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Abstract
We prove a uniqueness result for free boundary minimal annuli in the unit Euclidean
three-ball that are o -homothetic to the critical catenoid.
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1 Introduction

A free boundary minimal immersion into Euclidean n-dimensional ball B" centered
at the origin of R” is a minimal isometric immersion x : ¥ — B" of a k-dimensional
smooth manifold ¥ which meets the boundary of B" orthogonally.

This kind of immersion has been receiving much attention due to the works of
Fraser and Schoen (2011, 2016) about the Steklov eigenvalues on compact surfaces
with non-empty boundary.
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The goal in these notes is to study the behavior of the conformal factor of two
immersed free boundary minimal annuli in B3, and to conclude a uniqueness result
in the conformal class of the critical catenoid. Here, given two metrics g and g in a
smooth manifold ¥ such that g = ¢>? g for some function ¢ € C'(X), we are calling
conformal factor the function ¢. Our first result reads as follows.

Theorem 1.1 Let ¥ and £ be two conformal immersed free boundary minimal annuli
in B3 with conformal factor ¢ € C*(X). Then, there exists C € R such that

Ap=(1-¢")K in%
8\)(/7:6('0_1 OI’laE,

where A and K are respectively the Laplacian and the Gaussian curvature of X.

The Neumann boundary condition can be verified for conformal factors of any two
conformal surfaces inside B" provided that both meet d B” orthogonally.

Despite the celebrated Nitsche theorem (Nitsche 1985) classifying the flat equatorial
disc as the unique free boundary minimal disc in B3, there are no known rigidity
results for free boundary minimal surfaces in B> of other topological types, only
under topological assumptions. In this sense, we want to prove a uniqueness result
in the conformal class of the critical catenoid provided that the conformal factor is
constant at least in one of the boundary components.

Theorem 1.2 An immersed free boundary minimal annulus in B> conformal to the
critical catenoid whose conformal factor is constant along at least one of its boundary
component and of class C* must be congruent to the critical catenoid.

Remember that two compact surfaces X1 and ¥, with non-empty boundaries are o -
homothetic if there is a conformal diffeomorphism between them that is an homothety
along the boundary. Hence, in particular, our result shows that a free boundary minimal
annulus in B> that is o-homothetic to the critical catenoid is indeed isometric to the
critical catenoid.

The concept of o-homothety appears in Fraser and Schoen (2013, 2016), where
the authors have studied the maximum of the first Steklov eigenvalue times the length
of the boundary of a surface.

To be more precise, let us consider an abstract surface (X, g) with non-empty
boundary. Let o1(g) and L(dX, g) be the first Steklov eigenvalue and the length
of 0¥ both with respect to g. When X is annulus, Fraser-Schoen showed that the
maximum of o1(g)L(dZ, g) over all smooth metric on X is realised by surfaces that
are o -homothetic to the critical catenoid.

There is an interesting analogy between closed minimal surfaces in the unit sphere
$3 and free boundary minimal surfaces in B3. This analogy have inspired several
mathematicians, and during the last few years there has been a substantial development
in the theory of free boundary minimal surfaces in B3. On this analogy, it is important
to mention the acclaimed conjecture about the uniqueness of the critical catenoid due
to Fraser and Li (2014). As observed by Li (2020), this conjecture was claimed by
Nitsche (1985) without a proof.
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Conjecture 1.3 An embedded free boundary minimal annulus in B3 must be congruent
to the critical catenoid.

In comparison to the theory of closed minimal surfaces in S, this conjecture is
analogous to the uniqueness of the Clifford torus in S, known as Lawson conjecture,
and confirmed by Brendle (2013). The examples of self-intersecting free boundary
minimal annuli in B3 constructed by Ferndndez et al. (2023) and Kapouleas and
McGrath (2022) show that embeddedness is an essential hypothesis in the conjecture,
as it was in the Lawson conjecture.

Some advances on the validity of the conjecture was obtained, for instance, in the
works of Ambrozio and Nunes (2016); Devyver (2019); Fraser and Schoen (2016);
McGrath (2018); Kusner and McGrath (2020); Seo (2021) and Tran (2020).

Up to our knowledge, there is no result relating the conformal factor of two con-
formal free boundary minimal surfaces in B3. Our Theorem 1.1 shows that, at least
for annuli, we can derive a relation of this kind. Also, in Theorem 1.2, we are able to
remark that this problem has a unique solution under an assumption on the boundary
of the surface, which gives a geometric characterization.

A free boundary minimal surface in B3 is topologically an annulus if and only if it
has no umbilical points. Because of this, except for the Neumann boundary condition,
our proof of the results holds only for annuli. The assumption that one of the surfaces
is the critical catenoid in Theorem 1.2 is necessary because, in this case, as we will
prove, both surfaces have constant Gaussian curvatures along their boundaries.

2 Preliminaries

For convenience of the reader, we collect here the results of our previous work (Domin-
gos et al. 2023) that we will use to study the conformal changes on free boundary
minimal annuli in B3. They can be found in the more general context of free boundary
hypersurfaces with constant mean curvature in balls of space forms in Domingos et al.
(2023).

The first one is a relation between the extrinsic geometry along the boundary of
a n-dimensional free boundary minimal hypersurface ¥ viewed from the original
hypersurface and from the sphere that delimits B"*!. We will denote by A the shape
operator of ¥ and by A the shape operator of % as a hypersurface of 9 B"*!.

Lemma 2.1 Let X be an immersed free boundary minimal hypersurface in B**!. Then,
at the points of X we have

(i) 1P = A + H; N
(i) 3y|A1? = =2 (JA]> + (n + D H?),

where v is the exterior unit conormal to ¥ along 0%, and H= trace(g).

In particular, in the case n = 2, if K denotes the Gaussian curvature of X, then
0K = —4K.

Remark The second identity of Lemma 2.1 was first obtained in the work of Wheeler
and Wheeler (2019).
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The second result follows as a consequence of a formula that counts the umbilical
points of a free boundary minimal surface in B> in terms of its Euler characteristic. For
a proof, see, for instance, (Li 2020, Lemma 4.3) or (Domingos et al. 2023, Corollary
44).

Lemma 2.2 An immersed free boundary minimal surface in B> is an annulus if and
only if it has no umbilical points.

An important example of free boundary minimal surface in B> is the piece of
catenoid contained in B that intersects d B> orthogonally called the critical catenoid.
We can parametrise it by the immersion x : [—Tp, Tp] x [0, 27] — B3 given by

x(t,0) = a(coshtcosf, coshtsinb,t),

where Tj is the unique positive solution of 7 tanh r = 1 and the dilatation constant is
a = (Tycosh Tp)~!. By means of straightforward computations, one infers that the
Gaussian curvature K of the critical catenoid is given by

1
k= a?cosh*t’

It is a well-known result that the only immersed free boundary minimal surface in
B3 whose at least one of its boundary curves is a circle must be congruent either to the
equatorial disk or to the critical catenoid (see, for instance, Pyo (2010)). Moreover, if
3 is a free boundary surface in B3, then its boundary components are line of curvatures
of both ¥ and 9 B3 by the Joachimsthal theorem. The following result is a consequence
of these two facts because the boundary curves of X are contained in the sphere.

Lemma 2.3 An immersed free boundary minimal surface in B3 whose Gaussian cur-
vature is constant along at least one of its boundary curves is congruent either to the
equatorial disk or to the critical catenoid.

3 Conformal Changes and Free Boundary Condition

We begin this section by recalling that the condition that a surface meets d B” orthog-
onally imposes a strong restriction on the geometry of the boundary of the surface.

Proposition 3.1 Let x : (X, g) — B" be an isometrically immersed surface into B"
meeting 0 B" orthogonally. Then, the geodesic curvature of the boundary components

of X in the exterior direction are equals —1.

Proof Let v denotes the unit exterior conormal of X along 9%. Since dx(v) = x by
the meeting condition along 3%, we apply Gauss equation to conclude that

x*Vyxv =x* (de(x)x) =X
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for each vector field X tangent to 9%, where V and x*V denote respectively the
connection of x(X) and the pullback connection of V. Thus, the geodesic curvature
k of 9% in the direction of v is

k=—g(Vrv, T) = —1,

where T is the unit tangent of a boundary component of X. O
In particular, the boundary geometry implies that the conformal factor of two confor-

mal surfaces in B” meeting d B" orthogonally is such that it must respect the following

equation at the boundary points.

Proposition3.2 Ler x : (X,g) — B" and x : (¥, g) — B" be two isometrically

immersed surfaces into B" meeting d B" orthogonally and such that § = e*?g for
some ¢ € CY(X). Then, at the points of 3% we have

oo =ef —1,
where v denotes the unit exterior conormal to ¥ along % with respect to g.
Proof Let k and i denote the geodesic curvatures of 9 respectively as curves inside

(X, g) and (X, g) in the exterior direction. By Proposition 3.1, we have k = k = —1.
Replacing this in the formula

e’k =Kk — 3y
we obtain e¢¥ = 1 + 0,9, as claimed. O
Remark The formula of Proposition 3.2 can be used to prove the inequality of Fraser
and Schoen (2011, 2013) about the length of the boundary of a free boundary minimal
surface in B" in its conformal orbit. More precisely, we can show that if ¥ is an

immersed free boundary minimal surface in B” and f : B" — B" is a conformal
diffeomorphism, then

L@OX) = L(f(X)).

To show this, let ® € C*°(B") be the conformal factor of f. Thus, there exists
xo € R" with |xo| > 1 such that

lxol? — 1

P (x) =log =l

If V and A are the gradient and the Laplacian of X respectively, one can check that
Vix —x0l> =2(x —x0)T and Alx — xo|* =4,
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where ()7 stands for the orthogonal projection onto the tangent space of 3%, and the
second equality is consequence of the minimality of X. Therefore, setting ¢ = |y,
we have

CHe—wP 4
Ix — xol* lx — xol?

Ag <0.

Combining divergence theorem with Proposition 3.2, we obtain that

02/ A(pd,bL:/ dods = L(f(3X)) — L(IT).
X X

In Fraser and Schoen (2013), the authors choose a vector field V' given by

X — Xq

lx — x|

This is not necessarily a vector field tangent to ¥ at each point. But considering
the divergence operator divy V = (?vl V,v) + (?UZV, v2), where {vy, vp} is an
orthonormal basis while V and (-, -) are respectively the connection and the metric of
R", one can see by means of a direct computation that Agp = —2divy V.

The nextresult gives the behavior of the conformal factor between two free boundary
minimal annuli in B3. The conformal factor must satisfies a differential equation
involving the Gaussian curvature of one of the surfaces.

Theorem3.3 Let x : (2,8) — B3 and ¥ : (%,3) — B> be two free boundary
minimal immersions of annuli into B> such that § = e*% g for some ¢ € C*(Z). Then,
there exists C € R such that

Ap=(1-¢")K in%
oy =e¥ — 1 onox,

where K is the Gaussian curvature of .

Proof By conformality between g and g, we get e’ K = K — A, where K is the
Gaussian curvature of g. Moreover, by Lemma 2.2, we have that K and K does not
vanish at any point of ¥. Hence, 4K = Alog(—K) and 4K = Alog(—K) in X by
minimality, where A is the Laplacian of g. Therefore, one can check that

4A¢p = Alog (k_lK)

at each point of X. We consider the function f € C%*(%) given by f = 4¢ —
log (K_lK) . It follows by Lemma 2.1 that

3, log (16—11() = K '9,K — K19,k = 4(e” — 1).
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Thus, by Proposition 3.2, we have 9, f = 0 along dX. Since f is harmonic, then f is
constant, which means that

49 = C +log(K~'K)

for some C € R, and this prove the first part of our assertion. By means of a direct
computation, we obtain Ap = (1 — e“72%) K. o

Our main result is a direct consequence of the proof of the previous result.

Corollary3.4 Let x : (¥,g) — B> and % : (X,g) — B> be two free boundary
minimal immersions of annuli into B3 such that g = €*?g for some ¢ € C*(%).
Suppose x(X) is the critical catenoid and ¢ is constant along at least one boundary
component of . Then, x(X) is congruent to the critical catenoid.

Proof We know that 49 = C + log(K ~' K) for some real constant C. Since ¥ is the
critical catenoid and ¢ is constant along a boundary component I" of £ by hypothesis,
we must have K constant along I'. Hence, by Lemma 2.3 x(X) is isometric to the
critical catenoid. O
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