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Abstract 

In this paper we extent the usual norma.l (symmetric) structural comparative ca.li­
bration model by considering that the latent variable follows a skew-norma.l distribution 
which includes the normal ones as special ca.se and provides robust estimation in this 
type of models. The marginal likelihood function is obtained which is expressed in closed 
form, so that inference may be carried out using existing statistical software and stan­
dard optimization techniques. In order to get reliability in the estimation process we 
also implement an EM-type algorithm by exploring statistical properties of the model 
considered. Additionally, we derive the appropriate matrices to assessing the local influ­
ence on the parameters estimates under different perturbation schemes. Applications of 
the results and methods developed in the paper are illustrated with examples using two 
real data sets previously analyzed ID the literature. 

Key Words: Skew-normal distribution, Local inftuenre, EM algorithm, Skewness. 

1 Introduction 

Recent statistical literature has seen an increasing interest for models that provide flexibility 
in capturing a broad range of non-normal behavior and thus, represent features of the data 
as adequately aa p06Sible and to reduce unrealistic assumptionB. Advantages of using such 
general structures include easiness of interpretation, as well as estimation efficiency. 

Comparing measuring devices which varies in pricing, fastness and other features, such as 
efficiency, has been of growing interest in several areas like engineering, medicine, psychology 
and agriculture. Barnett (1969) reports on the comparison of four combinations of two instru­
ments and two operators for measuring vital capacity. Several other examples in the medical 
area are reported in the literature specially in Kelly (1984, 1985), Chipkevitch et al. (1996) 
and Lu et al. (1997). 
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In this paper we consider the comparative calibration models designed to compare the 
efficiency of several measuring devices (or instruments) when measuring the same unknown 
quantity x in a common group of individuals or experimental units. It is assumed that 
the observed measurements follow a multivariate skew-normal distribution. This study is 
motivated by the fact that many data sets considered in the comparative calibration literature 
seem to present nonnormal behavior such as asymmetry. This is the case with the data 
sets studied in Barnett (1969) and in Chipkevitch et al. (1996) (see also Bolfarine et al., 
2002) which require data transformation in order to be better approximated by the normal 
distribution. 

Outliers and detection of influential observations is an important step in the analysis of a 
data set. There a.re several ways of evaluating the influence of perturbations in the data set and 
in the model given the parameter estimates. On the other hand, there are just a few works in 
the literature for diagnostic and influence of observations in models with measurement errors. 
Kelly (1984) considered a diagnostic procedure in the structural linear model based on the 
influence function. Tanaka et al. (1991) also consider the influence function introduced by 
Hampel for evaluating the influence of observations in the analysis of covariance structures. 
Rather than eliminating cases, the approach proposed by Cook (1986) is a general method 
for evaluating, under the maximum likelihood estimators, the influence of small perturbations 
in the model or data.' set. Recently, Galea et al. (2002) apply the local influence method 
in functional and structural normal comparative calibration models (NCCM). However, no 
application of local influence has been considered for comparative calibration under the skew­
normal distribution. 

Specifically, we first extend the NCCM by considering that the observed responses follow 
the skew-normal distribution so that the Skew-Normal Structural Comparative Calibration 
Model (SNCCM) is defined. Closed form expressions a.re obtained for the likelihood function 
which extends results in Arellano-Valle et al. (2005b). The likelihood function can then be 
directly maximized by using statistical software such as the R program. Alternatively, an EM­
type algorithm is developed which seems to be more robust with respect to starting values. A 
local influence study is also conducted for such general models in order to study the influence 
of observations on the maximum likelihood estimators. We develop model curvature for two 
types of perturbation schemes. 

The paper is organized as follows. In Section 2 the skew-normal distribution is revised in 
univariate and multivariate contexts. In Section 3 we present the SNCCM model, the marginal 
likelihood function of the observed data is derived in closed form and an EM-type algorithm for 
maximum likelihood estimation is developed by exploring statistical properties of the model 
considered. In Section 4 we discuss the main concepts of local influence and the related 
concept of diagnostic. Section 5 is dedicated to the derivation of the appropriate matrices for 
the curvature calculation under two perturbation schemes. Finally, in Section 6 applications 
the results and methods &re illustrated with two examples using data set:$ previously analyzed 
in the literature. Global and local influence for the skew-normal comparative calibration 
model a.re comp&red. 
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2 The skew-normal distribution 
In this section we present a review of the literature in skew-normal models. We start by giving 
the notation that will be used throughout the paper. Let cf>.1:{xlµ, I:) and 4>.1:{xlµ, I:) be the 
probability density function (pd.f) and the cumulative distribution function (cdf), respectively, 
of the Nk(µ, I:) distribution evaluated at x . When µ = 0 and :E = IA: (the k x k identity 
matrix), we denote these functions as tPA:(x) and <Pt(x), respectively. 

The skew-normal distribution was previously considered among others by O'Hagan and 
Leonard {1976) as a prior distribution in Bayesian analysis. This family of distributions was 
further studied from a classical point of view by Azzalini (1985, 1986) in a univariate context 
as a natural extension of the classical normal density to accommodate asymmetry. Arnold 
et al. {1993) consider some asymmetric models by using truncated normal distributions and 
using this idea more general skew distributions have been developed. In a recent review, 
Azzalini (2005) provides a detailed accounting on previous appearances of the skew-normal 
distribution. Following Azzalini (1985), a random variable Y follows a univariate skew-normal 
distribution with location parameter µ, scale parameter a2 and skewness parameter >.., which 
we denote by Y ~ SN1(µ,a 2,>..), if the pdf of Y is given by 

Jy(y) = 2<1>1 (ylµ, u2
) q,1 ( >.. Y: µ) . (1) 

Note that if>..= 0 then the density of Yin (1) reduces to the density of the normal distribution. 
We use the notation Y ~ SN1 (>..) whenµ= 0 and a2 = 1, that is, the standard skew-normal 
distribution. Probabilistic properties of this distribution can be found in Azzalini (1985,1986), 
Henze (1986), Pewsey (2000) among others. Henze (1986} develops a stochastic representation 
for the above distribution which allows obtaining easily many of its properties such as the 
asymmetry index, the kurtosis index and all its moments. 

Studies on multivariate skew-norma.1 distributions are considered in Azzalini and Dalla­
Valle (1996}, Azzalini and Capitanio {1999), Branco and Dey (2001), Sahu et al. (2003), 
Genton (2004), among others. Arellano-Valle and Genton (2005) introduce the class of fun­
damental skewed distributions, giving an unified approach to obtain multivariate skew dis­
tributions starting from symmetric ones. Arellano-Valle et a.I. {2005a) propose a multivari­
ate skew-norma.l distribution, which is suitable to make inferential studies in many types of 
models. Following their approach, we say that a k-dimensional random vector Y follows a 
skew-normal distribution with location vector µ E R", dispersion matrix :E (a k x k positive 
definite matrix) and skewness vector ,\ E R", if its pdf is given by 

(2) 

which we denote this by Y ~ SNk(I-', I:, .A) and by Y ~ SN1,:(.\) whenµ= 0 and :E = IA:, the 
k-dimensional identity matrix. A stochastic representation for the distribution in (2) follows 
by considering that if Y ~ SN1,:(µ, 'E, .X), then 

Y 4 µ + I:1l2(61Xol + (IA: - 66T)1l2X1), with 6 = ✓ .A t , (3) 
1+.\ ,\ 

where X 0 ~ N1(0, 1) independent of X1 ~ N1,:(0, IA:) and " 4 " meaning "distributed as". 
This representation is a generalization of the univariate representation in Henze {1986). As in 
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the multivariate case, many properties of the multivariate distribution in (2) can be derived 
from this stochastic representation. See Arellano-Valle and Genton (2005) and Arellano-Valle 
et al. (2005a) for details. 

3 The SNCCM and Maximum Likelihood Estimation 

Suppose that we have at our disposal p ~ 3 instruments for measuring a characteristic of 
interest:& in o. group of n experimental units. Let :&; the true {unknown) w.lue in unit i and 
y,1 the measured value obtained with the instrument j in unit i, i = 1, ... , n and j = 1, ... ,p 
which, we consider to be related through the following linear model (see, Barnett, 1969 and 
Shyr and Gleser, 1986), 

Y, = a+ bx;+ E;, (4) 
where a= (0,a Tf = (0, cr2 , .•. , cr11)T and b = (1,.BTf = (1,.02, ... , (311)T are p x 1 vectors; 
Y, = (y,1 , .•. ,y,11)T and E; = (f,1 , ••• ,E;11)T are p x 1 random vectors, which will be called 
structural SNCCM if 

iid iid 
E; ~ N11(0,D(q,)) o.nd x; ~ SN1(µ,,,4>.,,,>..,), (5) 

i = 1, ... ,n, with D(q,) = diag(</>1, ... ,</>11 f o.nd q, = (</>1, ... ,</,11). The above model is 
considering that in the case of Barnett's (1969) data set, vital capacity is not symmetrically 
distributed in the population. The same seems to be the case with the testicular density 
data set in Chepkevitch et al. (1996). On the other hand, the error.:1 Ei, are related to 
measurement errors so that it reasonable to expect them to be normally distributed. The 
asymmetry parameter >.., incorporates asymmetry in the la.tent variable x; o.nd consequently in 
the observed quantities Y;, i = 1, ... , n, which will be shown to have marginally a multivariate 
skew-normal distribution. If >.., = 0, then the asymmetric model reduces to the normal 
comparative calibration model (NCCM) considered in Barnett (1969) in which inferences a.re 
extensively treated in the literature. Note from (3) that, the regression set up defined in 
(4)-(5) can be written hierarchically as 

(6) 

(7) 

(8) 

i = 1, ... ,n, all independent, where HN1(0, 1) denote the standardized univariate half­
normal distribution and 8., = >..,/(1 + ~)112. Classical inference on the parameter vector 
8 = (a T, 13T, q, T' µz:, (/,,,, >..,)T in this type of model is based on the marginal distribution for 
the response Y, (see, Bolfarine and Ga.lea-Rojas, 1995), given in the following proposition. 
The proof is given in the appendix. 

Proposition 1. Under the structural SNCCM defined in W-(5), the marginal distribution of 
Yi is given by 

(9) 

i.e., 

4 



i = 1, ... 'n, where A,,= (t/>z -l + b T n-1(4>)bt1 . 

Notice that the marginal distribution in (9) is also a multivariate skew-normal density of 
the form defined in Azzalini and Dalla,. Valle (1996) since the skewing function is of dimension 
one. The log-likelihood function for fJ given the observed sample y = (y [, .. . , y J) T is given 
by 

(10) 
i=l 

1 1 
where4(fJ) = log{2)-(p/2) log{21r)- 2log IEl-2d;+log(K,), with d; = (y;-µ?!:-1(y;-µ), 

K; = ~1(X; i;-112(y; - µ)), i = 1, ... , n, andµ, I:, X,, as in Proposition 1. 
The result presented in Proposition 1 is important because it avoids, for example, using 

more complex numerical techniques such as Monte Carlo integration to carry out inferences 
in this type of models, given that it allows a closed form for the marginal distribution of 
Y;, i = 1, ... , n, facilitating straightforward implementation of inferences with standard op­
timization routines and existing statistical softwares. The asymptotic covariance matrix of 
the maximum likelihood estimators can be estimated by using the Hessian matrix, which can 
also be computed numerically using, for instance, the program R with the optim routine. If 
Az is suspected to be close to zero (symmetrical model) then it is more adequate to consider 
a normal model, given that under Ar = 0 the information matrix can be singular although 
this is only proved for simpler models (see, Diciccio and Monti, 2004). Here, to obtain the 
maximum likelihood estimator of () we use the EM algorithm and derived algebraically its 
asymptotic covariance matrix. 

The EM algorithm (Dempster, Laird, and Rubin, 1977) is a popular iterative algorithm for 
ML estimation in models with incomplete data. More specifically, let y denotes the observed 
data ands denotes the missing data. The complete data Ycomp = (y, s) is y augmented with 
s. We denote by ic(Bly, s), 8 E 8, the complete-data log-likelihood function and by Q(819') 
the expected complete-data log- likelihood, that is, 

Q(fJIB') = E[ic(Bly, s)IY, 8']. 

Each iteration of the EM algorithm involves two steps, the expectation step and the max-
imization step: 

E-step: Compute Q(BIB(r)) as a function of 8; 

M-step: Find fJ(r+1J such that Q(8Cr+1Jl9Crl) = maxeee Q(BlfJ(rl). 

Each iteration of the EM algorithm increases the likelihood function t(B) and the EM 
algorithm typically converges to a local or global maximum of the likelihood function. 

Let y = (Yi,···,YJf, x = (x1, ... ,xn)T and t = (ti, .. -,tnf• In the following we 
implement the EM algorithm for the structural SNCCM by considering that (x, t) are mi~ing 
data, i.e, using double augmentation. Thus, under the hierarchical representation (6)-(8), with 
v2 = t/).,(1 - ~) and ( = 4>~125z, it follows that the complete log-likelihood function associated 
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with (y, x, t) is 

lc(Bly,x, t) ex-% log(ID(cp)I) - ½ i)y, - a - bx;)T v-1(cp)(y; - a - bx;) 
i=-1 

n 1 ~ 2 -2 log(i?) - 2112 £-t(x, - µ., - ~t;) . (11) 

Letting x, = E[x;l8 = 9, y;], zjl = E[x~l8 = 8, y;), t; = E[t,19 = 8, y,], ij = E[f;l9 = 8, Y;] 
and~ = E[t;x;j9 = 9, y;], we obtain using double conditional expectations and the moments 
of the truncated normal distributions (see Johnson et al., 1994, Section 10.1) that 

t; = - 'ih-i -µn + w.1 (=-)MT, 
MT 

q - 2 w w. ('iiT')M-= /J1i + T + •1 =- T~11 
MT 

£, = ;; + st;, 
J i = f2 <ell r -t; -,2 i2 ., + r, + r, s · + s ; , a.nd 

G = - - -1 r; t; + s t,, (12) 

where w.1 (u) = q',1(u)/4>1(u), ~ = [1 +~2bT(D(cp) +v2bbT)-1bJ-1 , ~, = ~M:J.bT(D(cp) + 
v2bb T)-1(y, - a- bµ.,), T: = 11[1 + 11bTD-1(cp)bJ-1 , r, = µ., + T;hTD-1(,t,)(y, - a- bµ.,) 
a.nd s = ~(1-T;bTD-1(ef>)b). 

Using a simple algebra we get 

We then have the following EM algorithm: 

E-step: Given 8 = 8, compute t;, q, x,, ~ e.nd x,t; for i = 1, ... , n, using (12). 

M-step: Update 9 by maximizing E[l.,(9ly,x, t)ly,8] over 9, which leads to 
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ef>1 l t 2 - -= - (Y;1 - 2i;Yil. + ~), (16) 
n i=l 

i, 1 n -

= -L~ + aJ + /3]xl- 2o:;Y;; - 2y,;/3;i; + 2o;/3;i;), (17) 
n i=l -

,- µ., = ¾ i)i; - (t;), 
i=l 

(18) 

./ f;2 It - 2 2- - - -= - (x2
1 + µ., + ( t~ - 2µ,.x; - 2(t;x; + 2(µ.,t,), and (19) 

n i=l 

/ f = 
E" (- -i=l t;Xi - µ.,t;) 

(20) 
E~=lq 

h - 1 ~ ,.. 1 ~- d . 2 w ereyi=-L.JY;;,x=-L.-x;an J= , ... ,p. 
n i=l n i=l 

The shape and scale parameters of the latent variable x, can be estimated by noting 
that (/v = A.,, and</>., = (2 + v2. Starting values are often chosen to be the corresponding 
estimates under a normal assumption, where the starting values for the asymmetric parameters 
are set to be O and as recommended in the literature, it is useful to run the EM-algorithm 
several times with different starting values. Following Arellano-Valle et al. (2005a) we also 
propose selecting the best fit by inspection of information criteria such as Akaike's Information 
Criterion (AIC, -£(9)/N+P/N), Schawarz's Bayesian Information Criterion (BIC, -l(9)/N+ 
0.5log(N)P/N), and the Hannan-Quinn Criterion (HQ, -£(9)/N +Iog{log(N))P/N), where 
P is the number of free parameters in the model and N = p x n. This approach can be used 
in practice to select between NCCM and SNCCM fits. Note that under A., = 0 ( or ( = 0) the 
M-step equations reduce to the equations obtained in Bolfarine and Galea-Rojas (1995). 

4 Influence diagnostics 

Outliers and detection of influential observations is an important step in the analysis of a 
data set. There are several alternatives to evaluate the influence of perturbation in the data 
and/or in the model on the parameter estimators. For example, see Cook and Weisberg 
(1982), Chatterjee and Hadi (1988). 

Case deletion is a common way to assess the effect of an observation on the estimation 
process. This is a global influence analysis, since the effect of observation is evaluated by 
eliminating it from the data set. Alternatively, local influence is based more on geometric 
differentiation rather than on the elimination of observations. A differential comparison of 
estimators is used before and after perturbing the data and/or model assumptions. In order to 
evaluate the robustness of the maximum likelihood estimator, to possible atypical observations, 
in the data set, we use the local influence concept introduced by Cook (1986). 

Let l(9) denote the log-likelihood function from the pOBtulated model and let w be a q x 1 
vector of perturbation restricted to some open subset of Rq. The perturbations are made 
in the likelihood function such that it takes the form l(8lw), with w as the perturbation 
vector. Denoting the vector of no perturbation by w0 , we assume l(8jw0) = l(8). To asses 

7 



the influence of the perturbations on the maximum likelihood estimate of 8, one may consider 
the likelihood displacement 

LD(w) = 2[l(8) - l(801 )], 

where 8
01 

(8) denotes the maximum likelihood estimator under the model l(Blw) (l(B)). The 
idea of local influence (Cook, 1986) is concerned in characterizing the behavior of LD(w) at 
w0 • The procedure consists in selecting a unit direction d, lldll = 1, and then to consider 
the plot of LD(w0 + ad} against a E JR. This plot is called lifted line. Notice that since 
LD(w0) = 0, LD(w0+ad) has a local minimum at a = 0. Each lifted line can be characterized 
by considering the normal curvature C11(8) around a= 0. The suggestion is to consider the 
direction du.ax corresponding to the largest curvature Ct1max(B). The index plot of dnw,; may 
reveal those observations that under small perturbations exert notable influence on LD(w). 
Cook (1986) showed that the normal curvature at the direction d takes the form 

(21) 

where -Lis the observed information matrix for the postulated model (w = wo) and A is 
the p x q matrix with elements 

t:,,. .. _ a2l(Blw) 
IJ - 09;0Wj f 

evaluated at 9 = 8 and w = w 0 , i = 1, ... ,p and j = 1, ... , q. Therefore, the maximization of 
(21) is equivalent to finding the largest absolute eigenvalue Ct1max of the matrix B = ATL-1A 
and dmax is the corresponding eigenvector. In some situations, it may be of interest to assess 
the influence on a subset 81 of 8 = (8[,Br)T. For example, one may have interest on 
81 = (a T,/JT)T or 91 = tf>. In such situations, the curvature at the direction dis given by 

(22) 

where 

B22 = ( ~ L~l ) , 

and L22 is obtained from the partition of L according to the partition of 8. The eigenvector 
dmax corresponds to the largest absolute eigenvalue of the matrix B = AT (L -I - B22)A. 
Another important direction, according to Escobar and Meeker (1992) (see also Verbeke 
and Molenberghs, 2000) is d = em, a vector of zeroes with a one in the i-th position. In 
that case, the normal curvature, called the total local influence of individual i, is given by 
C1 = 2le!,Be,nl = 2lbul, where bu is the ith diagonal element of B, i = 1, ... , n. 

In order to compare local and global influence, we use the Cook's distance (D;) and the 
likelihood displacement (LD;), which are defined, respectively, by 

Di= (9(i) - B)T(- L)(B(i) - 9)/{3p + 1), 

LD, = 2(l(8) - l(Bc,i)), 

(23) 

(24) 

i = 1, ... , n, where Be,) denotes the parameter estimates (MLE) without case i. See Zhao and 
Lee {1998) for details. 
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5 Curvature Derivation for SNCCM 

In this Section we derive the observed information matrix and the A matrix for different 
perturbation schemes. The observed information matrix is derived first. 

5.1 The observed information matrix 
From (10) and the notation in Proposition 1, we have after some algebraic manipulation that 
the log-likelihood function can be, alternatively, written es: 

n 

l(8) = 1);(8), {25) 
i=l 

1 1 
where 4(8) cc - 2 log IEl-2£4 +log{K;) with d; = (y; - µ)TE- 1(y;- µ) and K; = ~1(A:.a;), 
with A:.= >-zA:r/(r/Jz + )..~~)112

, a;= (y; - µ)T n-1(</,)b, i = 1, ... , n. The matrix of second 
derivatives with respect to (J is given by 

(26) 

The elements of this matrix a.re given in the Appendix B. Asymptotic confidence intervals and 
test on the MLEs can be obtained using this matrix, This is, if J = -L denote the observed 
information matrix for the marginal log-likelihood l{ 8) of the SNCCM, then asymptotic confi­
dence intervals and hypotheses tests for the parameter 8 are obtained assuming that the MLE 
8 has approximately a Nap+1(8,J-1) distribution. In practice, J is UBually Uilknown and has 
to be replaced by the MLE J, that is, the matrix J evaluated at the MLE 9. 

5.2 Case weights perturbation 
Notice that logarithm of the likelihood function for the model (4)-(5) is given by {10) where 
l;(8), is the contribution from the i-th observation (equally weighted) to the likelihood, 
i = 1, ... , n. A perturbed _log-likelihood function - allowing different weights for different 
observations - can be defined by 

n 

l(8/w) = Lw;f;(8), (27) 
i=l 

where, (J = (a T, {3T, q, T, µz, r/Jz, >-z) T, w = (w1, ... , w,.) T is the vector of weights of the contri­
butions from each observation to the likelihood and w0 = ln = {l, ... , 1) T is the nonperturba­
tion point, that is, 1(8/w0) = 1(8). This perturbation scheme is intended to evaluate whether 
the contribution of the observations with differing weights affects the maximum likelihood 
estimator of 9. Perhaps, this is the method most commonly used to evaluate the influence of 
a small modification of the model. Thus, using (27) it follows, after some algebraic manipu­
lation, that the delta matrix is given by 

(28) 
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h A 8l;(8) . 1 'th 1 
were ""'i = ~• 1 = , ... ,n, Wl e ements 

81;(6) = _ 1[8logl:EI + 8d; _ 2
8log(K;)] 

o-y 2 o-y o-y o-y ' "Y = a., {3, t/>, I¼, <f,,., >..,. (29) 

8logl:EI 8d; 8 log(K;) . A d' B Th bo A 

The components ~ , o-y and o-y are presented m ppen ix • e a 'le L.1 

matrix should be ewluated at the MLEs and w0 • 

5.3 Perturbation of the measurements from one instrument 

In this section the measurements are obtained when one instrument is modified considering 

additive and multiplicative perturbation schemes. Supposing that the measurement.-! from 

instrument m = 1, ... ,p, are chosen to be perturbed, then the perturbed model is given by 

with 
y . . _ [ Y1 + w,e,,., additi'le perturbation; 

mi(w,) - Y; 0 lm(w;), multiplicative perturbation, 

(30) 

(31) 

where e,,. .is a JrdimeDBional null vector with one in the mth position, lm(w,) of dimension 

p denoting a vector of ones having the mth component replaced by w1 and 0 denotes the 

Hadamard ( elementwise) product. 
Let w = (Wt, ... ,wn?- The no perturbation case follows by taking Wo = 0 in the additive 

case and w0 = 1 in the multiplicative case. The perturbed log-likelihood follows from (25) 

with Ym;(w;) replacing y;, i = l, ... , n. This is, 

n. 

l(Blw) = :Et,(Blw,), (32) 

1 1 
where l;(Olw,) ex - 2 log !El - 2d,,.;(w;)+log(Kmi(w;)) with d,,.;(w;) = (y,m(w1)-µ)TI:- 1(ym;(w;)-

µ), K"" = 4>1 (A.,a.m(w1)) and a,,.;(w;) = (ymi(w,)- µ)TD-1(q,)b. 
Differentiating l(Olw) with respect tow and 8 leads to: 

(33) 

where 

'1:i) = 8T;w;) + w., (A.,a,,..(w;)) i8~ S,m + A., 8S";;w,)] 

+A.,W~1 (A.,a,,.,(w,))Sm,[A., 
84:;t•) + a,,.;(w,) 

8
~"], {34) 

with T,...(w;) = -(ymi(w;) - µ)TI:-18y~w,), S,m(w;) = bTD-1(ef,)8y;:,~w;), w.,_(u) = 
8a.m(w·) 

it>i(u)/4>1(u), Wt (u) = -W+1 (u)(u + W+1 (u)), u ER, and 
89 

' as in the unperturbed 
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Table 1: Results of fitting normal and skew-normal calibration comparative models (NCCM 
and SNCCM) to the Barnett data set. SE are the estimated asymptotic standard errors based 
in the information matrix given in the Appendix A. 

NCCM SNCCM 
Parameter Estimate SE Estimate SE 

0:2 -2.0447 1.0532 -2.0719 1.0457 
0:3 -5.2857 1.2278 -5.2687 1.2334 
0:4 -4.3726 1.2406 -4.3669 1.2431 
(>i 1.0597 0.0446 1.0609 0.0443 
{33 1.1919 0.0521 1.1912 0.0523 
{34 1.1306 0.0526 1.1304 0.0527 
</>1 5.0247 1.0006 5.0399 0.9959 
<P2 1.9151 0.5846 1.7957 0.5799 
</>3 2.9236 0.7893 3.0425 0.8103 
¢4 3.8845 0.8744 3.9338 0.8961 
µ,: 22.4611 0.9008 13.0562 1.2599 
u2 

:,; 53.3983 9.7174 141.8462 34.1031 
>.., 5.1780 2.9403 

- log-likelihood 788.0931 783.5044 
AIC 2.7781 2.7656 
BIC 2.8544 2.8483 
HQ 2.7726 2.7596 

case, replacing y, by Yw(w;) (see Appendix B). Note that, 8y~:w,) = e,,, in the additive case 

and 8ya::w;) = lm(Y;m) in the multiplicative case, i = l, ... , n. The above~ matrix should 

be evaluated at the MLF.a and w0 • Expression for the derivatives 8T;~w;) and as;~w,) are 
given in _the Appendix C. 

6 Applications 

In this section we ana.lyu two real data sets. We will focus only on the parameter set 6. 

Barnett {1969) data set. Two instruments used for measuring the vita.I capacity of the 
human lung and operated by skilled and unskilled operators were compared on a common 
group of 72 patients. We consider the measurements divided by 100 in order to achieve 
numerical stability. Data transformation was used to improve the normal fitting (Bolfarine 
et al., 2002). We compare in the sequel NCCM (extensively treated in the literature) and 
SNCCM fitting for this data set. Resulting parameter estimates are given in Table 1. Note 
that using AIC, BIC and HQ values shown in the bottom of the Table 1 favors SNCCM, 
supporting the contention of the departure from normality. A more emphatic conclusion 
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in this direction is achieved by considering a parametric test for normality, where the null 

hypothesis is A,. = 0, such as the likelihood ratio test for which the observed value of the test 

statistic in this case is 9.1773 and the 11SBOCiated critical level of the x2(1) at 5% is 3.84. This 
conclusion is also corroborated by the PP-plot (Azzalini, 2005) reported in Figure 1. 

Figure 1: Barnett data. set: Healy's type plot for (a.) Normal CCM, (b) Skew-normal CCM. 

(a) (b) ,.._,...,., __ ,...,....., __ 

~ U U M U U U U U 

With this data set, a local influence study conducted by the authors has led to the same 
conclusions as the ones resulting by using the asymmetric normal model and reported in 

Galea-Rojas et al. (2002) so that they are not presented here. 

Chipkevitch et al. (1996) data set. Measurement of the testicular volume of 42 adoles­

cents were made in a certain sequence by using five different techniques: ultrasound (US), 

graphical method proposed by the authors (I), dimensional measurement (II), prader or­

chidometer (III) and ring orchidometer (IV), with the ultrasound approach assumed to be 

the reference measurement device. A histogram of the measurement (see figure 5(b)) shows 

certain asymmetry in ·the data set such that Galea. et al. (2002} (see also Bolfarine et al., 2002) 
use a cubic root transformation to better achieve normality. Although such method {variable 

transformations) may give reasonable empirical results, it should be avoided if a more suitable 

theoretical model can be found (see Azzalini and Dall&-valle, 1996). By introducing a more 

flexible parametric distribution capable to accommodating such departures, we use a SNCCM 

to fitting this data. set. Thus, under the SNCCM, parameter estimates (standard errors) 

are r.,.,. = 4.0011(1.395}), &2 = 0.1022(0.56¥), a3 = o.0091(0.62I1), a, = o.0481(0.6~11), 

&s = 1.5300(0.6~31), fJJ = o.s838(0.osoo)1 13a = o.9495(o.oss9k.8, = 1.1419(0.0565), f!s = 
1.0826(0.0570), <Pz = 59.1993(21.5063), "11 = 1.3385(0.3714), <P2 = 1.3285(0.3480}, "'3 = 
1.6737(0.4322), J, = 1.1577(0.3710) , ,h, = 1.4104(0.3994) and X,. = 4.7619(4.7495). The 

PP-plot reported in Figure 2 shows a visible improvement in the adequacy of the fit under 

the SNCCM relative to consider a. NCCM for the observed measurement. 

In the perturbation of case weights scheme we have c.,,,,_ = 6.8629 and adolescents 31 

and 32 stand out, as depicted in Figure 3(a). The same adolescents are found influential for 

the estimation of the complete parameter vector 8 using the total local influence C; as shown 

in figure 3(b). Figures 3(c) and 3(d) gives the index plot of LDi and LDi for the SNCCM. 

Once again adolescents 31 and 32 are prominent. 

12 



Figure 2: Chipkevitch's data set: Healy's type plot for (a) Normal CCM, (b) Skew-normal 
CCM. 

(a) (b) ,,.._,... __ _ 
"'"11111"'- -

~ U U U U M V U U U U U U U U U U U t 

Examining the effecu! of perturbing the measurement taken by the five techniques as the 
previous example. The values of Cdmaz for additive perturbations are 2.4273(US), 2.5756(1), 
2.0696(11), 2.4854(III) and 2.9440(1V), whereas for multiplicative perturbations the Cdrno.% 
values are 427.6429(US), 400.9534(1), 460.4602(1I), 563.5952(III) and 702.7542(IV). Figures 4 
and 5(a) illustrate the differences between the perturbation schemes. Technique IV is chosen 
because it presents the largest Cdma:z: values. 

In order to compare with the normal case in Figure (6) we show results of local influence 
under the NCCM using cubic root transformation as in Galea et al. (2002). Note that the 
conclusions a.re different because under the skew-normal model observations 31 a.nd 32 are 
the most influent while under the symmetric normal model (after transforming the data) the 
most influent one is 20. 

7 Final Conclusions 
Paper deals with a skew normal comparative calibration model (SNCCM) with the normal 
comparative calibration model (NCCM) as a special case. Closed form expression is obtained 
for the likelihood function of the observed measurements which can be maximized by using 
existing statistical software. AJJ. EM-type algorithm is also developed by exploring statistical 
properties of the model considered. A local influence study is also conducted by developing 
model curvature for two perturbation schemes. Two data sets exhibiting skewness features 
are studied under the assumption of a skew normal distribution. In both cases, the SNCCM 
seems to present a better fit. We point out that the results and methods provided in this 
pa.per is not available elsewhere in the literature and the approaches used here can be used 
easily extended in treating other multivariate models. 
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Figure 3: Chipkevitch's data. set. Index plot of (a) jdmaxj. (b) C, for perturbation of case 
weights for 8 (c) Likelihood Displacement LD, (d) Cook's distance Di. 

(a.) (b) 
., .. • ... ., ., . •• .. u 

.. . . 
I u- . .. . .. . .. . . . . . . ... ... . .. .. .. .. . 

00111°0 
. • 0 0000 0 
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.. . .. . . . . . - - - •, .. - . . . - -(c) {d) . .. .. ... .. ., ... • .. . 

!f • ~ .. 
" .. 0 

• • . .. .. 0 . 0 .. 
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. . . . .. . 0 • . ... . • ... . ... •• . .. 
000°0 0 DO o . 0 • . . . . .. ,. ,. . .. . • . . - -

Figure 4: Chipkevitch's data. set. Plot of Id.no.,! versus the measurements taken by technique 
IV (a.) Additive perturbation. (b) multiplicative perturbation. 
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Figure 5: Chipkevitch's data set. (a) Plot of the likelihood displacement LD(w(a)) versus a 
for direction~ imposing additive (solid-line) and multiplicative (dotted-line) perturbations 
on the measurements taken by techniques IV (b) Histogram for the observed measurements. 

(a) (b) 

J • .. .. 

-
Appendix A: Proofs 

Before proving the main results we consider the following lemmas. The notation used is that 
of Section 2. 

Lemma Al. Let Y ~ Nn(I-', E). Then for any fixed k-dimensional vector a and k x n matrix 
B, 

E(4>1:(a + BYl11, 0)) = 4>1:(al11 - Bµ, 0 + BEB T). 

Proof See Arellano-Valle et al. (2005a,b). D 

Lemma A2. Let Y ~ N,,(µ, E) and X ~ Nq(T/, 0). Then, 

t/i,,(ylµ + Ax, E)t/iq(Xlf1, 0) = ¢>,,(yjµ + A11, E + AOA T) 
x ipq(xl11 + AA TE-1(y - µ - A11), A), 

where A = co-1 + A TE-1 At1• 

Proof See Arellano-Valle et al. (2005a). D 
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Proof of Preposition 1: 

From (4), (5) and the definition in (2) with k = 1, it follows that the marginal density of 
Y; is obtained by computing the following integral: 

/y (Y;IB) = f f(Y;lx;,8)/(x;IB)dx; 
c JR 

= k 2ef,p(Y;la + bx;, D(q,))<fii(x,lµz, ef,.,)~1 ( ef,~;~ (x; - µ,.)) dx; 

(Al) 

which, by using Lemma 2 is equal to: 

(A2) 

Figure 6: Chipkevitch's data set di.agnostic under the NCCM using cubic root transformation. 
Perturbation of case weights: Index plot of (a) ldmaxl and {b) C;. Plot of lcI,,._I versus the 
me88111'ements taken using technique IV under: (c) Additive perturbation (d) multiplicative 
perturbation. 
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where Z; ~ N1(µ.,+A.,bT n-1(q,)(y; -a- b~),A.,), with A.,= (ti>., -i + bT n-1(,t,)b)-1 . The 
proof is concluded by using Lema Al and noting that AxbD-1(q,) = bE-1• 

Appendix B: The observed information matrix in the skew-normal structural 
calibration comparative model 

In this appendix the observed information matrix is obtained for the SNCCM. From (10}, 
it follows that 

8£;(8) __ l 8logl:EI _ 1 d·,..,, + 81ogK; 
8'y 2 8'y 2 1

' 8'y' 
(Bl} 

where 
8logK; 8a; 8A., 
~ = W~,(A.,a;)[A,, Err+ a; Ery ], 

with W~ 1 (u) = ¢,1(u)/<I>1(u), u ER, A:r: = >..,A.,/(t/>,,+>.;A,,)112
, A.,= t/>,:/c, a;= X;D-1(,t,)b, 

8d; xT~-1x x Y b d."'Y = Ery'"'Y = µ,,,0.,/3,¢,.,,q,,>.., and d; = ; .u ;, ; = ; - a - µ.,, c = 1 + 
¢,.,bT D-1(<J,)b, i = 1, ... , n. Further, using results in Nel (1980) related to vector derivatives it 
follows that, 

81oglEI 
0, "'Y = µ.,, o., )..,, 

Err 
8logJ:EI 2<P"' n-1(-,J,)/J, 
~ C 

8logJEI _ 1c-1 

~ C Tz' 
8logl:EI 

= - <Pz D(b)D-2(,p)b + n-1(,t,)lp, 
~ C 

BA., o, , = ~,o., = Err 
8~ 

= (2c ~ >.;) .4;n-1(-,J,)/J, 
8/3 
8A., (2c2;/;) A;D(b)D-2(,p)b, = 
8,p :r; 

fJA., (2c + >.! - c2) A3 

8tp., 2~~ "'' 
8A., ¢,,, A3 

ax" ~>.! .,, 

d;14s = -2bT:E-1X;, 

d;o, = -2n(p):E-1 X;, 
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di/3 = -2qiD-1(¢)W2i + 2c-1(/>.,a;qiD-1(¢){3, 

r:4.,. = -c-2a~, 

dicf, = -D-2(<f,)D(X,)X, + 2c-1(/>,.a;D-2(cf,)D(b)Xi - c-2(/>~a~D-2(</J)D(b)b, 

du. = 0, 
80; -bT D-1(cf,)b, 
8µ,. = 
8a; -n-1(¢)/i, 
8a = 
8a; 

n-1(¢)W 2i - µ,.D- 1(¢)/3, 
8/i = 
8a; o, 
8<f,., = 
8a; 

-D(b)D-2(cf,)X,, 
acp = 
aa; o, 
a>.,. = 

where M = D-1(</>)bb T D-1(tJ,), ¢ = (<P2, ... , r/>,.)T, W 2i = Y2i - a - {iµ,., lic,,J = [0,1,,-1] of 
dimension p-1 x p and Yi2 = (l1i2, ... , llii>)T. 

From (B.1) it follows that the observed, per element, information matrix is given by 

J, = -Li(9111,) = -( ~t;), (B2) 

a2l, 1 a2IoglEI 1 a2IogK; . 
where lry8-r T = -2 lry8-r T - ii')'TT + lry8-r T , with 

a2logKi 8A,. 8a; a2a; 8a; 8A., a2 A., 
<ryOT T w., (A,.a;)[ Irr OTT + A,. lryOT T + Irr OTT + a; <ryOT Tl 

8a; 8A,. 8a; 8A,, 
+ll+, (A,.a;)[A,. &y + a; &y ][A:r OTT + a; OTT], 

ll+,(u) = W~, {u) = -W♦i (u){u+W+,(u)), u ER, d,-yTT = :;:;. T, 'Y, T = µ.,,a,{3,(/>,.,q,, >..,, 
where 

a2IoglEI 
8{38</>,. 

a2loglEI 
8¢,,.8</>,. 
a2loglEI 
8{i8q,T 

= 

= 

a2IoglEI 
OT8-y T = 0, ,,. = µ,.,a,>..,; .., = µ,., a, {3, (/>,., ¢, >.,. 

2c-2 n-1 ( 1/J )/3, 

1 2 
- c'~ (c-1) I 

-2c-14>,.[D1(/3) - c-1</>,.D-1(¢)/ib T D(b)JD-2(tJ,), 
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a2Iog!EI = 2c-1r/>,.[D-1(,J,) _ 2c-1rf>.,Mi), 
8{38{3t 

a2IoglEI = -c-2bTD(b)D-2(<f,), 
8fP,.8tpT 

B2logl:EI = -D-2(q,) _ c-2¢~D(b)D-1(¢)MD-1(<f,)D(b) + 2C1¢,.D2(b)D-3(¢), 8q,8<f,T 

a2A., 
8{38/3T 
82A., 

0/38</J., 
a2A,. 

0{30</> T 

a2A., 
0/30>..., 
a2A,. 

a<1>.,a<1>., 
a2A., 

0¢,.,0</JT 
EPA,. 

0¢,.,a>..., 
a2A,. 

o<J>otpT 

d;µ.µ. 

dil>.0 T = 
d. {3T ,,,.. 
d;/Js~ 

diµ.<f, T = 
d;aoT = 

2bTE-1b, 

2bTE-1n~>• 
-2c-1.A., 

(c-1) 
2 <?¢>., a;, 

2c-1 X;E-1 v- 1(<f,)D(b), 

2[(p)i:-11~)• 
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d.a/JT = 2q.[n-1(tf,)-2c-1¢,.,M1] + 2c-1¢,.,D-1{'f/,)/3(Y,2 -a)TD-1(1/J), 

cl.a,;. = 2c-2a.n-1('f/,)/J, 
d,aq, T 21{p):E-1 n-1(q,)[D(X,) - c-14>,.a.D(b)], 

di/3/3T = 4~a,,[D-1(t/J)(Y i2 -a - 2/3µ,.)/3Tn- 1('f/,) + n-1(1j,)/3(Y,2 - a -2/3µ,.?n-1(1j,)] 

d.13._ = 
di/jt/, T = 

~ .. = 

d.._tJ,T = 

dit/,q> T = 

-2c-1cp,.D-1('f/,)(Y 12 - a - 2/3µ,.)(Y a -a - 2/3µ,.)TD-1(1/J) 

+2µ.,(q, + c-1tp,.a;)D-1(1/I) + 2~ann-1(tJ,)-i; M1), 

-2c-2a.Al, 

2[q;H(p)D(Y; - a - q;b) + c-1¢,,.Al (Y, - a - bq;) T D(b)JD-2 (</>), 

c-3 
2~(c- l)a~, 

{-2C3cp,,a~ D(b)D-2(q,)b + 2c-2a;D(b)D-2 (q,)X.) T, 

2n-3(q,)n2(X,) - 4C1¢,,.a,,D-3 (q,)D(b)D(X,) 

-2c-1tp,,D-2(q, )D(b)X;Xi D(b)D-2( q,) 
+2c-2tp!D-2(,p)D(b)X;Xi M n-1(4>)D(b) 
-t2c-2¢,!a~ n-3(q,)n2(b) - 2c-s<P!a~ n-1(,p)D(b)M D(b)D-1(,p) 
+2c-2¢!D-1(q,)D(b)M x,xl D(b)D-2

( q,), 

O, -r = µ,., a, tp,., >.,. -r = µ.,,a,</>.,,>..,; 

bTD(b)D-2(q,), 

-n-1(1/J), 

lc,,)D(b )D-2
( q, ), 

-2µ.,D-1(1/1), 

where A; = (Y i2 - a - 2q,/3f n-1(1/J), M 1 = n-1(1J,)IJ/3T n-1(1/,i), q, = µ., + C 1tp,.a. and 
i = l, ... ,n. 
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Appendix C: Computing the derivatives of Tmi(w;) and Sm;(w,). 

We have that Trm(wi) = -(Ym;(w1) - µ)T:E-18y;;:~w,), Sm,(w;) = bT n-1(tj,) 8y;t•), then 

o'.T mi ( W;) b-1:E-l GYm;(w;) 
al¼ aw; 

8Tm;(w;) I :E-1 GYm;(w.) 
aa (p) OW; 

8Tm;(w;) 
= ·( ) 8ym;(w;) T (D-1(,j,) - 2 -lrp M)IT 

a~T Qm, W, fJw; C :i: (p) 

+c-1rp., 8y::w;) T n-1(tj,)b(ymi(w;) - af D-1(</,)I~) 

8Tm;(w;) 
= c-2a,,.;(w;) 8y;(w;) T n-l(q,)b 

8rp., W; 

8Tm1(w;) oya;(w;) T I:-1(D(Xm;(w;)) - c-1</J.,ami(w;)D(b))] O(pT W; 

8Tmi(w;) 
= 0. 

8>..:r: 
asm,(w,) o, "I= JS:., a, <P, rp,., 

8-r 
8S.,.,(w,) 

l(p)D-1(q,)8yit) 
a~ 

8Sm;(w;) 
= -D(b)D-2(q,)8y~~•). atJ, 

21 



Acknowledgements 

The authors acknowledges the partial financial support from CNPq and Fapesp, Brasil and 
Projects Fondecyt 1030588, FANDE.5 C-13955/10, CIMFAV, Chile. 

References 

Arellano-Valle, R.B. and Genton, M. G. {2005). Fundamental skew distributions. To appear 
in Journal of Multivariate Analysis. 

Arellano-Valle R.B., Bolfarine, H. and Lachos, V.H. (2005a). Skew-normal linear mixed mod­
els. To appear in Journal of Data Science. 

Arellano-Valle, R.B., Ozan S., Bolfarine, H. and Lachos, V.H. {2005b). Skew normal mea­
surement error models. To appear in Journal of Multivariate Analysis. 

Arnold, B.C., Beaver, R. J., Groeneveld, R. A. and Meeker, W. Q. (1993). The nontruncated 
marginal of a truncated bivariate normal distribution. Psychometrika, 58, 471-478. 

Azzalini, A. {1985). A class of distributions which includes the normal ones. Scandinavian 
Journal of Statistics, 12, 171-178. 

Azzalini, A. {1986). Further results on a class of distributions which includes the normal ones. 
Statistica, XLVI, 199-208. 

Azzalini, A. (2005). The skew-normal distribution and related multivariate families. Submit­
ted. 

Azzalini, A. and Capitanio, A. {1999). Statistical Applications of the Multivariate Skew Nor­
mal Distributions. JOt1.mal Royal Statistics Society, 61, 579-602. 

Azzalini, A. and Dalla-Valle, A. {1996). The multivariate skew-normal distribution. Biometrika, 
83, 715-726. 

Barnett, V.D. {1969). Simultaneous pairwise linear structural relationships. Biometrics, 25, 
129-142. 

Bolfarine, H. and Galea-Rojas, M.(1995). Maximum likelihood estimation of simultaneous 
pairwise linear structural ralationships. Biometrical Journal, 37, 673-689. 

Bolfarine, H., Cabral, C.R.B. and Paula, G.A. {2002). Distance tests under nonregular con­
ditions: Applications to the comparative calibration model. Journal of Statistics Computation 
and Simulation, 72, 2, 125-140. 

Branco, M. and Dey, D. {2001). A general class of multivariate skew-elliptical distribution. 
Journal of Multivariate Analysis, 79, 93-113. 

22 



Chatterjee, S. Hadi, A.S. (1988). Sensivity Analysis in Linear Regression, John Wiley. New 
York. 

Chipkevitch, E., Nishimura, R., Tu, D. and Galea-Rojas, M. (1996). Clinical measurement 
of testicular volume in adolescents: Comparison of the reliability of 5 methods. Journal of 
Urology, 156, 2050-2053. 

Cook, R.D. (1986). As8esfilllent of local influence. Journal of the Royal Statistical Society, B, 
48, 133-169. 

Cook, R.D. and Weisberg, S. (1982). R.esiduals and Influence in Regression, Chapman and 
Hall. London. 

Dempster, A.P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete 
data via the EM algorithm. Journal of the Royal Statistical Society, B, 39, 1-22. 

Diciccio, T . and Monti, A. C. (2004) . Inferential aspects of the skew exponential power dis­
tribution. Journal of the American Statistical Association, 99, 439-450. 

Escobar, E. and Meeker, W. (1992). Assessing influence in regression analysis with censored 
data. BiometriC3, 48, 507-528. 

Galea, M., Bolfa.rine, H. and de Castro, M. (2002) . Local influence in comparative calibration 
models. Biometricn.l Journal, 44, 59--81. 

Genton, M. (2004). Skew-Elliptical Distributions and their Applications. A Journey Beyond 
Normality, Chapman and Hall. London. 

Henze, N., (1986). A probabilistic representation of the "skew normal" distribution. Scand. 
J. Statist., 13, 271-275. 

Johnson, N.L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, 
Vol. 1. New York: Wiley. 

Kelly, G. (1984).The influence function in the errors in variables problem. The Annals of 
Statistics, 12, 87-100. 

Kelly, G. (1985). Use of the structural equations model in assessing the reliability of a new 
measurement technique. Applied Statistics, 34, 258-263. 

Lu, Y., Ye, K., Mathur, A., Hui, S., Fuerst, T. and Genant, H. (1997). Comparative calibra­
tion without a gold standard. Statistics in Medicine, 16, 1889-1905. 

Nel, D. G. (1980). On matrix differentiation in statistics. South African Statistical Journal, 
14, 137-193. 

23 



O'Hagan, A. and Leona.rd, T . (1976). Bayes estimation subject to uncertainty about param­

eter constraints. Biometrika, 16, 201-202. 

Pewsey, A. (2000). Problems of inference for Azzalini's skew-normal distribution. Journal of 

Applied Statistics, 27, 759-770. 

Sahu, S.K., Dey, D.K., and Branco, M. (2003). A new class of multivariate distributions with 

applications to Bayesian regression models. The Canadian Journal of Statistics, 29, 129-150. 

Shyr, I. and Gieser, L. (1986). Inference about comparative precision in linear structural 

relationships. Journal of Statistical Planning and Inference, 14, 339-358. 

Tanaka, Y., Watada.ni, S. and Moon, S. {1991). Influence in covariance structure analysis 

with an application to confirmatory factor analysis. Communications in Statistics - Theof'1J 
and Methods, 20, 3805-3821. · 

Verbeke, G. and Molenberghs, G. (2000). Linear mixed models for longitudinal data. Springer. 

New York. 

Wu, X. and Luo, Z. {1993). Second-order approach to local influence. Journal of the Royal 
Statistical Society, B, 55, 929-936. 

Zhao, Y. and Lee, A. (1998). Influence diagnostics for simultaneous equations models. Aus­
tralian and New Zealand Journal Statistics, 40, 345-357. 

24 



ULTIMOS RELAT6RIOS TECNICOS PUBLICADOS 

2005-01 - DE SOUZA BORGES,W., GUSTAVO ES'l'EVES, L., 
WECHSLER, S. Process Parameters Estimation in The 
Taguchi On-Line Quality Monitoring Procedure For 
Attributes. 2005.19p. (RT-MAE-2005-01) 

2005-02 - DOS ANJOS,U., KOLEV, N. 
Given Nonoverlapping Multivariate 
2005.09p. (RT-MAE-2005-02) 

Copulas with 
Marginals. 

2005-03 - DOS ANJOS,O.,KOLEV, N. Representation 
of Bivariate Copulas via Local Measure of Dependence. 
2005 .15p. (RT-MAE-2005-03) 

2005-04 - BUENO, v. c., CARMO, I. M. A constructive 
example for active redundancy allocation in a k-out­
of-n:F system under dependence conditions. 2005. l0p. 
(RT-MAE-2005-04) 

2005-05 - BUENO, v. c., MENEZES, J.B. Component 
importance in a modulated Markov system. 2005. llp. 
(RT-MAE-2005-05) 

2005-06 - BASAN, J. L., BRANCO, M.D'E., BOLFARINE, B. 
A skew item response model. 2005. 20p. (RT-MAE-2005-
06) 

2005-07 - KOLEV, N., MENDES, B. V. M., 
Copulas: a Review and recent developments. 
(RT-MAE-2005-07) 

ANJOS, U. 
2005. 46p. 

2005-08 - VENEZUELA, M. K., BO'l"l'ER, D. A., SANDOVAL, 
M. c. Diagnostic techniques in generalized estimating 
equations. 2005. 16p. (RT-MAE-2005-08) 

2005-09 - BOLP'ARZNE, B., LACBOS, V.B. Skew-probit 
measurement error models. 2005. l0p. (RT-MAE-2005-09) 



2005-10 - SALINAS, V .a:., ROIIBO, J. S., PERA, A. On 

Bayesian estimation of a survival curve: Comparative 

study and examples. 2005. 14p. (RT-MAE-2005-10) 

The complete list of''Rdatorios do Departam.eoto de Estatfstica", IME-USP, will be lleDt upon 
request. 

Inpananunto th EstatJstiea 
IME-USP 

caua Postal 66.281 
OSJJ 1-970 • Silo Plllllo, BrruU 




