.

VCCI [72] M integral [72] XIGABEM

𝜃𝑐 = 0
𝐾𝐼 4.56e−2 1.53e−2 5.53e−04
𝐾𝐼𝐼 4.14e−2 1.28e−2 4.83e−03
𝐾𝐼𝐼𝐼 – – –

𝜃𝑐 = 𝜋∕2
𝐾𝐼 8.28e−3 2.21e−2 1.89e−03
𝐾𝐼𝐼 – – –
𝐾𝐼𝐼𝐼 6.88e−3 5.96e−2 1.77e−03

4.3. Prism with edge crack: pure mode analysis

This application consists of a finite prismatic solid with a centred crack of geometry defined in Fig. 18 and of material properties
= 1.0 and 𝜈 = 0.0. We consider the pure mode behaviour, allowing us to make use of known analytical solutions as appropriate in

rder to elicit information about the numerical performance of the XIGABEM formulation. The upper face (−1.0 ≤ 𝑥1 ≤ 1.0, 𝑥2 = 1.0,
17

.0 ≤ 𝑥3 ≤ 2.0), lower face (−1.0 ≤ 𝑥1 ≤ 1.0, 𝑥2 = −1.0, 0.0 ≤ 𝑥3 ≤ 2.0), front face (𝑥1 = 1.0, −1.0 ≤ 𝑥2 ≤ 1.0, 0.0 ≤ 𝑥3 ≤ 2.0)
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Fig. 18. Geometry of prismatic block with edge crack.

and back faces (𝑥1 = −1.0, −1.0 ≤ 𝑥2 ≤ 1.0, 0.0 ≤ 𝑥3 ≤ 2.0,) are given displacement boundary conditions, while all other faces in
the external boundary have prescribed traction. Since the analytical expressions for the mechanical behaviour are known for each
opening mode [78], they are directly applied in the BIEs, as described in Appendix A. The displacement and stress values for this
application are:

⎧

⎪

⎨

⎪

⎩

𝑢1
𝑢2
𝑢3

⎫

⎪

⎬

⎪

⎭
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⎢
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⎪

⎪
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⎬
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⎪

⎪

⎪

⎪

⎭

(29)

The numerical analysis via XIGABEM is performed on a NURBS mesh with 9 patches, in which 7 patches define the external
oundary and 2 patches represent the opposing crack faces. Fig. 19(a) presents the extended IGABEM mesh. It should be noted
hat the lateral faces do not align with the crack faces, since the Williams-based enrichment functions capture the discontinuous
olution independently of the mesh. The upper and lower crack faces are given the crack front enrichment, which allows the
irect determination of the SIFs. To compare the convergence rate of the XIGABEM against the standard IGABEM formulation, the
umerical responses for the conventional IGABEM method utilises a mesh containing 15 NURBS patches, as shown in Fig. 19(b).
he increased number of patches derives from the need for mesh alignment at the intersections between the external boundary and
he crack on lateral faces.

This application considers each crack opening mode separately so that it is possible to evaluate the influence of all terms from
he enrichment functions. The boundary conditions for the pure mode 𝑀 = 𝐼, 𝐼𝐼, 𝐼𝐼𝐼 utilise Eq. (29) with 𝐾𝑀 = 1.0 and 0.0 for
ther 𝐾 ’s. Fig. 20 presents the deformed shape for each crack opening mode for both XIGABEM and standard IGABEM formulations.
iscontinuous displacements are evident at the lateral faces in the IGABEM model, since multiple discontinuously defined NURBS
atches represent these faces, and therefore no continuity between them is imposed. This is naturally circumvented by the extended
GABEM approach, because it does not require mesh alignment, and this can be seen in the results with continuity maintained over
he face. Further, unlike in the standard IGABEM, the effect of the tying equations enforces displacement continuity over the crack
ront in the enriched XIGABEM scheme.
18
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Fig. 19. Mesh for prismatic block with edge crack for (a) XIGABEM analysis and (b) standard IGABEM approach.

Table 3
Average values for SIFs in each pure mode loading case of prism with edge crack.

Degrees of freedom avg. |𝐾𝐼 | avg. |𝐾𝐼𝐼 | avg. |𝐾𝐼𝐼𝐼 |

Mode I
639 1.00057 5.84e−07 2.66e−06
1275 0.99979 9.66e−06 2.95e−05
2175 0.99991 9.17e−06 1.96e−05

Mode II
639 7.06e−07 1.00125 1.70e−02
1275 7.55e−05 1.00050 2.21e−03
2175 8.36e−07 1.00032 1.39e−04

Mode III
639 7.19e−07 7.06e−04 0.99579
1275 1.51e−03 7.92e−04 1.00228
2175 6.81e−06 2.74e−04 0.99991

The convergence analysis shown in Fig. 21 presents the error comparison for both XIGABEM and IGABEM approaches for each
crack mode. For all modes, the standard IGABEM convergence rate is around 0.6, explained by the square-root nature of the fracture
mechanics solution that is not captured by the NURBS basis functions (neither in the crack faces nor in the lateral faces). On the
other hand, this behaviour is injected into the extended IGABEM approximation, which results in better convergence for all three
modes when compared against the standard formulation. It is evident from Fig. 21 that different convergence rates are found for the
different modes. We note that some caution is needed in interpreting convergence rates for XIGABEM, since the important square
root behaviour is included in the coarsest models, but not improved in later refinements which add only the smooth NURBS basis
functions. In addition, Fig. 22 presents the comparison of the condition number of the 𝐀 matrix for both XIGABEM and IGABEM
approaches. For each approach, the condition number is the same for all modes, since a change in the boundary conditions only
affects the right-hand side vector. Through this analysis, it can be seen that the enrichment strategies cause a consequent increase
in the condition number. Nevertheless, the degree of ill-conditioning for the XIGABEM in this application is mild and does not
jeopardise the accuracy of the system solution.

In Table 3 we study the SIF results obtained directly from the XIGABEM solution vector 𝐱. The table presents the average value
for the absolute SIFs along the crack front for all crack opening modes. All SIFs match closely with the expected value for each pure
mode loading, and the errors reduce with mesh refinement. For all cases, the most refined mesh provides the associated SIF for its
pure mode loading with errors below 4.10−4. This provides evidence that the proposed formulation is capable of delivering SIFs to
high accuracy without the requirement for post-processing tasks, as J-Integral.

4.4. Prism with edge crack: uniform load

The fourth application of this study deals with the numerical analysis of a finite prismatic block under uniform traction 𝜎0 = 1.0 at
its ends. Fig. 23 presents its geometry and boundary conditions, in which the displacements in the highlighted region are responsible
for preventing rigid body motion. The material properties are: Young modulus 𝐸 = 1000.0 and Poisson ratio 𝜈 = 0.3. This application
does not have an analytical response, which requires its comparison against reference solutions obtained by other authors using
different numerical methods. Also, it is reasonable to expect plane-strain behaviour at the middle of the crack front 𝑧 = 3.75, at
which the correspondent 𝐾𝐼 is [85]:

𝐾𝐼 = 𝜎0
√

𝜋𝑎𝐹 (𝑎∕𝑏)

𝐹 (𝑎∕𝑏) = 1.122 − 0.231
(𝑎) + 10.550

(𝑎)2
− 21.710

(𝑎)3
+ 30.382

(𝑎)4 (30)
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Fig. 20. Deformed shape for each pure crack loading where standard IGABEM results are on the left-hand side while the XIGABEM responses are on the
right-hand side.

Initially, the crack surfaces are given only the SIF enrichment, and the corresponding mesh presented in Fig. 24(a) consists of 17
NURBS surfaces, of degree 𝑝 = 𝑞 = 1 for the external boundary and 𝑝 = 𝑞 = 2 for the crack surfaces. In this mesh, all surfaces must
align with the crack, which places additional demands on the CAD model to satisfy this requirement. Additionally, the fully enriched
analysis considers the SIF enrichment on the crack faces, the Williams-based enrichment on the lateral faces and the Heaviside
enrichment on the fully cut face, which reduces the amount of NURBS surfaces to 10, as depicted in Fig. 24(b). Again, the NURBS
basis functions are of degree 𝑝 = 𝑞 = 1 on the external boundary faces and 𝑝 = 𝑞 = 2 on the crack faces. In this application there is
20
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Fig. 21. 𝐿2 norm of error in displacements for prismatic block with edge crack.

a plane-stress/plane-strain transition at the crack front close to the lateral faces. In order to study this behaviour, and therefore the
influence of the Kolosov constant on the results, for the fully enriched model two different analyses consider the Kolosov constant
prescribed for plane-stress and plane-strain scenarios. Therefore, three different models are compared against reference solutions
using IGABEM by Cordeiro and Leonel [73] and Lagrangian BEM by Mi and Aliabadi [37], and against the 2-D plane-strain solution.
It is relevant to mention that the 2-D equivalent solution for this problem does not hold for the entire crack front. However, the
aforementioned references have shown that it becomes a suitable comparison close to the crack front centre, where the plane-strain
behaviour is more prominent.

The number of degrees of freedom for each analysis are 3996 and 2787 for the model with only SIF enrichment and for
the fully enriched model, respectively. In addition, the models of Cordeiro and Leonel [73] comprise 3273 and 5121 degrees of
freedom for two different refinement levels, while Mi and Aliabadi [37] do not provide their model sizes. The normalised 𝐾𝐼
comparison in Fig. 25 demonstrates that the crack front enrichment is capable of directly determining the SIF for all scenarios in
broad agreement with other results in the literature. At the crack front coordinate 𝑧 = 3.75, the XIGABEM model with only crack front
enrichment has a relative difference in 𝐾𝐼 of 2.0% in comparison to the 2-D plane-strain solution, while the fully enriched models
give rise to discrepancies of 0.52% and 0.96% when using plane-strain and plane-stress Kolosov constants at the Williams-based
enrichment, respectively. Therefore, it is noticeable that capturing the square-root behaviour over the lateral faces improves the SIF
determination. On the other hand, it is interesting that the Kolosov parameter being considered as plane-stress on lateral faces forces
21
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Fig. 22. Condition number growth for prismatic block with edge crack.

Fig. 23. Geometry and boundary conditions for prismatic specimen under uniform traction.

the overall 𝐾𝐼 variation to be lower than the plane-strain case. Still, both situations lead to an accurate result in comparison to other
numerical methods and the handbook two-dimensional solution. Moreover, the fully enriched models deliver higher accuracy than
the standard IGABEM model with 3273 degrees of freedom, whose difference was 1.93%. It must be noticed that the present study
and Cordeiro and Leonel [73] utilised 𝜈 = 0.3 while Mi and Aliabadi [37] used 𝜈 = 1

3 . The numerical analysis of this application
ith XIGABEM has obtained up to only 0.5% difference in SIF at the centre of the crack. In summary, it is possible to obtain higher
ccuracy from coarser models, providing evidence of a gain in solution accuracy available using the extended IGABEM approach.

. Concluding remarks

This study proposes enrichment strategies for the isogeometric boundary element method for three-dimensional linear elastic
racture mechanics. Then, the eXtended Isogeometric Boundary Element Method was used for the numerical analysis of 3-D cracked
odies.
22
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Fig. 24. Isogeometric mesh for prismatic block under uniform traction, in which (a) XIGABEM mesh with only the SIF enrichment, and (b) fully enriched model.

Fig. 25. Stress intensity factors along crack front, in which XIGABEM (a) is the model with only the crack front enrichment, XIGABEM (b) and (c) are the fully
enriched models with Kosolov constant set as plane strain and plane stress, respectively.

Two different functions were responsible for enriching the expansion of the displacement field to incorporate the expected
behaviour of the fracture mechanics: the Heaviside and the Williams expansion. While the former permits the direct representation
of discontinuities for fully cut faces, the latter allowed the representation of the

√

𝜌 behaviour of displacements near the crack front.
In addition, two different approaches consider the Williams solution: one on boundary faces partially cut by the crack, and another
over the crack surfaces themselves. For the boundary faces, besides incorporating a behaviour that was not captured by the standard
NURBS functions, this strategy precludes the need for a re-meshing task on this face. In addition, the Williams-based enrichment
for crack faces introduces the stress intensity factors directly as system unknowns, found in the solution vector, which removes a
post-processing task for their determination.

As a consequence of enriching the displacement field, the additional unknowns require new equations to recover a square system.
This may be achieved by the use of the Traction Boundary Integral Equation at the same position as the collocation points whose
basis functions were enriched, and for the SIF enrichment a tying constraint equation is responsible for this task. With the additional
benefit of the removal of a non-physical displacement discontinuity at the crack front that occurs in the Lagrangian BEM and
IGABEM.

Results showed that the convergence rate improves for the XIGABEM in comparison to the standard IGABEM in various
applications. In addition, it was possible to accurately extract the SIFs for problems containing straight and curved crack fronts
directly from the additional unknowns introduced by the crack front enrichment. The comparison with literature applications also
showed an improvement in the SIF determination.

This work demonstrated the feasibility and fundamental numerical analysis of the proposed scheme. Several enhancements will
be possible for researchers to follow up. For example, instead of applying enrichment to the entirety of a surface partially intersected
by a crack, we believe it will be possible to reduce the number of degrees of freedom by restricting the size of the enrichment zone
on these faces. Also, the combination of Heaviside and Williams-based strategies on partially cut faces, will also be an interesting
extension. Additionally, crack growth procedures based on extended IGABEM can also be relevant for the numerical analysis of
23
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cracked complex engineering components. These topics are work in progress to extend the state of art of the fracture mechanics
analysis under XIGABEM.
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Appendix A. Three-dimensional isogeometric boundary element method

This appendix presents the IGABEM formulation for three-dimensional linear elasticity and for fracture mechanics. Further details
can be found in the ‘‘Isogeometric Boundary Element Method’’ book [62]. The Boundary Element Method consists of utilising integral
equations written solely at the solid boundary to determine its mechanical fields. Consider a three-dimensional body with domain 𝛺,
boundary 𝛤 = 𝛤𝑢 ∪𝛤𝑡, in which 𝛤𝑢 and 𝛤𝑡 contain Dirichlet and Neumann boundary conditions, respectively, linear-elastic isotropic

echanical behaviour and absence of body forces. For this body, the Displacement Boundary Integral Equation (DBIE) obtains its
isplacements 𝑢𝑘 on a collocation point 𝐱̂ as:

𝑐𝓁𝑘(𝐱̂)𝑢𝑘(𝐱̂) + ∫𝛤
𝑇 ∗
𝓁𝑘(𝐱, 𝐱̂)𝑢𝑘(𝐱) 𝑑𝛤 = ∫𝛤

𝑈∗
𝓁𝑘(𝐱, 𝐱̂)𝑡𝑘(𝐱) 𝑑𝛤 (A.1)

in which 𝐱 is a field point on the boundary, 𝑐𝓁𝑘(𝐱̂) is the jump term associated with the position of 𝐱̂, assuming the value of 𝛿𝓁𝑘
when 𝐱̂ ∈ 𝛺 and 0.5𝛿𝓁𝑘 when 𝐱̂ is on a smooth portion of boundary 𝛤 , being 𝛿𝓁𝑘 the Kronecker delta. 𝑢𝑘 and 𝑡𝑘 are the displacements
and tractions, respectively, and 𝑈∗

𝓁𝑘 and 𝑇 ∗
𝓁𝑘 denote the linear elasticity fundamental solutions, given by:

𝑈∗
𝓁𝑘(𝐱, 𝐱̂) =

1
16𝜋𝜇 (1 − 𝜈) 𝑟

[

(3 − 4𝜈) 𝛿𝓁𝑘 + 𝑟,𝓁𝑟,𝑘
]

𝑇 ∗
𝓁𝑘(𝐱, 𝐱̂) =

−1
8𝜋 (1 − 𝜈) 𝑟2

{ 𝜕𝑟
𝜕𝐧

[

(1 − 2𝜈) 𝛿𝓁𝑘 + 3𝑟,𝓁𝑟,𝑘
]

− (1 − 2𝜈)
(

𝑟,𝓁𝑛𝑘 + 𝑟,𝑘𝑛𝓁
)

} (A.2)

in which 𝜇 = 𝐸
2(1+𝜈) , 𝐸 and 𝜈 are the material properties shear modulus, Young Modulus and Poisson ratio, respectively. These

xpressions use the distance vector 𝐫 = 𝐱 − 𝐱̂ between 𝐱̂ and 𝐱, its derivatives, and the normal outward vector 𝐧 at the field point.
iven the singular aspect of the fundamental solutions, the first integration in Eq. (A.1) is strongly singular when a collocation point

ies on the boundary, which requires the Cauchy Principal Value (CPV) for its regularisation [42], indicated by −∫ .
The Traction Boundary Integral Equation (TBIE) arises from the differentiation of Eq. (A.1) with respect to the point 𝐱̂. For 𝐱̂ in

smooth boundary, the TBIE is:

𝑐𝓁𝑘(𝐱̂) 𝑡𝑘(𝐱̂) + 𝑛𝓁(𝐱̂)=∫𝛤
𝑆∗
𝑘𝓁𝑗 (𝐱, 𝐱̂)𝑢𝑘(𝐱) 𝑑𝛤 = 𝑛𝓁(𝐱̂)−∫𝛤

𝐷∗
𝑘𝓁𝑗 𝑡𝑘(𝐱)(𝐱, 𝐱̂) 𝑑𝛤 (A.3)

in which the fundamental solutions 𝑆∗
𝑘𝓁𝑗 and 𝐷∗

𝑘𝓁𝑗 are:

𝐷∗
𝑘𝓁𝑗 (𝐱, 𝐱̂) =

1
8𝜋(1 − 𝜈)𝑟2

[

(1 − 2𝜈)(𝛿𝑘𝓁𝑟,𝑗 + 𝛿𝑗𝑘𝑟,𝓁 − 𝛿𝓁𝑗𝑟,𝑘) + 3(𝑟,𝓁𝑟,𝑗𝑟,𝑘)
]

𝑆∗
𝑘𝓁𝑗 (𝐱, 𝐱̂) =

𝜇
4𝜋(1 − 𝜈)𝑟3

{3 𝜕𝑟
𝜕𝑛

[(1 − 2𝜈)𝛿𝓁𝑗𝑟,𝑘 + 𝜈(𝛿𝓁𝑘𝑟,𝑗 + 𝛿𝑗𝑘𝑟,𝓁) − 5𝑟,𝓁𝑟,𝑗𝑟,𝑘]

+3𝜈(𝑛𝓁𝑟,𝑗𝑟,𝑘 + 𝑛𝑗𝑟,𝓁𝑟,𝑘) + (1 − 2𝜈)(3𝑛𝑘𝑟,𝓁𝑟,𝑗 + 𝑛𝑗𝛿𝓁𝑘 + 𝑛𝓁𝛿𝑗𝑘) − (1 − 4𝜈)𝑛𝑘𝛿𝓁𝑗}

(A.4)

The kernel 𝐷∗
𝑘𝓁𝑗 is strongly singular and regularised by the CPV, while the hypersingular nature of 𝑆∗

𝑘𝓁𝑗 requires the integration
in the Hadamard Finite Part sense, represented by =∫ in Eq. (A.3). For brevity, the arguments of the fundamental solutions will be
omitted henceforth.
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In this study, the basis functions describing Non-Uniform Rational B-Splines (NURBS) are used to interpolate both geometry and
echanical fields. This choice enables an exact description of conic surfaces, such as spheres and ellipses. Moreover, the boundary-

nly aspect of the integral equations allows the direct import of the CAD drawing, which precludes a costly mesh generation task
n the analyses [50]. In addition, NURBS basis functions possess several important properties for the numerical methods, such as
artition of Unity, non-negativity, local support, existence of all derivatives of 𝑅𝑖 in the interior of a knot span and being 𝑝−𝑘 times

continuously differentiable at a knot, with 𝑘 denoting its multiplicity, among other characteristics [80].

In order to describe the boundary 𝛤 we make use of NURBS surfaces; here, the basis functions are derived from a tensor product
between two univariate NURBS curves [50,80]. The univariate NURBS basis functions are built recursively based on the B-spline
basis using the Cox-de-Boor formula [88–90] and weights 𝑤𝑖 of each control point as:

𝜙𝑖(𝜉) =
𝑁𝑖(𝜉)𝑤𝑖

∑𝑛
𝑘=1𝑁𝑘(𝜉)𝑤𝑘

𝑁𝑖,0 (𝜉) =

{

1 𝜉𝑖 ≤ 𝜉 < 𝜉𝑖+1
0 otherwise

𝑁𝑖,𝑝 (𝜉) =
𝜉 − 𝜉𝑖
𝜉𝑖+𝑝 − 𝜉𝑖

𝑁𝑖,𝑝−1 (𝜉) +
𝜉𝑖+𝑝+1 − 𝜉
𝜉𝑖+𝑝+1 − 𝜉𝑖+1

𝑁𝑖+1,𝑝−1 (𝜉)

(A.5)

in which a NURBS curve of degree 𝑝 has a non-decreasing knot-vector 𝛯 =
{

𝜉1, 𝜉2,… , 𝜉𝑘
}

. Then, by taking two uni-variate NURBS
curves, one with degree 𝑝, amount of basis functions 𝑛 and knot-vector 𝛯1 =

{

𝜉11 , 𝜉
2
1 ,… , 𝜉𝑛+𝑝+11

}

in 𝜉1 direction and another with

degree 𝑞, amount of basis function 𝑚 and knot-vector 𝛯2 =
{

𝜉12 , 𝜉
2
2 ,… , 𝜉𝑚+𝑞+12

}

in 𝜉2 direction, the bi-variate basis function is:

𝜙𝛼(𝜉1, 𝜉2) =
𝑁𝑖(𝜉1)𝑀𝑗 (𝜉2)𝑤𝑖𝑗

∑𝑛
𝑘=1

∑𝑚
𝑙=1𝑁𝑘(𝜉1)𝑀𝑙(𝜉2)𝑤𝑘𝑙

(A.6)

in which 𝛼 refers to the NURBS surface local index associated to the indices 𝑖 and 𝑗 of each univariate NURBS function, and 𝑤𝑖𝑗 is the
corresponding weight. Based on these basis functions, it is possible to interpolate both geometry, represented by 𝑥𝛾𝑘, and mechanical
fields as:

𝑥𝛾𝑘(𝜉1, 𝜉2) =
𝑛𝛾
∑

𝛼=1
𝜙𝛾𝛼(𝜉1, 𝜉2)𝑃

𝛼
𝑘

𝑢𝛾𝑘(𝜉1, 𝜉2) =
𝑛𝛾
∑

𝛼=1
𝜙𝛾𝛼(𝜉1, 𝜉2)𝑑

𝛽
𝑘

𝑡𝛾𝑘(𝜉1, 𝜉2) =
𝑛𝛾
∑

𝛼=1
𝜙𝛾𝛼(𝜉1, 𝜉2)𝑝

𝛽
𝑘

(A.7)

in which 𝑑𝛽𝑘 and 𝑝𝛽𝑘 are displacement and traction parameters, 𝛽 is a global index given by a connectivity function from 𝛾 and 𝛼,
and 𝑛𝛾 = (𝑝𝛾 + 1) ∗ (𝑞𝛾 + 1) is the number of NURBS basis functions describing a patch 𝛾. It should be noted that these coefficients
do not have physical meaning, but are simply coefficients (with the appropriate units) from which the geometry, displacement and
traction can be recovered using (A.7). It is worth mentioning that this aspect requires special procedures in applying non-constant
boundary conditions.

The substitution of Eq. (A.7) in Eq. (A.1) and Eq. (A.3), both written for a collocation point on the boundary, leads to the
discretised form of these BIEs, as:

𝑐𝓁𝑘(𝐱̂)
𝑛𝛾
∑

𝛼=1
𝜙𝛾̂𝛼(𝐱̂)𝑑

𝛽
𝑘 +

𝑁𝑆
∑

𝛾=1

−
∫𝛤𝛾

𝑇 ∗
𝓁𝑘

𝑛𝛾
∑

𝛼=1
𝜙𝛾𝛼(𝜉1, 𝜉2)𝑑

𝛽
𝑘 𝑑𝛤𝛾

=
𝑁𝑆
∑

𝛾=1
∫𝛤 𝛾

𝑈∗
𝓁𝑘𝜙

𝛾
𝛼(𝜉1, 𝜉2)𝑝

𝛽
𝑘 𝑑𝛤𝛾

𝑐𝓁𝑘(𝐱̂)
𝑛𝛾
∑

𝛼=1
𝜙𝛾̂𝛼(𝐱̂)𝑝

𝛽
𝑘 + 𝑛𝓁(𝐱̂)

𝑁𝑆
∑

𝛾=1
=∫𝛤𝛾

𝑆∗
𝑘𝓁𝑗

𝑛𝛾
∑

𝛼=1
𝜙𝛾𝛼(𝜉1, 𝜉2)𝑑

𝛽
𝑘 𝑑𝛤𝛾

= 𝑛𝓁(𝐱̂)
𝑁𝑆
∑

𝛾=1

−
∫𝛤𝛾

𝐷∗
𝑘𝓁𝑗

𝑛𝛾
∑

𝛼=1
𝜙𝛾𝛼(𝜉1, 𝜉2)𝑝

𝛽
𝑘 𝑑𝛤𝛾

(A.8)

in which 𝛾̂ is the NURBS surface that contains the collocation point and NS accounts for the amount of NURBS surfaces in the
𝑖 𝑖+1 𝑗 𝑗+1
25

discretisation. The numerical integration makes use of the mapping between each bivariate knot-span [𝜉1, 𝜉1 ] × [𝜉2, 𝜉2 ] and the
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Gauss–Legendre integration space {𝜉1, 𝜉2 ∈ 𝛬 |𝛬 = [−1; 1] × [−1; 1]} as:

𝜉1 =
(𝜉𝑖+11 − 𝜉𝑖1) 𝜉1 + (𝜉𝑖+11 + 𝜉𝑖1)

2

𝜉2 =
(𝜉𝑗+12 − 𝜉𝑗2) 𝜉2 + (𝜉𝑗+12 + 𝜉𝑗2)

2

𝐽 =
‖

‖

‖

‖

𝜕𝐫
𝜕𝜉1

× 𝜕𝐫
𝜕𝜉2

‖

‖

‖

‖

(𝜉𝑖+11 − 𝜉𝑖1)
2

(𝜉𝑗+12 − 𝜉𝑗2)
2

(A.9)

in which 𝐽 is the Jacobian of the mapping between the physical space and the integration space. By substituting the mappings into
Eq. (A.8), it becomes:

𝑐𝓁𝑘(𝐱̂)
𝑛𝛾
∑

𝛼=1
𝜙𝛾̂𝛼(𝐱̂)𝑑

𝛽
𝑘 +

𝑁𝑆
∑

𝛾=1
T∗ 𝛼𝛾
𝓁𝑘 𝑑

𝛽
𝑘 =

𝑁𝑆
∑

𝛾=1
U∗ 𝛼𝛾
𝓁𝑘 𝑝

𝛽
𝑘

𝑐𝓁𝑘(𝐱̂)
𝑛𝛾
∑

𝛼=1
𝜙𝛾̂𝛼(𝐱̂)𝑝

𝛽
𝑘 + 𝑛𝓁(𝐱̂)

𝑁𝑆
∑

𝛾=1
S∗ 𝛼𝛾𝑘𝓁𝑗 𝑑

𝛽
𝑘 = 𝑛𝓁(𝐱̂)

𝑁𝑆
∑

𝛾=1
D∗ 𝛼𝛾
𝑘𝓁𝑗 𝑝

𝛽
𝑘

(A.10)

in which 𝑇 ∗ 𝛼𝛾
𝓁𝑘 , 𝑈∗ 𝛼𝛾

𝓁𝑘 , 𝑆∗ 𝛼𝛾
𝑘𝓁𝑗 and 𝐷∗ 𝛼𝛾

𝑘𝓁𝑗 are:

T∗ 𝛼𝛾
𝓁𝑘 =

𝑛𝛾ks
∑

ks=1

𝑛𝛾
∑

𝛼=1
∫𝛬

𝑇 ∗
𝓁𝑘𝜙

𝛾
𝛼 𝐽

ks
𝛾 𝑑𝛬

U∗ 𝛼𝛾
𝓁𝑘 =

𝑛𝛾ks
∑

ks=1

𝑛𝛾
∑

𝛼=1
∫𝛬

𝑈∗
𝓁𝑘𝜙

𝛾
𝛼 𝐽

ks
𝛾 𝑑𝛬

S∗ 𝛼𝛾𝑘𝓁𝑗 =
𝑛𝛾ks
∑

ks=1

𝑛𝛾
∑

𝛼=1
∫𝛬

𝑆∗
𝑘𝓁𝑗𝜙

𝛾
𝛼 𝐽

ks
𝛾 𝑑𝛬

D∗ 𝛼𝛾
𝑘𝓁𝑗 =

𝑛𝛾ks
∑

ks=1

𝑛𝛾
∑

𝛼=1
∫𝛬

𝐷∗
𝑘𝓁𝑗𝜙

𝛾
𝛼 𝐽

ks
𝛾 𝑑𝛬

(A.11)

in which 𝑘𝑠 is the integrated knot-span and 𝑛𝛾ks is the number of knot-spans in patch 𝛾. Moreover, when the collocation point does
not lie on the element being integrated, a standard Gauss–Legendre quadrature is sufficient to evaluate accurately the integral.
On the other hand, the Singularity Subtraction Technique (SST) [42,43] can facilitate the integration for the strongly singular
and hypersingular kernels. The expressions associated with the expansions required are available in [73]; the basis functions are
expanded in a Taylor Series in polar coordinates. The enrichment strategies used in this study will require the corresponding
derivatives highlighted in Appendix B to perform the SST of the arising kernels. In addition, it is noted that this procedure requires
𝐶1 continuity of the basis functions at the collocation point for the correct use of the hypersingular traction integral equation.

Once Eq. (A.10) establishes a relationship between the mechanical fields at a given collocation point, it results in a set of
only three equations. However, the discretised linear elasticity problem has 3𝑛𝑑 and 3𝑛𝑡 displacement and traction coefficients,
respectively. Half of these variables comes from boundary conditions, while the another half is unknown. Therefore, choosing 𝑛
different collocation points positions enables the obtaining of all linearly independent equations needed for a well-posed system.
The Greville Abscissae (GA) [91] are commonly applied to define the parametric coordinate of each collocation point in the IGABEM
context [72–75]. For each basis function, the corresponding pair (𝜉1, 𝜉2)𝛼 = (𝜉𝑖1, 𝜉

𝑗
2) is:

𝜉𝑖1 =
∑𝑖+𝑝
𝑠=𝑖+1 𝜉

𝑠
1

𝑝

𝜉𝑗2 =

∑𝑗+𝑞
𝑠=𝑗+1 𝜉

𝑠
2

𝑞

(A.12)

in which 𝜉𝑠1 and 𝜉𝑠2 refer to the knot-vector of each univariate NURBS curve that generates the NURBS surface. In order to satisfy
the continuity requirements of the TBIE, some collocation points given by the GA approach need to be re-positioned to ensure that
𝐶1 continuity in displacement exists at these points. One of the pair coordinates (𝜉1, 𝜉2)𝛼 is modified if it coincides with a limit of
a knot-span [𝜉𝑖1, 𝜉

𝑖+1
1 ] and [𝜉𝑗2, 𝜉

𝑗+1
2 ], as:

𝜉𝑖 alt
1 = 𝜉𝑖1 + 0.1(𝜉𝑖+11 − 𝜉𝑖1) when 𝜉𝑖1 has 𝑝 or higher multiplicity
𝜉𝑖+1 alt
1 = 𝜉𝑖+11 − 0.1(𝜉𝑖+11 − 𝜉𝑖1) when 𝜉𝑖+11 has 𝑝 or higher multiplicity

𝜉𝑗 alt
2 = 𝜉𝑗2 + 0.1(𝜉𝑗+12 − 𝜉𝑗2) when 𝜉𝑗2 has 𝑞 or higher multiplicity

𝜉𝑗+1 alt
2 = 𝜉𝑗+12 − 0.1(𝜉𝑗+12 − 𝜉𝑗2) when 𝜉𝑗+12 has 𝑞 or higher multiplicity

(A.13)

For fracture mechanics problems, the boundary is redefined as 𝛤 = 𝛤𝑢∪𝛤𝑡∪𝛤+∪𝛤−, in which 𝛤+ and 𝛤− are the upper and lower
26

crack surfaces. For this body, the GA strategy within IGABEM positions the collocation points at the same geometrical positions on
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)

Fig. A.26. Application of each integral equation in the Dual BEM.

the opposing, coincident crack faces. Solely using the DBIE at two such coincident points leads to identical equations and hence
an ill-posed system. This is classically overcome by the Dual BEM approach [31,37], which generates a linear system of linearly
independent equations by the application of different boundary integral equations, the DBIE and the TBIE, on the collocation points
over each opposing crack face, as illustrated in Fig. A.26. Therefore, the application of Eq. (A.10) for a collocation point 𝐱̂, 𝐱̂+ and
𝐱̂−, at the external boundary, upper crack face or lower crack face, respectively, results in:

𝑐𝓁𝑘(𝐱̂)
𝑛𝛾
∑

𝛼=1
𝜙𝛾̂𝛼(𝐱̂)𝑑

𝛽
𝑘 +

𝑁𝑆
∑

𝛾=1
T∗ 𝛼𝛾
𝓁𝑘 𝑑

𝛽
𝑘 =

𝑁𝑆
∑

𝛾=1
U∗ 𝛼𝛾
𝓁𝑘 𝑝

𝛽
𝑘

𝑐𝓁𝑘(𝐱̂+)
𝑛𝛾
∑

𝛼=1
𝜙𝛾̂+𝛼 (𝐱̂+)𝑑𝛽𝑘 + 𝑐𝓁𝑘(𝐱̂−)

𝑛𝛾
∑

𝛼=1
𝜙𝛾̂−𝛼 (𝐱̂−)𝑑𝛽𝑘 +

𝑁𝑆
∑

𝛾=1
T∗ 𝛼𝛾
𝓁𝑘 𝑑

𝛽
𝑘 =

𝑁𝑆
∑

𝛾=1
U∗ 𝛼𝛾
𝓁𝑘 𝑝

𝛽
𝑘

0.5𝛿𝓁𝑘(𝐱̂−)
𝑛𝛾
∑

𝛼=1
𝜙𝛾̂−𝛼 (𝐱̂)𝑝𝛽𝑘 − 0.5𝛿𝓁𝑘(𝐱̂+)

𝑛𝛾
∑

𝛼=1
𝜙𝛾̂+𝛼 (𝐱̂+)𝑝𝛽𝑘

+𝑛𝓁(𝐱̂−)
𝑁𝑆
∑

𝛾=1
S∗ 𝛼𝛾𝑘𝓁𝑗 𝑑

𝛽
𝑘 = 𝑛𝓁(𝐱̂)

𝑁𝑆
∑

𝛾=1
D∗ 𝛼𝛾
𝑘𝓁𝑗 𝑝

𝛽
𝑘

(A.14)

in which jump terms arise in both equations applied to crack faces due to the limit analysis.
The IGABEM algebraic system for cracked bodies emerges by applying Eq. (A.14) at each collocation point obtained from Eq. (A.12

in matrix notation, as:

⎡

⎢

⎢

⎢

⎣

𝐇eb

𝐇c+

𝐇c−

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝐝eb

𝐝c+

𝐝c−

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝐆eb

𝐆c+

𝐆c−

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝐩eb

𝐩c+

𝐩c−

⎤

⎥

⎥

⎥

⎦

𝐇𝐝 = 𝐆𝐭

(A.15)

in which 𝐇eb and 𝐆eb contain the contributions from collocation points at the external boundary, while 𝐇c+ and 𝐆c+ refer to terms
from the upper crack face, and 𝐇c− and 𝐆c− terms from the lower crack face.

As in classical BEM implementations, at this point we can apply a sufficient number of boundary conditions to reduce this to a
solvable system. This procedure follows in the same way in IGABEM, but with the modification that a specific treatment is required
for the imposition boundary conditions having non-constant value over the patch. A least-square fitting approach is suitable to find
the coefficients in a NURBS expansion of the boundary condition. Alternatively, it is possible to directly introduce their analytical
expression in the BIEs for patches where they are known, instead of using the NURBS interpolation. Then, the numerical integration
takes place by evaluating the applied BC at the integration point, which removes any NURBS functions approximation error. The
application in Section 4.3 utilises this alternative procedure in its boundary condition application. After the determination of 𝐝 and
𝐭 coefficients for the known fields, the final algebraic system assumes its form in the usual BEM fashion as:
27

𝐀𝐱 = 𝐛 (A.16)
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in which 𝐀 contains influence terms associated to the unknowns at the boundary, 𝐱 is the unknown values at the boundary and 𝐛
results from multiplying the prescribed values at the boundary and its correspondent influence terms. It is worth noting that 𝐛 also
contains the results of the integration between kernels and BCs when their analytical expression is introduced in the BIE evaluation.

Appendix B. Regularisation of the singular enriched kernels

Boundary integral equations have singular kernels due to the nature of the fundamental solutions. The method adopted for their
regularisation is based on the Singularity Subtraction Technique [42,43]. In the XIGABEM context, the new kernels introduced by
the expansion of the displacement field for each enrichment strategy herein proposed also inherit this singular behaviour. Thus, SST
must be also applied to them, and this is performed by an analogous procedure that consists of considering the augmented basis
function as the basis function in the SST. For the Displacement BIE, the strongly singular kernel becomes regular by the expansion
in a Taylor Series around the collocation point, which results in evaluating the augmented kernels directly at this position, without
requiring any derivatives. On the other hand, the Traction BIE has a hypersingular kernel of order 𝑂(𝑟−3), which requires the
expansion of the basis functions in a Taylor Series to its second term as Φ = Φ𝟎(𝐱̂) + 𝜌Φ𝟏(𝐱̂) +𝑂(𝜌2). It is important to mention that
the components of Φ𝟏 are:

𝜙1
𝛼 =

𝜕𝜙𝛼
𝜕𝜉1

|

|

|𝜉1(𝐱̂),𝜉2(𝐱̂)
cos(𝜃) +

𝜕𝜙𝛼
𝜕𝜉2

|

|

|𝜉1(𝐱̂),𝜉2(𝐱̂)
sin(𝜃) (B.1)

n which 𝜃 is the angular value associated to the polar coordinate transformation of the SST. In the context of new kernels, their
egularisation takes place by the proper expansion of the enriched basis function in Taylor Series and its further incorporation in
he SST expressions. Then, the SST of the arising kernels solely requires the substitution of the standard basis functions and their
irst derivative by the new augmented basis functions utilised. Therefore, expanding Eq. (B.1) for each enrichment strategy applied
n this study is sufficient for SST process.

.1. Partially cut faces: Williams-based enrichment

For partially cut faces, the St
𝑠 cf
𝑘𝓁𝑗

kernels of Eq. (7) require regularisation of their 𝑂(𝑟−3) hypersingular nature. The corresponding
ugmented basis functions are:

𝜙𝑡𝛼𝑀 = 𝜙𝛾𝛼𝑅𝑘𝑞𝜓
𝛾
𝑞𝑀 (B.2)

nd these require expansion in a Taylor series in polar coordinates for the SST, as:

𝜕𝜙𝑡𝛼𝑀
𝜕𝜉1

=
𝜕𝜙𝛾𝛼
𝜕𝜉1

𝑅𝑘𝑞𝜓
𝛾
𝑞𝑀 + 𝜙𝛾𝛼

𝜕𝑅𝑘𝑞
𝜕𝜉1

𝜓𝛾𝑞𝑀 + 𝜙𝛾𝛼𝑅𝑘𝑞
𝜕𝜓𝛾𝑞𝑀
𝜕𝜉1

𝜕𝜙𝑡𝛼𝑀
𝜕𝜉2

=
𝜕𝜙𝛾𝛼
𝜕𝜉2

𝑅𝑘𝑞𝜓
𝛾
𝑞𝑀 + 𝜙𝛾𝛼

𝜕𝑅𝑘𝑞
𝜕𝜉2

𝜓𝛾𝑞𝑀 + 𝜙𝛾𝛼𝑅𝑘𝑞
𝜕𝜓𝛾𝑞𝑀
𝜕𝜉2

(B.3)

in which, for this enrichment, 𝜕𝑅𝑘𝑞
𝜕𝜉1

= 𝜕𝑅𝑘𝑞
𝜕𝜉2

= 0 since the local coordinate system is fixed at the crack tip. The derivatives of the
NURBS basis function are well known from the standard IGABEM, while the derivatives of the enrichment function require further
development. Initially, a chain rule enables the derivative in the NURBS parametric space as:

𝜕𝜓𝛾𝑞𝑀
𝜕𝜉1

=
𝜕𝜓𝛾𝑞𝑀
𝜕𝜉1

𝜕𝜉1
𝜕𝜉1

+
𝜕𝜓𝛾𝑞𝑀
𝜕𝜉2

𝜕𝜉2
𝜕𝜉1

𝜕𝜓𝛾𝑞𝑀
𝜕𝜉2

=
𝜕𝜓𝛾𝑞𝑀
𝜕𝜉1

𝜕𝜉1
𝜕𝜉2

+
𝜕𝜓𝛾𝑞𝑀
𝜕𝜉2

𝜕𝜉2
𝜕𝜉2

(B.4)

ut due to the relationship between the parametric space and the Gaussian space, 𝜕𝜉1
𝜕𝜉2

= 𝜕𝜉2
𝜕𝜉1

= 0. In addition, the Williams-based
enrichment function is written in polar coordinates centred at the crack tip. This requires a sequential chain rule for both 𝑟𝑡 and 𝜃𝑡

coordinates to obtain the derivatives in the Gaussian space, as:

𝜕𝜓𝛾𝑞𝑀 =
𝜕𝜓𝛾𝑞𝑀

𝑡
𝜕𝑟𝑡 𝜕𝜉𝑗 +

𝜕𝜓𝛾𝑞𝑀
𝑡
𝜕𝜃𝑡 𝜕𝜉𝑗 (B.5)
28

𝜕𝜉𝑗 𝜕𝑟 𝜕𝜉𝑗 𝜕𝜉𝑗 𝜕𝜃 𝜕𝜉𝑗 𝜕𝜉𝑗
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f

r

for the evaluation of the derivative in respect to the Gaussian coordinate in the 𝑗 direction and 𝜕𝜉𝑗
𝜕𝜉𝑗

comes from Eq. (A.9). Furthermore,
the derivatives of the Williams enrichment function with respect to the polar coordinates are:

𝜕𝜓𝑞𝑀
𝜕𝑟𝑡

= 1
2
√

𝑟
𝜓𝑞𝑀

𝜕𝜓𝑛𝐼
𝜕𝜃𝑡

= 1
2𝜇

√

𝑟𝑡

2𝜋

{

−1
2
sin

(

𝜃𝑡

2

)[

𝜅 − 1 + 2 sin2
(

𝜃𝑡

2

)]

+ cos
(

𝜃𝑡

2

)

sin 𝜃𝑡
}

𝜕𝜓𝑛𝐼𝐼
𝜕𝜃𝑡

= 1
2𝜇

√

𝑟𝑡

2𝜋

{

1
2
cos

(

𝜃𝑡

2

)[

𝜅 + 1 + 2 cos2
(

𝜃𝑡

2

)]

− sin
(

𝜃𝑡

2

)

sin 𝜃𝑡
}

𝜕𝜓𝑏𝐼
𝜕𝜃𝑡

= 1
2𝜇

√

𝑟𝑡

2𝜋

{

1
2
cos

(

𝜃𝑡

2

)[

𝜅 + 1 − 2 cos2
(

𝜃𝑡

2

)]

+ sin
(

𝜃𝑡

2

)

sin 𝜃𝑡
}

𝜕𝜓𝑏𝐼𝐼
𝜕𝜃𝑡

= 1
2𝜇

√

𝑟𝑡

2𝜋

{

1
2
sin

(

𝜃𝑡

2

)[

𝜅 − 1 − 2 sin2
(

𝜃𝑡

2

)]

+ cos
(

𝜃𝑡

2

)

sin 𝜃𝑡
}

𝜕𝜓𝑡𝐼𝐼𝐼
𝜕𝜃𝑡

= 1
𝜇

√

𝑟𝑡

2𝜋
cos

(

𝜃𝑡

2

)

(B.6)

Lastly, 𝑟𝑡 and 𝜃𝑡 are determined based on the position of the crack tip 𝐱ct as:

𝑟𝑡 = ‖𝑟𝑡‖ =

√

√

√

√

3
∑

𝑘=1
(𝑥𝑘 − 𝑥ct

𝑘 )
2

𝜃𝑡 = sign
[

(𝑁⃗ × 𝑟𝑡) ⋅ 𝑇
]

arccos

(

𝑁⃗ ⋅ 𝑟𝑡

𝑟𝑡

)

(B.7)

in which 𝑁⃗ is the vector parallel to the crack and 𝑇 is the tangent vector, both at the crack tip and obtained by the Frenet–Serret
rame. Then, their derivatives in respect to the parametric coordinates are:

𝜕𝑟𝑡

𝜕𝜉𝑗
= 1
𝑟𝑡

3
∑

𝑘=1
(𝑥𝑘 − 𝑥ct

𝑘 )
𝑚
∑

𝛼=1

𝜕𝜙𝛼
𝜕𝜉𝑗

𝑃 𝛼𝑘 = 1
𝑟𝑡

3
∑

𝑘=1
(𝑥𝑘 − 𝑥ct

𝑘 )
𝜕𝑟𝑡

𝜕𝜉𝑗

𝜕𝜃𝑡

𝜕𝜉𝑗
=

−sign
[

(𝑁⃗ × 𝑟𝑡) ⋅ 𝑇
]

√

√

√

√1 −

(

𝑁⃗ ⋅ 𝑟𝑡

𝑟𝑡

)2

𝑁⃗ ⋅
𝜕𝑟𝑡

𝜕𝜉𝑗
−
(

𝑁⃗ ⋅ 𝑟𝑡 𝜕𝑟
𝑡

𝜕𝜉𝑗

)

(𝑟𝑡)2

(B.8)

B.2. Enrichment at the crack front for the direct extraction of SIFs

In the enrichment at the crack front that directly provides the SIFs as unknowns of the XIGABEM system, the local coordinate
system is no longer constant over the enriched patch. Additionally, there is a uni-directional function over the crack front to
interpolate the additional parameters that are proxiers for the SIFs. In the context of regularising the kernels from Eq. (10), the
corresponding augmented basis function is:

𝜙cf
𝑠𝑘𝑀 = 𝜙̃cf

𝑠 (𝑣)𝑅𝑘𝑞𝜓
𝛾
𝑞𝑀 (B.9)

and, for the SST, its first derivative in the Gaussian coordinate direction 𝑗 becomes:

𝜕𝜙cf
𝑠𝑘𝑀

𝜕𝜉𝑗
=
𝜕𝜙̃cf

𝑠

𝜕𝜉𝑗
𝑅𝑘𝑞𝜓

𝛾
𝑞𝑀 + 𝜙̃cf

𝑠

𝜕𝑅𝑘𝑞
𝜕𝜉𝑗

𝜓𝛾𝑞𝑀 + 𝜙̃cf
𝑠 𝑅𝑘𝑞

𝜕𝜓𝛾𝑞𝑀
𝜕𝜉𝑗

(B.10)

in which both 𝜙̃cf
𝑠 and 𝑅𝑘𝑞 are functions of the uni-direction parametric coordinate 𝑡 at the crack front. This requires a chain rule

in terms of this coordinate as:
𝜕𝜙̃cf

𝑠

𝜕𝜉𝑗
=
𝑑𝜙̃cf

𝑠
𝑑𝑣

𝜕𝑣
𝜕𝜉𝑗

𝜕𝜉𝑗
𝜕𝜉𝑗

𝜕𝑅𝑘𝑞
𝜕𝜉𝑗

=
𝑑𝑅𝑘𝑞
𝑑𝑣

𝜕𝑣
𝜕𝜉𝑗

𝜕𝜉𝑗
𝜕𝜉𝑗

(B.11)

The terms 𝑑𝜙̃cf
𝑠

𝑑𝑣 and 𝑑𝑅𝑘𝑞
𝑑𝑣 are the first derivatives of the uni-directional NURBS function and the rotation matrix at the crack front,

espectively. In addition, the expression for 𝜕𝑣
𝜕𝜉𝑗

derives from the orthogonality between the vector 𝑟𝑡 and the tangent vector 𝑇 at
𝑡⃗ ⃗ ct cf 𝑡
29

the crack front (𝑟 ⋅ 𝑇 = 0). It is worth mentioning that, for this enrichment, Eq. (B.7) is valid by using 𝑥𝑘 as 𝑥𝑘 (𝑣) and 𝜃 = ±𝜋
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w

depending on whether it is a upper or lower crack surface. Then, the first variation of 𝑟𝑡 ⋅ 𝑇 = 0 becomes:

𝛿(𝑟𝑡 ⋅ 𝑇 ) = 0 ⇒ 𝛿𝑟𝑡 ⋅ 𝑇 + 𝑟𝑡 ⋅ 𝛿𝑇 = 0 ⇒
(

𝜕𝑟𝑡

𝜕𝜉1
𝛿𝜉1 +

𝜕𝑟𝑡

𝜕𝜉2
𝛿𝜉2 +

𝜕𝑟𝑡

𝜕𝑣
𝛿𝑣

)

𝑇 + 𝑟𝑡 𝜕𝑇
𝜕𝑣
𝛿𝑣 = 0

(B.12)

Assuming that 𝑣 = 𝑣(𝜉1, 𝜉2), it is possible to write its perturbation in an implicit form as:

𝛿𝑣 = 𝜕𝑣
𝜕𝜉1

𝛿𝜉1 +
𝜕𝑣
𝜕𝜉2

𝛿𝜉2 (B.13)

which may be substituted into Eq. (B.12) to give:
[

𝜕𝑟𝑡

𝜕𝜉1
𝛿𝜉1 +

𝜕𝑟𝑡

𝜕𝜉2
𝛿𝜉2 +

𝜕𝑟𝑡

𝜕𝑣

(

𝜕𝑣
𝜕𝜉1

𝛿𝜉1 +
𝜕𝑣
𝜕𝜉2

𝛿𝜉2

)

]

𝑇 + 𝑟𝑡 𝜕𝑇
𝜕𝑣

(

𝜕𝑣
𝜕𝜉1

𝛿𝜉1 +
𝜕𝑣
𝜕𝜉2

𝛿𝜉2

)

= 0 (B.14)

Eq. (B.14) holds for any arbitrary 𝛿𝜉𝑖, 𝑖 = 1, 2. Then, its rearrangement results in:

𝜕𝑣
𝜕𝜉𝑖

=
− 𝜕𝑟

𝑡

𝜕𝜉𝑖
⋅ 𝑇

𝜕𝑟𝑡

𝜕𝑣
⋅ 𝑇 + 𝑟𝑡 ⋅ 𝜕𝑇

𝜕𝑣

(B.15)

Appendix C. Frenet–Serret frame for rotation matrix and derivative

The Frenet–Serret frame relates the rotation matrix and its first derivative with the curve parameterisation, and also the curvature
𝜅(𝑣) and torsion 𝜏(𝑣) properties. In this context, the definition of the rotation system 𝑅𝑘𝑞 from the tangent vector 𝑇 , the normal
vector 𝑁⃗ and the bi-normal vector 𝐵⃗ is:

𝐑 =
[

𝑁⃗ 𝐵⃗ 𝑇
]

(C.1)

in which each vector comes from the position 𝑥⃗ in the NURBS curve as:

𝑁⃗ =
𝑥⃗′ ×

(

𝑥⃗′′ × 𝑥⃗′
)

‖

‖

𝑥⃗′‖
‖

‖

‖

𝑥⃗′′ × 𝑥⃗′‖
‖

𝐵⃗ = 𝑥⃗′ × 𝑥⃗′′
‖

‖

𝑥⃗′ × 𝑥⃗′′‖
‖

𝑇 = 𝑥⃗′
‖

‖

𝑥⃗′‖
‖

(C.2)

n which 𝑥⃗′ = 𝑑𝑥⃗
𝑑𝑣 and 𝑥⃗′′ = 𝑑2 𝑥⃗

𝑑𝑣2
. The first derivative assumes its form in terms of the rotation matrix 𝐑 as:

𝑑𝐑
𝑑𝑣

= ‖

‖

𝑥⃗′‖
‖

[

𝑁⃗ 𝐵⃗ 𝑇
]

⎡

⎢

⎢

⎢

⎣

0 −𝜏(𝑣) 𝜅(𝑣)

𝜅(𝑣) 0 0

−𝜅(𝑣) 0 0

⎤

⎥

⎥

⎥

⎦

(C.3)

Finally, the curvature 𝜅(𝑣) and torsion 𝜏(𝑣) are:

𝜅(𝑣) =
‖

‖

𝑥⃗′′ × 𝑥⃗′′′‖
‖

‖

‖

𝑥⃗′‖
‖

3

𝜏(𝑣) =
𝑥⃗′ ⋅

(

𝑥⃗′′ × 𝑥⃗′′′
)

‖

‖

𝑥⃗′ × 𝑥⃗′′‖
‖

3

(C.4)

ith 𝑥⃗′′′ = 𝑑3 𝑥⃗
𝑑𝑣3

as the third derivative of the NURBS curve with respect to the parametric coordinate.
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