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Abstract

It is rather commonplace in cveryday conversation to refer to the “Language of Music”.
However, we believe the whole apparatus already built for the analysis of natural language
has not been yet as thoroughly used for the analysis of musical phenomena as it could have
been. In this article we present some initial ideas towards extending the application of this
apparatus for the better understanding of “Music as Language™.

In this paper, we apply some techniques from Categorial Grammar to represent a simple
problem of music theory, which we believe nevertheless to be of widespread interest: func-
tional harmonic analysis. We propose an eacoding of the harmonic functions of chords as
syntactic categories, and show how the generation of proofs of *harmonic well-formedness™
of cadences can be implemented and used as a tool to verify and to display the functional
harmenic structuring of cadences.

Keywords: music analysis, harmonic analysis, categorial grammar, syntactic calculus,
substructural logics.

1 Introduction

It is commonplace in everyday conversation to refer to the “Language of Music™. Indeed, the
study of musical phenomena as linguistic objects has been developed by many authors (see eg
[BCe84, Hol80, LI83, Sch89]). In this article we present some initial ideas towards extending
the application of this apparatus for the better understanding of “Music es Language” More
specifically, we employ techniques from Categorial Grammar to represent a rather specific and
simple problem of music theory, which we believe nevertheless to be of widespread interest:
functional harmonic analysis [Bri79].

The aim of Categorial Grammar [Ben87, Ben90, Ben91, Lam58, Lam89] is the analysis
of syntactic well-formedness of sentences. The fundamental concept underlying Categorial
Grammar is that of syntactic calegorses, which are classes to which words in a sentence must
belong. Syntactic categories can be organised as formulae of some substructural logic - e.g. the
so-called Lambek Calculus [Lam58] - in such way that syntactic well-formedness can be checked
via an appropriate proof theory related to the logic.

In this paper we propose an encoding of the harmonic functions of chords as syntactic cat-
egories and show how the generation of proofs of “harmonic well-foundedness” of cadences can
be implemented and used as a tool to verify and to display the functional harmonic structuring
of cadences.

In section 2 we briefly review the concepts of Lambek Calculus that we need to use in the
rest of the paper. In section 3 we introduce our encoding of harmonic functions of chords as
syntactic categories, and show how they can be used to check and to display the functional
harmonic structuring of cadences. In section 4 we present a simple PROLOG implementation
for checking the harmonic well-foundedness of cadences and displaying functions of chords.



Finally, in section 5 we discuss these results, present some conclusions and propose some future
work.

2 The Lambek Calculus

J. Lambek introduced the Syntactic Calculus - most usually called Lambek Calculus nowadays
- in [Lam58], as a tool to encode the English grammar, such that well-formedness of sentences
could be tested deductively.

Essentially, the Lambek Calculus corresponds to classical propositional logic devoid of any
structural rule, in which implication is factorised in two non-commutative connectives. Here, we
consider only the implicative fragment of that Calculus, which is sufficient for what we intend
to present.

A Gentzen-style presentation of implicative Lambek Calculus can be given by the following
rules. in which z,y. z are syntactic categories generated by the members of a set S of basic
syntactic categories and T, T, A are sequences of syntactic categories. The sequences T are
assumed to be non-empty.

axiom: r b zx.

right-inclusion: left-inclusion:
Fyt: FF!"I‘I:,A}-:
Frz/y T,zfy,l,AFz '
yThez TrylzAF:
Fy\z’ r,f,y\z,AkFz’

For example, Lambek assumes that § = {n, s}, in which n stands for “noun” and s stands
for “sentence”. The words of the English language are attached as labels to formulae, in such
way that they can only occur in specific sequences from which the category “slentence]” can be
derived.

Giving a more specific example. if we assume the words John and milk to be of category
*nfoun]”, the word fresh to be of category “n/n” (a qualifier - must precede the noun it is
qualifying to produce a qualified noun) and the word 1ikes to be of category n\s/n (a transitive
verb - forms a sentence if preceded by a noun - the subject - and followed by another noun
- the object of the sentence}, we can prove the well-formedness of John likes fresh milk
with the deduction tree presented in figure 1 (we abbreviate John, likes, fresh, and milk
by their initials J, 1, £, and m).

ta:nbtm:n Jifm: sk Jifm: s
mnkmn J1: s/n, tm: nt Jifm: s
J1: sfn, 2 nfn,m: nk Jlte: s J:nkJin
J:n.1: n\sqa, 2: n/n,m: nt Jltm: s

Figure 1: Deduction for “John likes fresh milk”

This deduction proves that from the sequence J: n, 1: n\s/n, £: n/n, m: n we can derive the
well-formed sentence J1fm: s.

We have employed this Calculus to encode the functional grammar of tonal chords, as
detailed in the following sections.

3 Tonal Chords and Syntactic Categories

The set of basic syntactic categories for functional harmony must be large enough to permit
the characterisation of all different functions each chord may have in a cadence. We have
employed a set of three basic syntactic categories § = {a,8,¢}, a and ¢ loosely corresponding
to the concepts of tonic and cadence, related to Lambek’s noun and senfence functions, and b



corresponding to an intermediate concept leading to the idea of subdomnant. Intuitively. we
have a as tonic, a \ b as subdominant (fulfilled when preceded by something of category a) and
b\ c/a as a full cadence (fulfilled when preceded by some chain of chords of category b and
followed by something of category a). In order to present our proposed encoding of chords as
representatives of syntactic categories, we must introduce some notation.

We have adopted the (first twelve) MIDI codes for pitch values, and hence the notes C,
Cl, D ... are denoted respectively as 0,1,2,.... The syntactic categories of the functions of
chords can then be encoded in a dictionary like the one presented in table 1. In this dictionary,
i=0,1,..,11, and these numbers are operated modulo 12,ie. 6 +5=11.6+6=0,6+7 =1
etc. (and, of course, in table 1 we have only a small fragment of one such dictionary).

Major Mode

tonality
entry | chord L 3] S T T [ ] i+l
i [ iH4HT [ a b\c/a | a\b
| gl a\b
+10
193 | LT, b\gla
+10
i L [[a a\b
i+11
i | 44T, [ a
#1142
| RS W\¢/a | a\b a
Minor Mode
tonality
entry | chord L[] S [T [ 49
i [ AT b\cla
| MLHT, d\cja
+10
1° | e HT || @ a\b
i | L3S efa
* | 449 a\b a

Table 1: Dictionary of Syntactic Categories of Chords (i = 1. ..., 11 is the toot of the chord)

It should be observed that syntactic categories refer 1o specific tonalities and modes We
avoid referring explicitly to tonalities and to modes in our deduction trees to preserve our
notation as simple as possible. Now, using the notation of table 1, if we attach the perfect major
triads 0!, 5%, 7' as labels to the categories a, a\b and b\¢/a, we can derive the well-formedness of
the perfect cadence {0!,5',71,01} (figure 2).

0'5':bH0'5': b 0'5'7'0' :ch 0'51710! - ¢
0l:ak0':a  0'5!:5,70': N\t 0'51710! : ¢
0' :a,5! :a\b, 700" : B\cF 01517100 : ¢ 0':ak 0! a
0':a,5" :a\b, 7' : B\¢la, 07 : a F OTSITI0T : ¢

Figure 2: Deduction for the perfect cadence




t ?- harmon([(c,e,g], [4,2,2], [g,b,d], [c,e,g]], X).
X = [[c,majl]) ?
yos

| *-

Figure 3: Using the Theorem Prover

A theorem prover for this Calculus can be implemented in PROLOG, and in the following
section we present a very simple implementation for it.

4 Functional Harmony in PROLOG

The PROLOG code for a simple implementation of a theorem prover for the Calculus presented
above is introduced in the appendix following this paper. This program works as follows: given
a sequence of chords [C}, ..., C.], the procedure genseq converts this seq into a seq of
sets of harmonic functions F; that each chord C; can have. From these, the procedure cadence
selects the functions f; € F; such that from f; : i = 1,...,n we can derive the function ¢ of any
tone and mode. These [unctions are then presented as solutions, with the corresponding tone
and mode of the derived cadence.

For example, if we want to check the well-formedness of the sequence of chords in figure
2, we obtain the following (figure 3). This ocutput indicates that, for the fragment of tonal
functional harmony encoded above, the only syntactic category of type “c” that can be derived
from the given sequence of chords is that of C major.

5 Conclusions and Future Work

In this paper we presented an encoding of the harmonic functions of chords as syntactic cat-
egories, and showed how the generation of proofs of “harmonic well-foundedness™ of cadences
could be used as a tool to verify and to display the harmonic functional structuring of cadences.
We have also presented an implementation of a theorem prover for automating this verification.

Clearly, there is still much to be done on turning Categorial Grammar applied to functional
harmonic analysis a more friendly tool for musicians. Nonetheless, our initial experiments
suggest that this can be a useful tool, not only for analysis but also for generation of cadences
upon certain constraints, e.g. when building accompaniments for given melodies.

Immediate future work shall include the study of applicability of this tool in practical situ-
ations of interest for musicians and for students of music, and the extension of our “dictionary”
to encompass richer harmonic cadences. It shall also be interesting to further analyse the math-
ematical properties of tonal harmony under the viewpoint of Lambek Calculus, and to study
what the (musical) consequences could be of altering some of these mathematical properties
(e-g. by adding some structural rules or different connectives to the Calculus).

The program presented here is also available by ftp at
ftp.ime.usp.br:/pub/music/lanbek, or directly from the authors.

Acknowledgements: this work has been partially supported by FAPESP grant 93/0603-
01, and CNPq grant 300041/93-4.
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Appendix: A Theorem Prover for Functions of Chords

/esssusessse ssese LI ETS e ssne/
/+ harmon(L, A) - the collection of harmonic justifications for */
/s sequence of chords L is 4 s/
/oensssecsnsscsssense (TITTE TS /

barmon(L, A) :- miditransl(L, Ln), genseq(Ln, F),
setof([X,Y], cadence(F, X, Y), in), midiback(An, A).

miditrans1([HIT], [Hn|Tn]) :- transchord(H, Hn), miditransl(T, Tn).
miditrans1([], []).

transchord((BIT], (HnlTn]) :- transnote(H, Hn), transchord(T, Tn).
transchord([], {J).

transnote(c, 0). transnote(c_sharp, 1). transnote(d_flat, 1).

transnote(d, 2). transnote(d_sharp, 3). transnote(e_flat, 3).

transnote(s, 4).

transnote(f, 5). transnote(f_sharp, 6). transnote(g_flat, 6).

transnote(g, 7). transnote(g_sharp, 8). transnote(a_flat, 8).

transnote(a, 9). transnote(a_sharp, 10).transnote(b_tlat, 10).
transnote(b, 11).

midiback([HIT], [HnITn]) :- noteback(H, Hn), midiback(T, Tn).
midiback(0, []).

noteback([0, M], [c, M]). noteback([1, N], [c_sharp_d_flat, N1).
noteback([2, ¥], [d, M]). noteback((3, W], [d_sharp_e_flat, M]).
noteback([4, M), [e, N]).

noteback([5, M], [f, N]). noteback([8, M], [f_sharp_g_flat, N]).
noteback((7, N], (g, M]). noteback([8, M], [g_sharp_a_flat, M]).
noteback([9, M), [a, M]). noteback(([10, N], [a_sharp_b_flat, N]).
noteback{[11, M), [b, M]).

/...'..‘..‘...‘.“.'....‘....l.'....“.‘..".‘.‘..‘..'.-“‘.'..“O../

/¢ ganseq(S, L) - the collection of candidate sequences of */
/e harmonic functions for § is L ./
/.0.......'..‘.‘...‘.‘...‘..‘......“‘.t‘.‘.l'.lv---. -'UU/

genseq(S, L) :- genfunct(S, F), remap(F, L).

gentunct{(HIT], L) :~ genfunct(T, T2), setof(F, function(H, F), S),
append(([s], T2, L).
gentunct([], [1).

function([BIT), (¥, Fun, Mod]) :- funct(Lf, {2, Fun, Nod]),
match(H, [BIT], L2), Y is ((2Z + H) mod 12).



/ s (LT IIT T 2T PO Ty sesessessnnsna/

/¢ tunct(HO, FO) - dictiomary of harmomic functions */
/* . "o SPRSHINNNNNLEN000050000008500000 0000000/

funce([0,4,7], [0, [al, maj]). funct(([0,4,7], (5, [b,e,c.d,a], majl).
funct([0,4,7], (7, [a,e,b], majl).

funct((0,3,7,10], [10, (a,e.b], majl).

funct([0,4,7,10], [5, [b,e,c,d,a), majl).

tunce([0,4,7,11), [0, [al, maj]). funct(l[0,4,7,11), (7, (a,e,b], majl).
tunct((0,4,7,11,2], [0, (a], maj}).

tunct([0,3,8], {1, [b,e,c,d,a), majl).

funct([0,3,8]), (3, [a,e,b), majl}. funct(f0,3,8], [8, (al, m))).
funct((0,4,7], (5, [b,e,c.d,al, minl).

tunct([0,4,7,10], [S, [b,e,c.d,a), minl).

funct([0,3,7), [0, [a], min)). funct([0,3,7), (7, [a,s,b], min]).
funct([0,3,8], [1, ([b,e,c,d,a], minl).

funct([0,4,9], (4, [a,s,b), min]). funct((0,4,9], [9, (al, min}).

/ hatdd d Al Sl DL L L LLT I T DL T T T PPy

match(X, [H11T1]), [H21T2]) :- H1 is ({X + H2) mod 12), match(X, T1, T2).
match(_, O, 0O).

remap([HIT], L) :- remap(T, T2), combine(H, T2, L).
remap([T], L) :- combine(T, [[1], L).

combine((HIT], L1, L2) :- combine(T, L1, T2), comb(H, L1, H2),
append(H2, T2, L2).
combine([1, _, ().

comb(A, [H11T1], [H2I1T2]) :- comb(A, T1, T2), append([A}, H1, H2).
comb(_, [1, [J).

append([HIT], L1, (HIT2]) :- append(T, L1, T2).
append((], L, L).



/“‘.‘..‘.‘.‘.‘.‘.'".'..“‘O‘l."‘...""‘..'.'O'..-..‘.‘.-‘.....‘./

/* cadence(L, Ton, Mod) - L forms a cadence of Ton - Mod s/
/"..‘........‘..‘........‘.....‘..‘.“‘.....‘.‘.‘.‘...."“.t....‘./

cadence([BI_ ], X, Y) :- theor(H, [X, [c], Y]).
cadence([_IT]. X, Y) :- cadence(T, X, Y).

theor ([HIT], (X, F, Y1) :~ theox(T, [X, L, Y)),
prove(H, [X, L, Y], [X, F, Y]).
theor({{x, F, Y]], [x, F, Y)).

prove([X, L1, Y1, (X, [FIiT2], ¥), X, L2, Y1) :-

invert(L1, [F, diT1]), invert(T1, T1i), append(Tii, T2, L2).
prove([X, L1, Y], [1, [F, eiT2], Y], [X, L2, Y]) :-

invert(L1, [FIT1]), invert(T1, T1i), append(Tii, T2, L2).

invert([B!T], L) :- invert(T, Ti), append(Ti, [H}, L).
invert((J, ).

/0-.‘.‘.‘.‘.‘.t‘.‘“..il.“‘"...‘.“i‘.-..‘-..‘ti..‘t..“‘tll..ttt./

Figure 4- A Theorem Prover for Functions of Chords
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Abstract. In a previous article we have stretched the analogy of “Music as Language™ and employed tech-
niques from Categorial Grammar for functional harmonic analysis. In the present paper we extend those
techniques to characterise stylistic preferences in terms of pertinence relations to a fuzzy set of “highly-
appraised” harmonic cadences, and develop an experiment assessing the adequacy of the characterisation of
aesthetic preferences in terms of fuzzy sets. The structures employed to represent these stylistic preferences
are coined Fuzzy-Syntactic Categories. They are triples [fuzzy preference values: chords: syntactic func-
tion]. Our experiments have consisted on evaluating the adequacy of this approach by empirically assessing
the results of propagating the fuzzy preference values in deduction trees. The results obtained thus far are

reported below.

1 Introduction

It is commonplace in everyday conversation to refer
to the “Language of Music”. Indeed. the study of
musical phenomena as linguistic objects has been de-
veloped by many authors (see e.g. [1, 6, 11]}. In [4] we
used some techniques from linguistics - namely, tech-
niques related to Categorial Grammar - to represent
a rather specific and simple problem of music theory,
which we believe nevertheless to be of widespread in-
terest: functional harmonic analysis [3}.

The aim of Categorial Grammar [2, 8] is the anal-
ysis of syntactic well-foundedness of sentences. The
fundamental concept underlying Categorial Grammar
is that of synfactic categories, which are classes to
which words in a sentence must belong. Syntactic
categories can be organised as formulae of some sub-
structural logic - e.g. the so-called Lambek Calculus
(8] - in such way that syntactic well-foundedness can
be checked via an appropriate proof theory related Lo
the logic.

In {4] we presented an encoding of the harmonic
functions of chords as syntactic categories and showed
how the generation of proofs of “harmonic well-
foundedness™ could be implemented and used as a
tool to verify and to display the harmonic functional
structuring of cadences.

We can apply the same ideas to automatically gen-
erate accompaniment of melodies, by superimposing
chords on selected notes of a melodic line. In this
case, the melody acts as a series of constraints for the
resulting sequence of chords. which can be requested
e.g. to contain the notes of the melody upon which
they are placed, and to be “well-founded” cadences.

Clearly, for most melodies the sequence of ac-
companying chords generated this way is not unique.
Technically speaking, all different variations are “cor-
rect”, in the sense that they obey the harmonic rules
encoded in the syntactic categories. Stylistic (and
personal) judgement, however, shall give preference

to some sequences of chords over others. For exam-
ple, the melodic sequence { C.F.D,C } can have as
accompaniments the chords { CEG, FAC, GBD,
CEG } or { CEG, DFA, GBD, CEG } (among
many others). One sequence of chords may be consid-
ered preferable over the other, depending on individ-
ual taste or on what musical style is being considered.

It is this type of preference that we intend to cap-
ture in our experiment. We represent these prefer-
ences as Fuzzy-Syntactic Categories, which are pairs
[sequences of chords: harmonic functions), accompa-
nied by fuzzy membership values to a set of “highly-
appraised” sequences. These values are attached to
chords and sequences of chords as labels in terms of a
propositional doubly-labelled deductive system [5, 9]
(see also [10] for general discussions on labelled de-
ductive systems). The system is doubly-labelled be-
cause the fuzzy values are attached to pairs (chords:
harmonic function], which are themselves formulae of
a propositional labelled deductive system. The val-
ues are then propagated to cadences and fragments
of cadences according to Zadeh norms and conorms
[7.12, 13]. Our aim is to provide an automatic assess-
ment of generated accompaniments of melodies based
on the fuzzy preference rules in use.

In section 2 we briefly review the conceptsof Lam-
bek Calculus that we need to use in the rest of this
paper. In section 3 we formally introduce the Fuzzy-
Syntactic Categories, and show how they can be ap-
plied to encode aesthetic preferences among different
harmonisations of a single melody. In section 4 we
present the empirical results obtained so far. F inally,
in section 5 we discuss these results, present some
conclusions and propose some future work.

2 The Lambek Calculus

J. Lambek introduced the Syntactic Calculus -~ most
usually called Lambek Calculus nowadays - in (81,



fm:nkfa:n  Jifm: sbk Jifm: g
»: 'k mm J1: sin, tm: mnF Jlfm: o
J1: s/n, t: n/n,m: n Jlfm: o JakFJn
Jin, 1: n\gm, £: a/n, m: nk Jlin: s

Figure 1: Deduction for “John likes fresh milk”

as a tool to encode the English grammar, such that
grammaticality of sentences could be tested deduc-
tively.

Essentially, the Lambek Calculus corresponds to
classical propositional logic devoid of any structural
rule, in which implication is factorised in two non-
commutative connectives. Here, we consider only the
implicative fragment of that Calculus, which is suffi-
cient for our application.

A Gentzen-style presentation of implicative Lam-
bek Calculus can be given by the following rules, in
which z, y, z are syntactic categories generated by the
members of a set S of basic syntactic categories and
T, T, A are sequences of syntactic categories. The se-
quences T' are assumed to be non-empty.

axiom: z I z.

right-inclusion: left-inclusion:

Tyt =z ThylzAF:
TFz/y Fz/y.L.AFz "

Tkz FrylzAr:
Tky\z I'Ty\z,AFz

For example, Lambek assumes that § = {n,s},
in which n stands for “noun” and s stands for “sen-
tence”. The words of the English language are at-
tached as labels to formulae, in such way that they
can only occur in specific sequences from which the
category “[slentence” can be derived.

Giving a more specific example, if we assume the
words John and milk to be of category “[njoun”, the
word fresh to be of category “n/n” (a qualifier - must
precede the noun it is qualifying to produce a qual-
ified noun) and the word 1ikes to be of category
n\s/n (a transitive verb - forms a sentence if preceded
by a noun - the subject - and followed by another
noun - the object of the sentence), we can prove the
grammaticality of John likes fresh milk with the
deduction tree presented in figure 1 (we abbreviate
Johm, likes, fresh, and milk with their initials
J, 1, £, and m).

This proves that from the sequence J: n, 1: n\sfn,
1. n/n,m: n we can derive the sentence J1tn: .

In [4] we showed how this Calculus could be used
for harmonic analysis. We employed a set of three ba-
sic syntactic categories $ = {a.b,¢}, a and ¢ loosely
corresponding to the functions of fonic and cadence,
related to Lambek’s noun and senfence functions, and
b corresponding to an intermediate function of sub-
domsnant. In order to present an example, we must
introduce some notation. We adopt the (first twelve)
MIDI codes for pitch values, and hence the notes C,

Table 1: Dictionary of Syntactic Categories of Chords

Major Mode
tonality
entry | chord s [ ] [0 | 045 | o+ | 148 | i+

i | G4+ [ a Wea | a\b
| s34l A

i+10
¢ | AT Wa

10
¢ [ a4 [ a\b

i+11
v iHn [ a

H11i42
V| 1348 Nea | a\b a

Minor Mode
tonality ]
ent chord s ol T | 5 T 371 49

| LT B\c/a
O] aiHHT b\

i+10
¢ | adi47 [ a a\h
V| 4348 D/
o | irHH9 a\b a

0's! b 0's': b 0'si7i0’ : ch 0'5'7'0":

0':ak0':a 0's' : 3,7%0" : b\cF 0'5'7°0 : ¢
0" :4,57:a\3, 770" : B\cF O'BTTTOT : ¢ 07:ak0':a
0':a,5 :a\b. 7" : b\qla, 0T ;a F 0757770 : ¢

Figure 2: Deduction for the perfect cadence

Cf, D ... are denoted respectively as 0,1,2, .... The
syntactic categories of the chords under consideration
are as in the dictionary presented in table 1 (in this
dictionary, i = 0,1, ..., 11, and these numbers are op-
erated modulo 12,i.e. 6+5=11,64+6=0,6+7=1
etc.).

It should be observed that syntactic categories re-
fer to specific tonalities and modes. We avoid re-
ferring explicitly to tonalities and to modes in our
deduction trees to preserve our notation as simple as
possible. Now, using the notation of table 1, if we
attach the triads 0!,5!, 7' as labels to the categories
a,a\b and b\¢/a, we can derive the “grammaticality”
of the perfect cadence {0!,5',7!,0'} (figure 2).

Now assume we have a melody for which we want
to build an accompaniment. Based on the rhytmic
structure of the melody, we select the points in the
melody upon which we want to superimpose chords.
We require that the harmonic cadences thus obtained
have to be “grammatically well-founded”, and that
each chord must contain the notes in the melody lying
at the point upon which it is placed.

For example, assuming that the triad 2¢ is also of
category a\b, we could similarly deduce that the ca-

10



dence {0',2%,7',0') is grammatically well-founded,
and both {0',5',7',0'} and {0',25,7!,0'} (among
other alternatives) can be taken as accompaniments
for the simple melody {0, 5, 2,0}.

The choice upon which accompaniment to choose
is based on stylistic and personal preferences
Nonetheless, it seems reasonable to request from a
composer/arranger {or attentive listener) that their
style and personal preferences be consistent. A rather
unrestraining framework for this consistency require-
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Figure 3: Initial intervals for the perfect cadence

ment can be based on the supposition that cad
and segments of cadences can be ordered, so that one
would not accept a segment of caderice to entail a
second segment they did not like.

One interesting way of envisaging this frame-
work is therefore to admit that segments of cadences
have different fuzzy membership degrees to a set of
“highly-appraised” cadences such that, if a - g, then
the fuzzy membership degree of § is not smaller that
that of a. It should be remarked that what we re-
gard as segments of cadences are pairs [chords: har-
monic function], like the ones presented in the exam-
ple above.

Our framework is detailed below.

3 Fuzzy-Syntactic Categories

We introduce here the concept of Fuzzy-Syntactic
Calegories. Fuzzy-Syntactic Categories are triples of
the form [:C:c], where p = {21, 2] C [0, 1] is a closed
interval containing a fuzzy degree of appraisal, C is a
sequence of chords and ¢ is a syntactic category. Our
goal is to obtain the narrowest possible .

Assuming that a segment of cadence cannot entail
a second segment less-appraised than itself, we formu-
late the following propagation rule for degrees of ap-
praisal, which is in accordance with Zadeh'’s triangu-
lar norms and conorms for fuzzy sets: if we can have
in a proof the sequent [[p}, p3] :Ci:e1], [}, u3] :Ca:
cz] F [[#1, 2] :C1C3:¢], then we have that p; >
min{u}, pu1} and pz > min{p}, p3}.

Our computational framework (in course of im-
plementation) is based on constraint-propagation for
maintaining consistency among the intervals of de-
grees of appraisal. At the initial configuration, the
set of appraised segments of cadences is empty, and
the user builds their own set of degrees of appraisal
incrementally, i.e. initially, g = [0,0] for all triples
[4:Cc). Each time the user updates the intervals p,
all intervals that have already occurred in any de-
duction are updated in order to preserve consistency,
and from that point on each newly used segment of
cadence is constrained by the existing intervals. The
input points for the user to update intervals are in-
dividual chords, and compound segments of cadences
must obey the propagation rule above.

As an example, let us consider again the perfect
cadence {0!,5!,7',0'}. The initial Fuzzy-Syntactic
Categories corresponding to our previous deduction
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Figure 4: Updated intervals for the perfect cadence

are as in figure 3.

Now, if the user updates these intervals to e.g.
[0.5,0.5): 0! : @, [0.1,0.2] : 5' : a\b and [0.6,0.7) : 7* :
b\¢/a, the remaining intervals are changed as in figure
4,

As the process is iterated, the database of inter-
vals for degtees of appraisal is enriched. [f now the
user wants to evaluate the cadence {0!,2%,7!,0'}, by
associating e.g. the interval {0.3,0.6) to 2% : a\b, the
resulting intervals become as in figure 5.

We have done an initial experiment on generating
a database of intervals for degrees of appraisal. The
results are presented in the following section.

4 Empirical Results

Our experiment consisted of encoding a fragment of
tonal harmony [3] in terms of Fuzzy-Syntactic Cate-
gories, and then of providing all grammatically well-
founded harmonisations for a given melody that we
could derive from the encoded fragment of tonal har-
mony. With this in hand, we ordered the set of har-
monisations according to personal tastes of three col-
laborators: an amateur musician, a music theorist,
and a professional composer. Each of these collab-
orators was asked to choose the two “best” and the
“worst” harmonisations from the set above.Then we
looked for three different labelings with intervals for
fuzzy values that reflected these individual tastes, to
see whether this methodology was capable of express-
ing stylistic harmonic preferences, as we have postu-
lated.
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Figure 5: Updated intervals for the altered cadence
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Figure 6: Excerpt from “Girl from Ipanema”

The melody we used is a fragment of the well-
known “Girl from Ipanema” (Jobim and Mendon¢a)
(figure 6).

Based on table 1, the collection of well-founded
cadences to harmonise this melody is the set X =
( 0°2°7'0', 0322704, 0°22770%, 0*227'47, 03227%0!,
0°277°0%, 0°227°0°, 0°2°7%47, 05221170, o0%2%117¢0%,
0°2’1170%, 0°2211747 }. This set was ordered by our
collaborators as follows:

amateur musician: 0°227°0%0°2%1170%..,0°2%11747 .

theorist: 0°227'0%,0227%04,..,0%2%1170° .

composer: 0°227'0%,0%227%0%,..,0%2%11747 .

Based on these orderings, we could furnish our
Fuzzy-Syntactic Categoties with the following inter-
vals:

amateur musician: [0.50.5):03(0.50.5):22{0.50.5]): 73
(0.40.4):11][0.20.2]:7}(0.2,0.2):0}{0.20.2):0%[0.,0.1):4".

theorist: [0.50.5]:0%(0.50.5]:22[0.50.5): 7! [0.50.5):0!
{0.40.4]:73(0.40.4]:0[0.20.2]:47[0.2,0.1):117.

composer: [0.50.5]:03[0.50.5):23(0.50.5]: 7}[0.50.5]:0!
(0.40.4):730.20.2]:117[0.2,0.2):0}0.10.1}:4".

By ordering the set # decreasingly according to
these intervals, we obtained the following:

amateur musician: {0.50.5]:0°22720%0.40.4]:0%221170%
[0-20.2] : 0°227'0} [0.20.2] : 0%227'0% [0.20.2] : 0%277%¢®
[0.20.2) : 0°227°0} [0.20.2) : 032%7%0% [0.20.2] : 0%221170!
[0.20.2] : 0°2°1170% [0.10.1] : 0%227%¢7 [0.1,0.1] ¢ 0%2°7' 4’
[0.10.1):0°2%11%47 .

theorist: (0.50.5]:0°227'0%[0.50.5}:0°227"0% [0.40.4]:
o’2’7’0'.[0.40.4]:0‘2’7‘01[0.40.4]:0’2’7‘0‘.[0.40.4).-0’2’7’0‘,
[0-20.2] : 0°277'47 [0.20.2] : 03277347 [0.1,0.1] : 0%271170%
(0.10.1):0°21170%(0.1,0.1):0°2% 1170%[0.1,0.1}:0%22 11747 .

composer: [0.50.5]:0277'04{0.50.5):0%227' 03[0.40.4):
0°2*7°03 [0.40.4] = 0°227°0% (0.20.2) : 032211707 [0.20.2) :
0*227'0} [0.20.2) : 0322730 [0.20.2] : 0%22117 0} [0.20.9) :
0°211704 (0.1,0.1] : 0227347 [0.10.1] : 0%237' 47 [0.10.1] :
032211747 |

5 Discussion and Future Work

Clearly, there is still much to be done on turning
Fuzzy-Syntactic Categories a more user-friendly tool
for musicians. Nonetheless, our initial experimen-
tal results indicate that the representation of stylistic
preferences in terms of fuzzy sets can be interesting.

Immediate future work on Fuzzy-Syntactic Cate-
gories shall include their implementation as a compu-

tational tool, and the development of more thorough
experiments to assess the applicability of these struc-
tures in more complex harmonisations. It shall also
be interesting to study the possibilities of automating
the generation of the intervals for fuzzy values, per-
haps by training an appropriate neural network for
this task,

The major restriction that we have imposed is that
update values are allowed only for individual chords,
to guarantee decidability of our framework. As a
consequence, some harmonisations must be deemed
indistingunishable, and an evaluation can only be low-
ered by inserting chords that have not yet occurred
in the harmonisation. It shall be interesting to search
for more flexible ways to update values guaranteeing
decidability.
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300041/93-4. Thanks are due to Yira M. C. S. Michelacci
{the amateur musician), Maria Helena Cimara (the mu-
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