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ABSTRACT

This paper presents a computer program written in TURBO-PASCAL for
IBM-PC compatible microcomputers. The program makes interactive
analysis of structural data either stored on memory or on disk files in
order to find a significative data set of an homogeneous structural
domain. The main program is composed of procedures for edition and
management of structural data files, projection on Schmidt-Lambert
diagram, statistical calculation of tridimensional orientation data,
and finally for printing and transmission of data files to other
computers. The graphical procedures make ciclographic projection on
Schmidt-Lambert diagram besides of poles of planes and lineations. The
statistical procedures allow the determination of’ average
concentration, the plane of best fit Ce.g. the best n axis when it is
for folding analysis), the type and the scattering of structural data
distribution. This paper also presents new normalized numbers to
determine the type and scattering of the sample.

I NTRODUGAO

O principal objetivo deste trabalho foi o desenvolvimento de um
programa de computag3o para tratamento interativo de dados estruturais
capaz de configurar um conjunto de dados representativo de um dominio
estrutural homogénec, através da manipulag3oc de arquivos armazenados em
disco e/ocu introduzidos diretamente pelo teclado.

Os primeiros trabalhos realizados no IPT de tratamento grafico de
dados estruturais foram desenvolvidos em microcomputador TEKTRONIX
acoplado a plotter. Foram ent3c elaboradas rotinas em BASIC para
plotagem em redes de igual &rea (diagrama Schmidt-Lambert) de
lineagBes, polos de planos, projeg@es ciclograficas e de curvas de
densidade de polos por area do diagrama. Estas rotinas foram
denominadas de programa TRADE (YAMAMOTO & PEREIRA JR. 1984).
Recentemente. este foi adaptado para microcomputadores compativeis com
IBM-PC, acoplados a plotter.

Por outro lado, o programa aqui apresentado surgiu do diagnéstico
feito da potencialidade de um melhor aproveitamento dos recursos de ma-
nuseio de dados armazenados em discos flexiveis. Surgiu particularmen-—
te da necessidade sentida em levantamentos geoldégico-estruturais de
detalhe e semidetalhe, de se dispor de um banco de dados estruturais
organizado por pontoc ou estag8o de medida, e por tipo de estrutura
medida. Associou-se a esse banco de dados uma série de rotinas graficas
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de plotagem de dados estruturais em diagrama Schmidt-Lambert, e rotinas
de calculo estatistico baseadas num método bastante poderoso,
fundamentado no conceito do tensor orientagXo. O programa foi
desenvolvido originalmente em BASIC APPLESOFT, para mi crocomputadores
compativeis com Apple II+ CCAMPANHA & YAMAMOTO 1987). A vers3o aqui
apresentada foi desenvolvida em TURBO PASCAL para microcomputadores
compativeis com IBM-PC.

A construg3o em tela grafica e impressora matricial de curvas de
contorno de isofreqiiencia de pontos por 4rea nos diagramas foi
considerada pouco pratica, devido ao pequeno tamanho da tela grafica, a
baixa resolugqo e, a demora do processamento. Esta deficiéncia no
entanto foi em parte compensada pela instalagXo das rotinas de calculos
estatisticos para dados orientados tridimensionalmente, que permite a
caracterizag3o numérica das distribuigBes de dados, a determinagXo de
direg@es médias e guirlandas, e a comparagio entre si das
distribuigB@es. Estas anilises eram feitas antes de modo qualitativo,
com auxflio das curvas de isofreqgiiéncia.

CARACTERI STICAS GERAIS

O diagrama abaixo mostra a estrutura basica do programa.

1

Instalag3o do Programa

[

Menu Principal — Sai do Programa

l ] .t

v

Entrada Arqui vo - Plotagens N Parametros
de em Impress3o Operagdes |+—| Estatisti-
Dados Disco CGraficas cos
Transmiss3o para

outros equipamentos

A principal caracteristica do programa é a facilidade de mani-—
pulagdo de arquivos em discos e/ou dados introduzidos diretamente pelo
teclado. Sua utilizag3o se da através de uma série de mensagens auto
explicativas, dispostas em geral nas forma de "menus".

Cada arquivo ¢ dividido em campos, os quais armazenam conjuntos
distintos de dados. Uma utilizag3o tipica desta estrutura € o armazena—
mento dos dados de um afloramento num arquivo. O nome do arquivo pode
ser o cédigo do afloramento. Cada campo pode corresponder a um tipo de
estrutura geolédgica medida, e o nome do campo pode ser o nome ou o
cédigo da estrutura. O usuirio pode também utilizar esta estrutura de
arquivo de outra forma, como melhor lhe convier.

Os arquivos podem ser lidos, listados no monitor ou impressora,
antes de serem carregados na matriz de dados da meméria. Isto permite
ao usuirio carregar na meméria somente os arquivos que realmente lhe
interessam.

O carregamento de dados na meméria ¢é feito sempre de forma
acumulativa, ou seja, os dados novos s3oc acrescentados ac conjunto ja
existente. Esta forma de entrada de dados permite a combinag3o dos
dados de diferentes arquivos es/ocu diferentes campos. Uma vez
carregados, os dados podem ser plotados em diagrama Schmidt-Lambert e
visualizados no monitor, copiados para a impressora e/ou para arquivos
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em disco. Podem ainda ser calculados diversos parimetros estat{sticos
relacionados a4 distribuig¢8c dos dados. Todas estas operag8es,
executadas interativamente pelo wusuario, permitem chegar a wuma
configurag&o final de um conjunto de dados representativo de um dominio
estrutural homogéneo.

Os dados de entrada devem estar na forma de rumo azimutal e
angulo de caimento (plunged de lineag®es, ou rumec azimutal do mergul ho
e angulo de mergulho de planos (forma CLARD.

Os resultados s3o apresentados na forma de rede de igual 4area,
cujo raio pode ser determinado pelo usuario. Os dados de planos podem
ser apresentados na forma de polos ou projegdes ciclograficas CFigura
63, sendo impresso o nome do diagrama (fornecido pelo usuiriod e o
nimero de dados. Podem ser feitas plotagens sobrepostas de dados
("overlays"). Os resultados estatisticos sZo fonecidos na forma de trés
planos ortogonais entre si C(trés planos de elipséide do tensor
crientag®o), que guardam relag3o direta com a simetria de distribuig8o,
e cuja intersecg3o 1 Cautovetor 1) corresponde ao vetor médioc da
distribuig%o, e a intersecg®o 3 (Cautovetor 3) aoc eixo n (Figura 7).
S3o listados os seguintes parametros estatisticos: numeroc de dados CND,
forma de distribuig3o (F), dispers%c (D), os trés autovalores e a
orientag3o (na forma CLARD dos trés autovetores.

CONSIDERAGSES TEORICAS

Representag3o Grafica e Métodos Estatisticos de Anadlise de Dados de
Orientag3o.

A forma mais adequada de representaglo grafica de dados de
orientagd3o tridimensional ¢ feita usando projeg®es estereograficas em
diagramas, tais comc a rede de Wulff e a de igual 4&rea (rede de
Schmidt-Lambert). Para dados tridimensionais, formas como a rosicea e
histogramas de mergulho ou do azimute do rumo tém pouco significado, ja
que, isocladamente, nem o rumo nem o mergulho de um plano ou linha sZ%o
suficientes para caracterizar sua orientag3c no espago, e nem
correspondem a pardmetros com algum significado especial.

As andlises estruturais quantitativas s3o feitas normalmente com o
recurso de diagramas de trama. Em geral as estruturas lineares ou as
retas normais (polos) de estruturas planares s3o plotadas em redes de
igual 4rea (Schmidt-Lambert), podendoc ou nZo serem tragadas curvas de
contorno de densidade de pontos versus 4rea. Os padr8es de distribuigfo
obtidos s3o ent3o analisados qualitativamente, quanto a forma da
distribuig¢Zo C(unimodal, peolimodal, guirlanda de circulo maximo,
guirlanda de circulo minimo, etc.) e sua dispersZo.

Existem j& h& algum tempo programas de computador para o tragado
automidtico de diagramas de trama (ver por exemplo YAMAMOTO & PEREIRA
JR. 1984). Menos conhecidos no entanto (e também mais embrionarios) s3o
os métodos estatisticos numéricos aplicados na andlise estrutural, que
s3o incluidos num campo que pode ser denominado estatistica de dados
direcionais (MARDIA 1972, ver também WATSON 1965 e CHEENEY 1983).

Diversos métodos tém sido propostos também para a determinag3o
numérica do melhor ajuste para circulos maximos e circulos minimos, os
quais tém aplicag3o para a determinagidc de eixos para dobramentos
cilindricos e cénicos, respectivamente C(ver CRUDEN & CHARLESWORTH
1972). Diversos métodos nZo produzem resultados satisfatérios,
‘incluindo aquele propostoc por RAMSAY (1867).

Dos varios métodos, um dos que produzem melhores resultados é
aquele proposto por SCHEIDEGGER (19685) e WATSON (19685), o qual parte da
definigic de um Tensor Orientagfioc. Este método fornece resultados
precisos e confidveis e permite a dedug3co de indices bastante uteis
para a comparag3c entre amostras distintas. Exige um trabalho exaustivo
de cilculo se for feito manualmente, o© que ¢ contornavel pela
utilizag®o de computador ou calculadora programavel.

Tensor orientagdo

As atitudes de lineagBes e polos de planos podem ser tratadas como
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vetores unitarios com relag3o a um sistema de coordenadas triortogonal.
Sua orientag3co pode ser definida por trés cossenos diretores Cl, m, nd
com relagZio a cada eixo. Tomando-se um conjunto de vetores,
demonstrar que a determinagZio de um eixo ou de um plano, de melhor
ajuste, com relag@o aos quais a somatéria dos quadrados dos desvios
angulares (Figura 13> dos vetores seja minima Cou mAximad, pode ser
obtida pela determinag¢3o dos autovalores e autovetores da matriz:

pode-se

$12 1. m =1 .n,

L v L1 L. %

a = Zm 1. "Zm2 Zm n,
i) (R L i

n.l, Zn.mZn|

L
2
L T 1

A determinag3o dos autovalores consiste na determinagZio de um A
tal que:

1%~ S1om 51 n,
A9 A % AN
X Emi- A Sm n, =0
L % L A A
2
n. 1. > n.m, n. - A
L Y L %

O desenvolvimento desse determinante conduz a uma equag3oc de
terceiro grau, que no caso geral deve ter trés rafzes reais e positivas

denomi nadas autovalores. A cada um desses trés autovalores encontra-se
associado um autovetor, sendo os trés autovetores perpendiculares entre
si Ct1, tz, tad. O vetor associado aoc maior autovalor indicara a

crientag3io da concentragdio média da distribui¢®o, enquanto que o vetor
associado ao menor autovalor indicar4 a normal do melhor planc que
contenha o conjunto de vetores {Vi}, ou seja, no casoc da analise de
dobramentos, indicar4 o© melhor eixo n. O autovetor associado aco
autovalor intermediirjio seri perpendicular a esses dois. (Figura 2).

A matriz normalizada, ou seja, cujos elementos sZo divididos pelo

numero N de dados, corresponde a um Tensor Orientagio C(SCHEIDEGGER
1065):

a. .
i
N
Os autovalores assim determinados correspondem a variangas
angulares na trés direg¢@es principais:

T =

2 _ A4
St TN
2 _ Az
S2 =N
2 _ A3
S3 = N

Os trés autovetores definem um elipséide (que € a representagao
quadrica de um tensor de Zgorzdem). Os semi-eixos desse elipsbéide tem
como comprimento VSi, '/Sé e 7’83. Estas trés grandezas s%o os “desvios

padrBes angulares principais" e ser3o denotadas por S, » S2 e SS'

As propriedades matemAticas do Tensor Orien&aq:ﬁo s3Zo as mesmas de
outras grandezas fisicas do tipo tensor de 2= ordem, tais como o
esforgo meclnico Cstress), a deformag3o interna Cstraind, o indice de
refragZo em minerais, etc. O desenvolvimento matemdtico mais geral das
propriedades fisicas tipo tensoriais pode ser encontrado em NYE (1957).
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RelagBes entre os autovalores e a distribuigio de {indices existentes.

A determinag3o dos autovetores permite entXo a dedug®o da concen-
trag@o média e do planc de melhor ajuste de uma distribuig¢Zo de dados
de orientagTo. E conveniente ainda o estabelecimento de indices que
permitam comparar a forma e a dispers3o de distribui¢®es de dados
orientados.

As relagdes entre os autovalores permitem inferir o tipo de
distribuig¢Zo dos dados.

Normalmente, temos que:

A1 > A2 > A3

No caso particular de A1 = A2 = A3, a distribuig¢Zo ¢ aleatéria ou
uniforme, ou, dito de outra forma, n3Ioc ha nenhuma orientag%o
preferencial. O elipséide de orientag3o é uma esfera.

No caso em que A1 é grande e Az e As sFTo comparativamente
pequenos, temos uma distribuig3o tendente a unimodal, sendo o
"elipséide de orientagfo" do tipo alongado. Se Az = As, tem-se uma
simetria rotacional em torno do autovetor ti, associado ao maior
autovalor C(A1d.

No caso de A1 e A2 serem grandes, comparativamente com As pequeno,
a distribuig3o é em guirlanda. Ou seja, os vetores (Vi) distribuem-se
segundo um plano. O elipséide de orientag3o é do tipo achatado. No caso
de A1 = A2, a guirlanda n3o apresenta nenhuma concentra¢foc maxima, e
mostra uma simetria rotacional em torno do autovetor ta, associado ao
menor autovalor As.

Este tipo de relagZio entre os autovalores tem levado alguns
autores a propor indices que descrevem a distribuigZo.

Como na verdade interessam as relag@es entre os autovalores, uma
alternativa ¢ a utilizag3o de um diagrama semelhante ao de Flinn,
amplamente usado em Geologia Estrutural na representag3ioc dos varios
tipos de elipséides de deformagZo interna (straind. Esta técnica foi
adotada por HARVEY & FERGUSON (1978), WOODCOCK (18977> e WOODCOCK &
NAYLOR (€18983). )

WOODCOCK (18770 adota nesse diagrama como ordenada a relagl3o

in cs:/sgn e como abscissa a relag¥o In cs;/s;), similarmente a

modificagio proposta por RAMSAY (1967) para o diagrama de Flinn (Figura
3). No grafico assim construfido as distribuigSes de polos do tipo
unimodais simétricas viao c<2>i ncz:i dir com a ordenada, j& que v3o possuir

S2 = SS’ e portanto In CSB/S3) = 0. As distribuigBes tipo guirlanda

simétrica Cguirlanda continua, sem nenhuma concentragfc de polos dentro
do circulo maximo) vEo coincidir com a abscissa, ja& que neste caso
S, =S, e InC(S;/S5) = 0. As distribuigBes aleatérias vEo coincidir

1 2

com a origem (0,00 do grafico, ja& que 81 = S2 = S3 e portanto
2 o2y 2 25 _

in C 81 /SaD = InC Sa/Ssb 0.

Quanto mais préximas portanto da abscissa as distribuig¢Bes
aproximam-se mais das guirlandas simétricas. Quanto mais préximas da
ordenada , aproximam-se mais das unimodais simétricas. O restante do
grafico ¢é ocupado por distribui¢g@es que apresentam caracteristicas

hibridas C(Figura 3.
Pode-se definir o findice C(WOODCOCK 1967):

in CS{/SY
2 2
ln CSa/Sa)
o qual corresponde a pendente das diversas retas que passam pela origem
C0,0) do grafico. Quando K = 1, temos um caso exatamente intermediario
entre as distribui¢Bes unimodais e guirlanda. Se 1>k >0 a
distribuigXo tende para guirlanda, tanto mais perfeita quanto mais k se
aproximar de zero. Se o = k > 1 a distribuig3o tende para unimodal,
tanto mais perfeita quanto k se aproximar de infinito.
O indice k refere-se & forma da distribuig3o. Pode-se notar também
que quanto mais préximas da origenm, mais dispersas s8o as
distribuig8es, e quanto mais afastadas, maior a orientag8oc
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preferencial, dentro de uma reta com mesmo indice k. E possivel entZo

definir um indice C, que indica a dispers3io da amostra CWOODCOCK
1877>:

¢ = in ¢cs?.s5%

1°73
Uma distribuigfo aleatéria Cuniformed apresentara indice C = O Ce
k =13, e quanto maior for a orientagZo preferencial, tanto mais C

tenderd a infinito.

WOODCOCK & NAYLOR (1983) estabeleceram um teste estatistico para o
indice C, para indicar se a distribuig®o possui ou nXo uma orientagXo
preferencial significativa. Anteriormente, ANDERSON & STEPHENS (1972)
propuseram teste semelhante , porém levando em conta ou o autovalor S_,

ou o Sl' necessitando-se conhecer antes a forma da distribuigXo, se

unimodal ou guirlanda. No teste proposto por WOODCOCK & NAYLOR (1983)
os valores criticos de C s%o dispostos em tabela e grafico para
tamanhos de amostras variando entre 5 e 1000, para quatro niveis de
confianga.

Os {ndices de forma (k) e dispersZo (C) propostos por WOODCOCK
19775, e também os de HARVEY & FERGUSON (1978), tem a desvantagem de
variar entre zero e infinito. Adaptando a proposig&o de HSU (1966)
originalmente concebida para o estudo de deformagZo interna C(straind,
propBe-se aqui o seguinte indice de forma da distribuigZo:

.- alnsa— lnS1 -I.nS3
ln 51 - ln 83
A vantagem é que este indice varia de -1 a +1, mostrando as
seguintes relagd@es com o indice k CWOODCOCK 1977>:

Forma da distribuig3o k E:
guirlanda simétrica o +1
intermediaria 1 o
unimodal simétrica [ ] =1

As relagBes entre estes findices podem ser assim estabelecidas:

_ 1 -k _ 1 =F
F = N ou k = T FF
No diagrama proposto por HSU (1866) o indice referido ¢ plotado
num diagrama em forma de semi-circulo, versus o menor autovalor,
representado como raio de semi-circulo. No caso do tensor de
orientag3o, este raio representaria o indice de dispers3oc da
distribuigf®o (Figura 4). Conforme jA comentado por WOODCOCK (18977), ao
invés de utilizar-se o menor ou o maior autovalor, pode-se utilizar
mais proveitosamente, uma relag3o entre eles:
C = inc S{/5D
O indice C tem também a desvantagem de variar entre O e infinito.
PropBe-se aqui um indice D tal que:

. in €S, /S i in CS]/S
In €S, /S + 1 In cSj/sD + 2
que mantém as seguintes relag@es com o fndice k:
distribuig3o c D
aleatdéria o} (o]
perfeita © 1

A relag3o entre os dois indices pode ser assim estabelecida:
D = C/C + 2 ou C = -2bs/CD - 1D

Estes dois indices, de forma (F) e de dispersZc (D) podem ser
plotados num diagrama em forma de semi-circulo C(Figura 4).
O indice k proposto refere-se apenas a distribui¢@es que variam
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entre unimodais e guirlandas nos casos extremos com simetria axial, e
nos casos intermediarios configurando alguma combinag¢3io das duas com
simetria ortorrémbica. O método na verdade funciona bem com distribui-
¢Bes de simetria esférica Caleatériad, axial e ortorrédmbica, quando
entqo os autovetores coincidem com eixos de simetria, porém nZo com
distribui¢Bes de simetrias monoclinicas ou triclinicas. C(Figura 5).
No caso de distribuig¢Bes assimétricas, o autovetor que representa
a concentrag3io média da distribuig3io estarid deslocado com relagZio a
concentragdo de densidade maxima ("moda') dos dados orientados.
Problemas de interpretag3c também surgem com distribuig¢Bes
bimodais ou polimodais Ce.g., diagramas de juntas), assim como tramas
de guirlandas cruzadas Ce.g., diagramas de petrofabricad CFigura 5).
Deve-se notar no entanto que nestes casos os autovetores
correspondem a "“centros de gravidade'" entre as familias de dados.
Distribuig@es em guirlanda de circulo minimo C(e.g., dobras
cénicas) representam um problema especial de interpretagfoc. Quando a
assimetria é ortorrémbica ou axial, um autovetor coincide com o eixo de
guirlanda. Para tramas axiais este autovetor ¢é associado ac maior
autovalor se o circulo minimo possui um raio menor que 552, e com o
menor autovalor para circulos minimos com raios maiores. Para um
circulo minimo com simetria axial e raio por volta de 552. os trés
autovalores sZo aproximadamente iguais, e os indices k e C indicam uma
distribuig¢®o esférica ou aleatéria CWOODCOCK 1977).

SUMARIO DOS PROCEDIMENTOS ADOTADOS

Os dados de entrada devem estar em graus na forma CLAR ou européia
Cazimute do rumo da linha de mAximo mergulho de um planc e &ngulo de
mergulhod.

Para a plotagem de lineagic no diagrama Schmidt-Lambert,
considerou-se a distancia do centro do diagrama até a projeg3o da
lineag3c como CHOBBS et al. 1976):

D = ¥2.R.sin Cn/4 - ¢/20 onde: R = raio do circulo
¢ = caimento de lineagZo

A distancia do centro do circulo até a projegio do polo de um
plano foi considerado como CHOBBS et al., op. cit.D:

D = ¥2.R.sin C¢/2 onde R
¢

Para o tragado de projeg¢des ciclograficas, utilizou-se da fung3o
que define o mergulho aparente de um plano C(RAGAN 1973) entre a direg3o
do planc e a diregZo do mergulho aparente, conforme ja utilizado por
YAMAMOTO & PEREIRA JR.(C1984):

raio do circulo
mergulho do plano

tan o0 = tan & . sin f3
onde a = mergulho aparente;
& = mergulho real;
# = &ngulo entre a diregZo do plano

e a dire¢%o do mergulho aparente.

Tragou-se entZoc a projeglo ciclografica unindo-se as linhas
sucessivas contidas no plano, desde o mergulho zero até o maximo valor
de mergulho C(mergulho reald. A distlncia do centro do circuleo até o
ponto de mAximo mergulho da projeg¢io ciclografica ¢ dada por C(HOBBS et
al., op.cit.D:

D = Y2.R.sin Cn/4 - ¢/2) onde R
¢

Para a determinag3o dos parametros estatisticos foi estabelecido
um sistema triortogonal de referéncia baseado nas coordenadas
geograficas e na linha vertical, e os dados de orientag®co de planos na
forma CLAR Cazimute do rumo do mergulhos/dngulc de mergulhod foram
transformados nos cossenos diretores (1, m, n) dos polos dos planos,
considerados como vetores unitarios, calculados conforme a seguir:

raio do circulo
a&ngulo de mergulho do plano

1 = cos Crumo).sen Cmergul hod
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m = sen (rumo).sen (mergulhod
n = cos (mergulhod

A matriz orientag3ico foi entXo montada por somatérias dos cossenos
diretores de todos os dados, conforme indicado no f{tem anterior, e cada
elemento dividido pelo numero N de dados. Os autovalores foram
deduzidos pela resolugdo da seguinte equagdo de terceiro grau,
adaptando-se o procedimento adotado por RAMSAY C1967):

M1 a?+1Ia-1I_=0
1 2 3
onde:

1% + sm? + =0 =1

L]
I

I, = £1%. 2m® + =mPsn®+sn? £12-C81md 2-CEmnd 2~CS1nd %
Iy = {217 £n. En®+251m. Zmn. S1n-517% CZmnd *-Em*C £1nd2-EnCcE1m %}

Para a resolug3o da equag3o cuUbica utilizou-se o método de
Cardano.

Os cossenos diretores (1, m, n) dos trés autovetores associados
L L 1

respectivamente as autovalores A4, A2 e A3 foram calculados da seguinte
forma C(RAMSAY, 1967):

L 2 b
n = 1l =n m, =1 C
1 = > 1 T Ca 1 % a
PG & i
1 %
onde: a, = £m°sn® - zm"'k,L = )\,‘an + xf - ¢Emnd?
b = Aflm + £ln.Smn - Slm. £n?
¢, = Afln + Elm.Emn - Sln. Sm>

Os sinais dos valores dos cossenos diretores de cada autovetor sfo
testados para se saber a que quadrante pertencem, transformados na
forma CLAR e plotados no diagrama. :

Os indices de forma e dispers3o da distribuig3oc de polos de planos
s3o calculados conforme os indices normalizados propostos no item
anterior:

2.1nCS,> - InCSD> - InCS)> eSS

3 InCS > = InCS B =
4 a

incs®/s* + 2
4 8

APLICAGOES PRATICAS

As aplicagBes até agora feitas no programa demonstraram que este
se constitui numa ferramenta pratica e flexivel para a analise de
grandes volumes de dados estruturais. A maior parte do tempo de
trabalho ¢ tomado na digitag®o inicial dos dados. Embora tenha sido
concebido inicialmente para a delimitag83c e anidlise de dominios
estruturais em 4areas dobradas, a configuragZo alcangada ¢é bastante
flexivel, e permite diversas outras utiliza¢cB®es, a critério do usuario.
Os métodos estatisticos desenvolvidos mostraram-se bastante Gteis, no
sentido de fornecerem sempre o© melhor ajuste estatistico aos dados
apresentados, independentemente de interpolag®es subjetivas, e mesmo
com distribui¢Bes com alta dispers3®o. Permite também uma comparag3o
mais objetiva e isenta entre amostras distintas de dados.

E particularmente Gtil no tratamento preliminar de dados, quando
se busca um reconhecimento de dominios homogéneos num grande volume de
dados. A rapidez com que o computador permite o agrupamento e
reagrupamento de dados, torna possivel uma nova abordagem deste tema. A
delimitag8dc dos dominios pode ser feita por tentativa e erro,
agrupando-se sucessivamente os dados de pontos. vizinhos, enquanto haja
uma orientag3o preferencial significativa, e voltando-se atras scbre
os préprios passos quando a dispers3o ultrapassa valores criticos.

1717



REFERENCI AS BIBLIOGRAFICAS

ANDERSON, T.W. & STEPHENS, M.A. 1972. Tests for randomness of
directions against equatorial and bimodal alternatives. Biometrika,
58(3):613-621.

CAMPANHA, G.A da C. & YAMAMOTO, J.K. 1987. Programas para geologi.
estrutural em linguagem BASIC para microcomputadores tipo "Apple'.
S3o Paulo, IPT. 65p. C(IPT. Relatério, N2 25 015) CinéditoDd.

CHEENEY, R.F. 1983. Statistical methods in geology George Allen &
Unwin Ltd., London.

CRUDEN, D.M. & CHARLESWORTH, H.A.K. 1g72. Observations on the
numerical determination of axes of cylindrical and conical folds.
. Geol. Soc. Am. Bull., 83:2019-2024.

HARVEY, P.K. & FERGUSON, C.C. 1978. A computer simulation approach to
textural interpretation in crystalline rocks. In: MERRIAM, D.F. 1978,
Recent advances in geomathematics, Pergamon, Oxford. p.201-232.

l-iOBBS. B.E.; MEANS, W.D.; WILLIAMS, P.F. 1978. A4n outline of
structural geology. John Wiley & Sons, Inc., 571p.
HSU, T.C. 1986. The characteristics of coaxial and non-coaxial

strain paths. Journal of Strain 4dnalysis, 1(3):216-222.

KIRALY, L. 1069. Statistical analysis of fractures Corientation and
density)d. Geol.Rundschau, 59(1):125-151.

MARDIA, K.V. 1972. Statistics of directional data. Academic Press,
London.

NYE, J.F. 19857. Physical properties of crystals: their representation
by tensors and matrices. Oxford Univ. Press, 322p.

RAGAN, D.M. 1973. Structural geology: an introduction to geometrical
technigues. John Wiley & Sons, 2- ed., 208p.

RAMSAY, J.G. 1987. Folding and fracturing of rocks. Mcgraw Hill, New
York, S568p. ;

SCHEIDEGGER, A.E. 1965. On the statistics of the orientation of
bedding planes, grain axes, and similar sedimentologica. data.
U. S. Geol. Survey Prof. Paper, 5286-C:164-167.

WATSON, G.S. 1965. Equatorial distributions on a sphere. Biometrika,
52:193-201.

WOODCOCK, N.H. 1977. Specification of fabric shapes using an
eigenvalue method. Geol. Soc. Am.Bull., 88:1231-1236.

WOODCOCK, N.H. & NAYLOR, M.A. 1983. Randomness testing in three
' dimensional orientation data. Journal Struct. Geol., B(B):530-548.
YAMAMOTO, J.K. & PEREIRA JR., G.G. 1984. Tratamento ~automitico de
dados estruturais. In: CONGR. BRAS. GEOL., 33, Rio de Janeiro, 1984

Anais... Rio de Janeiro, SBG. v.12, p.5283-5293.

1718



h=COS gi
Sb

Figura 1-Desvio angulores (em Gngulos solidos S@i e Sb) de um vetor unitdrio Vi
com relagdo aum eixo Z, e um plano XY (adaptado de Kiraly 1969)

Figura 2 - Relocoes entre uma distribui¢cdo de polos e os autovetores.O autovetor t
(associado ao maior autovalor) corresponde @ concentragdo media da distribuigdo,
enquanto o autovetor t3(associado ao menor autovalor) corresponde ao polo doplano  de
melhor ajuste (ao eixo Tt ,no caso da andlise de dobramentos cilindricos)-O autovetor fz(as
sociado ao autovalor miermed:ono) ¢ perpendicular aos outros dois(adaptado de Kiraly 1969)
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Figura 3- Diograma bilogaritmico das rozbes dos autovalores normalizados $1,S2,53
com exemplos de distribuigoes de dados orientados em partes diferentes do grafico

(adaptado de Woodcock,1977).
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Figuro 4-Diograma de HSU adaptado pora os indices aqui propostos de forma e disper
$80.0s pontos numerados mostrom aproximadamente as posigoes das mesmos distribui-

¢oes da figura 3.
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Figura 5- Projegdes de igual-area para distribuigdes idealizadas de tramas com
simetria ortorrombica (a,d,e), monoclinica (b)e triclinica(c), mostrando a atitude

dos autovetores associados (adaptado de Woodcock,1977).
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Lineacoss N=20 dados

!
Projecoss ciclograficas N=4 dados

Figura 6 - Exemplos de projecgoes ciclograficas e plotagem de lineacoes
efetuadas pelas rotinas graficas do programa
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Acamamentos N=50 dados

PARAMETROS ESTATISTICOS

Namero de dados = 50

FORMA (+1 = guirlanda -1 = unimodal)

o= 7.5173777029E~-01

DISPERSAO (0 = aleatoria 1 = nula)

D = 7.4729273440E-01

AUTOVALORES

\al 6.7448408010E-01 V2 = 3.2369443423E-01

o

v3 1.8214856764E~-03
AUTOVETORES (Al = vetor médio A3 = eixo pi)
Al = 80/50 A2 = 344/5 A3 = 250/40

Figura 7 - Exemplos de diagrama e parametros estatisticos calculados
pelo programa. A intersecgao 1 no diagrama (autovetor 1) corresponde
ao vetor médio da distribuicao e a interseccao 3 (autovetor 3) ao eixo
m. Sao listados os seguintes pardmetros estatisticos: nimero de dados
(N), forma de distribuicao (F), dispersdao (D) e os trés autovalores e
os trés autovetores (forma CLAR).
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