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Abstract

In this paper we extent the usual normal (symmetric) structural comparative cali-
bration model by considering that the latent variable follows a skew-normal distribution
which includes the normal ones as special case and provides robust estimation in this
type of models. The marginal likelihood function is obtained which is expressed in closed
form, so that inference may be carried out using existing statistical software and stan-
dard optimization techniques. In order to get reliability in the estimation process we
also implement an EM-type algorithm by exploring statistical properties of the model
considered. Additionally, we derive the appropriate matrices to assessing the local influ-
ence on the parameters estimates under different perturbation schemes. Applications of

the results and methods developed in the paper are illustrated with examples using two
real data sets previously analyzed in the literature.
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1 Introduction

Recent statistical literature has seen an increasing interest for models that provide flexibility
in capturing a broad range of non-normal behavior and thus, represent features of the data
as adequately as possible and to reduce unrealistic assumptions. Advantages of using such
general structures include easiness of interpretation, as well as estimation efficiency.

Comparing measuring devices which varies in pricing, fastness and other features, such as
efficiency, has been of growing interest in several areas like engineering, medicine, psychology
and agriculture. Barnett (1969) reports on the comparison of four combinations of two instru-
ments and two operators for measuring vital capacity. Several other examples in the medical
area are reported in the literature specially in Kelly (1984, 1985), Chipkevitch et al. (1996)
and Lu et al. (1997).
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In this paper we consider the comparative calibration models designed to compare the
efficiency of several measuring devices (or instruments) when measuring the same unknown
quantity z in a common group of individuals or experimental units. It is assumed that
the observed measurements follow a multivariate skew-normal distribution. This study is
motivated by the fact that many data sets considered in the comparative calibration literature
seem to present nonnormal behavior such as asymmetry. This is the case with the data
sets studied in Barnett (1969) and in Chipkevitch et al. (1996) (see also Bolfarine et al.,
2002) which require data transformation in order to be better approximated by the normal
distribution.

Qutliers and detection of influential observations is an important step in the analysis of a
data set. There are several ways of evaluating the influence of perturbations in the data set and
in the model given the parameter estimates. On the other hand, there are just a few works in
the literature for diagnostic and influence of observations in models with measurement errors.
Kelly (1984) considered a diagnostic procedure in the structural linear model based on the
influence function. Tanaka et al. (1991) also consider the influence function introduced by
Hampel for evaluating the influence of observations in the analysis of covariance structures.
Rather than eliminating cases, the approach proposed by Cook (1986) is a general method
for evaluating, under the maximum likelihood estimators, the influence of small perturbations
in the model or data set. Recently, Galea et al. (2002) apply the local influence method
in functional and structural normal comparative calibration models (NCCM). However, no
application of local influence has been considered for comparative calibration under the skew-
normal distribution.

Specifically, we first extend the NCCM by considering that the observed responses follow
the skew-normal distribution so that the Skew-Normal Structural Comparative Calibration
Model (SNCCM) is defined. Closed form expressions are obtained for the likelihood function
which extends results in Arellano-Valle et al. (2005b). The likelihood function can then be
directly maximized by using statistical software such as the R program. Alternatively, an EM-
type algorithm is developed which seems to be more robust with respect to starting values. A
local influence study is also conducted for such general models in order to study the influence
of observations on the maximum likelihood estimators. We develop model curvature for two
types of perturbation schemes.

The paper is organized as follows. In Section 2 the skew-normal distribution is revised in
univariate and multivariate contexts. In Section 3 we present the SNCCM model, the marginal
likelihood function of the observed data is derived in closed form and an EM-type algorithm for
maximum likelihood estimation is developed by exploring statistical properties of the model
considered. In Section 4 we discuss the main concepts of local influence and the related
concept of diagnostic. Section 5 is dedicated to the derivation of the appropriate matrices for
the curvature calculation under two perturbation schemes. Finally, in Section 6 applications
the results and methods are illustrated with two examples using data sets previously analyzed
in the literature. Global and local influence for the skew-normal comparative calibration
model are compared.



2 The skew-normal distribution

In this section we present a review of the literature in skew-normal models. We start by giving
the notation that will be used throughout the paper. Let ¢(x|u, £) and ®4(x|, X) be the
probability density function (pdf) and the cumulative distribution function (cdf), respectively,
of the Ny(u, X) distribution evaluated at x. When g2 = 0 and ¥ = I, (the k x k identity
matrix), we denote these functions as ¢ (x) and &,(x), respectively.

The skew-normal distribution was previously considered among others by O’Hagan and
Leonard (1976} as a prior distribution in Bayesian analysis. This family of distributions was
further studied from a classical point of view by Azzalini (1985, 1986) in a univariate context
as a natural extension of the classical normal density to accommodate asymmetry. Arnold
et al. (1993) consider some asymmetric models by using truncated normal distributions and
using this idea more general skew distributions have been developed. In a recent review,
Azzalini (2005) provides a detailed accounting on previous appearances of the skew-normal
distribution. Following Azzalini (1985), a random variable Y follows a univariate skew-normal
distribution with location parameter p, scale parameter o2 and skewness parameter A, which
we denote by Y ~ SN;(u, 02, A), if the pdf of Y is given by

fr(y) = 261 (ylu, 0%) @, (z\y—;—“) : 1)

Note that if A = 0 then the density of Y in (1) reduces to the density of the normal distribution.
We use the notation ¥ ~ SN;(A) when i = 0 and 0? = 1, that is, the standard skew-normal
distribution. Probabilistic properties of this distribution can be found in Azzalini (1985,1986),
Henze (1986), Pewsey (2000) among others. Henze (1986) develops a stochastic representation
for the above distribution which allows obtaining easily many of its properties such as the
asymmetry index, the kurtosis index and all its moments.

Studies on multivariate skew-normal distributions are considered in Azzalini and Dalla-
Valle (1996), Azzalini and Capitanio (1999), Branco and Dey (2001), Sahu et al. (2003),
Genton (2004), among others. Arellano-Valle and Genton (2005) introduce the class of fun-
damental skewed distributions, giving an unified approach to obtain multivariate skew dis-
tributions starting from symmetric ones. Arellano-Valle et al. (2005a) propose a multivari-
ate skew-normal distribution, which is suitable to make inferential studies in many types of
models. Following their approach, we say that a k-dimensional random vector Y follows a
skew-normal distribution with location vector u € RF, dispersion matrix ¥ (a k x k positive
definite matrix) and skewness vector A € R¥, if its pdf is given by

() =26yl D)0, (AT (y — p)), y €RY, )

which we denote this by Y ~ SNi(p, X, ) and by Y ~ SNi(A) when 4 = 0 and ¥ = I, the
k-dimensional identity matrix. A stochastic representation for the distribution in (2) follows
by considering that if Y ~ SN, (g, I, A), then

A
Y £ 4+ B8 Xo| + (I — 86T)V2X,), with & = ——mees, 3)
m (61 Xo| + (I )2Xy) PEUY

where Xo ~ Ny(0,1) independent of X; ~ Ni(0,1;) and ” 4 » meaning ”distributed as”.
This representation is a generalization of the univariate representation in Henze (1986). As in
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the multivariate case, many properties of the multivariate distribution in (2) can be derived
from this stochastic representation. See Arellano-Valle and Genton (2005) and Arellano-Valle
et al. (2005a) for details.

3 The SNCCM and Maximum Likelihood Estimation

Suppose that we have at our disposal p > 3 instruments for measuring a characteristic of
interest z in a group of n experimental units. Let x; the true (unknown) value in unit { and
Y5 the measured value obtained with the instrument j in unit i,i=1,...,nand j=1,...,p
which, we consider to be related through the following linear model (see, Barnett, 1969 and
Shyr and Gleser, 1986),

Y; =a+bzx; +¢, 4)
where a = (0,a™)T = (0,03,...,a,)T and b= (1,8T)T = (1,5,...,5,)" are p x 1 vectors;
Y;: = (ia,..., %) and & = (€q,...,€5)" are p x 1 random vectors, which will be called
structural SNCCM if

& % N,(0,D(¢)) and z; % SNy (pz, 620 M), (5)

i =1,...,n, with D(¢) = diag(¢1,...,4,)" and ¢ = (¢1,...,¢,). The above model is
considering that in the case of Barnett’s (1969) data set, vital capacity is not symmetrically
distributed in the population. The same seems to be the case with the testicular density
data set in Chepkevitch et al. (1996). On the other hand, the errors €;, are related to
measurement errors so that it reasonable to expect them to be normally distributed. The
asymmetry parameter ), incorporates asymmetry in the latent variable z; and consequently in
the observed quantities Y;, ¢ = 1,...,n, which will be shown to have marginally a multivariate
skew-normal distribution. If A, = 0, then the asymmetric model reduces to the normal
comparative calibration model (NCCM) considered in Barnett (1969) in which inferences are
extensively treated in the literature. Note from (3) that, the regression set up defined in
{(4)-(5) can be written hierarchically as

ind

Yi [ Ty ~ Np(a+bth(¢))t (6)
| Ti=t % Ni(u + 61764, 6.(1 - 82)), )
T, ¥ HN(0,1), ®)

i = 1,...,n, all independent, where HN;(0,1) denote the standardized univariate half-
normal distribution and §; = A;/(1 + A2)!/3. Classical inference on the parameter vector
0= (a",87,0", 1, ¢z, A:)7 in this type of model is based on the marginal distribution for
the response Y; (see, Bolfarine and Galea-Rojas, 1995), given in the following proposition.
The proof is given in the appendix.

Proposition 1. Under the structural SNCCM defined in ({)-(5), the marginal distribution of
Y; is given by

Friyil8) = 26,(yilm, 2)&: (A S~ 2(y; — p)), ©)
i.e,
-1/2
'i.pd hY ith = = b T X = ____/\z¢zz : b
Y ~ SNy(1, E, A;), with p=a+bp,, T =D(¢)+¢bb', A, ¢,+A§A,’



i=1,...,n, where A, = (¢, + b D"} (¢)b)".

Notice that the marginal distribution in (9) is also a multivariate skew-normal density of
the form defined in Azzalini and Dalla-Valle (1996) since the skewing function is of dimension
one. The log-likelihood function for @ given the observed sample y = (y],...,yT)7 is given
by

£6) =Y " 4(0), (10)

t=1

where £(6) = og(2) ~(p/2) log(2r) ~ 5 log ] ~ 3ds-+1og(K.), with ds = (y,~ ) "=y,

K;= Ql(;\IE'l/n(y.- - ), i=1,...,n,and p, B, X, as in Proposition 1.

The result presented in Proposition 1 is important because it avoids, for example, using
more complex numerical techniques such as Monte Carlo integration to carry out inferences
in this type of models, given that it allows a closed form for the marginal distribution of
Y;, i =1,...,n, facilitating straightforward implementation of inferences with standard op-
timization routines and existing statistical softwares. The asymptotic covariance matrix of
the maximum likelihood estimators can be estimated by using the Hessian matrix, which can
also be computed numerically using, for instance, the program R with the optim routine. If
Az is suspected to be close to zero (symmetrical model) then it is more adequate to consider
a normal model, given that under A; = 0 the information matrix can be singular although
this is only proved for simpler models (see, Diciccio and Monti, 2004). Here, to obtain the
maximum likelihood estimator of @ we use the EM algorithm and derived algebraically its
asymptotic covariance matrix.

The EM algorithm (Dempster, Laird, and Rubin, 1977) is a popular iterative algorithm for
ML estimation in models with incomplete data. More specifically, let y denotes the observed
data and s denotes the missing data. The complete data Yeomp = (¥, 8) is y augmented with
s. We denote by £.(0)y,s), @ € 6, the complete-data log-likelihood function and by Q(8|¢")
the expected complete-data log- likelihood, that is,

Q(018') = E[t(8ly,s)ly. &].
Each iteration of the EM algorithm involves two steps, the expectation step and the max-
imization step:
E-step: Compute Q(0]6) as a function of 6;
M-step: Find 67+ such that Q(8+9|6") = maxg g Q(8]6).

Each iteration of the EM algorithm increases the likelihood function ¢(@) and the EM
algorithm typically converges to a local or global maximum of the likelihood function.

Lety = (y7,...,¥0)", x = (21,...,Zn)" and t = (t1,...,t,)7. In the following we
implement the EM algorithm for the structural SNCCM by considering that (x, t) are missing
data, i.e, using double augmentation. Thus, under the hierarchical representation (6)-(8), with
2 =¢,(1-6)and¢c= ¢,1,/ %6, it follows that the complete log-likelihood function associated



with (y,x,t) is

£(0ly.x, 1) --;1 log(ID(B)]) ~ 5 (3 — 2~ bz) D)y — 2~ bz)

i=1

-3 log Z(I‘I Pz — Ctt)z (11)

i=1

Letting 7; = E[z;|0 = 91 yils zz E[1:2|9 6))’1] = E[t;|0 = 0 ¥4, tz E[t2|0 0;)':]
and fz; = Eltiz|0 = 0, ¥i], we obtain using double condltlonal expectations and the moments
of the truncated normal distributions (see Johnson et al., 1994, Section 10.1) that
ti = pri+ W@l(&‘-)ﬁr,

Mr

t? = ﬁ%i + m + WQL(—%)HTﬁT¢,

T
£ = [+3k,
2 = T2, +7+27 55+ 8, and
tx = RL+38E, (12)
where Wi, (u) = ¢ (u)/®1(w), M2 = [1 + ?bT(D(¢) + v3bbT) b}, g, = cMEBT(D() +

*bb )N y; — a ~by,), T2 = v[l + vbTD Y $)b] ™, 1y = . + T“b D“(¢)(y« a-by,)
and s = ¢(1 — T2b7D~1(¢)b).

Using a simple algebra we get

E[£:(6]y,%, )y, 8] o« — log(|1D(¢))
—% > (vi—a—b2) D (¢)(y: —a—b) - l(A,-l ~¢,7) i(a?*i -
i=l =1

~5 log(v”) - Z(x24 + 3 + 8 — 2By, — 2haps + 2opsaty). (13)

‘-1

We then have the following EM algorithm:

E-step: Given 6 = 8, compute &, t2 z;, z 73 and Tt fori=1,...,n, using (12).

M-step: Update 8 by maximizing E[¢.(8]y,x, t)|y, 5] over @, which leads to

aJ' F gj_;ﬂj; (14)
B i1 Zilyis — Ui) B

Yoo —n@R



-~ 1 ~ -
b1 o= =D (vh - 28y +2d), (16)
i=1

~ 1 = ~
¢ = a Z(ﬁ +af + Bix? — 205y, — 2y B + 20,055, (17)
=1
- S
e = = Z(z.- —h), (18)
72 = = Z(zz 12+ RHE — op, T - Otz + % u.t;), and (19)
l-—l
~ _ ,=1(tixi - l‘:{;)
< o t’a ) (20)

i=1"i

wherey_.,——Zy.,,:c——Zz.a.nd]—2 P

i=1
The shape and scale para.meters of the latent variable z, can be estimated by noting

that ¢/v = A;, and ¢, = ¢* + 12, Starting values are often chosen to be the corresponding
estimates under a normal assumption, where the starting values for the asymmetric parameters
are set to be 0 and as recommended in the literature, it is useful to run the EM-algorithm
several times with different starting values. Following Arellano-Valle et al. (2005a) we also
propose selecting the best fit by inspection of information criteria such as Akaike’s Informatlon
Criterion (AIC, —£(8)/N+P/N), Schawarz’s Bayesian Information Criterion (BIC, —£(8)/N+
0.5log(N)P/N), and the Hannan-Quinn Criterion (HQ, —£(0)/N + log(log(N))P/N), where
P is the number of free parameters in the model and N = p x n. This approach can be used
in practice to select between NCCM and SNCCM fits. Note that under A, = 0 (or ¢ = 0) the
M-step equations reduce to the equations obtained in Bolfarine and Galea-Rojas (1995).

4 Influence diagnostics

Outliers and detection of influential observations is an important step in the analysis of a
data set. There are several alternatives to evaluate the influence of perturbation in the data
and/or in the model on the parameter estimators. For example, see Cook and Weisberg
(1982), Chatterjee and Hadi (1988).

Case deletion is a common way to assess the effect of an observation on the estimation
process. This is a global influence analysis, since the effect of observation is evaluated by
eliminating it from the data set. Alternatively, local influence is based more on geometric
differentiation rather than on the elimination of observations. A differential comparison of
estimators is used before and after perturbing the data and/or model assumptions. In order to
evaluate the robustness of the maximum likelihood estimator, to possible atypical observations,
in the data set, we use the local influence concept introduced by Cook (1986).

Let (@) denote the log-likelihood function from the postulated model and let w bea g x 1
vector of perturbation restricted to some open subset of R?. The perturbations are made
in the likelihood function such that it takes the form I(f|w), with w as the perturbation
vector. Denoting the vector of no perturbation by wy, we assume {(8lwp) = {(0). To asses



the influence of the perturbations on the maximum likelihood estimate of 8, one may consider
the likelihood displacement o )
LD(w) = 2[I(8) — 1(6.))],

where 0,, (8) denotes the maximum likelihood estimator under the model I(8|w) (1(6)). The
idea of local influence (Cook, 1986) is concerned in characterizing the behavior of LD{(w) at
wp. The procedure consists in selecting a unit direction d, ||d|| = 1, and then to consider
the plot of LD(wo + ad) against @ € R. This plot is called lifted line. Notice that since
LD(wy) = 0, LD(wo+ad)has alocal minimum at ¢ = 0. Each lifted line can be characterized
by considering the normal curvature Cy(#) around a = 0. The suggestion is to consider the
direction dp,y corresponding to the largest curvature Cimec(6). The index plot of dmsx may
reveal those observations that under small perturbations exert notable influence on LD{w).
Cook (1986) showed that the normal curvature at the direction d takes the form

Cq(6) =2|d"ATL'Ad], (21)

where —L is the observed information matrix for the postulated model (w = wp) and A is
the p x ¢ matrix with elements

_ FUblw)

. 60.-6w,- !

evaluated at @ — 8 and w — wp,i = 1,...,p and § = 1,...,q. Therefore, the maximization of
(21) is equivalent to finding the largest absolute eigenvalue Cypax of the matrix B = ATL1A
and d,, is the corresponding eigenvector. In some situations, it may be of interest to assess
the influence on a subset 8, of & = (8],68;)7. For example, one may have interest on
9, =(a, ﬁT)T or 6; = ¢. In such situations, the curvature at the direction d is given by

Ca(61) = 2|ld" AT(L™! — By)Ad, (22)

0 0
Bn—(o L;-zl),

and Lo; is obtained from the partition of L according to the partition of 8. The eigenvector
sy corresponds to the largest absolute eigenvalue of the matrix B = AT(L™! — By,)A.
Another important direction, according to Escobar and Meeker (1992) (see also Verbeke
and Molenberghs, 2000) is d = e;n, & vector of zeroes with a one in the i-th position. In
that case, the normal curvature, called the total local influence of individual i, is given by
C; = 2le] Bein] = 2|by|, where by is the ith diagonal element of B, i = 1, ...,7.

where

In order to compare local and global influence, we use the Cook’s distance (D;) and the
likelihood displacement (LD;), which are defined, respectively, by

D; = (B —8)"(— L)@ - 8)/(3p + 1), (23)

LD; = 2(1(8) - 1(8»)), (24)

i =1,...,,n, where 5(,-) denotes the parameter estimates (MLE) without case i. See Zhao and
Lee (1998) for details.



5 Curvature Derivation for SNCCM

In this Section we derive the observed information matrix and the A matrix for different
perturbation schemes. The observed information matrix is derived first.

9.1 The observed information matrix

From (10) and the notation in Proposition 1, we have after some algebraic manipulation that
the log-likelihood function can be, alternatively, written as:

48) = _4(6), (25)

i=1

1 1
where £,(0) —Elog]EI -—-2-d,-+log(K.') with di = (yi~ ) TS (y;i — p) and K, = &,(A,a,),

with Az = AAz /(¢ + A2A2)Y2, 6 = (yi — p) "D~} (@)b, i = 1,...,n. The matrix of second
derivatives with respect to @ is given by

L ue)
86007

The elements of this matrix are given in the Appendix B. Asymptotic confidence intervals and
test on the MLEs can be obtained using this matrix, This is, if J = —L denote the observed
information matrix for the marginal log-likelihood £(8) of the SNCCM, then asymptotic confi-
dence intervals and hypotheses tests for the parameter 8 are obtained assuming that the MLE
6 has approximately a N3p+1(0,J ") distribution. In practice, J is usually unknown and has
to be replaced by the MLE 3, that is, the matrix J evaluated at the MLE 8.

(26)

5.2 Case weights perturbation

Notice that logarithm of the likelihood function for the model (4)-(5) is given by (10) where
£,(0), is the contribution from the i-th observation (equally weighted) to the likelihood,
it =1,...,n. A perturbed log-likelihood function - allowing different weights for different
observations - can be defined by

(0/w) = 3 witi®), (27)

where, 8 = (a7,87,¢", tiz, ¢z, A)T, w = (wy,...,w,)7 is the vector of weights of the contri-
butions from each observation to the likelihood and wp = 1, = (1,...,1)7 is the nonperturba-
tion point, that is, I(6/wg) = {(@). This perturbation scheme is intended to evaluate whether
the contribution of the observations with differing weights affects the maximum likelihood
estimator of @. Perhaps, this is the method most commonly used to evaluate the influence of
a small modification of the model. Thus, using (27) it follows, after some algebraic manipu-
lation, that the delta matrix is given by

A= (Aly crey An): (28)
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96:(6)
50

0l:(6) . __1_[810g|2| + Odi 2¢‘9log(K.~)
o 2" oy &y &y

Olog|Z| ad; dlog(K;)

where A; = ,1=1,...,n, with elements

]1 ‘7=a$ﬂ)¢v”’n¢=1’\r' (29)

are presented in Appendix B. The above A

The components and
matrix should be evaluated at the MLEs and w,.

5.3 Perturbation of the measurements from one instrument

In this section the measurements are obtained when one instrument is modified considering
additive and multiplicative perturbation schemes. Supposing that the measurements from
instrument m = 1,...,p, are chosen to be perturbed, then the perturbed model is given by

Y,,..;(w) =a+bz; +¢, (30)
with

Y;: ® 1,5(w;), multiplicative perturbation, (81)

Y; + wien, additive perturbation;
mi(Wi) = [
where e, is a p-dimensional null vector with one in the mth position, 1,,{uy) of dimension
p denoting a vector of ones having the mth component replaced by w; and © denotes the
Hadamard (elementwise) product.
Let w = (wy,...,ws)". The no perturbation case follows by taking w, = 0 in the additive
case and w, = 1 in the multiplicative case. The perturbed log-likelihood follows from (25)
with ymi(w;) replacing y;,¢ = 1,...,n. This is,

20lw) =) 4(Blw), (32)
i=1
where £;(0]w;) o —% log ]2]—%d,,..-(w.~)+log(Km.-(w.~)) With doms(w;) = (Fma{ws)~ 1) TS 7 (Femi (wi)—

1), Kmi = @1 (Azmi(wi)) a0d ami(wi) = (Ymi(ws) — )T D™} ()b
Differentiating £(8|w) with respect to w and 8 leads to:

A= (ATaa e 7A:9)) (33)
where
m,mi i i \ Wy
ap = T 4w, (o) g + 4,250
A, (At (0) S A 22 +am.~(w.->3a—1, ()

with Toi(wr) = ~(vm(er) — w7222, 5 ) — T ) X2,y =

$1(1)/@1(u), W, (v) = —We, (u)(u + Wa, (v)), u € R, and a"gg( wi) as in the unperturbed
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Table 1: Results of fitting normal and skew-normal calibration comparative models (NCCM
and SNCCM) to the Barnett data set. SE are the estimated asymptotic standard errors based
in the information matrix given in the Appendix A.

NCCM SNCCM
Parameter Estimate SE  Estimate SE
Qg -2.0447 1.0532 -2.0719  1.0457
03 -5.2857 1.2278 -5.2687 1.2334
ay -4.3726  1.2406 -4.3669  1.2431
B 1.0597 0.0446 1.0609 0.0443
B3 1.1919  0.0521 1.1912 0.0523
Ba 1.1306 0.0526 1.1304  0.0527
¢ 5.0247 1.0006 5.0399  0.9959
b2 1.9151 0.5846 1.7957  0.5799
@3 2.9236  0.7893 3.0425  0.8103
Py 3.8845 0.8744 39338 0.8961
T 22.4611 0.9008 13.0562 1.2599
aﬁ 53.3983 9.7174 141.8462 34.1031
Az - - 5.1780 2.9403
- log-likelihood 788.0931 783.5044
AIC 2.7781 2.7656
BIC 2.8544 2.8483
HQ 2.7726 2.7596

case, replacing y; by ymi(w;) (see Appendix B). Note that, 8}’8"“7@') = ey, in the additive case

3
and B_y# = 1,,(¥im) in the multiplicative case, i = 1,...,n. The above A matrix should
i
8T,m~ (w.-) 88’,,“ (w.-)
o0 45 e

be evaluated at the MLEs and w,. Expression for the derivatives
given in the Appendix C.

6 Applications
In this section we analyze two real data sets. We will focus only on the parameter set 6.

Barnett (1969) data set. Two instruments used for measuring the vital capacity of the
buman lung and operated by skilled and unskilled operators were compared on a common
group of 72 patients. We consider the measurements divided by 100 in order to achieve
numerical stability. Data transformation was used to improve the normal fitting (Bolfarine
et al., 2002). We compare in the sequel NCCM (extensively treated in the literature) and
SNCCM fitting for this data set. Resulting parameter estimates are given in Table 1. Note
that using AIC, BIC and HQ values shown in the bottom of the Table 1 favors SNCCM,
supporting the contention of the departure from normality. A more emphatic conclusion
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in this direction is achieved by considering a parametric test for normality, where the null
hypothesis is A, = 0, such as the likelihood ratio test for which the observed value of the test
statistic in this case is 9.1773 and the associated critical level of the x*(1) at 5% is 3.84. This
conclusion is also corroborated by the PP-plot (Azzalini, 2005) reported in Figure 1.

Figure 1: Barnett data set: Healy’s type plot for (a) Normal CCM, (b) Skew-normal CCM.

(a) (b) .
PP—plot for normel distribution $P-plot for skww—nermal distribution
- L
Ll .
o o
[ T3 )
L B
A4 “
. Ll
o o
a1 4
L] [t] “ (7] # as [ % (T} . (1) ” - L) r L) :X L] LT ]

With this data set, a local influence study conducted by the authors has led to the same
conclusions as the ones resulting by using the asymmetric normal model and reported in
Galea-Rojas et al. (2002) so that they are not presented here.

Chipkevitch et al. (1996) data set. Measurement of the testicular volume of 42 adoles-
cents were made in a certain sequence by using five different techniques: ultrasound (US),
graphical method proposed by the authors (I), dimensional measurement (II), prader or-
chidometer (III) and ring orchidometer (IV), with the ultrasound approach assumed to be
the reference measurement device. A histogram of the measurement (see figure 5(b)) shows
certain asymmetry in the data set such that Galea et al. (2002) (see also Bolfarine et al., 2002)
use & cubic root transformation to better achieve normality. Although such method (variable
transformations) may give reasonable empirical results, it should be avoided if & more suitable
theoretical model can be found (see Azzalini and Dalla-valle, 1996). By introducing a more
flexible parametric distribution capable to accommodating such departures, we use a SNCCM
to fitting this data set. Thus, under the SNCCM, parameter estimates (standard errors)
are i, = 4.0011(1.3951), & = 0.1022(0.5655), &s = 0.0097(0.6217), & = 0.0481(0.6277),
&s = 1.5390(0.6337), f = 0.8838(0.0500), s = 0.9495(0.0559), s = 1.1419(0.0565), 5 =
1.0826(0.0570), ¢ = 59'1993(21'5063)’. ¢ = 1.3385(0.3714), d@ = 1.3285(0.3480), ¢3 =
1.6737(0.4322), d¢ = 1.1577(0.3710) , s = 1.4104(0.3994) and A, = 4.7619(4.7495). The
PP-plot reported in Figure 2 shows a visible improvement in the adequacy of the fit under
the SNCCM relative to consider a NCCM for the observed measurement.

In the perturbation of case weights scheme we have Cimaz = 6.8629 and adolescents 31
and 32 stand out, as depicted in Figure 3(a). The same adolescents are found influential for
the estimation of the complete parameter vector  using the total local influence C; as shown
in figure 3(b). Figures 3(c) and 3(d) gives the index plot of LD; and LD; for the SNCCM.
Once again adolescents 31 and 32 are prominent.
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Figure 2: Chipkevitch’s data set: Healy’s type plot for (a) Normal CCM, (b) Skew-normal

CCM.
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Examining the effects of perturbing the measurement taken by the five techniques as the
previous example. The values of Cyma, for additive perturbations are 2.4273(US), 2.5756(I),
2.0696(I1), 2.4854(III) and 2.9440(IV), whereas for multiplicative perturbations the Cypngs
values are 427.6429(US), 400.9534(1), 460.4602(II), 563.5952(IIT) and 702.7542(IV). Figures 4
and 5(a) illustrate the differences between the perturbation schemes. Technique IV is chosen
because it presents the largest Cyq. values.

In order to compare with the normal case in Figure (6) we show results of local influence
under the NCCM using cubic root transformation as in Galea et al. (2002). Note that the
conclusions are different because under the skew-normal model observations 31 and 32 are
the most influent while under the symmetric normal model (after transforming the data) the
most influent one is 20.

7 Final Conclusions

Paper deals with a skew normal comparative calibration model (SNCCM) with the normal
comparative calibration model (NCCM) as a special case. Closed form expression is obtained
for the likelihood function of the observed measurements which can be maximized by using
existing statistical software. An EM-type algorithm is also developed by exploring statistical
properties of the model considered. A local influence study is also conducted by developing
model curvature for two perturbation schemes. Two data sets exhibiting skewness features
are studied under the assumption of a skew normal distribution. In both cases, the SNCCM
seems to present a better fit. We point out that the results and methods provided in this
paper is not available elsewhere in the literature and the approaches used here can be used
easily extended in treating other multivariate models.
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Figure 3: Chipkevitch’s data set. Index plot of (a) |[dmaz|. (b) C; for perturbation of case
weights for 8 (c) Likelihood Displacement LD; (d) Cook’s distance D;.
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Figure 4: Chipkevitch’s data set. Plot of |dma.| versus the measurements taken by technique
IV (a) Additive perturbation. (b} multiplicative perturbation.
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Figure 5: Chipkevitch's data set. (a) Plot of the likelihood displacement LD(w(a)) versus a
for direction d,y,,, imposing additive (solid-line) and multiplicative (dotted-line) perturbations
on the measurements taken by techniques IV (b) Histogram for the observed measurements.

(2) - (b)

Appendix A: Proofs

Before proving the main results we consider the following lemmas. The notation used is that
of Section 2.

Lemma Al. ‘Let Y ~ N,.(1s,X). Then for any fized k-dimensional vector a and k X n matriz
B,
E[®:(a+BY|n, Q)] = ®(ajn — Bu, 2 +BEB").

Proof. See Arellanc-Valle et al. (2005a,b). [}

Lemma A2. Let Y ~ Np(p, X) and X ~ Ny(n,£2). Then,

bo(ylp + Ax, D)o(x|n,R) = o,(ylu+An,E+A0AT)
X ¢q(x'ﬂ + AATE-l(y — 4 Aﬂ),A)v

where A = (71 + ATETA) L,
Proof. See Arcllano-Valle et al. (2005a). a
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Proof of Preposition 1:
From (4), (5) and the definition in (2) with k = 1, it follows that the marginal density of
Y, is obtained by computing the following integral:
Py, 0i6) = [ Fivi, ) f(ado)ia

= L%p()h’la + bz, D()) b1 (2| 2y 62) Dy (ﬁ% (s~ /-‘z)) dz;
(A1)
which, by using Lemma 2 is equal to:

Aty Az

FE,016) = 2651a + e, B2 + ¢1,Z; 0,1, (A2)

Figure 6: Chipkevitch's data set diagnostic under the NCCM using cubic root transformation.
Perturbation of case weights: Index plot of (a) |dmaz| and (b) C;. Plot of |dppas| versus the
measurements taken using technique IV under: (c) Additive perturbation (d) multiplicative

perturbation.
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where Z; ~ Ni(tz + A;b" DY (¢)(y: — a — byz), Az), With As = (6. + b"D~1(¢)b)~*. The
proof is concluded by using Lema Al and noting that A,bD~1(¢) = bE!,

Appendix B: The observed information matrix in the skew-normal structural
calibration comparative model

In this appendix the observed information matrix is obtained for the SNCCM. From (10),
it follows that

32,(0) _ _lalog|}3| _ ‘ld + 8logK.-

By 2 By 2%y oy (B1)
where
T = Wou (Aol A + oy

with We, (u) = ¢1(u)/®1{u), v € R, A; = XA /(¢ + A2A)2, A,y = b /c, a; = X[ D™Y(p)b,
d.‘Y = 5{1_;’7 = Y, @, 03¢z, P, A; and d; = X;T'z—lxi’ Xi=Y;-a-by,,c=1+

$:bTD7Y(¢)b, i = 1,...,n. Further, using results in Nel (1980) related to vector derivatives it
follows that,

ak;ilyzl = 0, 7= fheyt, A,
Olog|Z|
2 = 2—D Y(¥)8,
dlog|B| P S 1
6. ¢
dogls| _ ~& D)@+ D (D)1,
o¢
04, =0, vy=ps,x
o "
04. _ (2c+)}) 48 D1
55 X S ALDT ()8,
0A: _ (24X 4o -2
= B AiD(b)D7%(¢)b,
0A. _ MAS
¢ 20273 -
BA, — ¢= A3
6)‘: AzAa t 2
dm, = —2bT lxu
dia = 2R X,
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dg = =207 )Wz +2c7 6,007 (¢)B,

dl‘é. = —c'za?,

dg = —DP)D(X)X:+2'6,0,D"}$)D(b)X. - ¢ *¢2a} D2 (¢) D(b)b,
dl';\: = 0’

= ~b"D7Y ()b,

a& = _D-l("p)ﬁs

25 D'1(¢)W25—FzD—1(¢);B!

= 0,
9% _pp)pY$)X.,

o

where M = D_l(¢)bbTD-l(¢)r 1/’ = (¢2l coo) ¢p)T1 W22 =Yx— _ﬁp'zr H(P) = [0’ Ip—l] of
dimension p — 1 % p and y,; = (¥, -~-:Ilip)T-

From (B.1) it follows that the observed, per element, information matrix is given by

Lol = [ ) )
3= -Li0ly,) = ( 575eT ) (B2)
il 2 1&gz 1 PlogK;
BAERE 3yorT 2 ayorT _Z-d”TT + oyorT’ i
FPlogK; 0A; OBa; &y Ba; 8A, 5A,
el = e - il ~r e )

2 9A,.. . Ba; ;)
+ha, (sl At + oy A gt + ai g,
AQ‘ (u) - W‘I (u) ~ —W‘h (u)(u+WQ1 (u))’ ue R’ di.,TT = aizad‘:'T V0T = Uy Q, ﬁ; ¢=: ¢1 Azr
where

Plog|
81,;'77' =0, 7=p50,A; V= ls, @, 8,82,0, A

FloglZ| | o4
aﬂa¢z - 26 D (¢)ﬁs

#log|3| 1 2

9608, ~ @@V
%log|Z|
580

—2¢7"¢:[D1(B) — ¢ ¢, D7} ()Bb" D(b)]D*(9),
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log|Z|

27 e [D7N () — 2c7 1. M),

8B08T
Blog|T
L)
6210g|)3] _ —2 2,2 1 1 o )
32A" ¢z 3(2 +A 2 +,\
spopT ~ U (—c,v_)AS)MI : = ADT W),
A, 1 3(2c+ A2)(2c + A2 —
go0e =~ LA+ 3;} 2w,
62A,, 3(2 + >‘a: B
90T [2A2A3 Aesgp), CW Y 45107 ()86 DB)D~*(¢)
N A‘AsH(p)D(b)D 2(g),
4, L A3 i
8N, igm(‘“:(?c“i)ﬂ)\i/\zw '(¥)8,
84, N +1 ., 3(2+ X2 -2
ag;,a% = g At T i
A: _ (e—1) 3, 3(2c+AN)(2c+ A2~ 2) _
soe” = Laag A Dig AZJ6TD(b)D%(9),
PAa; -2 A3+3(2c+,\ _cz)Ai,
6;2,8,\1 AﬂA,q&, 2X5A2¢,
Ay 2c+ X
P AzAi ——( 2 41D()D(6)M D (4)D)
s A*DZ(b)D‘%»)A
PA,
o, 2A5A2 [3A2(2C +A2) — A, |D(b)D~* ()b,
azA’-' 3¢z 3¢2
MO, | aMAzCE Azt NEAS A,
dip,p, = 2bT2—1b,
d%aT = 2bT2_II[;),
diuzﬂT = ~274,
dipg. = 2*‘_(602;:)0:
™ = 267 XETDTH ) D(b),
daar = AT,
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a - 2Bp.) D7 ()]

b +C l¢za| and

dogr = 26lD7($) 276 My + 276D @BV - @) D7 (¥),
diay, = 2D ()8,
dogt = AT DHHD(X) - c'¢:a:D(b)],
4opT = 4%:“-'[”’1 W)(Yia — = 26p:)B87 D™\ (%) + D' (@)B(Y e =
~2¢7'¢.D _1(¢)(Yt2—a'2ﬁ#z)(ym a ~ 20u.) "D (%)
+2a( + € 1db,a.)D'l(a/:)+2 2D (4) — 4¢=M,]
dg,, = —27mA],
dggm = 20alpDYi-a-gb)+ ¢ ¢, A7 (Y — a — bg,)" D(b)|D~%(¢),
T
d, g7 = (-206.a}D(b)D*(#)b+2c*a:D(b)D*($)X,)",
dgsr = 2D (@)DU(X) - 476D ($)D(B)D(X:)
—2c71¢.D"%(¢) D(b)X ;X[ D(b)D~*(¢)
+2c7%¢2D*(¢) D(b) X . X[ M D™ (¢)D(b)
+2¢7%¢2a2D~*(¢)D(b) - 2¢*¢3a?D"}($)D(b)M D(6)D($)
+2¢72¢2 D1 (¢)D(b)M X, X[ D(b)D~*(¢),
azzaa‘;‘-r = 0,7 = s &, Az T = fiz, 0,2, Az 5323‘:1-_0 T=0,9, T=¢zA,
sttr = —28TD7)
ey = VDODE),
5:28_% = _D_1(¢)1
5% = I D(b)D7*(¢),
aZ;;T = —2“=D—l(¢);
aZ::sT = —1pD(Y; - a-2u,b)DXg),
5%% = 2D(X;)D(b)D~()
where A; = (Ya — a = 28)"D"'(y), M1 = D' ($)BBT D' (¥), & =
i=1..,n
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Appendix C: Computing the derivatives of Tp;(wi} and Spi(w;).

We have that Tog(us) = —(Yomi(ws) - y)Tz-l—aygi“"), Smilwe) = bTD () W%—;:i“‘) , then

0T i (wi)
O¢-

OT g (Wi)

b lz—l 6yﬂll (ld.)
Ay

L
AWy T
qmi(w‘)ayTTEJ (DY) = 2c7 6 M)I
T
Do) s @ )blymtes) - ) DT
aYmi(wi)T
Bwl-

+c ¢,

¢ g (ws)

D7l (¢)b

"
aTmi (wi)
- B,
BS,,.‘ (w;)

OSmilwi)
o8
35,,,; (w,- )

ayé"if..w"’ B D) = ¢ st D)
0.

0, v=p,0 ¢ ¢z,

Igy D™ (¢)3y5:§w.)

- D)D) HEL)
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