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Abstract

Temporal constancy of pollination systems is essential for the maintenance of pollinators through time. Community-
level assessment of flowering phenology allows understanding variations across seasons and years and the risks of
decoupling flowering and pollinators’ activity. We evaluated flowering patterns and temporal diversity of pollination
systems in a tropical seasonal forest. We asked whether the temporal organization of flowering times differs among
pollination systems; if there is a constancy of pollination systems through the year, since climate and phylogenies con-
straint flowering time; if there is a prevalent flowering pattern by pollination system, and if the temporal organization
of pollination systems by modularity analyses is coherent with grouping by pre-defined seasons. We characterized 10
pollination systems, examined flowering strategies, climate cues and phylogenetic constraints. Pollination by large-
to-medium bees dominated (49.2%), followed by diverse insects (22.1%) and flies (14.7%). The remaining systems
represented 14% of species. Flowering occurred year-round for most pollination systems, predominating the seasonal
flowering strategy. Flowering patterns ranged from aggregated to nested, and random. Climate affected the flowering
of most pollination systems, but there was no phylogeny constraint. Modularity grouped pollination systems differ-
ently than rainfall seasonality. Contrasting the expectations of reduced temporal constancy, most systems were present
year-round, facilitating the exploitation of floral resources by pollinators. Diversity of pollination systems remained
constant despite climate seasonality, indicating that several factors influence the optimum flowering time for pollination
in seasonally dry vegetations. Global warming may disrupt phenological patterns and the temporal organization of plant
communities, a matter for future studies.
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and level of the generalization of pollination systems
are geographical location, plant life forms, taxonomic
diversity, and suitability of environmental conditions
for pollinator activity (Bawa 1990; Devy and Davidar
2003; Kiihn et al. 2006). In addition, specific pollina-
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Furthermore, the diversity and frequency of pollination
systems may have seasonal variations (Ramirez 2006;
Cortés-Flores et al. 2017). Thus, the constancy of pol-
lination systems throughout the year is expected to be
more regular in aseasonal than in seasonal environments
due to seasonality in flowering phenologies (Ramirez
2006; Cortés-Flores et al. 2017). The influence of sea-
sonality on tropical seasonal forest phenology patterns
has been previously reported (van Schaik et al. 1993;
Wright 1996; Zimmerman et al. 2007; Morellato et al.
2013, 2016), and the rainfall and day length are consid-
ered the main drivers of flowering (Calle et al. 2010;
Morellato et al. 2000, 2013, 2016; Wright and van Sha-
ick 1994). However, past evolutionary history is another
factor known to shape phenology patterns (Kochmer and
Handel 1986; Staggemeier et al. 2010, 2015; Cortés-
Flores et al. 2017).

Biotic interactions also influence plant phenology
(Elzinga et al. 2007). For example, pollinators and seed
dispersers may structure flowering and fruiting onset,
duration and synchrony (Bawa et al. 1985, 1990; Cortes-
Flores 2017, 2020; Frankie et al. 1974, 1975; Heithaus
et al. 1975; Stiles 1977, 1978; Waser 1983). Advantages
and disadvantages of shifting flowering times have been
addressed from the perspective of the competition and
facilitation hypotheses (Aizen and Rovere 2010; Mitchell
et al. 2009; Pleasants 1983; Waser 1983; Wheelwright
1985; Staggemeier et al. 2010), a topic that recently has
caught a lot of the attention of researchers (Bergamo et al.
2020). According to the former hypothesis, selection
favours co-flowering species to shift their blooming times
to reduce competition for pollinator services (Armbruster
1986; Armbruster et al. 1994; Feinsinger 1987; Rathcke
1983, 1988; Stone et al. 1998). On the other hand,
facilitation for pollinators denotes positive interactions
due to resource sharing within a plant guild (Feinsinger
1987; Rathcke 1983 and see Bergamo et al. 2020). In that
sense, an aggregated blooming may enhance or facilitate
pollination by increasing the conspicuousness of the floral
display (Moeller 2004; Schemske 1981) and interactions
within temporal modules of species (Albor et al. 2020).
Either way, early studies on the temporal organization
of co-occurring plant species and pollinator agents are
limited to a few species or particular guilds (Augspurger
1981; Feinsinger et al. 1979; Stiles 1977, 1978, but see
Heithaus 1974). The recent advances on the interplay of
flowering time and pollination, evaluating the facilitation
— competition — filtering hypothesis (see Sargent
and Ackerly 2007), highlight the importance of taking
pollination and associated plant traits into consideration to
understand the assembly of plant communities. However,
most research still focuses on specific communities
or guilds (e.g., hummingbirds; Wolowski et al. 2017).
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Studies focused on temporal patterns of species sharing
the same pollination system, and the seasonal variation of
those systems at a whole community scale are still scarce,
especially for diverse tropical forests (but see Ramirez
2005, 2006; Cortés-Flores et al. 2017).

Among the causes that may affect the extent of temporal
overlap between pollination systems are the number of
co-flowering species within each system, the diversity and
availability of the pollination agents, and the characteristics
of each pollination system (Feinsinger 1987; Ramirez
2005). Plants with different pollination systems may
also display flowering strategies that meet their specific
pollinator’s requirements. For instance, the sequential
or extended flowering displayed by plants pollinated by
long-lived animals such as hummingbirds and bats has
long been hypothesised to be related to the maintenance
of these pollinators over time (Aizen and Rovere 2010;
Aizen and Vazquez 2006; Feinsinger 1987; Rathcke 1983;
Waser 1978). Ultimately, since flowering time is cued
by climate, flowering patterns and strategies are likely
defined by the pollination system and the integration
of pollination effectiveness and reproductive success,
which define flower availability and affect the community
assembly. The definition of pollination systems, considering
different plant traits and pollen vectors (Fenster et al. 2004),
approaches the concept of pollination niches (Johnson
2010; Phillips et al. 2020), representing available niches
for ecological diversification. That assumption allows a
better understanding of the roles of time (phenology) and
pollination interactions to the evolution, organization and
diversification of plant communities. In this study, we aim
to investigate the flowering phenology and the temporal
organization of pollination systems in a seasonal forest
in south-eastern Brazil. We describe the local diversity of
the studied seasonal forest pollination systems and their
flowering patterns and strategies. Specifically, we asked: (i)
Does the temporal organization of flowering times differ
among pollination systems? (ii) Is there a constancy of
pollination systems throughout the year since the seasonal
climate and phylogenies may constrain flowering times? (iii)
Is there a prevalent flowering pattern by pollination system
indicating biotic cues to flowering? Furthermore, are the
aggregated patterns nested? (iv) Is the temporal organization
of pollination systems coherent with pre-defined seasons?
To that end, we compared the flowering strategies against
null models to determine if phenologies within pollination
systems were segregated, random or aggregated and
tested for temporal nestedness in the aggregated flowering
phenologies. Then, we evaluated the influence of climate
and phylogeny on the flowering length and other ecological
traits. Finally, we assessed seasonal variation in the diversity
of pollination systems throughout the year.
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Material and methods
Study site

The study was conducted at the Santa Genebra Reserve
(SGR hereafter), a 250-ha remnant of semi-deciduous
or seasonal forest, close to an urban area at Campinas
(22°49'45"S; 47°06'33"W, 670 m.a.s.1.), Sdo Paulo, south-
eastern Brazil. The SGR includes three forest physiog-
nomies: dominant seasonal forest, secondary forest and
associated vegetation, and swamp forest (Morellato and
Leitao-Filho 1996). The climate at the SGR region is sea-
sonal, with a dry season from May to August, a wet and
warm season from November to February (Supplementary
Information, Fig. S1) and two transitional periods: March
to April (wet-to-dry transition) and September to October
(dry-to-wet transition) (Morellato 1991; Morellato and
Leitdo-Filho 1996). Both transitional seasons are charac-
terized by variations in temperature and rainfall, affecting
plant phenology (Morellato 1991; Morellato and Leitao-
Filho 1996). The legacy climate data (30 years) used to
determine the wet and dry seasons and transitional peri-
ods (Morellato and Leitdo-Filho 1996) and for the period
of this study (1988-1991) were obtained from Fazenda
Santa Elisa meteorological station (Campinas, SP), the
nearest one to the study site, belonging to the Instituto
Agrondmico de Campinas (IAC).

Flowering phenology and pollination systems

We report here the phenology and pollination systems
of 199 plant species at the SGR seasonal forest. The
flowering phenology of trees, treelets, and climbers was
recorded weekly to monthly from 1988 to 1991 (Morellato
1991; Morellato and Leitao-Filho 1996). Flowering was
defined as the period in which the plant species bear open
flowers (Morellato et al. 1989). We grouped species into
five flowering strategies (Morellato 1991; adapted from
Newstrom et al. 1994a, b): (1) continuous — blooming
continuously during the year (10 months or more); (2)
episodic — multiple blooming events during the year,
separated by non-flowering phases of variable length;
(3) brief — short flowerings during a few days up to one
month; (4) seasonal — blooming lasts more than one up to
four months associated to one season or the transitional
periods between two seasons; and (5) extended — blooming
of more than four months, associated to more than one
season (Supplementary Information, Table S1).

Plant species were characterized by their pollination
systems according to the flower morphology and floral
biology (Faegri and Pijl 1979; Jones and Little 1983;

Real 1983). The flower visitors and their behaviour were
observed during the phenological records. On additional
days, at least the large taxonomic category (e.g., fly, bee,
butterflies, etc.) was noted and whether the visitor behaviour
would promote pollen transfer and pollination (Monteiro
et al. 2021). The definition of pollination systems, following
Bawa et al. (1985), Ollerton et al. (2019) and Monteiro
et al. (2021), considered several plant traits and pollen
vectors (Fenster et al. 2004), and approaches the concept of
pollination niche (Johnson 2010; Phillips et al. 2020). We
screened the literature for studies on pollination biology
for all the species studied at the SGR to confirm their
pollination systems and support the system determination
for those few species we were unable to assess based
on our field observations (Supplementary Information,
Table S1). We kept studies conducted at the SGR or, when
absent, those conducted preferably with the same species
and vegetation type to confirm the main pollinator and
pollination system. Flower characteristics such as colour,
smell, the position of flower elements, symmetry, reward to
pollinators, time of anthesis, and receptivity of the stigma
were recorded by the authors or from the literature survey
(Supplementary Information, Table S1) and taken into
account to determine the pollination system of each plant
species (Morellato 1991; Genini 2011).

The plant species were grouped into the following
pollination systems (after Bawa et al. 1985; Ollerton et al.
2019): bats, hummingbirds, large-to-medium bees (larger
than 10 mm), small bees (up to 10 mm), beetles, butterflies,
moths, flies, wasps and diverse insects (i.e. small bees,
butterflies, moths and beetles, wasps, true bugs and other
insects), this latter category being composed of agents that
visit open flowers with easy access to resources or are not
specialized to visit flowers (adapted from Bawa et al. 1985;
following Monteiro et al. 2021). Plant species that had a
secondary pollinator system (senso Rosas-Guerrero et al.
2014) based on local observation and flower morphology
(Supplementary Information, Table S1) were entered in
more than one category in our calculations of the proportions
of pollination systems.

Niche temporal patterns of pollination systems

To identify the temporal niche of flowering activity for each
pollination system (aggregated, segregated or random),
we used the phenology data to create an input matrix that
contained information of species (rows) vs time (columns).
Each cell represented the frequency of flowering of each
species (row) in a given month (column). We used a Monte
Carlo approach and measured temporal niche overlap via
the Pianka (Pianka 1973) and Czechanowski (Feinsinger
et al. 1981) indices (Castro-Arellano et al. 2010). Each
index is symmetric, approaches zero for species with
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non-overlapping activity patterns, and equals 1 for species
with identical activity patterns (Castro-Arellano et al. 2010).
We employed the randomization algorithm Rosario (Castro-
Arellano et al. 2010). This algorithm does not remove the
temporal auto-correlation in the data of each species and
performs random changes of entire activity patterns within
a time extent, thereby restricting randomly generated pat-
terns of activity to be biologically more realistic. In each
iteration, Rosario shifts the entire activity pattern of each
species a random number of time intervals and calculates
the amount of overlap in the randomly generated set of activ-
ity patterns (Santos and Presley 2010). We determined the
significance of temporal niches by comparing the empirical
mean to a frequency distribution of such metrics derived
from simulated assemblages for which temporal niches of
species were randomized (Castro-Arellano et al. 2010).
Rosario used 10,000 iterations to generate the null distri-
butions and determine significance with an a-level of 0.05
(Castro-Arellano et al. 2010).

Temporal nestedness

Temporal nestedness occurs if, on average, the narrower
flowering periods of some species are a subset of the broader
flowering periods of other species. Temporal nestedness is
expected when plants display similar responses and share the
same optimal time for reproduction (Genini 2011). As aggre-
gation is a prerequisite for temporal nestedness, we only
ran this analysis for the pollination systems that displayed
aggregated flowering patterns. We used the NODF metric
(Almeida-Neto et al. 2008) to calculate temporal nestedness.
We built a presence-absence (1/0) matrix with plant species
(rows) and months (columns), presences (ones) indicate if
a plant species flowers in a given month. We used the null
model 2 (Bascompte et al. 2003) to test for the significance
of NODF. In null model 2, the probability of observing a
plant species in flower in a given month is a function of the
number of months in which it is flowering and the number
of plants flowering in that given month (Bascompte et al.
2003; Guimarées and Guimaraes 2006).

Climate

To assess the influence of environmental factors on the
phenology of each pollination system, we carried out
a principal component analysis (PCA). We used six
environmental variables (rainfall, mean temperature, day
length, relative humidity, cloud cover, and sun irradiation).
We employed the components of the PCA that accounted
for most of the variance and regressed them against the
percentage of species flowering in each pollination system.
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Phylogeny

Names of plant species, genera and families follow the
International Plant Names Index (http://www.inpi.org:80/
ipni/plantsnamesearchpage.do) and Tropicos Names data-
base (http://www.tropicos.org/NameSearch.aspx). We con-
structed the phylogeny of the species using Phylomatic, a
phylogenetic toolkit for the assembly of phylogenies (Webb
and Donoghue 2005). The node ages of families were esti-
mated from the APG3-derived megatree. We assigned
branch lengths to genera and species of the phylogenetic
tree using the BLADJ (Branch Length Adjustment) aver-
aging algorithm of the Phylocom software package (ver-
sion 4.0.1, http://www.phylodiversity.net/phylocom/). The
BLADIJ spaces undated nodes evenly between dated nodes
in the tree.

We tested for a phylogenetic signal (i.e., the tendency
for evolutionarily related organisms to resemble each other)
of the pollination system, floral reward, habit, and flower-
ing length using the statistic K (Blomberg et al. 2003). We
categorized pollination systems, rewards and habits and
assigned the corresponding category to each genus. We
used four categories for reward: pollen, nectar, oil, and resin,
and four categories for habit: vine, climber, tree, and tree-
let. Flowering length is the number of months a given plant
genus is blooming. The statistic K gives the strength of the
phylogenetic signal observed in a set of comparative data
divided by the amount expected under a Brownian motion
character evolution along the specified tree topology and
branch lengths (Blomberg et al. 2003). A K less than one
implies that relatives resemble each other less than expected
under Brownian motion evolution along the candidate tree
(Blomberg et al. 2003). K> 1 implies that close relatives
are more similar than expected under Brownian conditions
(Blomberg et al. 2003). K was calculated by the R package
“‘picante’” (Kembel et al. 2010). The statistical significance
of the phylogenetic signal was evaluated by comparing
observed patterns of the variance of independent contrasts
of the trait to a null model based on shuffling species across
the tips of the phylogenetic tree using 999 permutations
(Kembel et al. 2010).

Seasonal variation in the diversity of pollination
systems

To assess seasonal variation of the diversity of pollination
systems, we used two approaches: grouping the species
flowerings periods by seasons defined by rainfall and using
a modularity analysis. We grouped the blooming of plant
species according to the four previously defined local
seasons: dry (D), wet (W), wet-to-dry (W-D) and dry-to-
wet (D-W) transitional periods (Morellato and Leitdo-Filho
1996) and classified species by their pollination system.
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Then, we calculated the proportion of species in each
pollination system every season. We did not group species
monthly since most of the species in the community display
a seasonal flowering strategy (Table 2). Species were scored
in all the seasons encompassing their blooming period.
Modularity is a network-based pattern that describes
cohesive groups of species (Guimardes 2020). We used a
modularity analysis to obtain an independent grouping of
plants apart from the seasons defined by rainfall. We aimed
to identify groups of plants and months of the year that are
associated with each other. We pooled the two-year phe-
nology data of plant species as an adjacency matrix of a
network depicting the relationships (links) between the time
slices (months) and the flowering phenology of the plants.
Each matrix element was r;; =1, if plant species i flowered
in the month j and zero otherwise (Bascompte et al. 2003).
We used Netcarto software to characterize for modular-
ity (Guimera and Amaral 2005). The program employs
Guimera’s algorithm, which is based on simulated annealing
to identify the modules and estimate modularity. Modularity
M ranges from O to 1 (1-1/number of modules), according to
increasing modularity (for further details, see Guimera and
Amaral 2005; Olesen et al. 2007). We ran 100 randomiza-
tions of the empirical network and calculated the signifi-
cance level of the observed M (following Olesen et al. 2007).

Results

Pollination systems, flowering phenology
and strategies

Pollination by large-to-medium bees predominated at the
RSG seasonal forest (49.2%), followed by diverse insects
(22.1%), flies (14.7%) and moths (8%) (Tablel). The bloom-
ing of most systems was seasonal, with a reduced proportion
of species in the dry season (June—July), but with species
flowering throughout the year (Fig. 1). Plants pollinated
by large-to-medium bees flowered mainly in the wet sea-
son, from October to March, decreasing from April to July
(Fig. 1a), and included all flowering strategies, although
seasonal flowering was the prevalent one (Table 2). Plants
pollinated by diverse insects, the second most frequent
pollination system at the SGR seasonal forest, displayed
a well-defined flowering peak in the dry season (August)
and a minor increase in the rainy season (Fig. 1b). Similar
to large-to-medium bees, seasonal flowering was the pre-
dominant strategy of plants pollinated by diverse insects,
encompassing 70% of species (Table 2). Fly-pollinated
flowers displayed a peak from November to January, in the
wet season, a minor increase from March to May, in the
wet-to-dry season transition (Fig. 1c), and most species
also presented a seasonal strategy (Table 2). All flowering

strategies were represented in the previous three pollination
systems (large-to-medium bees, diverse insects, and flies),
regardless of whether the flowering was less or more con-
centrated at a specific time of the year, followed by plants
with brief and continuous strategies (Table 2). Plants pol-
linated by butterflies and moths flowered mainly in the wet
season (Fig. 1d—e). However, moth-pollinated plants pre-
sented a pronounced peak in the dry-to-wet season transi-
tion, whereas the blooming peak of butterfly-pollinated spe-
cies was less pronounced, lasting from December to March,
during the wet season (Fig. 1d—e). The seasonal flowering
strategies prevailed again among 70% of species within but-
terfly and moth pollination systems; however, no continuous
or episodic strategies were recorded (Table 2). Plants pol-
linated by small bees flowered irregularly along the year,
increasing from May to July in the dry season (Fig. 1f).
Hummingbird, wasp and bat pollination systems displayed
a similar pattern, with species blooming year-round (Fig. 1g-
h-i). Nevertheless, vertebrate-pollinated plants displayed a
flowering peak in the dry season (August). Wasp-pollinated
species showed continuous, extended, and episodic flower-
ing strategies, although seasonal flowerings were still pre-
sent (Table 2). Most hummingbird-pollinated plants also
displayed a seasonal flowering strategy (Table 2). The bat-
pollination system was the only one in which the extended
flowering strategy was prevalent, followed by seasonal and
brief strategies (Table 2). Beetle pollination is not graphi-
cally represented here, as the only two species flowered in
the rainy season, from October to December.

Temporal niche patterns and temporal nestedness
of the pollination systems’ flowering phenologies

Large-to-medium bees, diverse insects, moths, and butter-
flies displayed an aggregated temporal flowering pattern,
whereas flowering of the remaining pollination systems
showed no difference of temporal niche patterns from ran-
dom (Table 3).

In the tests for temporal nestedness for those pollination
systems that showed aggregated flowerings (i.e., large-to-
medium bees, diverse insects, moths and butterflies), we only
found a significant nested pattern for large large-to-medium
bee pollination (NODF=0.33, p=0.012). In contrast,
the other aggregated pollination systems were not nested
(NODFp;, tnsects = 0-235, p=0.125; NODFy, =0.243,
p=0.78; NODFg iesiies = 0-15, p=1.00).

Climate and flowering
The two first components of the PCA explained 79% of the
total variation (58.5% and 20.5%, respectively) and were

used in the regression. The variables cloud cover, day length,
and mean temperature contributed most to the first principal
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Fig. 1 Percentage of plant 18 0
species flowering in each pol- 16
lination system throughout the 14
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component, whereas relative humidity, sun irradiation, and
day length contributed most to the second component.
We found a significant relationship between the two PCA
components with the percentage of plant species flower-
ing for fly, hummingbird and moth pollination systems.
For large-to-medium bees, wasp and butterfly pollination
systems, only the first component of the PCA was signifi-
cant (Table 4). Consequently, the flowering of plants within
the large-to-medium bees, wasp, and butterfly-pollination
systems was positively affected by the combined effect of
cloud cover, day length, and mean temperature, whereas
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hummingbird, fly and moth-pollination systems were also
influenced by relative humidity and irradiation. No effect of
environmental variables was found for bat, small bees and
diverse insects pollination systems (Table 4).

Phylogeny
All traits showed a weaker phylogenetic signal than
expected, that is, K< 1 (Pollination system: K =0.34,

p=0.001; Reward: K=0.56, p=0.001; Habit: K=0.38,
p=0.001; and Flowering length: K=0.37, p=0.025). Thus,
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Table 2 Number of plant

- T Pollination systems
species (N) by pollination

Flowering strategy

system and the percentage (%) N Continuous Extended Seasonal Episodic Brief

of distribution according to the

flowering strategy at the SGR Large-to-medium bees 98 3.1 11.2 65.3 4.1 16.3

seasonal forest, south-eastern Diverse insects 44 0 2.3 70.4 9.1 18.2

Brazil Flies 28 7.1 7.1 60.7 3.6 215
Moths 17 0 235 70.6 0 59
Hummingbirds 9 0 333 55.6 0 11.1
Small bees 20 0 10.0 70.0 5.0 15.0
Butterflies 10 0 20.0 70.0 0 10.0
Bats 16.7 50.0 333 0 0
Wasps 5 20.0 20.0 40.0 20.0 0
Beetles 2 0 0 50.0 0 50.0

Table 3 Niche temporal flowering pattern for Czechanowski and
Pianka Index for each pollination system at the SGR seasonal forest,
south-eastern Brazil

Pollination Pianka Index P Czecha- P
systems nowski
Index

Large-to-medium 0.22 p<0.0225 0.16 p<0.0036

bees
Diverse insects 0.18 p<0.0028 0.14 p<0.0018
Flies 0.22 n.s 0.16 n.s
Moths 0.27 p<0.0055 0.22 p<0.0016
Hummingbirds 0.21 n.s 0.18 n.s
Small bees 0.19 n.s 0.15 n.s
Butterflies 0.27 p<0.0442 0.20 n.s
Bats 0.3 n.s. 0.22 n.s
Wasps 0.38 n.s. 0.26 n.s
Beetles — — — —

All significant temporal patterns are aggregated. n.s., not significant;
--- not calculated due to small sample size

species were more different than could be explained by the
neutral evolution of these traits.

Temporal variation in the diversity of pollination
systems

Plants from all the pollination systems were blooming every
season, except for beetle-pollinated plants, which flowered
in the dry-to-wet season transition and the rainy season; all
pollination systems were present in the wet season (Fig. 2).
In general, the best-represented pollination systems in the
community (large-to-medium bees, diverse insects, flies and
small bees) were also the best-represented in each season
(Fig. 2) (Supplementary Information, Table S2). Accord-
ingly, the less common pollination systems were poorly rep-
resented in each season (Table 1, Fig. 2). Nevertheless, the
proportion of plants flowering in each pollination system
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Table 4 Results of multiple regression analyses between the two
main components of the PCA for environmental variables by pollina-
tion systems and the percentage of plant species flowering at the SGR
seasonal forest, south-eastern Brazil

Pollination systems  Regression 3 Explanatory variables

summary

R? F, 5 Component 1 Component 2
Large-to-medium 0.65 19.88 *** (.78 *** 0.23 n.s

bees

Diverse insects 0.07 0.82n.s 0.76 n.s 0.26 n.s
Flies 0.44 8.31 ##%k  —(.49 *#k (.45 #kk
Moths 0.81 44.41 ##% (.67 *#%k (.59 #k*
Hummingbirds 0.67 21.33 %% (.76 *** 0.31 *
Small bees 0.73 0.83n.s 0.19ns —0.19ns
Butterflies 0.60 15.85 *** —0.78 ***  (0.03 n.s
Bats 0.19 261ns 03lns 0.31n.s
Wasps 0.32 5.04 % —0.56 ** —0.10n.s
Beetles

Statistical significance: *P<0.05; **P<0.001; and ***P <0.0001.
n.s., not significant; and B, standard partial regression coefficient

varied seasonally (Supplementary Information, Table S3).
For instance, more plant species from the large-to-medium
bees, butterfly and wasp-pollination systems bloomed in the
wet-to-dry transition; most moth and all beetle-pollinated
plants were in flower during the wet season, and the majority
of hummingbird-pollinated plants were flowering in the dry-
to-wet transition. The other pollination systems displayed
a higher proportion of species flowering in the dry season
(Fig. 2) (Supplementary Information, Table S3). Thus, even
when the whole diversity of pollination systems is present
year-round, flowering seasonality influences the abundance
of each pollination system in every season.

We obtained four modules of three months each
(M=0.44; p<0.001), grouping plants that flowered in par-
ticular months. The first module corresponded to April to
June (M1), the second January to March (M2), the third
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Fig.2 Percentage of plant spe-
cies flowering in the community
(red line) and their proportion
by pollination system according
to the seasons (W-D = wet-to-
dry transition, D=dry season,
D-W =dry-to-wet transition,

W =wet season) at the SGR
seasonal forest, south-eastern
Brazil. LMB =large-to-medium
bees, DI =diverse insects,

SB =small bees, Be =beetles,
M =moths, Bu=butterflies,

W =wasps, F=flies, Ba=bats
and H=hummingbirds
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Fig.3 Percentage of plant species flowering in the community (red October—November) at the SGR semi-deciduous forest, south-eastern

line) and their proportion by pollination system according to the Brazil. LMB =large-to-medium bees, DI=diverse insects, SB =small
independent modules (M1=modulel January to March; M2 =mod- bees, Be=Dbeetles, M =moths, Bu=butterflies, W =wasps, F=flies,
ule2 April to June; M3 =module3 July to September, M4 =module4 Ba=bats and H=hummingbirds
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July to September (M3) and the fourth October to December
(M4). The proportion of plant species from each pollination
system in each module is shown in Fig. 3. Similar to when
we grouped species by seasons, most pollination systems
were present in all modules, although proportions also var-
ied from one period to the other (Supplementary Informa-
tion, Table S3). Large-to-medium bees, diverse insects, flies,
and small bees were the best-represented pollination sys-
tems in each period. Beetles were restricted to one module
(M4 = October-December), which coincided with the end of
the dry-to-wet transition and the onset of the rainy season.
Butterflies were absent from July to September (M3) and
moths from April to June (M1).

Discussion

Our study showed that the SGR tropical seasonal forest has
a high diversity of pollination systems comparable to other
tropical forests and that this diversity is represented across
the seasons. Accordingly, the best-represented pollination
system was large-to-medium bees, followed by the generalist
diverse insects and fly pollination systems. Overall, the flow-
ering times of plant species from the different pollination
systems were not equally affected by climate, and phylogeny
did not affect flowering. We found that although seasonal
flowering strategy predominated, the flowering periods dif-
fered among pollination systems, which indicates that the
conditions of some seasons favoured blooming of different
species and habits. Additionally, just four out of the 10 pol-
lination systems showed aggregated temporal patterns and
only large-to-medium bees had significant temporal nested-
ness. Finally, the modularity analysis grouped the flowering
periods in different seasons as those defined only by climate
seasonality, indicating that other factors rather than weather
may define the optimum flowering time of some pollination
systems.

The proportion of pollination systems at the SGR sea-
sonal forests agreed with those found in other tropical forests
(Table 1): large-to-medium bee pollination prevailed, fol-
lowed by diverse insects, flies, and moths, whereas verte-
brate pollination was poorly represented. Tropical forests
are dominated by bee-pollination, whereas pollination by
vertebrates is relatively uncommon (Bawa 1990; Devy and
Davidar 2003, 2006; Kato 1996; Kato et al. 2008; Selwyn
and Parthasarathy 2006; Table 1). In our study, the domi-
nance of large-to-medium bee-pollinated plants was also
associated with the high proportion of climber species,
which are mostly bee-pollinated (Morellato 1991; Morellato
and Leitdo-Filho 1996). The SGR seasonal forest presented
an unprecedented proportion of fly pollination (~ 14%),
much above any other tropical forest or system (Table 1).
The fly pollination system is recognized as important in
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mountains and temperate vegetations (Freitas and Sazima
2006; Lefebvre et al. 2018; Monteiro et al. 2021). We sug-
gest that careful studies on flowers initially regard as “gen-
eralists” or pollinated by diverse insects will reveal flies
as the primary pollinators, as seen in our study (Table S1
Supplementary Information and related references). On the
other hand, moth-pollinated species were underrepresented
compared to other tropical rainforests studies, including
understory species (Bawa et al. 1985) but were comparable
to those of the other forests and seasonal cerrado savan-
nah vegetation (Table 1). The proportion of the remaining
pollination systems at SGR seasonal forest was similar to
other tropical forests (Table 1). However, the low propor-
tion of beetle-pollination may be related to the absence or
the reduced number of species belonging to cantharophilous
families such as Araceae, Lauraceae, Myristicaceae, Are-
caceae, and Annonaceae (Bawa 1990; Momose et al. 1998;
Morellato 1991).

The highest diversity of flowering strategies at SGR
occurred in species within large-to-medium bees and fly
pollination systems, yet at least three types of flowering
strategies were present in any system. The high diversity of
phenological strategies emphasizes the importance of con-
sidering the temporal organization of communities (Estes
et al. 2018) and the fine organization of flower resources
within the dominant large-to-medium bee system. The
seasonal strategy predominated among species within all
pollination systems but bats. Despite that, pollination by
large-to-medium bees was dominant over the whole year,
suggesting a broad temporal niche structuring the pollination
community (Phillips et al. 2020). Plant species pollinated
by large-to-medium bees whose flowers include resources
such as oil, resin, and odoriferous substances besides domi-
nant nectar and pollen, embraced a large diversity of pol-
lination strategies (Supplementary Information, Table S1).
The bee-pollination system is the most abundant one in the
Venezuelan Central Plain and is also related to the high-
est diversity of pollination strategies and vectors (Ramirez
2005). The occurrence of bee-pollinated plants flowering all
year round in our study is likely associated with the variety
of flowering strategies displayed by different species and
life forms within this pollination system, as recorded for
other communities as well (Kato et al. 2008; Ramirez 2005).
For instance, at the SGR, lianas bloomed mainly during the
wet-to-dry season transition and dry season, whereas trees
and treelets concentrated flowering in the dry-to-wet season
transition (Morellato and Leitao-Filho 1996).

We found aggregated temporal patterns for large-to-
medium bees, diverse insects, butterfly, and moth-pollina-
tion, supporting the dominant seasonal flowering strategy.
Besides being aggregated, the flowering of the plants within
the large-to-medium bee pollination system was nested,
which suggests a unique optimum time for reproduction.
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The apparent contradiction between this result and our above
statement of broad temporal niches is explained by the con-
tinuous flowering strategy of five species within this polli-
nation system (see Table S1, Supplementary Information).
We suggest that a few long-lasting flowering species have a
disproportional effect on SGR plant community blossoming
patterns and that nestedness arises due to their influence, a
matter deserving further investigation. Four out of these five
long-lasting species are dominant lianas, reinforcing their
role as resources year-round at the studied forest (Morellato
and Leitdo-Filho 1996) and overall importance in tropical
forests (see Vargas et al. 2021 for review).

On the other hand, lack of temporal nestedness for moth,
butterfly and diverse insects’ pollination systems suggests
that, despite their aggregated patterns, they may have differ-
ent optimal times for reproduction. At the SGR, moth- and
butterfly-pollinated plants flowered during the rainy season
when these pollen vectors are more abundant, similarly to
the records for other seasonal forests (Brown and Freitas
2002; Frankie 1975; Kato et al. 2008; Ramirez 2006). But-
terfly and moth population dynamics in the tropics usually
face extremely seasonal environments with marked wet and
dry seasons, and their abundance and survival are expected
to decrease in the dry season due to scarcity of water, nec-
tar, and fresh new leaves (Bonebrake et al. 2010; Brown
and Freitas 2002). The flowering of beetle-pollinated plants
was also restricted to the rainy season, as already recorded
for other seasonal vegetations (Gottsberger 1989; Ramirez
2006). Conversely, the seasonal flowering strategy of diverse
insect-pollinated plants was not affected by the environmen-
tal variables evaluated in our study since it includes vari-
ous pollination agents that may respond in different ways to
environmental cues.

At the SGR seasonal forest, the blooming of fly, small
bee, wasp, and vertebrate-pollinated plants was recorded
in all the seasons, without a prominent peak of activity,
resulting in a broad temporal niche that is neither segregated
nor aggregated. The irregular and uncertain patterns of fly-
pollinated plants have been related to the behaviour of these
insects, which do not use flower resources to feed their
offspring, and to the fact that these plants are visited by a
great variety of other insects (Pombal and Morellato 1995,
2000; Proctor et al. 1996). The aseasonal flowering of wasp-
pollinated plants may be related to the predominance of
Ficus species since the typical phenological pattern of Ficus
is annual or supra-annual at the individual level, integrated
into a continuous pattern at the population level (Figueiredo
and Sazima 1997, Sakai et al. 1999).

Finally, hummingbird-and bat-pollinated plants displayed
seasonal and extended flowering strategies that resulted in
a sequential flowering in the SGR seasonal forest, similarly
to what has been found for rainforest plant communities in
south-eastern Brazil (Buzato et al. 2000; Sazima et al. 1996,

1999; Wolowski et al. 2017). In the Venezuelan Central
Plain, Ramirez (2006) reported non-seasonal, continuous
flowering for hummingbird- and bat-pollinated plants and
suggested a sequential replacement of bird- and bat-flowers
throughout the year. Sequential patterns have been associ-
ated with avoiding competition for pollinators or avoiding
interspecific pollen transfer (Aizen and Rovere 2010; Aizen
and Vazquez 2006; Feinsinger 1987; Stiles 1977, 1978). In
bat-pollinated species, extended flowering strategies pre-
vailed, and such a pattern is related to the trapline foraging
of bats that may benefit from extended blooming (Heithaus
et al. 1975).

So far, we have detected a strong temporal organization
within and among pollination systems, likely driven by the
plant-pollinator interactions. The four pollination modules
derived from independent modularity grouping encompassed
the traditional dry (M2 and M3 including April to June and
July to September) and wet (M4 and M1 October—November
and January to March) seasons. The independent modular-
ity grouping captured better the flowering periods of the
moths, butterflies, and beetles plant pollination systems
than the pre-defined grouping by rainfall seasonality. The
appearance and abundance of certain pollination systems
are influenced by flowering phenology since some pollina-
tors may change their behaviour in response to the avail-
ability of flowering species, becoming more opportunistic or
even migrating elsewhere when resources are scarce (Devy
and Davidar 2003; Kato et al. 2008; Maruyama et al. 2013;
Ramirez 2006; Sazima et al. 1999). In seasonal forests, a
higher diversity of pollination systems is expected during
peak flowering periods and, consequently, as the diversity
of resources increases, consumer diversity increases as well
(Cortés-Flores et al. 2017; Ramirez 2006). In our study, most
pollination systems were evenly represented in conjunction
with the seasons even when their abundances were variable.
The constancy of pollination systems during the year may
be related to differences in flowering peaks among plant life
forms and promotes the coexistence of various pollination
systems (Cortés-Flores et al. 2017; Ramirez 2006). Further
studies should address floral trait similarity among co-flow-
ering species sharing the same pollination systems and polli-
nators, pollination rewiring during periods of reduced flower
offer, and the potential influence of long-last flowering and
flower abundance on the synchronicity and temporal organi-
zation of resources in tropical forests (Albor et al. 2020;
Bergamo et al. 2020; Sargent and Ackerly 2008).

In conclusion, our study addressed different phenological
aspects of the pollination systems of a tropical plant
community and its ecological and evolutionary constraints.
We demonstrated that the diversity of pollination systems
remained constant despite climate seasonality which may
facilitate the exploitation of diverse floral resources by
the pollinator agents. The temporal organization of our
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flowering plant community is triggered by climate and
dominated by seasonal flowering strategies finely shaped
by the plant-pollinator interactions. Our observations are
30-years-old, and over the last three decades, we have
faced a steep increase in global warming (IPCC 2014), with
widely documented effects of rising temperatures causing
shifts plant in phenology, mostly from temperate regions
(Abernethy et al. 2018; Chambers et al. 2013). One of the
consequences of early flowering due to climate change is the
disruption of plant-animal interactions, decoupling the time
of flowering and pollinators’ activity and other mutualistic
and antagonistic interactions (Burkle and Alarcon 2011;
Memmott et al. 2007). We do not have long-term or
flowering data or present phenology information from our
site to test for such shifts and the likely effects on plant-
pollinator synchrony. However, we expect that the increasing
temperatures and dry season length and intensity in our
region due to global warming are likely affecting species’
flowering time and disrupting the pollination interactions,
with significant effects on biodiversity conservation and
ecosystems services (Morellato et al. 2016). That topic is
of utmost importance for future studies for tropical areas,
especially those areas where legacy phenological and plant-
animal interaction information were collected in the past
(e.g., Miller-Rushing and Primack 2008).

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00114-021-01744-y.
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