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Abstract: In a networked control system scenario, the packet dropout is usually modeled by a
time-invariant (homogeneous) Markov chain (MC) process. However, from a practical point of
view, the probabilities of packet loss can vary in time and/or probability parameter dependency.
Therefore, to design a fault detection filter (FDF) implemented in a semi-reliable communication
network, it is important to consider the variation in time of the network parameters, by assuming
the more accurate scenario provided by a nonhomogeneous jump system. Such a premise can be
properly taken into account within the linear parameter varying (LPV) framework. In this sense, this
paper proposes a new design method of H gain-scheduled FDF for Markov jump linear systems
under the assumption of a nonhomogeneous MC. To illustrate the applicability of the theoretical
solution, a numerical simulation is presented.
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1. Introduction

In order to keep a manufacturing process as lean as possible, there are several aspects
that must be considered. The monitoring capability is one of the features receiving the
major spotlight in industrial operations since it is crucial to guarantee that the process is
safe for the personnel involved. Among the procedures that constitute the monitoring
systems, one that is worth mentioning is the fault-detection (FD) process [1,2].

A fault can be seen as the first indication of more harsh problems. It is any type
of unwanted minor behavior that was not expected from the system. It can be caused,
for instance, by extended wear due to long periods of time without maintenance. As a
consequence of inadequately fixed wear, malfunctions or failures can cause a breakage [3].

In this sense, FD is a model-based process in which any abnormal /unexpected be-
havior is detected by a two-step procedure. The first step in the FD process is the residue
generation, performed by an observer. The second step is the evaluation process, where
the residue signal, generated by the observer, is treated by an evaluation function and
compared with a predetermined threshold. We assume that a fault has occurred if the
evaluation function surpasses the threshold; otherwise, we consider that the system is
working as intended [4].
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Currently, an important assumption that must be taken into account in FD systems is
that the communication between the components is made via semireliable networks, which
are associated with occasional packet dropout. These dropouts are caused by different
sources as package collision due to high network congestion [5]. The distinction between a
dropout and a fault is an essential aspect of the FD process since it makes easier to locate a
fault. A viable way to model a packet dropout in a network is to employ a Markov jump
linear system (MJLS) framework. This representation is appropriate to handle systems
whose dynamic behavior is subject to random abrupt changes, like those caused by network
packet dropouts. In this scenario, a Markov chain (MC) is used to model the jumping
between the modes of operation of the system [6].

In the literature, there are plenty of examples of FD approaches that consider network
behavior in their design. For instance, in [7,8] linear matrix inequality (LMI)-based con-
straints are provided to design fault detection filters (FDF) by using the He norm as a
performance index. In [9], the authors have developed an FD approach for underactuated
manipulators modeled by MJLS. In [10], an FD method for networked control systems
(NCS) under the assumption of the existence of a variable delay between the signals re-
ceived by the system components is tackled. In [11], a fault detection filter under the MJLS
formulation was applied to a control moment gyroscope. In [12], a fault-detection filtering
problem is tackled under the Markov switching memristive neural networks. In [13], an
observed-based sliding mode control problem based on the event-triggered protocol under
the Markovian jump systems framework was presented. In [14], a fault-detection filter for
discrete time Markov jump Lur’e systems with bounded sector condition. Observing all
the above examples, one fundamental premise in the MJLS context is that the Markov chain
(MC) is considered to be homogeneous [15], which means that it does not vary in time.
However, since the packet dropout sources (collision, congestion, networked-induced de-
lay) change in time, we consider that a fixed transition probability between the Markovian
operation modes does not properly model the network behavior. A way to handle the
particularity of a time-varying MC was presented in [16], where the author has proposed
new LMI constraints to evaluate the stability of MJLS governed by a nonhomogeneous
MC. A particular case of the proposal presented by [16], which allows for designing
FDF for MJLS systems affected by nonhomogeneous MCs, consists of using a linear pa-
rameter varying (LPV)-based representation for the time-varying transition probability
matrix [17,18]. There are several works in the literature that deal with the problem of
control (or filter) synthesis for nonlinear systems by using different approaches. For exam-
ple, regarding the design of fault-tolerant controllers, there are strategies based on fuzzy
systems [19] capable of modeling system nonlinearities by using Takagi-Sugeno models,
so that if the probability of actuator failure is small, the control mode is normal, and if
the probability is high, the control is changed to fault-tolerant mode. Another strategy to
deal with nonlinearities that can be found in the literature arises in the context of sliding
mode control [20]. In this case, the class of discrete-time nonlinear systems with delays and
uncertainties that is considered is the conic type, where the nonlinear terms satisfy the con-
straint that lies in a known hypersphere with an uncertain center. However, the proposed
approach, in addition to considering the loss of packets in the communication network via
the Markov chain, deals with the nonlinearity of the systems by using a different strategy
from those previously discussed, in which the modes of operation are considered linear but
depend on time-varying parameters. Such modeling allows the use of convex optimization
methods and LMI-based tools to solve the filtering problem without adding extra levels
of complexity.

In view of the above works, the main contribution of the present work are
* the proposition of a new design technique of gain-scheduled FDF for MJLS with

nonhomogeneous MC, and
*  the numerical simulation to reinforce the usability of the proposed theoretical solution.

The proposed approach describes the nonhomogeneous MC using linear time-varying
parameters to model those variations, assuming that these parameters are known or at
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least measurable. Another important assumption made is that the probability varies in
time arbitrarily. Hence, the probability parameter for the following instant (k + 1) does
not depend on present instant k, which grants the ability to disassociate the Lyapunov
function in two distinct simplexes. Based on this assumption, we propose the design of
a gain-scheduled fault-detection filter where the scheduling parameter implemented is
the one that dictates the variation of the MC. One advantage of the proposed approach,
when compared with others found in the literature, is that the design conditions assure
the system stability for the entire parameter-varying range since the FDF is scheduled in
terms of time-varying parameters modeling the network variation. The major novelty of
the proposed technique is the higher level of fidelity in the representation of the network
influence in the system model. Since FD is a model-based approach, a more accurate
representation of the system can lead to better performance in practice.

The paper is organized as follows. Sections 2 and 4 present the necessary theoretical
fundamentals. Section 3 shows how to model the nonhomogeneous Markov Chain by
using LPV. Section 5 introduces the problem formulation and the main contributions.
Section 6 illustrates the feasibility of applying the proposed technique, by means of a
numerical simulation, and Section 7 concludes the paper with some final remarks.

Notation

The real Euclidean space is denoted by R" where # represents its dimension and a real
matrix with 7 rows and m columns is represented by R"*". The symbol I, stands for an
n X n identity matrix (or, for simplicity, just I, with an appropriate dimension, whenever no
confusion arises) and the symbol (-)" denotes the transpose of a matrix. The operator Her(-)
is used to express the symmetric sum as in Her(X) = X + X/, while the operator diag(-)
represents a diagonal matrix. The symbol e denotes a symmetric block in a partitioned
symmetric matrix. The expected value operator is represented by E(-) and the conditional
expected operator is denoted by E(-|-). The fundamental probability space is described by
(Q, F, {F}, Pr(-)). The space £ is the Hilbert space formed by J-measurable random

sequences {z;} , such that ||z|l, £ [, E{|z(k)|2}]1/2 <o

2. Preliminaries

A generic discrete-time MJLS is given by

. {x<k 1) = Agx(K) + Jo, (k) o
z(k) = Cg,x(k) + Dg,w(k)

where x(k) € R"™ is for the state vector, w(k) € R" is the exogenous input vector, and

z(k) € R is the output signal. The state-space matrices of system (1) depend on the

index 6, which represents a discrete-time Markov chain belonging to a finite set of modes

K = {1,...,0}, whose switching is ruled by a time-varying transition probability matrix

pri(k) -+ p1o(k)
P(k) = : )

por(k) -+ poo(k)

The entries p;;(k) of P(k) are such that p;j(k) = Pr(6xy1 = |0k = i), Yk >0, p;i(k) >0,
and Z}’Zl pij(k) = 1. We recall that whenever the transition matrix is time-invariant, that is,
P(k) = P, the associated Markov chain is said to be homogeneous; otherwise, it is called
nonhomogeneous (meaning that the probabilities vary in time) [15,21]. It is assumed that
pij(k) varies within the following interval: 0 < 0; < pij(k) < p;; <1, where 0; represents
lower bound and p;; denotes the upper bound. Another important assumption is that
the upper and lower bounds of the transition probability are known, and the transition
probability variation is instantly measurable. Therefore, all the parameters in (2) may
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vary in a known range with p;;(k) € [Bi].,ﬁij}. There are several ways to determine the
values of the upper (ﬁi]-) and lower (Bi],) bounds of pi]-(k). Those values can be obtained

via mathematical modeling, observation, estimation, simulation, or based on the a priori
knowledge of the system, such that the estimate can vary among systems and depends on
the type of variation to which the system is subjected.

From the constraints 2}7:1 pij(k) =1land 0 < Bi], < pl-]-(k) < Pij < 1, the transition
matrix (2) can be described by N polytopic intervals, where N depends on the number
of transition probabilities that are time-varying. From these polytopic intervals, some
techniques can be applied to obtain a gain-scheduled FDF.

In order to exemplify these N polytopic intervals and how to define a time-varying
transition matrix by using LPV, let us assume that ¢ = 5 and the parameters p14(k) and
p15(k) vary in time; hence, the first row of the transition matrix (2) can be written as

011 p2 p1z pua(k) pis(k)], 3)

and from this row, two polytopic intervals (N = 2) are obtained:

{Pn P12 P13 Py, 515}, {Pll P12 P13 P1g 815] 4)

The polytopic intervals obey the constraints }37__; p;j(k) = 1and 0 < Py < pii(k) <
pij < 1 simultaneously. The following notation will be used to represent a time-varying
row of P(k) as in (3) with the lower and upper bounds as in (4):

p11 P2 P13 [Py, P14l [315’515}] ®)

The main novelty in this paper is the usage of the same time-varying parameters
that coordinate the nonhomogeneous MC variation as gain-scheduled parameters for
the design and implementation of the FDF. This concept will be carefully described in
Section 3.

Although the time variation that affects the probability matrix is generally repre-
sented by modeling P(k) as belonging to a polytope, in this paper we choose to use
another approach, which describes each time-varying row of P(k) in terms of a linear time-
varying parameter vector «, (k) belonging to a distinct unit simplex Ay, ¥ = 1,2,...,m.
The definition of the unit simplex is given by

Ay, = {g eRM
i=1

N,
Zgizl,giZO,i:O,l,...,Nr}, (6)

where m is the number of time-varying rows in the probability matrix. In order to group up
all the time-varying parameters of P(k) in a single domain, we perform a Cartesian product
of m simplexes, each one of dimension N, in a single domain called multisimplex, and
representitby Ay = An; X Ay, X - -+ X Ap,,, with theindex N givenby N = (N7, ..., Ny).
For ease of notation RN represents the space RN +Nat-+Nu 1Tn this sense, a given element
a(k) € Ay is a vector belonging to RN and can be decomposed as (a1 (k), az(k), ..., am(k))
according to the structure of Ay. Subsequently, each a,(k) € A, C RNy =1,...,m,is
decomposed in the form (a,1, &2, . .., a,n,). This approach follows the one adopted in [22].

Hereafter, the transition probability will be denoted by p;;(a(k)), where the term
a(k) € Ay represents the time-varying parameter responsible to model the probability of
the nonhomogeneous Markov chain at time k.
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3. Modeling the Nonhomogeneous Markov Chain by Using the Linear Parameter
Varying Approach

We next present the definition of a matrix O; (i), where i represents the MC mode,
and 1 = (11(k),...,tm(k)) denotes a generic LPV parameter. It is assumed that O; (1) is
affinely dependent on the time-varying parameters .;(k), as described below:

Oilt) = O3y + 3 4(k)O, - 7)
j=1

The matrix in the affine form (7) can be interpreted in the following manner: matrix
O;,¢ represents the time-invariant part of the filter dynamics. The remaining matrices
O; s j =1,...m denote the time-varying dynamic that depends on the parameters ¢; (k).
To illustrate this particular structure, consider the example presented below, for an MJLS
with three operation modes, whose time-varying probability matrix is given by

05 [0.1,03] [02 04]
P(k) = |[0, 0.4] [05,09 01 |, ®)
0.2 0.6 02

where elements p12(k), p13(k), p21(k) and paa(k) vary in a known interval [Ei],, f)ij}.

Since each uncertain row of P(k) can be represented by a polytopic interval, the rep-
resentation of the first row is given by

[05 0.1 04]ar(k)+[05 03 02]aa(k) )
and the second row is

[0 09 0.1]ay(k)+[04 05 0.1]axn(k) (10)
withaq (k) = (a11(k), 212(k)) € Ag, an(k) = (a21(k), a2 (k)) € Ay, and a(k) = (a1 (k), a2 (k))

€ Ay x Aj. On the other hand, the representation of P(k), in terms of parameter (k) used in the
affine structure, can be done as follows,

05 02 03 01 -1 0 0 O
P(k)= (02 07 01|+ |0 0 0 |uk)+ |1 -1 0fwnk), (11)
02 06 02 0 0 O 0 0 0
—_———
P, P, P,

0 1 2

where 11 (k) € [-0.1, 0.1] and (k) € [-0.2, 0.2]. Although the modeling seems to be
different, note that a simple change of variables can recover the multisimplex modeling
from the affine representation, since

lr(k) = L1 (k) +Ear2(k)r (12)

where i, (k) € [1,, %], ar(k) = (a1 (k), ar2(k)) € Ap, v =1,2.

In order to clarify how to write a time-varying matrix in the affine form, consider the
following affine matrix as

5 03 k
(5 St ] = [2%]+ [83] (k) + [§ 5] ), (13)
2+ [00) 1 F [o0s)
O,‘(l]') Oi'O Oill OilZ

where 11 (k) € [11,11] and 12(k) € [i2,72]. By using the multisimplex formulation, ¢, (k) =
tr0y1 (k) + Trayp (k) for r = 1,2, we recover the representation with a(k) € Ay = Ay X Ay,
where N = (2,2). This procedure can be extended for all matrices throughout this paper.

Bearing this in mind, in what follows, whenever we write P;(«a(k)) for a(k) € Ay, we mean
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a representation, as in (7), in terms of generic LPV parameters or, equivalently, in terms the
multisimplex parameter a (k).

4. Bounded Real Lemma

The concept of stability for the nonhomogeneous Markov chain is different from its
homogeneous counterpart. This discrepancy is caused by the arbitrary variation of the
transition probability. Therefore, an upper bound of the ., norm can only be obtained if
system (1) under the assumption of w(k) = 0 is exponentially stable in the mean square
sense with conditioning of type I (ESMS-CI). This concept was first introduced in [23] and
is also presented in [16]. In this sense, before introducing the main results of this paper,
some fundamental definitions are presented next.

Definition 1 ([16]). Assuming that system (1) is ESMS-CI, and x(0) = 0, its Hoo norm is given
by

2]

16l = sup A2 19)

e

Next, we present a sufficient condition version of the bounded real lemma adapted
from [16], which allows us to deal with nonhomogeneous MJLS with arbitrarily fast time-
varying parameters, where the parameters are modeled by using the multisimplex domain
AN. For that, it is assumed that the condition H; in Proposition 1 in [16] is satisfied; that is,
Pr(6y =i) > 0foralli € Kand k > 0.

Remark 1. In order to draw the results presented in Lemma 1, it is necessary to consider the
assumption that the variation of the probabilities p;;(k) is arbitrarily fast. Under this assumption,
there is no need to bound the variation limit.

Lemma 1. System (1) is ESMS-CI and satisfies |G|l < 7y if there exist symmetric positive
definite matrices P;(x(k)), such that, for each i € K and for all a(k),a(k+1) € Ay, the
parameter-dependent LMIs

Lo t[ag]- (90 Ao a9
Qi (a(k))

are satisfied, where E;(P)(a(k), a(k+1)) = Z;-T:l pij(a(k))Pi(a(k +1)).

Proof. Here is a sketch of the proof for Lemma 1. Assuming that there exist P;(«a(k)) =
P!(a(k)) such that Equation (15) holds, we have, from Proposition 1 in [16], that system (1)
is ESMSC1. Define the cost function as

TS = i E {z(k)’z(k) — 'wa(k)’w(k)] (16)
k=0

Observe that |G|l < v <= Jo < —€*||wl||3, V |w|]2 # 0 and for some e # 0,

where J.) represent the cost function for T — co. Considering the Lyapunov function
Vo, (k, x(k)) £ x(k)'Pg, (a(k))x(k), one has

T = i E [Z(k)/z(k) — Yw(k)'w(k) — Ve, (k, x(k)) + Vo, (k+1,x(k+ 1))}
k=0
+ i E [ng (k,x(k)) — Vo, (k+1,x(k+ 1))}
k=0
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= 3 E[£(6=(6) ~ (e o) Ve x(6)]
+ ZE[ Vo (6 + 1 x(k+ 1)1 ]|
k=0

CEVea(t+1,x r+1)} +E{V90(0,x(0))]

= Y E[2(0'2(0) — 7k (k) — Vi, (&, x(6))]

=0

>

+I§E[ (k+1) [p9k+1(a(k+1))|fk}x(k+1)]

—EVea(t+1,x r+1))] +E[V90(O,x(0))}

Il MH

Eﬂm w(K)' |, («(k)) [x(K)' w(k)'|
~E[Ven (T4 1L,x(T+1))| + E [V, (0,x(0))],

where ();(a(k)) is presented in Equation (15). Recalling that x(0) = 0 so that Vg, (0, x(0)) =
0, we have Vk > 0 and some ¢ # 0 that

TI = Y E[[x(k) w(k)|00, (x(k)) @ | = E[Va,., (T +1x(t+1))]
< [l w10 (a(k) o] < = L Ew®IPl (7
k=0 =0
Inequality (17) yields, as T — oo, that J} < —e?||w||3 V |[w||2 # 0, showing the desired

result. O B

5. Problem Formulation and Main Result

The block diagram of Figure 1 illustrates the FD scheme considered in this paper.
Note that there are three elements composing the diagram: the system itself (Gg,, which
represents the plant subjected to a fault), the controller Ky, , and the gain-scheduled FDF
block Fy, .

FU s y(k) u(k)
w(k) System |[——F——> Cirl
F r(k)

Figure 1. Graphic description of the FD scheme used to design the gain-scheduled fault detection
filter.
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The main purpose of this section is to design the FDFE. Consider that the nonhomogeneous
M]JLS G, is defined as

B {x(k +1) = Ag x(k) + By u(k) + Jo,w(k) + Fg, f (k) a8)
O = ’
‘ y(k) = Co.x(k) + Do, w(k) + Eq, f (k)
where x(k) € R" denotes the system states vector, u(k) € R" represents the control
input, w(k) € R" is the exogenous/noise input, y(k) € R" represents the measurement
signals, and f (k) € R"f is the fault signal that should be detected. We also assume that
w(k), f(k) € £2. Finally, when regarding the output-feedback control law, consider the
following expression

u(k) = Koy (k)- (19)
The controller Ky, is assumed to be designed beforehand.

Remark 2. Although the formulation presented in this paper considers an output-feedback control
law (19) that is mode-dependent (depends on 0y) but is parameter-independent (does not depend
on ay or the time-varying probabilities p;j(k)), the synthesis of the FD filter presented next can be
extended to deal with a parameter-dependent control law. Regardless of that, for both situations, it is
imperative that the controller is designed a priori. The major implementation difference in the latter
case is that the controller would be defined as gain-scheduled.

We define the gain-scheduled FDF under the aforementioned conditions as

Dk +1) = Ayg, ()7 (k) + My, ((k))u(k) + ...
Fo, = By, (w(k))y(K) , 20)
(k) = Cya, (a(K))y (k)

where 7(k) € R™ is the filter states, r(k) € R™ is the residue signal, u(k) is the control
law given by (19), and y(k) represents the measurement output. The FDF is scheduled in
terms of the time-varying parameter a(k), which represents the variation in time of the MC.
Consequently, it is assumed that the time-varying behavior of the MC is known or at least
measurable. The purpose of the gain-scheduled FDF in (20) is to generate a residue signal
r(k), which is used to detect the fault.

Remark 3. All matrices that compose the filter (20) are written in the affine form as in (7), that is
m

Aiﬁ(ﬁk) = Aﬂi/go + Zlﬁ](k)Alﬁ’B]/ (21)
]:

and similarly for M,;(Bx), Byi(Bx), Cyi(Br)- Recall that the goal of this paper is to design the gain-
scheduled FDF (20) where the schedule parameter represents the variation in the nonhomogeneous
MC, as explained in Section 3.

We define e(k) = r(k) — f(k) and the augmented system as

G :{ %(k+1) = A, (a(k))2 (k) + Jg, (a(k) ) (k)
"L el = Co(w(k)E(k) + D (a(k)) (k)

where (k) = [x(k) (k)], and @(k) = [u(k) w(k) f(k)]. The matrices that compose the

augmented system are

/ (22)
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# B; Ji F;
Ji(a(k)) = [M”,(a(k)) Byi(a(k))D; Bn,-<a<k)>5,lf and

Cila(k)) = [0¢u@®)],  Difa(k)) =00 1], 3)

In order to provide an FDF (20), which generates a residue signal r(k) that is robust
against noise and associated with a fast response whenever a fault occurs, we set our goal
as the synthesis of a proper FD filter by minimizing an upper bound <y for the H norm of
the augmented system (22), such that

wp  Le®la

2 (24)
w(t)eL2, w20 W) [|2

In the following, we present our main result of the paper, which provides parameter-
dependent bilinear matrix inequalities (BMI) for the design of an FDF (20) for system (18)
with He guaranteed cost. For compactness, hereafter, the dependence on time of parameter
a(k) and a(k + 1) is omitted, such that they will be respectively replaced by « and a*.

Theorem 1. If there exist, for all i € K, symmetric positive definite parameter-dependent matrices
Zi(a), Ri(a), Zy(a), Ri(a™), matrices Wi(a), Wi(a), Xi(a), Yi(a) Oi(a), Byi(a), Myi(a),
Vi(«) with appropriate dimensions, and a scalar ¢ € (0,2), such that the BMIs (25) hold for all
a0t € Ayandi € K,

r Il . . . ° . . . . o
Iy TIlp . ° ° . . . . .

0 0 -1 . . . . . . .

0 0 0 —2I . . . . . .

0 0 0 0 —2I . . . . .
Ilg1 Il 0 0 g Iee . . . . <0, (25)
1171 Ilpn 0 0 0 Ty 11y . . .
Iy Ilg @) (Bi) Y8()(J) Y{(a) (F) ¢Tlg ¢TMgp —Z(at) J
Mo; Tloy Y!(2)'Myi(w)  Tlog Ios  &llgy  &Tlgy —W(aT) —R(at) e

L V:(2) V;(a) 0 0 I &Via) EVi(w) 0 0o -1
where
Yo(0) = [0 2(@)ln, - pL2@D), YE(w) = [0 2@, . /(@)L
Yi(a) = [P}{z(”‘)lnx-&-m; P}U/Z(D‘)Inx-%m;}r Iy = Zj(w) — Her(Xi(«)),
I = Wia) — Yi(a) — X;(0)', Tle = Zi(a) — EXi(a) — X;(a),
7 = Wia) — &Xi(a) = Yi(a), Tlg = Y§(@)'A;X;(a),
Tgy = Y? () (Byi(@)CiX;j(a) + Oi(w)), Tlp = Ri(w) — Her(Yj(a)),
Mgz = Wia) —&Yi(a) — Xi(w), Tz = Rj(a) — &Y;(a)" = Y;(a),
g =TIy, Iy =1Tloy, Tloy = Yi(a)'By;(a)D;,
Tos = Y] (&) (Byi(w)E;), Tes = —& Her(Xi(a)),
76 = —¢(Yi(a) — Xj(a)'), Tlzz = —¢ Her(Y;(w)),
and

Z(at) = diag(Zy ("), ..., Zo(at)), W*(at) = diag(Wj (a*),..., Wy(a™)),
R;

(a*) = diag(Ry(aF), ..., Ro(a™)), (26)

then <y is an upper bound for the Heo norm of the augmented system (22), where the matrices that
compose the FDF in the form of (20) are given by Ayi(a) = Oi(a)Y;(a) 1, Byi(a), Myi(a),
Cyi(a) = V;Yi(a) ™ (a) forall i € K.
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Proof of Theorem 1. Consider the augmented matrices as from (23), and define the matri-
ces P;(«) and H;(a) according to

- Z,‘( ) ° _ Xi( )Xi
Pi(a) = [W,-(o;) R,'(IX):|’ Hi(a) = |:Yi(§:) Y,-((Z))] @7)

In addition, we define the matrices P;(a™) and P(a™) as follows:

_ 7 (at . _ . _ _
Pi(at) = {VZ-VZ(&)) e ] P(a™) = diag(Pi(a™), ..., By(a™)). (28)

Consider the following change of variables: O;(a) = Ay;(a)Y;(«), Vi(a) = Cyi(a)Y;(«).
Then we obtain the following identities:

i Ai+BiK;(a)C; i

A@H @) = | g k6w Ay ||
_ {(AiJFBiKi(”‘)Ci)Xi(“) (Ai+BiK;(a)C;
- Ei(“)+A17i(“)Yi(“) & o

' (29)
Cila)Hilw) = [06] | 3 |
[ ]

Yi(a) Yi(a)

P;(a)—Her(H;(w)) . . . .
0 B . . .
Pi(a)~CH;(a)' —Hj(a) 0 —{Her(H;(a)) e o | <O (30)
Y§(a) Aj(a)Hi(w) Y5 (a) Ti(w) OY§ () Aj(w) Hy(a) —P(aT) o
Ci(a)H;(a) Di(w) ¢Ci(a)Hy(a) 0 I

By using the projection lemma (see [24]), (30) can be rewritten as follows,

D+U'H;V + VHIU <0, (31)
where
Pi o o o o -
0 —?Te o o , OI , (I]
= P,' 0 0 e . = -4 = .
P=17 NC L U= lwa |V =18 2
0 D; 0 0 —I Gi 0

(Observe that in the remaining of the proof, the time-varying parameter « is omitted
for notation simplicity, as well as the dependence on a™, which will be replaced by the
superscript index “+”.)

By taking the following basis for the null space of I/ and V

100 0 €000
or.o 9 0100

Ny=|-10AYC |, Ny=]|-1000 (33)
00 I 0 0010
00 0 I 000I

and by applying the equivalence conditions of the projection lemma, we get

P e e e

NYDNu = | e ;”2]1 et <o, (34)
C;P; D; 0 —I]
@207 o o o]

NyDNy = | ;WZI’ | <o (35)
0 D; 0 —Id
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Notice that from the first term in (35) we can state that 0 < ¢ < 2. Now, pre- and
postmultiplying (34) by diag(X;, I, X T, I), where X; = P!, X+ = (P*)~!, we obtain

—Xi ° ° .

0 —2I o o
Ty A ooy, xe o | <O (36)

¢ D; 0 I

Notice that X' represents a block diagonal matrix given by
X+ =diag(X],..., X)), (37)

with X" = (P*)~1. By using the Schur complement in (36) and noticing that

[
YiXY = ]; ey (38)
we have the condition (15) satisfied, so that the result follows from the bounded real lemma,
presented in Lemma 1, for the nonhomogenous MJLS. O

Remark 4. Observe that the conditions of Theorem 1 constitute of infinite-dimensional problems,
which can be solved by using homogeneous polynomial approximations for the optimization variables
(LMI relaxations) and then testing the positivity of the polynomial matrix inequalities by means of a
finite set of LMIs. For this purpose, the authors strongly recommend the use of the toolbox robust
LMI parser (ROLMIP), whose tutorial can be found in [25].

Remark 5. Theorem 1 can be adapted to handle the FDF synthesis problem for homogeneous MJLS
with constant or uncertain but time-invariant probability matrix by simply making a(k +1) =
a(k) = a.

The constraints presented in Theorem 1 are BMIs, which means that is necessary to
use appropriate tools in order to solve them. Among a number of techniques available
in the literature [26-28], we employ the coordinate descend algorithm (CDA), since it is a
well-known and widely used tool to solve such issues. Accordingly, an iterative procedure
based in CDA is given below to solve Theorem 1.

In Algorithm 1, ¢ represents the stop criteria and tmax is the maximum number of
iterations allowed. Observe that if a solution is found in the first iteration of CDA, the
iterative procedure will converge to an optimized solution or at least keep the same solution
found in the first iteration. The CDA is better detailed in [26,27].

Algorithm 1 Coordinate descent algorithm.

Coordinate descent algorithm (CDA):

Input: Bﬂi' Y, tmax, ¢-

Output: A,;, B,i, My, Cyi.

Initialization:

While: 1 ,y,fl'y <nort < tma do:

Step 1: Find a solution for the LMI constraint (25) obtaining the values of X using as an
input B;, which can be obtained by using any method, for example, the one in Theorem 1
in [7].

Step 2: Now find a solution for the same LMI constraint (25) to obtain .A,ﬁ, 8,71-, M,ﬁ, C,ﬂ-,
but this time by using X as an input. Also obtain the value of 7.
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6. Numerical Example

To illustrate the applicability of the theoretical results, a numerical example of a
coupled tanks model (see Figure 2) is presented next. In this example, we assume that
the plant itself is time-invariant, nevertheless, there are some time-varying parameters
associated with the model of the communication network, which is represented by a
nonhomogeneous Markov chain.

Uy —>

Figure 2. Coupled tanks model considered in the numerical example. The level on each tank Iy, hy,
measured independently from each other, are the system states, while the control input is the inlet
flow uq into the first tank.

6.1. Simulation Setup

The parameters and modeling of the coupled tanks system were extracted from [29],
such that the continuous-time state-space matrices are given by

— [-0.0239 —0.0127] 5 _ 1071
A= [ 0.0127 —0.0285}’B =[],

J=[0071], F=[0071] K =] 103 -033]. (39)

The sampling time used is T; = 1s. Note that in order to represent the fault as an
abnormal input on the first tank, the matrix associated with the fault signal F is 10% of the
control input matrix B.

Regarding the network modeling, we assume that each tank is far away from the other;
therefore, data gathered from each sensor is transmitted via two distinct networks. Network
1 transmits the measurement of the first tank, and Network 2 transmits the measurements
of the second tank. The transmission of the measurement signals through a semireliable
communication network is modeled by using a simplified Gilbert-Elliot model, as done
in [30] while the packet dropout is represented by the zero-input approach from [31],
meaning that when a packet loss occurs, we assume that the value of the received signal
is null. Hence, the complete network behavior is represented by four distinct operation
modes, as illustrated by Figure 3. The first one is that where all the measurements are
correctly transmitted (called “Ok Ok” in Figure 3); the second one considers that the
measurement on the first tank is successfully transmitted, but occurs a packet dropout of
the measurement from the second tank (called “Ok Drop” in Figure 3); the third case is the
opposite of the second one (called “Drop Ok” in Figure 3); and the last mode represents the
case where all measurements were lost (called “Drop Drop” in Figure 3).
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Drop Drop

p33(k)

Figure 3. Graphic representation of the network states modeled as a Markov chain where the mode
Ok Ok denotes that the networks responsible for transmitting the measurement of both sensors are
operating on the nominal state, the mode Ok Drop represents the situation where there is a problem
in the network in charge of transmitting the measurements of the second tank, the mode Drop Ok
represents a failed transmission of the first tank measurements, and the mode Drop Drop stands for
the case when both networks present some issues.

Remark 6. It is essential to point out that the proposed solution allows modeling the network
packet dropout rate varying in time. However, the feasibility of the proposed solution is dictated
by three main features, the system dynamic, the number of Markov modes, and range variation.
Therefore, it is important to keep in mind that an overly complex Markov chain with a high range of
variation will request more computational effort, and in some situations, a feasible solution may not
be achieved.

From the previous network description, we can write the matrices that represent the
measurement signal y(k) are denoted by (the subindex is associated with the network
operation mode)

G=[38], Q=[] G- (8] c=[39],
Dy = [0101]' Dy = [ 0 } D3 = [001]/ Dy = [0]/ . (40)
Ei234 = [§]

Observe that we imposed E equal to zero in all modes because despite the fault in the
example representing an abnormal input on the first tank, the sensors are assumed to be
healthy throughout the simulation.

To illustrate the flexibility of the proposed approach, a particular scenario was tested.
Assume that we solely know the boundary of the transition probability matrix that governs
the jumps among the four network modes. Another important assumption considered
in the design process is that in the fourth mode, Drop Drop, where there is no sensor
information, the scheduling parameter is not accessible, implying that the matrices that
compose the FDF for this mode are designed in the robust form instead of the affine form.
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The time-varying transition probability matrix is given by

Gaen eogn L 8

0ﬁ2014013}+ {0_0 oo}ﬁl(kﬂ' {01—10}32(’()/ (41)
0.2 0.1 0.6 0000 000 0

Pg, Pg, (k) Pg, (k)

where B (k) € [0, 0.3], B2 (k) € [0, 0.3], and by consequence B, (k) = 0a,1 (k) +0.3a,2(k), r =
1,2, where a(k) € ANy = Ay X Ap, N = (2,2).

Additionally, the transition probability among network states represented in Figure 3
by p;j(k) corresponds to an entry in the transition probability matrix P(k). Those transition
probabilities depend on time as follows,

pij(k) = 00;; + B1(k)ol;; + B2 (k)2

where p0;;, p1;; and p2;; represent the elements of ith row and jth column from the following
matrices IPg  (k), Pg, (k) and Pg, (k) of Equation (41). Furthermore, the time evolution of the
time-varying parameters 1 (k) and B, (k) is illustrated by Figure 4.

By using the above numerical values of the plant and the network, we are now able to
apply Theorem 1 to provide a solution for the FDF, so that the filter matrices in (20) (with
¢ = 0.9 in Theorem 1) are given by

Aggy = [ %560 0], Ang = [ 000 000l Az = [ 000 00
Azgo = [668 660 Auz = [Z000 ~000 A2z = [ 60 0 -
Ayag = [ Zoo0 “000):  Aws = [ 000 000):  Are = [ 060 000
Asgo = [ 000’ ~000)-
8’71;80 = [—00030 888]' 8771,31 = [—000(%0 _(J(.)O(())O]' B'ﬂﬁz = [—000(%0 _()(.)(5%0]'
By = [000000)  Brzr = [060000 ) Brzee = [6:60 000 -
Byag = [000 000 ] B = [0000),  Buze = [0600],
Byag = [0 0.00 -

(42)
Moy = [800] My = [660] Mg = [G00],
Mz = [000]: Mz = [600],  Mipgp = [G00],
M773ﬁ0 = [88(3)]' M’ﬁﬁl = [88})]' M’ﬂﬁz = [88(1)]’
Miyag = [G50]/
Cpigy = [120 -012],  Cyryy = [-001 —001], Cy1p, = [-001 —001],
Cpagy = [032001],  Cypyy = [-0.00 —000], Cpp,, = [-0.01 —0.00],
Cyagy = [002 ~002],  Cyayy = [-000001], Cy3,, = [-000001],
Chagy = [-001 —0.00].

6.2. Simulation Result

In this section, for comparison purposes, we present simulation results with one design
of FDF that assumes complete knowledge of the modes and the other design that uses
the results from [8], where an H., guaranteed cost is used as the performance criterion.
This comparison is important to show that the consideration of the nonhomogeneous MC
impacts the FDF performance. This particular paper was chosen to be compared with the
proposed approach since both are based on the MJLS framework and are based on the Heo
norm. Another critical piece of information that can be gathered from this comparison is
the complexity of the problem versus performance gain. We remind that the parameters
B1(k), B2(k) are assumed to be instantly measurable. Hence, the parameters 1 (k), B2 (k)
vary during the simulation according to the information provided by Figure 4.
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0.5 !
—Parameter B, (k)
0.4r ----Parameter g, (k)
_ 03
=<
d 02 _____________________________________ \\\ 1
0.1F |
0 I I I I I \\\
0 50 100 150 200 250 300

Instant k

Figure 4. The behavior of the parameters 1 (k), B2(k) during each simulation. The parameters 1 (k),
B2 (k) are responsible for representing the time-varying aspect of the transition matrix P(k) in (41).

There are three faults that the system is subjected to during simulation. Those faults,
presented in Figure 5, were applied on the first tank, and both affect the signal multiplying
matrix F in (39). A Monte Carlo simulation with 100 interactions was performed, and
Figures 6 and 7 illustrate the obtained results.

2 \
——Fault 1 (Abrupt)
Fault 2 (Oscillatory)
i Fault 3 (Incipient)
<0
1tk .
-2 | | | | |
0 50 100 150 200 250 300

Instant k

Figure 5. The representation of the three faults that were inflicted in the system during simulations.
The magenta curve represents an abrupt fault, the cyan curve denotes an oscillatory fault, and the

brown curve is the incipient fault.

Figure 6 presents the system'’s states when subjected to all three fault cases, and also a
case without fault. From Figure 6, it is possible to observe that the faults do not surpass
10% of the nominal state value.
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States h1 and h2

0.3 ; ‘
Fault 1 (Abrupt)
Fault 2 (Oscilatory)
0.25 [ [ Fault 3 (Incipient) I
= Faultless
0. 1 5 1 1 1 1 1
50 100 150 200 250 300
instant k
0.15
0.05 1 1 1 1 1
50 100 150 200 250 300

instant k

Figure 6. System states when subjected to all three faults, where the magenta curves denote the states
with an abrupt fault, the cyan curves represent the states for the oscillatory fault, and brown curves
are the states results for the incipient fault. The black curves represent the state without faults.

The residue signal generated by the FDFs for each type of fault, and also the case
without fault are presented in Figure 7. We may state that all the FDF worked as expected,
have been affected by the faults when it occurs, and that when there is not a fault the
residue kept close to zero. Note that the results obtained by the FDF designed with the
complete knowledge of the modes show more sensitivity against the fault, which helps to
detect the fault faster.

A fault-detection procedure has two major stages: the residue generation and eval-
uation process. In Figure 7, the residue signals obtained via simulation were presented.
To execute the next stage, it is necessary to define two tools: the evaluation function
(EVAL(k)) and the threshold (TH). The definition of these two tools are a deep issue that
will not be tackled here; therefore, for a more detailed discussion, please refer to [1,4].
Consider the following definition for the evaluation function:

(43)

where L represents the evaluation window, which, in this particular simulation is assumed
to be L = 250. The threshold TH is used to assess the evaluation function EVAL(k).
If EVAL(k) > TH there is a fault, and for the opposite case there is no fault. For the simula-
tions, the value of the threshold was arbitrarily set to TH = 5. From the aforementioned, the
evaluation functions for all the FDF considering each fault were calculated and presented
in Figure 8.

As can be seen in Figure 8, all FDFs are able to detect the different faults; however,
there is a clear difference in the time that it takes for each FDF, as indicated by Table 1.
Note that the proposed approach presented a faster detection for all three faults. This
occurred because the proposed solution considers a more trustworthy model. Thus, an
abnormal change can be detected more quickly.
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Figure 7. The residue signal obtained for FDF designed by using Theorem 1 under the assumption
of knowledge of all modes (to the left), and the FDF provided by [8] (to the right). Both designs
are subjected to three type of faults, and also the situation without fault. (a) Residue signal for FDF
designed via Theorem 1 subjected to Fault 1. (b) Residue signal for FDF designed via [8] subjected to
Fault 1. (c) Residue signal for FDF designed via Theorem 1 subjected to Fault 2. (d) Residue signal

for FDF designed via [8] subjected to Fault 2. (e) Residue signal for FDF designed via Theorem 1
subjected to Fault 3. (f) Residue signal for FDF designed via [8] subjected to Fault 3. (g) Residue
signal for FDF designed via Theorem 1 without fault. (h) Residue signal for FDF designed via [8]
without fault.
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Figure 8. The evaluation function obtained for FDF designed by using Theorem 1 under the assump-
tion of knowledge of all modes (to the left), and the FDF provided by [8] (to the right). Both designs
are subjected to three type of faults, and also the situation without fault. (a) Evaluation function
for FDF designed via Theorem 1 subjected to Fault 1. (b) Evaluation function for FDF designed
via [8] subjected to Fault 1. (c) Evaluation function for FDF designed via Theorem 1 subjected to
Fault 2. (d) Evaluation function for FDF designed via [8] subjected to Fault 2. (e) Evaluation function
for FDF designed via Theorem 1 subjected to Fault 3. (f) Evaluation function for FDF designed
via [8] subjected to Fault 3. (g) Evaluation function for FDF designed via Theorem 1 without fault.
(h) Evaluation function for FDF designed via [8] without fault.
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Table 1. The detection window for all FDF considering each fault after the Monte Carlo simulation.

Design Method Fault 1 (k) Fault 2 (k) Fault 3 (k)
Theorem 1 (All) [105 114] [133 140] [183 188]
[8] (112 117] (145 156] [202 212]

Another interesting aspect is that the FDF designed by using [8] (the FDF under the
assumption that the MC is homogeneous) is affected by the variation even when there is
no fault occurrence. This particularity can be observed in Figure 8h, where the evaluation
value drifts away from zero. This is an issue that affects the performance of the FDE, since
it may cause false alarms. Note that this phenomenon does not occur on the FDF designed
by using the proposed approach, showing that the consideration of the nonhomogeneous
MC is useful to increase the performance of the FDF, especially for the situation where a
nonhomogeneous MC is used to model characteristics that are inherently time-varying, such
as a wireless sensor network. The last piece of information gathered from the simulation
is that even though the proposed solution was based on more assumptions and a higher
number of LMI constraints, which is clearly more computationally costly compared to the
results in [8], the proposed approach provides superior performance.

7. Conclusions

The main contribution of this paper is the development of a new design method
for gain-scheduled FDF considering that the plant measurement signals are transmitted
through a network whose dropouts are modeled by using the MJLS theory, with the Markov
chain being nonhomogeneous. The premise of nonhomogeneous MC is tackled by using
the LPV modelling, specifically applied to the probability transition matrix, allowing us to
design the FDF under this particular circumstance. The FDF synthesis results are obtained
by using parameter-dependent LMI constraints that employ H. norm as performance
index. Since the gain-scheduled FDF varies according to the probability transition matrix
variation, the proposed FDF is optimal for all the variation range of the Markov chain. To
illustrate this, a comparison between the proposed technique with another method from the
literature that does not contemplate the nonhomogeneous MC assumption was made. The
simulation results show that the nonhomogeneous assumption positively impacts the FDF
performance, allowing the proposed technique to detect the fault in a smaller time window,
which can be seen in Table 1. Furthermore the FDF does not present false variations in the
evaluation function, that could be identified as faults, when a fault does not occur, as can
be seen in Figure 8g,h. A possible next step along this research line would be to include a
sensitivity H_ index in the design to further improve the FDF performance.
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Abbreviations

The following abbreviations are used in this manuscript:

Fault Detection FD
Markov Jump Linear Systems MJLS
Markov Chain MC
Networked Control System NCS
Fault Detection Filter FDF
Linear Parameter Varying LPV
Exponentially Stable in the Mean Square Sense with Conditioning of Type1 ESMS-CI
Linear Matrix Inequality LMI
Coordinate Descend Algorithm CDA
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