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I.Introduction 

As in Barlow and Proschan {1981) a complex engineering system is completely charac­
terized by its structure function <I> which relates its lifetime T and its components lifetimes 
T;, 1 Si Sn, defined in a complete probability space (H, \s, P) 

T = <l>(T), T = (Ti, ... , Tn), 

A system is said t.o be coherent if its structure fnnclion <I> is increasing in each coor­
dinate and each component is relevant, that is, there exist a time t and a configuration of 
T in t such that the system works if, and only if, the component works. The system is of 
order n if it has n components. 

The performance of a coherent system can be measured from this structural relation­
ship and the distribution function of its components lifetimes. The structures functions 
offer a way of indexing the class of coherent system bnt such representations make the 
distribution function of the system lifetime analytically very complicated. An alternative 
representation for the coherent system distribution function is through the systems signa­
tures, as in Samaniego{1985), that, while narrower in scope than the structure function, 
is substantially more useful. · · 

Samaniego considers the order statistics of the independent and identically distributed 
components lifetimes of a coherent system of order n with continuous distribution. Clearly 
{T = Tc;i} 1 Si Sn is a (P-a.s.) · partition of the probability space and 

n 

P(T st)= L P(T = T(i))P(T(i) s tlT = T(i)) = 
i=l 



t P(T = T(o)P(T(i) :St) = t aiP(T(iJ :St). 
i=l i=l 

In the above context Samaniego defines 

Definition 1.1 Let T be the lifetime of a coherent system of order n, with components 
lifetimes T1, ... , Tn which are independent and identically distributed random variables with 
continuous distribution F. Then the signature vector a is defined as 

Ct= (et1, .. ,,etn} 

'where ai = P(T = T(i)) and the {T(i), 1 :Si :Sn} are the order statistics of {'.T;, 1 :Si :Sn}. 

The key feature of system signatures that makes them broadly useful in reliability 
analysis is the fact that, in the context of independent and identically distributed (i.i.d.} 
continuous components lifetimes, they are distribution-free measures of system quality, de­
pending solely on the design characteristics of the system and independent of the behavior 
of the systems components . 

A detailed treatment of the theory and applications of system signatures may be found 
in Samaniego (2007). This reference gives detailed justification for the i.i.d. assumption 
used in the definition of system signatures. Dy the way there arc some applications in which 
the i.i.d. assumption is appropriate, and in such case, the use of system signatures for 
comparisons among systems is wholly appropriate; such applications range from batteries 
in lighting, to wafers or chips in a digital computer to the subsystem of spark plugs in an 
automobile engine. 

Samaniego (2007), Kochar, et al. (1999) and Shaked and Suarez-Llorens (2003} ex­
tended the signature concept to the case where the components lifetimes Ti, ... , Tn, of a 
system, arc exchangeable, an interesting and practical situation in reliability theory. The 
random vector (T1, T2, ... , T") is exchangeable if it has the same jointly distribution as 
(Tu(l), Tu(2), ... , Tu(n)), for any permutation a of the indices {1,2, ... , n}. 

We pay attention on two results: 
The first interesting result is concerning exchangeahility: 

Theorem 1.2 If (T1, T2, ... , Tn) is an exchangeable random vector, T = </>(T1, ... , T,,) is the 
lifetime of a coherent system and et= (a 1, a2, ... , a11 ) is the signature vector of a system 
with the same structure function as that of the system with lifetime T, but with inde­
pendent and identically distributed components having a common absolutely continuous 
distribution, then 

The second relates signatures of systems with different number of components. 
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Theorem 1.3 If (T1, T2 , ... , Tn) is an exchangeable random vector and Tis the lifetime of 
a coherent system with components Ti, ... , Tk, k ~ n, then 

for all t where a• is the signature of order n of the system with the same structure as 
that the lifetime T but with independent and identically distributed component lifetimes 
having a common absolutely continuous distribution. 

Even so, the widely used concept of signature and its development as in Boland, 
P.J. and Samaniego, F.,(2001), Bueno ,V.C., (2011a), (2011b), Kuchar, S., Mukherjee, H., 

'Samaniego, F.,(1999), Navarro, J., Ruiz, J.M., N. and Sandoval, C.J., (2005), (2007), , 
Navarro, J., Balakrishnan, N. and Samaniego,F.J.,(2008), (2010), Navarro, J., Balakrish­
nan, N. and Samaniego,F.J. and Bhattacharya D.(2008), Samaniego, F., (1985), (2006), 
(2007), Samaniego,F.J., Balakrishnan, N. and Navarro, J., (2009), docs not have been 
explored in the multistatc monotone system case. 

In this note, in Section 2, we characterizes an monotone multistate system as in Block 
and Savits (1982) and, in Section 3, we analyse the signature concept in the context of 
multistatc monotone systems. In Section 4 we study ordering for coherent systems. 

2.Preliminaries concerning multistate monotone systems and decomposi­
tion results 

In classical reliability theory, the system state Xi, at time t, is related with its compo­
nents states, Xi(i), 1 ~ i ~ n, through its binary structure function¢, that is, Xi = ¢(Xi) 
where Xi = (Xi(l), ... , Xi(n)). The system (component) state relates the system (com­
ponent) lifetime through the equality Xi= l{T>i}(X1(i) = l{T,>i}), in the way that¢ is 
defined in {0, It and assume values in {0, I}. Xi = I if the system is working at time t 
and its equal to 0, otherwise. Also, the component i is working at time t if Xi(i) = I and 
it is failed at t, if X 1 ( i) = 0. 

An example of this structural relationship is the parallel series decomposition 

Xi= ¢(X1) = max minXi(i), 
1$j$piEP1 

where Pj, I ~ j ~pis the minimal pat sets of the structure ¢, that is, the minimal set 
of components whose functioning insures the functioning of the system. 

A multistate monotone system consider several levels of degradation for the system 
and its components. In this section we use the following structural notation for a multistatc 
monotone system: 

(a) x = (x1, ... , xn) denotes an n-dimensional vector with components xi, ... , Xn, 
(b) m = (m, ... ,m) and O = (0, ... ,0). 
(c) x < y means that x; ~ y; for all i and the inequality holds for at least one 

i,i = l, ... ,n. 
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Consider a system ·of n components x = (x1, ... ,xn) where x;, 1 S i S n denotes 
the performance of component i, in a fixed time,and takes values in the set of states 
M = {O, l, ... , m}. m is the perfect state of funct ioning and O represents its complete 
failure. We suppose that there exists a nondecreasing function ti> taking values in the set 
M such that ,p(x) denotes the performance of the system. Also we assume that ¢(0) = 0 
and ¢(m) = m. ,fi is called the structure function of the Multistate Monotone System 
(MMS) . 

The following concepts arc due to Block and Savits (1982). 
D efinition 2.1 A vector xis called an upper vector for level k of an MMS ¢ if, and only 
if ¢(x) ~ k, 1 S k S n. It is called a critical upper vector for level k if, in addition, 
,fi(y) < k for x > y . 
' The set of all critical upper vectors for level k is denoted Uk , If x E Uk, 1 S k $ m , 
let Uk(x) = {(i,x;): x; ,f O}. 

Thevectorofbinaryvariableso(x) = (o;;(x), 1 :Si$ n, l $ j Sm), lexicographically 
ordered, whose components arc defined by o;;(x) = 1 if x; ~ j and O otherwise allows us 
to consider the binary function 

¢k(o(x)) = max min a;;(x) 
yeu. (i,j)EUdy) 

called the systems decomposition at level k, 1 $ k S m. 
This binary structure characterizes the level k of the MMS ,fi in the sense that, for 

k > O,,fi(x) ~kif, and only if, 'Pk(o(x)) = 1. Block and Savits {1982) proved that 

m 

,p(x) = L 1.bk (o(x)) . 
k=I 

Example 2.2 

A) Consider the MMS ¢(x) = max{x 1, x2} where x1 and x2 are the component states, 
in a fixed time, assuming values in M = {O, 1, 2} . Clearly 

U2 = {(2,0),(0,2)}, U2((2,0)) = {(1 , 2)}, U2((0,2)) = {(2,2)} . 

Therefore 

and 
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·and 

B) For the MMS ¢(x) = min{x1,x2} we have 

Therefore 

U1 = {(l, l)}, U1((l, 1)) = {(1, 1), (2, 1)}, 

U2 = {(2,2),}, U2((2,2)) = {(1,2),(2,2)}. 

¢1(o(x)) = max min <l';j(x) = min{nu(x),021(x)} 
yEU1 (i,j)EUi(y) 

Considering the random behavior of the components X;, 1 Si Sn, X; EM, we can 
define: 
Definition 2.3 

The reliability of component i at level l is defined as 

E[oil(X)] = P(ail(X) = P(X; 2: l) = Pili 

The reliability of the multistatc monotone system at level k is 

where P = (P;j, 1 Si Sn, 1 S j Sm). 
The MMS reliability is given by 

m m 

E[cp(X)] = LP(¢(X) 2: k) = LE[c/!k(a(X))]. 
k=l k=l 

3.Signature of a multistate systems signature 

In the dynamic case we let (X1(i)lt,'.o, be a right continuous nonincreasing stochastic 
process with values in M = {O, I, ... , m}, representing the stochastic behavior of component 
i, I Si Sn. The MMS system is represented by (¢(Xt))1e!o where Xt = (X1(l), ... , X1(n)). 

The vector of binary processes a(Xt) = (a;j(X1), I Si Sn, 1 S j Sm), lexicograph­
ically ordered, whose components arc defined by a;j(X1) = I if Xt(i) 2: j and O otherwise 
allows us to consider, as in Section 2, the binary process 

called the systems decomposition at level k, 1 S k S m. 
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To follows, we define T;1 = inf{t 2: 0: o;1(Xt) = O} if{}# 0 and oo if{}= 0, as the 
first time for which Xt(i) is at any state smaller than j. Also Tk = inf{t 2: o: </>(Xt) < k} 
if{} cJ 0 and oo if {} = 0 as the first time for which <t>(X(t)) is at any state smaller than 

k. 

In this fashion, the reliability of component i, at level l and time t is 

The reliability of the system at level k and time t is 

The reliability of the system at time t is 

m m 

P(T > t) = E[</>(Xt)] = L E[<f>k(u(Xt))] = L P(Tk > t). 
k=I k=I 

Now, we can consider, as in Barlow and Proschan {1981), the equivalent representation 

Tk = max min Tij 
yEUk (i.j)EU.(y) 

The first question to be done is what happen with the lifetime T;j under the hypothesis 
of continuity, identity and independence of the random lifetimes T;. 

Theorem 3.1 If the random lifetimes T; are independent and identically distributed with 
continuous distribution, then the random lifetimes T;j arc exchangeable. 
Proof If we fix the index i we have 

E[1T;10;j(Xt;)I = P(1T;10;j(Xt;) = 1) = 

P(Xt; (i) 2: j, 1 :S j :Sm) = P(Xmnx,s;Sm t; (i) 2: J) = 

P(Xmax,s;sm t,; (i) 2: j) = P(Til > t;,, T;2 > t;,, ... , T;m > t;m) 

where t;;, 1 :S j :Sn is any permutation of t1, l :S j :Sn. 
In the case in which we jointly consider more than one component the proof is clear 

under the hypothesis of independence and identically distributed components. 
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Now, using the above theorem, we are in conditions to use Theorem 1.2 and Theorem 

1.3 to prove that 

P(Tk > t) = L L P(Tk = T(ij))P(T(ij) > t), 
yEU• (i,j)EU.(y) 

where (T(ij), 1 Si Sn, 1 S j Sm) are the ordered (Tij, 1 Si Sn, 1 S j Sm). 

Definition 3.2 Let T1, ••• , Tn be positive random variables defined in a complete prob­
ability space (D, ~. P), representing the components lifetimes of a multistate monotone 
system with lifetime T. Let Tk be the systems lifetime at levels grcather than or equal to 
k and let T;i be the components lifetimes at levels grcather than or equal to j. Then, the 
multistate system signature vector at level k, 1 S k S m is 

Remark P(Tk = T(ij)) is a cumbersome notation. In a fixed time t, each component is in 
a fixed state j, 1 S j S m, and T;i arc ordered as T;, independent of j, that is, we can think 

T(ii) as T(i)· To overcome this situation we can use T(ij) = T(i), 1 :Si Sn, I :S j Sm. 

Example 3.3 
If T1, T2, T3 are independent and identically distributed component's lifetimes of the 

multistate monotone system lifetime T = T1 I\ (T2 V T3 ) corresponding to a 3 components 
system assuming values in M = {0, 1, 2}. 

Clearly 

U1 = {(l,l,0},(1,0,1}}, U1((l,l,0}} = {(1,1),(2,1}}, U1((l,0,l}} = {(l,1},(3,1}}, 

U2 = {(2,2,0),(2,0,2}}, U2((2,2,0}} = {(1,2),(2,2}}, U2((2,0,2}} = {(1,2),(3,2}}. 

Now 

</>1(a(X1)) = (au(Xt) /\ a21(Xt) V (a11(X1) /\ a31(X1) = 
au (Xt} /\ (a:21(Xt) V a:31(Xt), 

Therefore al1 = P(T1 = T(u)) = ½ and cr½1 = P(T1 = T(2i)) = ~. and the signature 
system survival distribution is 

Also 
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<P2(a(X1)) == (a12(Xt) /\ a22(X1) V (a12(Xt) /\ a32(Xt) == 

0'.12(X1) /\ (a22(Xt) V a32(X1), 

°'i2 == P(T2 == T(12J) == ½ and a~2 == P(T2 == T(22J) == ~, following 
that the signature system survival distribution is 

This representation uses the extension of the signature concept, from the case of 
independent and identically distributed components to exchangeable components lifetimes. 
However, this extension is not necessarily true if we take °'i == P(Tk == T(ij))- It is true 
if (T;j, 1 $ i $ n, 1 $ j $ m) has an exchangeable absolutely continuous jointly 
distribution ( sec the proof in Navarro and Rychlik, (2007)). We can observe this, taking 
the three dimensional Marshall and Olking distribution, obtained from T;j == S;j I\ S, l $ 
i $ 3, 1 $ j $ 2 where S;j and S arc independents and exponentially distributed random 
variables, S;j with parameter A and S with parameter 0, we have 

Therefore 

and 

performing 

However, 

4.0rdering multistate monotone systems 

In this section we assume that the system components processes (Xt(i)),~o, 1 $ i $ n 
are independent and identically distributed processes taking values in M == {O, l, ... ,m}. 
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As in Section 3, the component level processes (o;j(X1), 1 $ i $ n, 1 $ j $ m), is 
exchangeable. 

We analyse results for stochastic, hazard rate and likelihood ratio orders. 

A random vector T, or its jointly distribution function, is stochastically lower than a 
random vector S, or its jointly distribution function, denoted by T :=:;st S if, and only if 

E[H(T)] $ E[H(S)] 

holds for all increasing Borel measurable function such that the expected values exists. 

A random variable T, or its distribution function, is lower than the random variable 
S, or its distribution function, denoted by T ::;hr S if, and only if, 

P(T > t)P(S > s) '.::: P(T > s)P(S > t), Vt $ s. 

If random variables T and S are absolutely continuous, we say that T, or its dis­
tribution function, is lower than S, or its distribution function, in likelihood ratio order, 
denoted by T ::;tr S if, and only if 

h(t) 
Js(t), ! t, Vt'.::: 0, 

where h(t) and Js(t) are the probability densities functions of T and S, respectively. 
To follows we arc going to consider the well know results proved in Shaked and Shan­

thikumar (2007): 

Lemma 4.1 If P(T > tlO) and P(S > tl0) are two families of reliability functions, for 
0 E 9, such that 

P(T > tlO) s P(S > tlO), vt E ITT+, vo E e, 

then 

P(T > t) = L P(T > tl0)dG1(0) $ L P(S > tl0)dG2(O) = P(S > t) 

for all distribution function G1 and G2 such that G1 $ st G2, 

Lemma 4.2 If P(T > tlO) and P(S > tJ0) arc two families of reliability functions, for 
0 E 9, such that 

P(T > tJO) :=:;hr ($1r)P(S > t10') 

whenever O $ o•, then 

P(T > t) = L P(T > tl0)dG1(0) s l P(S > tl0)dG2(O) = P(S > t) 
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for all distribution function G1 and G2 such that G1 5:.hr (S1r)G2. 

Theorem 4.3 Let T be the lifetime of a multistate monotone system with components dy­
namically represented by the processes (X1(i))1;;:o, 1 Si Sn, independent and identically 
distributed, taking values in M = {O, I, ... , m} and let S be the lifetime of other multistate 
monotone systems with components representation (Yi(i))t;,:o, 1 Si Sn, which arc inde­
pendent and identically distributed processes. Let ci and {3k, be the signature vector, at 
level k, 1 S k S m, of the system with lifetimes T and S, respectively. If cl S't f3k and 
P(X;(t) 2'. j) S P(Y;(t) 2'. j), Vt > 0, j EM, then, Tk S't Ski 1 S k Sm. Furthermore, 
T S't S. 
Proof 

Let, as before, O'.;j(X1} =:' l1r,;>t) and {};j(Xt) = l{S,;>t)• 
Follows that 

P(T;i > t) = E[l{T,i>t)] = ,E[0jj(X1)] = P(a;i(Xt) = I) = P(X1(i) 2'. j) S 

P(Y;(t) 2'. j) = P(/3;i(Xt) =I)= E[{};i(X1)] = E[l1s,;>t}] = P(S;i > t). 

Therefore T;j S't S;j, As T(ij) is an increasing function, say Wr, of (T;j, 1 S i S 
n, 1 S j Sm) and S(ij) is an increasing function, say Ills, of (S;j, 1 Si Sn, 1 S j Sm), 
for any increasing and Borel measurable function <I> we have 

E[<I>(T(in)l = E[<I>(wr(T;i, 1 Si Sn, 1 S j Sm) S 

E[<I>(llls(S;i, 1 Si Sn, IS j Sm)= E[<I>(S!ii))]. 

So, we also have T(ij) S't S(ifr From Theorem 3.1 we have 

P(Tk > t) = L L P(Tk = T(ij))P(T(ij) > t). 
yEU• (i,j)EU.(y) 

From Lemma 4.1 and the hypothesis ak 5:.• t {}k, we have Tk '5_·'1 Sk, 1 S k S m. 
Furthermore 

P(T > t) = E[t/>(Xt)] = Ei:!:1E[¢k(a(Xt))] = Ei:!: 1P(Tk > t) '5. 

Ei:!:1P(Sk > t) = Ei:!:1E[¢k(/3(Y1))] = E[t/>(Yt)] = P(S > t), 
and T '5.'1 S. 

Theorem 4.4 Let T be the lifetime of a multistate monotone system with components dy­
namically represented by the processes (X1(i})1;;:o, I Si S n,independcnt and identically 
distributed , taking values in M = {O, 1, ... , m} and let S be the lifetimes of other multi­
state monotone systems with components representation (Yi(i))t>o, 1 Si Sn, which arc 
independent and identically distributed processes. Let ak and {3k~ be the signature vector, 
at level k, 1 S k Sm, of the system with lifetimes T and S, respectively. If ak 5:.hr (S 1r)f3k 
and T(ij) 5:.hr (s1r)s(ij) then, Tk 5:.hr (S1r)sk, 1 S k Sm. 

10 



This Theorem is only an application of Lemma 4.2. 
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