A NOTE ON MULTISTATE MONOTONE SYSTEM SIGNATURE
by

Vanderlei da Costa Bueno

Palavras-Chave: System signature, multi system signaturc, coherent systems.

Classificagio AMS: 60K10



A note on multistate monotone system signature

Vanderlei da Costa Bueno
Institute of Mathematics and Statistics
Sao Paulo University
Cx. Postal 66.281 05389-970, Sao Paulo, Brazil

‘Abstract. Using decompositions results for a multistate monotone system (MMS) and
through exchangeability properties we obtain a signature representation for any level of a
MMS. We extend some ordering applications.

Keywords: System signature; multistate system signature; cohcrent systems.

AMS Classification: 60K10

l.Introduction

As in Barlow and Proschan (1981) a complex engineering system is completely charac-
terized by its structure function @ which relates its lifetime 7' and its components lifetimes
T;, 1 £i < n, defined in a complete probability space (§2,9, P)

T = &(T),T = (T}, ..., T,).

A system is said to be coherent if its structure function ® is increasing in each coor-
dinate and each component is relevant, that is, there exist a time t and a configuration of
T in ¢ such that the system works if, and only if, the component works. The system is of
order n if it has n components.

The performance of a coherent system can be measured from this structural relation-
ship and the distribution function of its components lifetimes. The structures functions
offer a way of indexing the class of coherent system but such representations make the
distribution function of the system lifetime analytically very complicated. An alternative
representation for the cohcrent system distribution function is through the systems signa-
tures, as in Samaniego(1985), that, while narrower in scope than the structure function,
is substantially more useful.

Samaniego considers the order statistics of the independent and identically distributed
components lifetimes of a coherent system of order n with continuous distribution. Clearly
{T =T} 1<i<nisa(P-as.) partition of the probability space and

P(T<t)=) P(T =Ty)P(Te SUT =Tpy) =

i=1



r

P(T= T(,-))P(T(i) <t)= ZO,’P(T(,‘) <t).
i=1

i=1

In the above context Samaniego defines

Definition 1.1 Let T be the lifetime of a coherent system of order n, with components
lifetimes 73, ..., T, which are independent and identically distributed random variables with
continuous distribution F. Then the signature vector ¢ is defined as

a=(ag,..,0,)

'

where a; = P(T = T};)) and the {T(;;,1 < ¢ < n} are the order statistics of {T3,1 < i < n}.

The key feature of system signatures that makes them broadly useful in reliability
analysis is the fact that, in the context of independent and identically distributed (i.i.d.)
continuous components lifetimes, they are distribution-frec measures of system quality, de-
pending solely on the design characteristics of the system and independent of the behavior
of the systems components .

A detailed treatment of the theory and applications of system signatures may be found
in Samaniego (2007). This reference gives detailed justification for the i.i.d. assumption
used in the definition of systew signatures. By the way there are some applications in which
the ii.d. assumption is appropriate, and in such case, the use of system signatures for
comparisons among systems is wholly appropriate; such applications range from batterics
in lighting, to wafers or chips in a digital computer to the subsystem of spark plugs in an
automobile engine.

Samanicgo (2007), Kochar, et al. {1999) and Shaked and Suarcz-Llorcns (2003) ex-
tended the signature concept to the case where the components lifetimes T, ..., Ty, of a
system, are exchangeable, an interesting and practical situation in reliability theory. The
random vector Ty, Ty, ..., Ty) is exchangeable if it has the same jointly distribution as
(To(1ys To(2)s r To(my), for any permutation o of the indices {1,2,...,n}.

We pay attention on two results:
The first interesting result is concerning exchangeability:

Theorem 1.2 If (11, T3, ..., T,} is an exchangeable random vector, T = O(Ty, -, T) is the
lifetime of a coherent system and & = (@, @, ..., &) is the signature vector of a system
with the same structurc function as that of the system with lifetime 7T, but with inde-
pendent and identically distributed components having a common absolutely continuous
distribution, then

P(T >t} = B a; P(T(3) > 1).

The second relates signatures of systemns with different number of components.
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Theorem 1.3 If (T}, T3, ..., T,) is an exchangeable random vector and T is the lifctime of
a coherent system with components Ty, ..., Tk, k < n, then

P(T > t) = B 10} P(T(i) > 1)

for all t where o* is the signature of order n of the system with the same structure as
that the lifetime T' but with independent and identically distributed component lifetimes
having a common absolutely continuous distribution.

Even so, the widely used concept of signaturc and its development as in Boland,
P.J. and Samaniego, F.,(2004), Bueno ,V.C., (2011a), (2011b), Kochar, S., Mukherjec, H.,
'Samanicgo, F.,(1999), Navarro, J., Ruiz, J.M., N. and Sandoval, C.J., (2005), (2007), ,
Navarro, J., Balakrishnan, N. and Samaniego,F.J.,(2008), (2010), Navarro, J., Balakrish-
nan, N. and Samaniego,F.J. and Bhattacharya D.(2008), Samanicgo, F., (1985), (2006),
(2007), Samaniego,F.J., Balakrishnan, N. and Navarro, J., (2009), does not have been
explored in the multistate monotone system case.

In this note, in Section 2, we characterizes an monotone multistate system as in Block
and Savits (1982} and, in Section 3, we analyse the signature concept in the context of
multistate monotone systems. In Section 4 we study ordering for cohcrent systems.

2.Preliminaries concerning multistate monotone systems and decomposi-
tion results

In classical reliability theory, the system state X;, at time t, is related with its compo-
nents states, X(7), 1 <4 < n, through its binary structure function ¢, that is, X; = H(Xy)
where Xy = (Xi(1),..., X;(n)). The system (component) statc relates the system (com-
ponent) lifetime through the equality X, = Lirsey (Xie(d) = 1{1i54)), in the way that ¢ is
defined in {0,1}" and assume values in {0,1}. X, = 1 if the system is working at time ¢
and its equal to 0, otherwise. Also, the component i is working at time ¢ if X, (i) = 1 and
it is failed at ¢, if X,(i) = 0.

An example of this structural relationship is the parallel scries decomposition

= ¢(X;) = max min X,(i),
Ko = 0Xe) = mox i Xe(i)
where Pj, 1< j < pis the minimal pat sets of the structure ¢, that is, the minimal sct
of components whose functioning insures the functioning of the system.

A multistate monotonc system consider scveral levels of degradation for the system
and its components. In this section we use the following structural notation for a multistate
monotone system:

(a) x = (z1,...,7) denotes an n-dimensional vector with components z, ..., Zn.

(b) m = (m,...,m) and 0 = (0, ...,0).

(¢) x < y means that z; < y; for all i and the incquality holds for at least one
Li=1,..,n.



Consider a system of n components x = (zi,...,Z,) where z;, 1 < i < n denotes
the performance of component 4, in a fixed time,and takes values in the set of states
M = {0,1,..,m}. m is the perfect state of functioning and 0 represents its complete
failure. We suppose that there exists a nondecreasing function ¢ taking values in the set
M such that ¢(x) denotes the performance of the system. Also we assume that ¢(0) =0
and ¢(m) = m. ¢ is called the structure function of the Multistate Monotone System
(MMS).

The following concepts are due to Block and Savits (1982).

Definition 2.1 A vector x is called an upper vector for level k of an MMS ¢ if, and only
if (x) >k, 1 <k <n Itiscalled a critical upper vector for level k if, in addition,
dy)<kforx>y.

" The sct of all critical upper vectors for level k is denoted Uy. If x € Uy, 1 < k < m,
let Ur(x) = {(i,:) : 2: # 0}.

The vector of binary variables a(x) = (ay;(x),
ordercd, whose components are defined by o;;(x)
to consider the binary function

1<i<n,1<j<m), lexicographically
=11if z; > j and 0 otherwise allows us

olX)) = ma. i§
or(a(x)) = yEU),E (!.J)EUk(y) 1J(x)

called the systems decomposition at level k, 1 <k <m.
This binary structure characterizes the level & of the MMS ¢ in the sense that, for
k> 0,4(x) > k if, and only if, ¢x(e(x)) = 1. Block and Savits (1982) proved that

Example 2.2

A) Consider the MMS ¢(x) = max{z|,z,} where 2; and 2 are the component states,
in a fixed time, assuming values in M = {0,1,2}. Clearly

U = {(110)1 (01 1)}1 Ul((lvo)) = {(1! 1)}1 Ul((ol 1)) = {(2,1)},

Uy = {(2,0), (0!2)}v U2((270)) = {(1,2)}, U2((012)) = {(2\2)}

Therefore

$1(a(x)) = Hé%f(wggg}(y) a;j(x) = max{an1 (x), ag1 (x)}

and

$2(a(x)) = }I'%%/E(I,J)GUQ()/) a5(x) = max{aiz(x), agg(x)}.



B) For the MMS ¢(x) = min{z;, 2} we have

Uy = {(1, 1)}! Ul((L l)) = {(111)1(2v1)}7

Up = {(212)r}v Uﬂ((2r2)) = {(1v2)a(2v2)}'

Therefore

a(x)) = max min  o;;(x) = min{a;1(x), a9 (x
91(a(x)) YEU1 (i,j)eUr(y} U( ) { 1) ez )}

‘and

= i a;;(x) = min{a;g(x), azn(x)}.
$2(a(x)) e j(x) = min{ou2(x), o2 (x)}

Considering the random bchavior of the components X;,1 <1 < n, X; € M, we can
define:
Definition 2.3

The reliability of component i at level | is defined as
Eloa(X)) = P(aa(X) = P(X; 2 1) = Pu;
The reliability of the multistate monotone system at level k is
E[¢(a(X))] = P(¢(X) 2 k) = H(P)
where P = (Py;,1<i<n, 1<j<m).

The MMS reliability is given by

E[¢(X)] = > P(6(X) 2 k) = Y E[px(a(X))].
k=1 k=1

3.Signature of a multistate systems signature

In the dynamic case we let (X¢()):>0, be a right continuous nonincreasing stochastic
process with values in M = {0,1, ..., m}, representing the stochastic behavior of component
1,1 <1 < n. The MMS system is represented by (¢(X¢)):»o0 where X, = (X(1), ..., Xi(n)).

The vector of binary processes o Xs) = (@i;(X;),1 <1 £ n,1 £ j < m), lexicograph-
ically ordered, whose components are defined by o;;(X;) = 1if X,(¢) > j and 0 otherwisc
allows us to consider, as in Scction 2, the binary process

a(Xs)) =max min  oi(X
dr(a(Xe)) veUs (i.)eUk(y) 3

called the systems decomposition at level k, 1<k <m.
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To follows, we define Ty; = inf{t > 0: a;;(X,;) = 0} if {} # 0 and oo if {} = @, as the
first time for which X, () is at any state smaller than j. Also Ty = inf{t > 0: ¢(X,) < k}
if {} # 0 and oo if {} = 0 as the first time for which ¢(X(t)) is at any state smaller than
k.

In this fashion, the reliability of component i, at level I and time ¢ is
Play(Xy) =1) = P(Ty > t).
The reliability of the system at level k and time ¢ is
P(¢p(a(Xs)) = 1) = P(Ti > t).

The reliability of the system at time ¢ is

P(T > t) = B[¢(Xy)] = Y Elg(a(Xe)) = ) P(Ti > t).
k=1

k=1

Now, we can consider, as in Barlow and Proschan (1981), the equivalent represcntation

Tp=max min Tj;
yeUs (i.4)eUs(y)

where C\(;’j(Xt) = 1(T.-j>z}~

The first question to be done is what happen with the lifetime T;; under the hypothesis
of continuity, identity and independence of the random lifetimes T;.

Theorem 3.1 If the random lifetimes T; are independent and identically distributed with
continuous distribution, then the random lifetimes T;; arc exchangeable.
Proof If we fix the index 1 we have

PTa>t,Tn >ty Tim > tm) = E[Tr;-"=11(7~_,j>,j,] =
E[n;-’f__laij(th)] = P(miLia5(Xs;) =1) =
P(Xy(1) 25,1 €5 <m) = P(Xmaxygjem t;(8) 2 §) =
P(Xmaxcyemts; (1) 2 §) = P(Ti > tiy, Tiz > gy o0y Tim > i)
where ti;, 1 £ 7 <nis any permutation of £;,1 < j < n.
In the case in which we jointly consider more than one component the proof is clear

under the hypothesis of independence and identically distributed components.
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Now, using the above theorem, we are in conditions to use Theorem 1.2 and Theorem
1.3 to prove that

PTi>t)= Y. Y P(T=Tup)P(Tu) > 1),
yeUx (i.5)€Uk(v)

where (T(ij), 1<i<n, 1<j<m)aretheordered (Tij, 1<i<n, 1<5<m).

Definition 3.2 Let Ty, ..., T be positive random variables defined in a complete prob-
ability space (€, S, P), representing the components lifetimes of a multistate monotone
system with lifetime T'. Let T}, be the systems lifetime at levels greather than or equal to
"k and let T;; be the components lifetimes at levels greather than or equal to j. Then, the
multistate system signaturc vector at level k, 1<k <mis

of =(of;, 1<i<n, 1<j<m),

where a{-‘j = P(T% = Tiizy)-
Remark P(T} = T(;;) is 2 cumbersome notation. In a fixed time ¢, cach component is in

a fixed state j,1 £ j < m, and Tj; are ordered as Ty, independent of j, that is, we can think
Tiijy as T(z)- To overcome this situation we can use T(;;) = Ty 1<isn, 1<j<m.

Example 3.3

If Ty, T», T3 are independent and identically distributed component’s lifetimes of the
multistate monotone system lifetime T = Ty A (T2 V T3) corresponding to a 3 components
system assuming values in M = {0,1,2}.

Clearly

U= {(11 1,0),(1,0, 1)}1 Ul((1! 1.0)) = {(111)1(2v1)}v U1((1,0, 1)) = {(11 1)| (3’ 1)}v

Us = {(2,2,0),(2,0,2)}, U2((2,2,0)) = {(1,2),(22)}, U2((2,0,2)) = {(1,2),(3,2)}.
Now
r(a(Xe)) = (a1 (Xe) A ear(Xy) V (e (Xe) Aann(Xe) =

an1(Xe) A (a2 (Xy) Vo (Xe).

Therefore aly = P(Ty = Tay) = 5 Land o}, = P(Ty = Tiayy) = £, 2 and the signature
system survival distribution is

—

2
P(Ty > t) = zP(Tay > t) + = P(Tiy) > ).
3 3

Also



$a(e(Xy)) = (012(Xe) A o (Xe) V (012(Ke) A 32(Xe) =
a12(Xy) A (22 (Xe) V asa(Xe),

o}y = Pl =Ty = % and o3, = P(T; = Tiagy) = %, following
that the signature system survival distribution is

2
P(T(”) > t) + _P(T(Zl) > t).

P(T2>t)= 3

1
3

This represcntation uses the extension of the signature concept, from the casc of
independent and identically distributed components to exchangeable components lifetimes.
However, this extension is not necessarily true if we take oy = P(T} = Ti;j5)- It is true
if (Tij, 1 <i<m 1<j<m)has an exchangeable absolutely continuous jointly
distribution ( sec the proof in Navarro and Rychlik, (2007)). We can observe this, taking
the threc dimensional Marshall and Olking distribution, obtained from Tj; = S;; A S,1 £
1<3, 1<j<2whereS;; and S arc independents and exponentially distributed random
variables, S;; with paramecter A and S with parameter 0, we have

PTy > 15,1 Si<3, 1< <) = BmBmtymtmesty,

Thercfore
P(T(’_)(T“,TQI.TM) > t) = e_(“*’mt;
P(T(g)(Tu,Tgl.Tgl) > t) = 38_(2'\+0)t - 26_(3'\+ﬂ)t;
and
P(Ty =Tu A (T V) > t) = 2~ 0 _ o= (26}t
performing
1 2
P(T] > t) = §P(T(u) > t) + §P(T(21) > t).
However,

(0 + 4A
P(Ty = Tay(Th1y Tor.To1) = P(Thy =Ty VTiy) = (-()T(Z‘m >0

and P(Ty = T(y(Th1, To1.T31) # § or P(Ty = Tigy(Tu1, Tor Tn) # 2
4.0rdering multistate monotone systems

In this section we assume that the system components processes (X¢(2))i>0, 1 <i<n
are independent and identically distributed processes taking values in M = {0,1,...,m}.
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As in Section 3, the component level processes (e;(Xe), 1<i<n 1<j¥< m), is
exchangcable.
We analyse results for stochastic, hazard rate and likelihood ratio orders.

A random vector T, or its jointly distribution function, is stochastically lower than a
random vector S, or its jointly distribution function, denoted by T <** § if, and only if

E{H(T)] < BH(S))

holds for all increasing Borel measurable function such that the expected values exists.

'

A random variable T, or its distribution function, is lower than the random variable
S, or its distribution function, denoted by T <*" § if, and only if,

P(T > t)P(S>s) > P(T>s)P(S>t), Vt<s.

If random variables 7' and S are absolutely continuous, we say that T, or its dis-
tribution function, is lower than S, or its distribution function, in likelihood ratio order,
denoted by T <'* § if, and only if

fr(t)
T tv vt Z 01
750!
where fr(t) and fs(t) are the probability densities functions of T and S, respectively.

To follows we arc going to consider the well know results proved in Shaked and Shan-
thikumar (2007):

Lemma 4.1 If P(T > t|0) and P(S > t|f) are two families of reliability functions, for
0 € ©, such that

P(T > t|0) < P(S > ), VteRt, Voeo,
then

PG>0=/

P(T > t}6)dG,(6) < / P(S > t)9)dGa(6) = P(S > t)
2] [¢]

for all distribution function G; and G, such that G; <% Gs.
Lemma 4.2 If P(T > t|0) and P(§ > t|0) arc two families of reliability functions, for

fl € ©, such that
P(T > t|6) <hr (S")P(S > t6*)

whenever ¢ < 0%, then

P(T>t)= /9 P(T > 1|0)dGy(6) < /e P(S > 1]0)dG»(6) = P(S > t)
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for all distribution function Gy and G, such that Gy <M (<'")G,.

Theorem 4.3 Let T be the lifetime of a multistate monotone system with components dy-
namically represented by the processes (X¢(i))i>0, 1 £i £ n, independent and identically
distributed, taking values in M = {0, 1,...,m} and let S be the lifetime of other multistate
monotone systems with components representation (Y;(4));>0, 1 <1 £ n, which arc inde-
pendent and identically distributed processes. Let o* and 8%, be the signature vector, at
level k,1 < k < m, of the system with lifetimes T and S, respectively. If o* <%t % and
P(Xi(t) > j) < P(Y;(t) = j), Vt>0, j€ M, then, T <% 8,1 <k < m. Furthermore,
T<HS.
Proof

Let, as before, a;;(X;) =114 and 8;;(X;) = s>t

Follows that

P(Ti; > t) = E[lz,,50)] = Elos;(Xe)] = Payj(Xe) = 1) = P(X,(d) 2 j) <

P(Yi(t) 2 j) = P(Bi;(Xe) = 1) = E[6;5(Xe)] = Ell(s,;>e)] = P(Si; > t).

Therefore Ty; <* Si;. As T{i;) is an increasing function, say ¥, of (T3;,1 < i <
n, 1< 3 <m)and S;j) is an increasing function, say U, of ($i;,1 <i<n, 1<j<m),
for any increasing and Borel measurable function ¢ we have

E[®(Tj5)] = E[@(¥r(Tij,1<i<n, 1<5<m) <
E[®(¥s(Sij,1 <i<n, 1<5<m)=E®(Su;)
So, we also have Tij < S(,vj). From Theorem 3.1 we have

P(T,>1t) Z Z P(T, = T(:]))P(T(ij) > ).
YEUk (i,1)eUk(y)

From Lemma 4.1 and the hypothesis o <t g%, we have Tp <* Sp,1 < k < m.
Furthermore

P(T > t) = E[¢(Xy)] = ZiL, Elge (X)) = EfL, P(Te > 1) £

DEL1P(Sk > t) = T7L Elor(B(Ye))] = E[¢(Y,)] = P(S > ),
and T <% S,

Theorem 4.4 Let T be the lifetime of a multistate monotone system with components dy-
namically represented by the processes (X:(i))i>0, ! < i < n,independent and identically
distributed , taking values in M = {0,1,...,m} and let S be the lifctimes of other multi-
state monotone systems with components representation (Y;(i)):>0, 1 < i < n, which are
independent and identically distributed processes. Let o* and ¥, be the signaturce vector,
at level k, 1 < k < m, of the system with lifetimes 7 and S, respectively. If of <Pr (<Hr)g*
and Tgij) <M (<'7)S(yj then, Ty <P (<I7)Sk, 1 <k <m.
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This Theorem is only an application of Lemma 4.2.
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