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Abstract

Symmetry energy, temperature and density at the time of the intermediate mass fragment formation 
are determined in a self-consistent manner, using the experimentally reconstructed primary hot isotope 
yields and anti-symmetrized molecular dynamics (AMD) simulations. The yields of primary hot fragments 
are experimentally reconstructed for multifragmentation events in the reaction system 64Zn + 112Sn at 
40 MeV/nucleon. Using the reconstructed hot isotope yields and an improved method, based on the modi-
fied Fisher model, symmetry energy values relative to the apparent temperature, asym/T , are extracted. The 
extracted values are compared with those of the AMD simulations, extracted in the same way as those for the 
experiment, with the Gogny interaction with three different density-dependent symmetry energy terms. The 
asym/T values change according to the density-dependent symmetry energy terms used. Using this relation, 
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the density of the fragmenting system is extracted first. Then symmetry energy and apparent tempera-
ture are determined in a self consistent manner in the AMD model simulations. Comparing the calculated 
asym/T values and those of the experimental values from the reconstructed yields, ρ/ρ0 = 0.65 ± 0.02, 
asym = 23.1 ± 0.6 MeV and T = 5.0 ± 0.4 MeV are evaluated for the fragmenting system experimentally 
observed in the reaction studied.
© 2014 Elsevier B.V. All rights reserved.

Keywords: Intermediate heavy ion reactions; Reconstructed primary isotopes; Density; Symmetry energy; Temperature; 
Self-consistent method

1. Introduction

Nuclear symmetry energy, a part of the equation of state (EoS) in the nuclear matter equation, 
has been extensively studied in the last three decades. The symmetry energy relates to many 
subjects such as in nuclear astrophysics, nuclear structure, and nuclear reactions. Its property 
determination is a key objective in laboratory experiments [1,2]. Investigations of the symmetry 
energy, especially focusing on its density dependence, have been conducted using many observ-
ables such as isotopic yield ratios [3], isospin diffusion [4], neutron–proton emission ratios [5], 
giant monopole resonances [6], pygmy dipole resonances [7], giant dipole resonances [8], col-
lective flows [9] and isoscaling [10–12]. Different observables may probe the properties of the 
symmetry energy at different densities and temperatures.

In a theoretical work of the EoS study, Wiringa et al. [13] pointed out that the density depen-
dence of the symmetry energy may have different slope parameters in different higher density 
regions. When a three body interaction is taken into account, the symmetry energy shows a sig-
nificant softening at ρ/ρ0 ∼ 2–3, hardening again at ρ/ρ0 ∼ 5 and then shows an asymptotic 
soft trend for the higher density. Therefore it is important to know not only the values of the 
symmetry energy and slope parameter or the exponent of the density dependent terms, but also 
the density and temperature of the system when the values are evaluated.

In one of our previous works, the density dependence of the symmetry energy at low densi-
ties were experimentally studied in several heavy ion reactions at 47 MeV/nucleon, using the 
light particles (Z = 1, 2) from the intermediate velocity source as the probe [14]. In that study 
the temperature in the region 5–10 MeV was evaluated from the double ratio thermometer and 
the density of 0.03 ≤ ρ/ρ0 ≤ 0.2 was extracted from the coalescence technique. In the sampled 
density and temperature intervals, symmetry energies were derived and nonzero symmetry en-
ergies were obtained at low densities. However in the quasiparticle approaches, such as Skyrme 
Hartree–Fock and relativistic mean field models or Dirac–Brueckner Hartree–Fock calculations, 
the symmetry energy tends to zero at low densities [2,15,16]. This significant experimentally 
observed symmetry energy deviation at low densities from those of the quasiparticle predictions 
can be attributed to the cluster formation which dominates the structure of low-density symmetric 
matter at low temperatures, in accordance with the mass action law.

In violent heavy ion collisions at intermediate energy regime (20 ≤ Einc ≤ a few hun-
dred MeV/nucleon), intermediate mass fragments (IMFs) are copiously produced through mul-
tifragmentation processes. Nuclear multifragmentation, which in general, can be divided into 
stages, i.e., the dynamical compression and expansion of the fragmenting source, and the for-
mation of primary hot fragments, was predicted a long time ago [17] and has been studied 
extensively following the advent of 4π detectors [18–20]. Nuclear multifragmentation occurs 
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when a large amount of energy is deposited in a finite nucleus, and thus it provides important 
information on the properties of the hot nuclear matter equation of state.

To model the multifragmentation process, a number of different models have been developed 
in two distinct scenarios. One is based on a transport model, in which nucleon propagation in a 
mean field and nucleon–nucleon collisions under Pauli-blocking are two main physical ingredi-
ents. Various transport models have been coded, since Boltzmann–Uehling–Uhlenbeck (BUU) 
model [21] was first proposed in 1980s, which is a test particle based Monte Carlo transport 
model. Vlasov–Uehling–Uhlenbeck model (VUU) [22], Boltzmann–Nordheim–Vlasov model 
(BNV) [23] are formulated slightly differently with the same concept. Stochastic mean field 
(SMF) model [24–26] is also a test particle based model, but with fluctuations in multifrag-
mentation process. Instead of using the test particles, Gaussian wave packets are introduced 
in describing the nucleons such as quantum molecular dynamics model (QMD) [27–29]. Con-
strained molecular dynamics(CoMD) model [30–33] and improved quantum molecular dynamics 
model (ImQMD) [34–38] are based on QMD, but an improved treatment is made on the Pauli 
blocking during the time evolution of the reaction. Fermionic molecular dynamics(FMD) [39]
and anti-symmetrized molecular dynamics (AMD) [40–42] are most sophisticated models, in 
which the Pauli principle is taken into account in an exact manner in the time evolution of the 
wave packet and nucleon–nucleon collisions. Most of them can account reasonably well for 
many characteristic properties experimentally observed. On the other hand statistical multifrag-
mentation models such as microcanonical Metropolitan Monte Carlo model (MMMC) [43,44]
and statistical multifragmentation model(SMM) [44–52], based on a quite different assumption 
from the transport models, can also describe many experimental observables well. The statistical 
models use a freeze-out concept. The multifragmentation is assumed to take place in equilibrated 
nuclear matter described by parameters, such as size, neutron/proton ratio, density and tempera-
ture. In recent analyses the parameters are optimized to reproduce the experimental observables 
of the final state. In contrast, the transport models do not assume any chemical or thermal equi-
libration. Nucleons travel in a mean field experiencing nucleon–nucleon collisions subject to the 
Pauli principle. Fragmentation mechanisms are determined by the evolutions of the wave pockets 
or nucleons in the phase space, which also differ from those of the statistical models.

One of the complications one has to face when comparing the experimental observables to the 
model predictions in either dynamical or statistical models, is the secondary decay process. When 
fragments are formed in a multifragmentation process, many of them can be in excited states and 
cool down by evaporation processes before they are detected experimentally [53–56,58]. Here 
the fragments at the time of formation are called “primary” fragments. Those observed after the 
cooling process are called the “secondary” or “final” fragments. Multifragmentation process is a 
very fast process which occurs in an order of 50–100 fm/c in the intermediate energy heavy ion 
collisions, whereas the secondary decay process is much slower. Therefore the secondary cooling 
process may significantly alter the fragment yield distributions of the primary isotopes [59–61]. 
Even though the statistical decay process itself is rather well understood and well coded, it is not a 
trivial task to combine it with a dynamical code. That is because the statistical evaporation codes 
assume the nuclei at thermal equilibrium with normal nuclear density and shapes. However these 
conditions are not guaranteed for fragments when they are formed in the multifragmentation 
process.

In order to avoid this complication and make the comparisons between results from the ex-
perimental data and different models more straight forward, we proposed a method in which the 
primary hot fragment yields are reconstructed experimentally. The method utilizes a kinematic 
focusing of the evaporated particles along the precursors of IMFs. In Fermi energy heavy ion 
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Fig. 1. (Color online.) Isotopic multiplicity distributions of experimental cold fragments (dots), reconstructed hot frag-
ments (closed squares) as well as AMD primary hot fragments (circles) as a function of fragments mass number A for a 
given charge Z, which is indicated in the figure. In the AMD simulations, g0AS interaction is used.

collisions, light particles are emitted at different stages of the reaction and from different sources 
during the evolution of the collisions. Those from an excited isotope are kinematically focused
into a cone centered along the isotope direction. The kinematical focusing technique uses this na-
ture. Details of the experiment, the kinematical focusing technique and the results are presented 
in Refs. [55,56].

In that work, the events triggered by IMFs in the experiment are “inclusive”, but they belong 
to a certain class of events. In order to determine the event class taken in the experiment, AMD 
simulations are used to evaluate the impact parameter range sampled. Firstly the impact param-
eter distributions, corresponding violent, semi-violent, semi-peripheral and peripheral collisions 
are calculated. The violence of the reaction for each event in the AMD simulation is determined 
in the same way as our previous work [57]. Then the impact parameter distribution of the events 
triggered by the IMFs at 20◦ is calculated and compared to those corresponding to the different 
violence. The distribution is very similar to those of the semi-violent collisions, in which the 
majority of the events originates from the impact parameter range of 0–8 fm. Therefore in the 
following analyses, the comparisons of the extracted parameters from the experimentally recon-
structed isotope yields are made with those of the AMD simulations in the impact parameter 
range of 0–8 fm. In Fig. 1 the results of the multiplicity distributions of the experimental cold 
and reconstructed hot isotopes are shown, together with those of the primary isotopes simulated 
by the AMD calculations. The reconstructed isotope multiplicities are reasonably well repro-
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duced by the primary isotope distribution of the AMD simulation. In Refs. [56,58], we studied 
the properties of the fragmenting system through the symmetry energy coefficient relative to the 
temperature, asym/T . In the study the asym/T values were extracted in a simpler formalism, uti-
lizing three isobars of the reconstructed primary hot fragments with I = N − Z = −1, 1 and 3. 
This article presents an improved method to calculate the asym/T values, in which the mass de-
pendence of the temperature is taken into account as an apparent temperature. This method has 
been applied recently to the simulated AMD events of the very central collisions for 40Ca+ 40Ca
at 35 MeV/nucleon [62]. A self-consistent determination of density, symmetry energy and tem-
perature described in Refs. [56,58] was also employed there. In this work the same procedure 
following Ref. [62] is applied to the experimentally reconstructed isotope yields of 64Zn + 112Sn
at 40 MeV/nucleon to study the characteristic properties of the hot nuclear matter in the multi-
fragmenting system.

This article is organized as follows. In Section 2 we describe the improved method to deter-
mine the symmetry energy coefficient relative to the temperature, asym/T , utilizing all isotope 
yields. In Section 3, a self-consistent determination of density, symmetry energy and temper-
ature is discussed. In Section 4, the mass dependent apparent temperature is studied. Finally, 
a summary is given in Section 5.

2. Extraction of asym/T0 values

In order to make a connection between the symmetry energy in a model and the experimen-
tally reconstructed primary hot isotope yields in Fig. 1, the Modified Fisher Model (MFM) is 
employed [63–66]. MFM has been used to study the characteristic properties of the hot nuclear 
matter in the previous works [56,58–60,62,66,67]. In the framework of MFM, the yield of an 
isotope with I = N − Z and A (N neutrons and Z protons) produced in a multifragmentation
reaction, can be given as

Y(I,A) = Y0 · A−τ exp

[
W(I,A) + μnN + μpZ

T
+ Smix(I,A)

]
. (1)

Using the generalized Weizsäcker–Bethe semiclassical mass formula [68,69], W(I, A) can be 
approximated as

W(I,A) = avA − asA
2/3 − ac

Z(Z − 1)

A1/3
− asym

I 2

A
− ap

δ

A1/2
,

δ = − (−1)Z + (−1)N

2
. (2)

In Eq. (1), A−τ and Smix(I, A) = N ln(N/A) + Z ln(Z/A) originate from the increases of the 
entropy and the mixing entropy at the time of the fragment formation, respectively. μn (μp) is the 
neutron (proton) chemical potential. τ is the critical exponent. In this work, the value of τ = 2.3
is adopted from the previous studies [66]. Since we apply this formulation for the primary hot 
fragments, the coefficients, av , as , asym, ap and the chemical potentials, are generally temperature 
and density dependent, even though these dependencies are not shown explicitly.

In this formulation a constant volume process at an equilibrium is assumed in the free energy, 
and therefore the term “symmetry energy” is used throughout this work, following Ref. [70]. 
If one assumes a constant pressure at the equilibrium process [71], the therm “symmetry en-
thalpy” should be used. Experimentally, whether the equilibrium process takes place at constant 
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pressure or volume cannot be determined, and thus we use “symmetry energy” through out the 
paper, keeping in mind the ambiguity [70].

In the previous analyses [56,58–61], the temperature in Eq. (1) was assumed to be identical 
to the temperature of the fragmenting source and treated as a constant for all isotopes. However 
as seen in Ref. [62], this temperature turns out to be fragment mass dependent. This mass depen-
dence on the temperature was not recognized in these previous analyses, just because the mass 
dependence was masked by the larger error bars. However in this improved method, the error 
bars become small and the mass dependence becomes evident. In order to take into account this 
mass dependence of the temperature in Eq. (1), the temperature T is replaced by an apparent 
temperature T (A) = T0(1 − kA). T0 is the temperature of the fragmenting source and k is a con-
stant. As discussed in Ref. [62], this mass dependence of the apparent temperature is attributed 
to the system size effect.

In order to study the density, temperature and symmetry energy in the fragmenting source, the 
improved MFM of Eq. (1) is utilized to calculate the asym/T0 value, which is extracted from the 
available isotope yields. Since the asym/T0 value in Eqs. (1) and (2) depends on 5 parameters, 
av , as , ac , ap and �μ (�μ = μn − μp), the optimization process of these parameters is divided 
into the following three steps to minimize the ambiguity of each parameter. For a given k value,

1. Optimize �μ/T0 and ac/T0 values from mirror isobars.
2. Optimize av/T0, as/T0 and ap/T0 values from N = Z isotopes.
3. Using extracted parameters in step (1) and step (2), asym/T0 values are extracted from all 

available isotopes. Comparing the extracted asym/T0 values from the AMD simulations with 
three different interactions, the density of the fragmenting source is extracted. Using this den-
sity, the value of the symmetry energy coefficient, asym, for each interaction is determined. 
The temperature is then extracted following the relation, T0 = asym/(asym/T0).

It is expectable that if the k value is properly selected which means the mass dependence is 
well considered, a constant T0 is obtained. Since the k value is small as seen below, we perform 
the optimization of the parameter k in an iterative manner, that is, in the first round k = k1 = 0 is 
set in T (A) = T0(1 − kA) and calculate the temperature as a function of A, using steps (1)–(3). 
From this plot a new k′

1 value is extracted from the slope. In the second round, k = k2 = k1 + 1
2k′

1
is used for the steps (1)–(3) and a new k′

2 value is extracted. If the new k′
2 value is 0 within a 

given error range, the iteration stops and the k2 value is fixed as the mass dependent parameter 
of the apparent temperature and T0 value is determined. Otherwise the iteration continues.

These procedures are applied individually for the reconstructed isotope yields and the AMD 
simulated events with interactions having different density dependencies of the symmetry energy 
term, i.e., the standard Gogny interaction which has an asymptotic soft symmetry energy (g0), 
the Gogny interaction with an asymptotic stiff symmetry energy (g0AS) and the Gogny interac-
tion with an asymptotic super-stiff symmetry energy (g0ASS) [41,72]. To keep consistent with 
experimental isotope selections, for AMD primary hot fragments, an approximate window is 
employed, in which the multiplicity of the IV source component is calculated by integrating the 
energy spectra over E > 5 MeV/nucleon and between 5◦ < θ < 25◦ in the laboratory frame in 
order to minimize the contribution from the projectile-like and the target-like sources, based on 
the moving source analysis [56,58].

Details of each step are described below. In the step (1), following Ref. [59], the isotope yield 
ratio between isobars with I + 2 and I , R(I + 2, I, A), is utilized, which is
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Fig. 2. (Color online.) ln[R(I, −I, A)]/I versus A for mirror nuclei with I = 1 for the case of the reconstructed isotope 
yields. The curve is the fit result of Eq. (4) for k = 0. The extracted values of �μ/T0 and ac/T0 are given in the third 
and fifth columns of Table 1.

R(I + 2, I,A) = Y(I + 2,A)/Y (I,A)

= exp
{[

μn − μp + 2ac(Z − 1)/A1/3

− 4asym(I + 1)/A − δ(N + 1,Z − 1)

− δ(N,Z)
]/[

T0(1 − kA)
] + �(I + 2, I,A)

}
, (3)

where Y(I, A) is the yield of isotopes with I and A, and �(I + 2, I, A) = Smix(I + 2, A) −
Smix(I, A). When the above equation is applied for a pair of mirror nuclei of odd mass isotopes 
with I = −I and I , the symmetry energy term, pairing term and mixing entropy terms drop out 
and the following equation is obtained.

ln
[
R(I,−I,A)

]
/I = [

�μ + ac(A − 1)/A1/3]/[
T0(1 − kA)

]
. (4)

For available mirror isobars with I = 1 and −1, �μ/T0 and ac/T0 are optimized in Eq. (4). 
The ln[R(I, −I, A)]/I values and the fit result for k = 0 is shown in Fig. 2 for the case of the 
reconstructed isotope yields. Similar results are obtained for the AMD simulated events.

In the step (2) we apply Eq. (1) to the N = Z isotopes with the extracted �μ/T0 and ac/T0
values in the step (1). For N = Z = A/2 isotopes, the free energy relative to the temperature can 
be calculated from Eq. (1) and Eq. (2) without the symmetry energy term as

−F(A/2,A/2)

T0
= −F(A/2,A/2)

T (A)
· (1 − kA)

= ln

[
Y(A/2,A/2)Aτ

Y0

]
· (1 − kA)

= ãv

T0
A − as

T0
A2/3 − ac

T0

A(A − 2)

4A1/3

− ap δ

1/2
+ A(1 − kA) ln

(
1
)

, (5)

T0 A 2
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Table 1
a/T0 and �μ/T0 for the first round (k = 0) and the final round (0.0022).

ãv/T0 as/T0 ac/T0 ap/T0 �μ/T0
a

k = 0.0
g0 1.15 0.0 1.82 × 10−1 5.58 × 10−1 6.04 × 10−1

g0AS 1.10 0.0 1.64 × 10−1 6.91 × 10−1 4.80 × 10−1

g0ASS 1.07 0.0 1.45 × 10−1 8.98 × 10−1 4.32 × 10−1

Exp. 1.08 0.0 1.44 × 10−1 1.13 × 10−1 6.26 × 10−1

k = 0.0022
g0 1.09 0.0 1.67 × 10−1 6.34 × 10−1 6.26 × 10−1

g0AS 1.04 0.0 1.50 × 10−1 7.40 × 10−1 5.05 × 10−1

g0ASS 1.01 0.0 1.32 × 10−1 9.68 × 10−1 4.51 × 10−1

Exp. 1.01 0.0 1.26 × 10−1 1.72 × 10−1 6.76 × 10−1

a �μ/T0 values are taken from the step (1).

where ̃av = av + 1
2 (μn + μp). The value of ln[Y(A/2,A/2)Aτ

Y0
] on the right of the second equation 

can be calculated from the isotope yields when the τ value is fixed. Therefore none zero values 
of this equation show the deviation of the mass distribution of N = Z isotopes from the power 
law distribution of the critical exponent [66]. In order to eliminate Y0, all isotope yields are 
normalized by the yield of 12C [59–61,66,67]. For the first round (k = 0), the renormalized 
values of −F(A/2,A/2)

T0
from the reconstructed isotope yields are plotted as a function of the 

isotope mass A using solid squares in Fig. 3(a). The values of ̃av/T0, as/T0 and ap/T0 are used 
as free parameters to fit the given −F(A/2,A/2)

T0
values, employing Eq. (5). A typical search result 

is shown by open squares in Fig. 3(a) for the case of the reconstructed isotope yields at the first 
round (k = 0). Similar quality results are obtained for the AMD simulated events with the three 
different interactions. One should note that the value of ap/T0 makes a small contribution and 
the contribution is evident as a staggering in the −F(A/2, A/2)/T0 versus A plot. Therefore the 
essential free parameters in this step are ̃av/T and as/T0. The extracted parameter values from 
both experimental data and AMD simulated events are summarized in Table 1 for the first round 
(k = 0) and the final round (k = 0.0022).

In the step (3) Eq. (1) is applied to yields of all isotopes with N = Z and N �= Z. From Eq. (1)
asym/T0 and �μ/T0 = (μn −μp)/T0 values can be related to the modified free energy, �F(N,Z)

T0
as

�F(N,Z)

T0
= asym

T0

(N − Z)2

A
− �μ

2T0
(N − Z), (6)

where �F(N,Z)
T0

is the free energy relative to the temperature, F(N,Z)
T0

, subtracted by the calculated 
contributions of the volume, surface, Coulomb and paring terms, using the parameters in Table 1. 
Resultant �F(N,Z)

T0
values are shown by symbols in Fig. 3(b). They exhibit quadratic shapes with 

the minimum values close to zero, indicating the N/Z of the fragmenting source is close to 1. 
The fluctuation around zero for N = Z isotopes reflects the deviations between the data and the 
fit points in Fig. 3(a).

In this step, the asym/T0 and the �μ/T0 values are optimized. Since the �μ/T0 values are 
extracted from the step (1), the optimization is made for each isotope around the values in the fifth 
column of Table 1 within a small margin. The asym/T0 values are extracted from the quadratic 
curvature of the isotope distribution for each given Z and plotted in Fig. 3(c) separately for the 



298 X. Liu et al. / Nuclear Physics A 933 (2015) 290–305
Fig. 3. (Color online.) (a) Calculated ratio of free energy relative to T0 for N = Z isotopes from the reconstructed isotope 
yields (solid squares). Open squares represent the fit using Eq. (5). The parameters extracted are given in Table 1. (b) 
Calculated �F(N,Z)

T
values (symbols) and quadratic fits (curves) using Eq. (6) for Z = 3 to 14 for the reconstructed 

isotope yields. The same symbols are used for isotopes with a given Z. (c) Extracted asym/T0 values from (b) for the 
reconstructed (stars), g0 (dots), g0AS (squares) and g0ASS (triangles). All values are evaluated at the first round k = 0).

AMD simulated events with the g0, g0AS and g0ASS interactions, together with those from the 
reconstructed isotope yields.

For the first round (k = 0), the extracted asym/T0 values roughly parallel each other and show 
a slight increase as Z increases in average for all cases, even though they fluctuate around the 
average trend, especially for those from the experimentally reconstructed yields.

3. Characteristic properties of the fragmenting source

In order to determine the density and temperature at the time of the fragment formation, 
the parallel behavior of the observed asym/T0 values in Fig. 3(c) is utilized. As suggested in 
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Fig. 4. (Color online.) (a) The ratios of the asym/T0 values shown in Fig. 3(c), circles for g0/g0AS and squares for 
g0/g0ASS and stars for g0/Rec. (b) Symmetry energy coefficient versus density used in the simulations. Solid curve(g0), 
dashed (g0AS) and dotted (g0ASS). (c) The ratio of the symmetry energy coefficient in (b). The shaded horizontal lines 
are the ratios extracted in (a) and the vertical shaded area is the density region corresponding the ratios. Two different 
shadings are used for the two ratio values. All values are evaluated for the first round (k = 0). The ratio and density 
values are given in Table 2.

Ref. [72], the observed differences are attributed to the difference of the symmetry energy at the 
density at the time of the fragment formation. The ratios of the asym/T0 values between g0, g0AS, 
g0ASS and the experimental values for the first round are shown in Fig. 4(a). The ratios show 
flat distributions as a function of Z for all cases. The extracted average ratio values are shown by 
lines in the figure for each ratio and the values are given in the first column of Table 2. In Fig. 4(b) 
the symmetry energy coefficient is plotted as a function of the density for the three interactions 
used in the calculations and in Fig. 4(c) their ratios, Rsym = asym(g0)/asym(g0AS) and Rsym =
asym(g0)/asym(g0ASS), are plotted. Using the ratio values determined from Fig. 4(a) and the 
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Table 2
Symmetry energy and ρ/ρ0 from the first round (k = 0) and the final round (0.0022).

k int Rsym ρ/ρ0 asym (MeV)

k = 0.0
g0 26.0 ± 0.4
g0/g0AS 1.19 ± 0.02 0.62 ± 0.05
g0AS 21.4 ± 1.3
g0/g0ASS 1.42 ± 0.03 0.65 ± 0.02
g0ASS 19.4 ± 0.7
g0/Exp. 1.13 ± 0.02 0.65 ± 0.02
Exp. 23.0 ± 0.6

k = 0.0022
g0 26.0 ± 0.4
g0/g0AS 1.19 ± 0.02 0.62 ± 0.05
g0AS 21.4 ± 1.3
g0/g0ASS 1.42 ± 0.03 0.65 ± 0.02
g0ASS 18.4 ± 0.7
g0/Exp. 1.13 ± 0.02 0.65 ± 0.02
Exp. 23.1 ± 0.6

density dependence of the Rsym values in Fig. 4(c), the implied densities of the fragmenting 
sources are indicated by the shaded vertical areas shown in Fig. 4(c). The extracted density values 
for each case are given in the second column of Table 2. Assuming that the nucleon density 
should be same for the three different interactions used, the nucleon density of the fragmenting 
source is determined from the overlap of the extracted values. This assumption is reasonable 
for the violent collisions because the nucleon density is mainly determined by the stiffness of 
the EOS and not by the density dependence of the symmetry energy term. From the overlapped 
density area in Fig. 4(c), ρ/ρ0 = 0.65 ±0.02 is extracted as the density at the time of the fragment 
formation. This overlapped density value is also assigned to the experimental density [56,58]. 
The corresponding symmetry energy values at that density are extracted for the three different 
interactions from Fig. 4(b). The experimental symmetry energy, asym(Exp) is calculated from 
the average value of Rsym(Exp) shown by the full line in Fig. 4(a), and asym(g0) at the obtained 
density from the AMD events, ρ/ρ0 = 0.65 ± 0.02, as asym(Exp) = asym(g0)/Rsym(Exp). This 
operation is under the assumption that the system temperatures are almost identical from the 
AMD events and the experimental reconstructed isotope yields [56,58]. Their asym values are 
given in the third column of Table 2.

Once the symmetry energy value is determined for the individual cases, the temperature T0
can be calculated as T0 = asym/(asym/T0). The extracted T0 values from the reconstructed iso-
tope yields and the AMD events are shown as a function of A by different solid symbols for 
the first round (k = 0) in Fig. 5(a), under the assumption of A ∼ 2Z. Temperature values ex-
tracted from the experimentally reconstructed yields and the AMD simulated events with three 
different interactions agree with each other within the error bars. The larger errors in these 
plots, comparing to those in Fig. 3(c), originate from the errors of asym and asym/T0 which 
are shown in the third column of Table 2 and Fig. 2(c), respectively. The extracted temper-
ature values show a monotonic decreasing trend as A increases from ∼5 MeV at A = 6 to 
∼3.5 MeV at A = 28. From the linear fit, T0 = 4.9(1 − 0.008A), is determined for the first 
round.
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Fig. 5. (Color online.) (a) T0 as a function of the isotope mass A for the first round (k = 0). Solid symbols are same as 
those in Fig. 3(c). The line is the linear fit of the AMD results. (b) T0 as a function of the isotope mass A for the final 
round (k = 0.0022). Same symbol notations are used as (a).

The iteration is repeated three times in this work. The same plots as Fig. 3, but with the 
k value for the final (third) round, k = 0.0022, are shown in Fig. 6 and the extracted param-
eters are also given in Table 1. A very similar quality of results is obtained between those 
of the first round (k = 0) and of the final round (k = 0.0022). The extracted T0 values are 
shown in Fig. 5(b) for the final round (k = 0.0022). All extracted T0 values show a flat dis-
tribution and therefore the iteration stops at this round. The extracted T0 values from the re-
constructed isotope yields and the AMD events agree with each other within the error bars 
and T0 = 5.0 ± 0.4 MeV is extracted, where the error is calculated from the standard devia-
tion.

The extracted density and symmetry energy in the different iteration round are very similar as 
seen in Table 2, even though the parameter values in Table 1 are 5 to 10% different in some cases. 
This indicates that the extracted density, symmetry energy and temperature values in Table 2 are 
quite stable in the iteration procedures. All parameters extracted in this work are also consistent to 
those in the previous works [56,58], in which a simpler method is employed to evaluate asym/T0

values.
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Fig. 6. (Color online.) Same as Fig. 3, but for k = 0.0022.

4. Discussion

In order to study the observed slope in the apparent temperature, a simple Monte Carlo model 
is employed, following Ref. [62]. Under a thermal equilibrium condition, the thermal motion 
with velocity vth

i , where i = x, y, z, is expressed by a Maxwell–Boltzmann distribution as

vth
i ∼ exp

[
− (vth

i )2

2 · (T0/A)

]
, (7)

where T0 is the input parameter in the model. Fragments are generated by a percolation model 
for a system with mass 180 (6 × 6 × 5) [73]. T0 = 5.0 MeV is used, which represents the ther-
mal temperature of nucleons in the model. More than a hundred million events are generated. In 
order to require the momentum conservation in the fragmenting system, the events which satisfy 
the condition of | ∑j mj

−−−−→
v(j)| ≤ 100 MeV/c are selected as an approximation of the momen-

tum conservation, 
∑

mj
−−−−→
v(j) = 0. The temperature value from this Monte Carlo simulation is 
j
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Fig. 7. (Color online.) Mass dependent temperature T(A) as a function of the isotope mass A. Starts are calculated from 
T0 in Fig. 5(b) times (1 − kA) for the final round (k = 0.0022). Crosses are the results of the Monte Carlo simulation of 
the thermal motion under the momentum conservation with T0 = 5.0 MeV.

evaluated utilizing a fluctuation thermometer under a classical momentum distribution. Detailed 
descriptions about this classical fluctuation thermometer can be found in Ref. [74]. The results are 
shown by open crosses in Fig. 7. The slight mass dependence of the temperature as A increases 
is observed, which originates from the requirement of the momentum conservation. When the 
thermal motion is distributed equally to the fragments in a finite system according to Eq. (7), 
the larger fragments result in larger momentum and their momentum fluctuation becomes larger. 
Therefore the larger fragments become less probable to satisfy the requirement of the momen-
tum conservation for an equal distribution of the thermal motion among the fragments. The mass 
dependent temperature T (A) from the experimentally reconstructed yields is plotted in Fig. 7
together with the results of this simple Monte Carlo simulation. The experimental trend is rather 
well reproduced. As a conclusion, the observed mass dependence of the temperature is well ex-
plained by an equal distribution of the thermal motion of T = 5.0 MeV under the momentum 
conservation, which is closely related to the size of the system. In fact, in Ref. [62] the same 
procedures above are applied to the 40Ca + 40Ca reaction and k = 0.007 is obtained, which is 
∼3 times larger than that of the present case. That is because when the system becomes larger, 
the fragments suffer less restriction under the momentum conservation, comparing to those in 
the smaller system.

5. Summary

An improve method to extract the symmetry energy coefficients relative to the temperature, 
asym/T0, and a self-consistent determination of the density, temperature and symmetry energy of 
the fragmenting system are presented. Using the improved method based on the MFM model, 
asym/T0 values are extracted, utilizing all of the reconstructed hot isotope yields and the AMD 
simulated events with the Gogny interaction with three different density dependencies of the 
symmetry energy term. The extracted asym/T0 values show a monotonic increase trend as isotope 
mass A increases. The AMD results show that they are more or less in parallel each other. This 
parallel behavior is interpreted as the reflection of the different symmetry energy values at a given 
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density and temperature at the time of the fragmentation of the system. Using this correlation, 
the density value is first determined as ρ/ρ0 = 0.65 ± 0.2 for the fragmenting system in the ex-
periment. Utilizing this density, the symmetry energies are evaluated in a self-consistent manner 
for each AMD simulation. The extracted symmetry energy value for the experimentally recon-
structed isotope yields is asym = 23.1 ± 0.6 MeV. Using the extracted symmetry energy values, 
the temperature values are calculated for the reconstructed isotope yields and those of the AMD 
simulated events. They agree each other within the error bars and show a slight linear decrease 
as A of the fragments increases. For the final (third) round of the iteration, T (A) = T0(1 − kA)

is obtained, where = 5 ± 0.4 MeV and k = 0.0022. In the different iteration stages, the ex-
tracted density and symmetry energy agree within the error bars, indicating that these extracted 
values do not depend so much on the optimized parameter values. Using a simple Monte Carlo 
simulation, the mass dependence of the apparent temperature is well explained by an equal dis-
tribution of the thermal motion to different size of fragments under the momentum conservation, 
indicating that the mass dependence of the apparent temperature originates from the system size 
effect.
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