

nº 02

FOLIATIONS WHICH ADMIT THE MOST MEAN
CURVATURE FUNCTIONS

Pawel Grzegorz Walczak

Agosto 1986

FOLIATIONS WHICH ADMIT THE MOST MEAN CURVATURE FUNCTIONS

Pawel Grzegorz Walczak*

Sommaire. Nous considerons ces feuilletages de codimension 1 qui ont la propriété suivant: Toute fonction changant son signe sur la variété feuilletée compacte M paraît comme la courbure moyenne des feuilles pour certaine métrique riemannienne sur M .

§ 0. Introduction.

In the papers [6] - [9], the family $\text{Mean}(F)$, where F is a transversely oriented, codimension-one C^∞ -foliation of a compact C^∞ -manifold M , was considered. Recall, that $f \in \text{Mean}(F)$ if and only if $f \in C(M)$ and there exists a Riemannian metric g on M for which f is the mean curvature of (the leaves of) F w.r.t. g . Among the others, we proved that if either all the leaves of F are compact or F is transverse to the fibres of an S^1 -bundle $M \rightarrow B$, then

$$(1) \quad \text{Mean}(F) = C_+^\infty(M),$$

where $C_+^\infty(M)$ consists of zero and all smooth functions which are somewhere positive and elsewhere negative on M . In this note, we prove that the equality (1) holds if and only if there exists a closed transversal intersecting all the leaves of F . This shows that studying the family $\text{Mean}(F)$ one can get some information concerning the topology of F . Earlier ([1], [4] and the others),

* The paper was accomplished during the author's stay at IME-USP (Brasil) and partially supported by FAPESP (Brasil).

it was shown that minimalizability, i.e. the condition " $0 \in \text{Mean}(F)$ ", forces some topological properties of F .

§ 1. Mean curvature functions.

Let F be a transversely oriented codimension-one C^∞ -foliation of a compact oriented manifold M . If g is a Riemannian metric on M , then the mean curvature of F w.r.t. g is the real C^∞ -function $h(F, g)$ which assigns to each x of M the mean curvature at x of the leaf L_x passing through x . It is well known that $h = h(F, g)$ satisfies the equation

$$d\omega_g = h\Omega_g,$$

where ω_g and Ω_g are the volume forms of F and M , respectively. Therefore,

$$\int_M h \Omega_g = 0$$

and if U is an open saturated set bounded by closed leaves L_1, \dots, L_k , then

$$\int_U h \Omega_g = \sum_{i=1}^k \text{sgn}(U, L_i) \cdot \text{vol}(L_i),$$

where $\text{sgn}(U, L_i) = 1$ when a positively oriented transverse to F vector field turns on L_i inwards U and $\text{sgn}(U, L_i) = -1$ otherwise. Consequently, $h \in C_+^\infty(M)$ and if $\text{sgn}(U, L_i) = 1$ (resp., -1) for all boundary components L_i , then h must be positive (resp., negative) somewhere in U .

Let us denote by $\text{Adm}(F)$ the set of all smooth functions on M which satisfy the sign conditions described above. Clearly,

$$(3) \quad \text{Mean}(F) \subset \text{Adm}(F) \subset C_{\pm}^{\infty}(M).$$

§ 2. Novikov components.

Let us recall that points x and y belong to the same Novikov component of a transversely oriented codimension-one foliation F whenever $L_x = L_y$ or there exists a closed transversal passing through x and y .

Novikov [2] proved that if the foliated manifold M is compact, then there are three possibilities:

(i) All the manifold M is the only Novikov component of F . This holds if and only if there exists a closed transversal intersecting all the leaves of F .

(ii) A component consists of a single closed leaf L . In this case, there are no closed transversals meeting L .

(iii) A component is open, saturated and bounded by a finite number of compact leaves, components of type (ii).

Denote by $N(F)$ the family of all the Novikov components of a foliation F . If A and $B \in N(F)$, then we write $A < B$ whenever either $A = B$ or there exists a positively oriented transversal which starts in A and ends in B . The relation $<$ provides a partial ordering of $N(F)$.

Lemma 1. There are maximal elements in $(N(F), <)$.

Proof. Take a finite covering $U = \{U_1, \dots, U_k\}$ of M by closed charts $\phi_i: U_i \rightarrow D \times \langle 0, 1 \rangle$ ($D \subset \mathbb{R}^n$, $n = \dim F$) distinguished by F . For any i , denote by N_i the Novikov component containing the U_i -plaque corresponding to $t = 1$ (Figure 1). If $N \in N(F)$ and $N \cap U_i \neq \emptyset$, then $N < N_i$. Therefore, any maximal element of the set

N_1, \dots, N_k is maximal in $N(F)$.

Lemma 2. If N is a maximal element of $(N(F), <)$, then either $N = M$ or N is of the type (iii) and the positively oriented transverse to F vector field turns inwards N on all the components of the boundary ∂N .

Proof. Obvious.

Lemma 3. If M is the only Novikov component of F , then there exists a nowhere vanishing transverse to F vector field X such that any its trajectory meets all the leaves of F .

Proof. If $\dim F = 1$, then $M = T^2$ and F is equivalent to a suspension of a diffeomorphism of S^1 . Therefore, we may assume that $\dim F \geq 2$.

Let γ be a circle embedded into M transversely to F and such that every leaf of F meets γ . Extend γ to an embedding $D \times S^1 \rightarrow M$, where $D \subset \mathbb{R}^n$ ($n = \dim F$) is a closed ball, $D \times \{\theta\}$ ($\theta \in S^1$) lies on a leaf and $\{u\} \times S^1$ ($u \in D$) meets all the leaves of F .

Take an arbitrary non-vanishing vector field Y transverse to F and such that Y is tangent to the circles $\{u\} \times S^1$ for $u \in D$. There are closed plaques P_1, \dots, P_k such that any trajectory of Y meets $u_i P_i$. Since the plaques P_i can be joined by chains of plaques to some points of $D \times S^1$ and since a foliation in a neighbourhood of a relatively compact simply connected domain of a leaf is equivalent to a trivial one, then it follows from [3] that there exists a preserving F diffeomorphism ϕ such that $C_i = \phi(P_i)$ ($i = 1, \dots, k$) are closed cells lying on $D \times \{\theta_i\}$, $\phi(D \times S^1) \subset D \times S^1$ and $\phi|D' \times S^1 = id$ for some closed ball $D' \subset \text{Int } D$. We may assume that $\theta_i \neq \theta_j$ when $i \neq j$.

Put $Z = \Phi_*Y$. Then Z is transverse to F and every trajectory of Z meets one of the cells C_i .

Now, choose pairwise disjoint open segments $I'_1, \dots, I'_k \subset S^1$ such that $\theta_i \in I'_i$. For any i there exists a diffeomorphism Ψ_i of M such that $\text{supp } \Psi_i \subset D \times I'_i$, $\Psi_i(D \times \{\theta\}) = D \times \{\theta\}$ for any θ , $K'_i = \Psi_i(C'_i) = K_i \times \{\alpha_i\}$ and $K''_i = \Psi_i(C''_i) = K_i \times \{\beta_i\}$, where $I_i = \langle \alpha_i, \beta_i \rangle \subset I'_i$, $C'_i \subset D \times \{\alpha_i\}$ and $C''_i \subset D \times \{\beta_i\}$ are cells obtained by pushing C_i along trajectories of Z , and $K_i \subset D'$. We may also assume that S^1 -saturations of supports of Ψ_i 's in $D \times S^1$ are pairwise disjoint.

Gluing together vector fields $Z|_{M \setminus \cup_i D \times I_i}$ and $\Psi_{i*}(\partial/\partial\theta) \mid D \times I_i$ ($i = 1, \dots, k$) we obtain a vector field X with the required properties (Figure 2).

§ 3. Main results.

Assume that a transversely oriented codimension-one foliation F of a compact manifold M admits several Novikov components. According to Lemmas 1 and 2, there exists a saturated open set U such that any function $f \in \text{Adm}(F)$ is positive somewhere in U . On the other hand, if M is the only component of F , then there are no obstructions related to the equality (2) and the families $\text{Adm}(F)$ and $C_{\pm}^{\infty}(M)$ coincide. In this manner, we established the following:

Proposition. $\text{Adm}(F) = C_{\pm}^{\infty}(M)$ if and only if M is the only Novikov component of F .

We have also the following:

Theorem. $\text{Mean}(F) = C_{\pm}^{\infty}(M)$ if and only if M is the

only Novikov component of F .

In the proof, we shall use the following:

Lemma 4 (c.f. [6]). The class $\text{Mean}(F)$ is closed under multiplication by positive factors and under composition with diffeomorphisms preserving F . If Riemannian metrics g and g' are conformally equivalent,

$$g' = e^{2\Psi} g$$

then

$$h(F, g') = e^{-\Psi} h(F, g) + n g(X, \nabla(e^{-\Psi})),$$

where $n = \dim F$, X is the positively oriented g -unit orthogonal to F vector field on M and $\nabla\alpha$ denotes the gradient (w.r.t. g) of a smooth function α .

Proof of the Theorem. In view of (3) and the Proposition, it remains to show that if M is the only Novikov component of F and $f \in C_+^\infty(M)$, then $f \in \text{Mean}(F)$.

If $f \equiv 0$, then $f \in \text{Mean}(F)$ according to Rummel's [4, Prop. 1] and Sullivan's [5, Theorem II.20] results.

Suppose that $f(x_1) > 0$ and $f(x_2) < 0$ for some x_1 and x_2 of M . Take a vector field X satisfying the conditions of Lemma 3 and distinguished by both F and X charts ϕ_1 and ϕ_2 such that $x_1 \in U_1$, $x_2 \in U_2$, $f|_{\bar{U}_1} > 0$ and $f|_{\bar{U}_2} < 0$. Next, take the leaf L_i passing through x_1 and cover it by closed cells $\bar{V}_1, \dots, \bar{V}_m$ such that any trajectory of X meets $U_i \bar{V}_i$. Choose leaves L_2, \dots, L_m and L'_1, \dots, L'_m such that $L_j \cap U_1 \neq \emptyset$, $L'_j \cap U_2 \neq \emptyset$, $L_i \neq L_j$ and $L'_i \neq L'_j$ when $i, j \in \{1, \dots, m\}$, $i \neq j$. For any i , push the cell \bar{V}_i along trajectories of X to get cells $V_i \subset L_i$ and $V'_i \subset L'_i$ (Figure 3). Taking cells V_i small enough one may assume that any segment

γ with end points of V_i meets $U_j V_j'$.

Denote by P_i and P_i' the closures of some plaques of $U_1 \cap L_i$ and $U_2 \cap L_i'$, respectively. As in the proof of Lemma 3, one can establish the existence of a diffeomorphism ϕ of M which preserves F and maps V_i onto P_i and V_i' onto P_i' for $i = 1, \dots, m$.

Take a Riemannian metric g on M such that $|x| = 1$ and X is orthogonal to F , and denote by h the mean curvature function of F with respect to g . Since the function $f_1 = f \circ \phi$ is somewhere positive and elsewhere negative on any segment γ of a trajectory of X with end points on V_i ($i = 1, \dots, m$), then there exists a strictly positive C^∞ -function $k: M \rightarrow \mathbb{R}$ such that

$$(4) \quad \int_{\gamma} f_2 = 0,$$

when $f_2 = k \cdot f_1 - \frac{1}{n} h$, $n = \dim F$ and γ is as above.

From (4), it follows that there exists functions $\lambda_i: V_i \rightarrow \mathbb{R}$ ($i = 1, \dots, m$) such that

$$\lambda_i(x) - \lambda_j(y) = \int_0^s f_2(\phi_t x) dt$$

when (ϕ_t) is the flow of the vector field X , $x \in V_i$ and the trajectory of X passing through x meets V_j at the point $y = \phi_s x$.

The formulae

$$\Psi(\phi_s x) = \lambda_i(x) - \int_0^s f_2(\phi_t x) dt \quad (x \in V_i, s \in \mathbb{R}, i = 1, \dots, m)$$

define a C^∞ -function Ψ satisfying the equation $\Psi' = -f_2$.

Finally, put $g' = e^{2\Psi} g$. Lemma 4 shows that

$$h(F, g') = n e^\Psi (f \circ \phi).$$

Applying Lemma 4 once again one can see that $f \in \text{Mean}(F)$.

Remark. The realized hitherto study of mean curvature functions

for foliations allow us to conjecture that the equality

$$\text{Adm}(F) = \text{Mean}(F)$$

holds for any codimension-one transversely oriented foliation F of any compact manifold.

References.

- [1] Haefliger, A., Some remarks on foliations with minimal leaves, *J. Diff. Geom.*, 15 (1980), 269-284.
- [2] Novikov, S. P., *Topologija slojenij*, *Trudy Mosk. Mat. Obsc.*, 14 (1965), 248-278.
- [3] Palais, R., Extending diffeomorphisms, *Proc. Amer. Math. Soc.*, 11 (1960), 274-277.
- [4] Rummel, H., Quelques notions simples en géométrie riemannienne et leurs applications aux feuilletages compacts, *Comm. Math. Helv.*, 54 (1979), 224-239.
- [5] Sullivan, D., Cycles for the dynamical study of foliated manifolds and complex manifolds, *Invent. Math.*, 36 (1976), 225-255.
- [6] Walczak, P. G., Mean curvature functions for codimension-one foliations with all the leaves compact, *Czech. Math. J.*, 34 (1984), 146-155.
- [7] Walczak, P. G., Mean curvature functions for foliations of codimension one, *Proc. Sem. on Foliations, Kraków 1983* (1984).
- [8] Walczak, P. G., Mean curvature functions for foliated bundles, to appear in *Proc. Coll. Diff. Geom., Hajduszoboszlo 1984*.

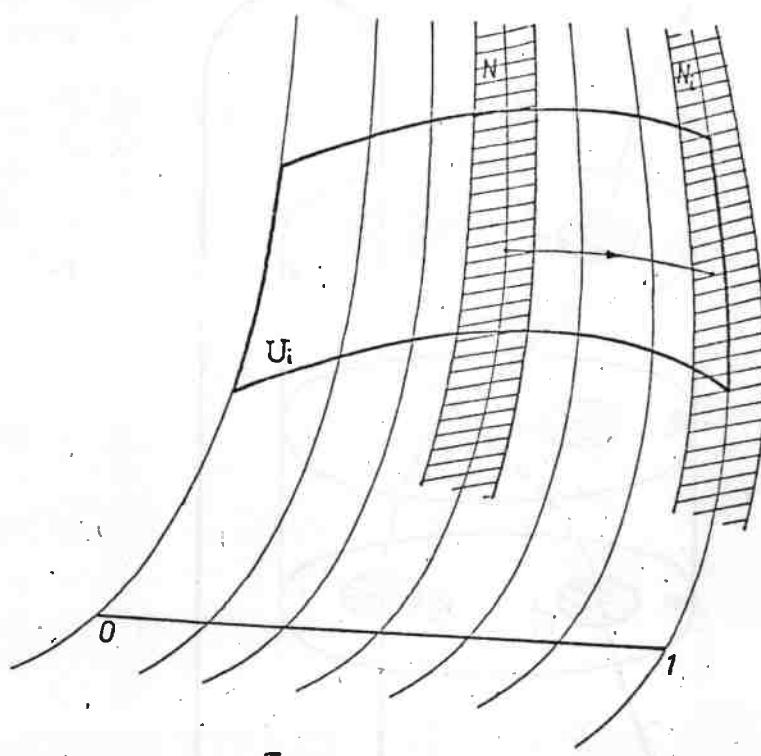


Fig. 1

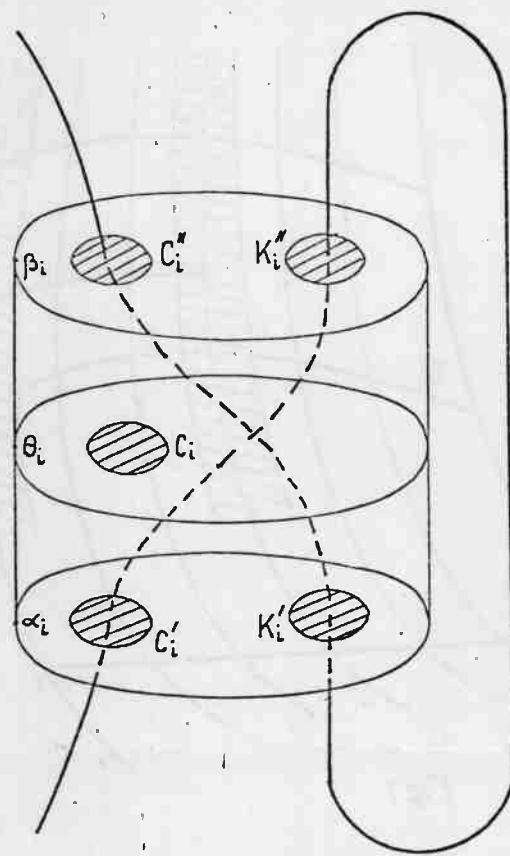


Fig. 2

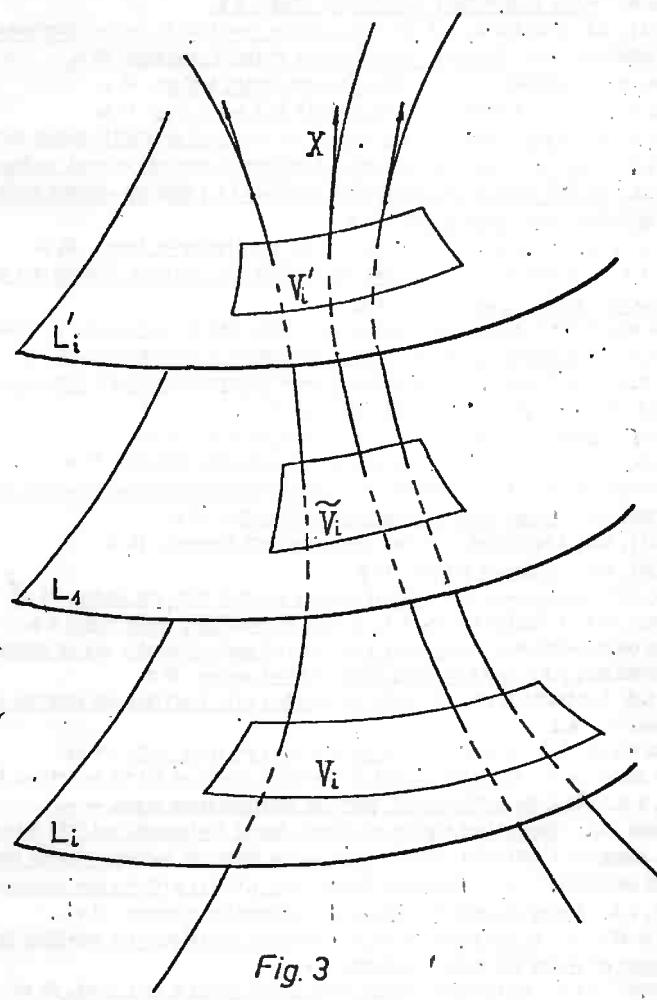


Fig. 3

TRABALHOS DO DEPARTAMENTO DE MATEMÁTICA
TÍTULOS PUBLICADOS

80-01 PLETCH, A. Local freeness of profinite groups. 10 p.

80-02 PLETCH, A. Strong completeness in profinite groups. 8 p.

80-03 CARNIELLI, W.A. & ALCANTARA, L.P. de. Transfinite induction on ordinal configurations. 22 p.

80-04 JONES RODRIGUES, A.R. Integral representations of cyclic p-groups. 13 p.

80-05 CORRADA, M. & ALCANTARA, L.P. de. Notes on many-sorted systems. 25 p.

80-06 POLCINO MILIES, F.C. & SENHAL, S.K. FC-elements in a group ring. 10 p.

80-07 CHEN, C.C. On the Ricci condition and minimal surfaces with constantly curved Gauss map. 10 p.

80-08 CHEN, C.C. Total curvature and topological structure of complete minimal surfaces. 21 p.

80-09 CHEN, C.C. On the image of the generalized Gauss map of a complete minimal surface in R^4 . 8 p.

81-10 JONES RODRIGUES, A.R. Units of Zp^n . 7 p.

81-11 KOTAS, J. & COSTA, N.C.A. da. Problems of model and discussive logics. 35 p.

81-12 BRITO, F.B. & GONÇALVES, D.L. Álgebras não associativas, sistemas diferenciais polinomiais homogêneos e classes características 7 p.

81-13 POLCINO MILIES, F.C. Group rings whose torsion units form a subgroup II. IV. (não paginado)

81-14 CHEN, C.C. An elementary proof of Calabi's theorems on holomorphic curves 5 p.

81-15 COSTA, N.C.A. da & ALVES, E.H. Relations between paraconsistent logic and many-valued logic 8 p.

81-16 CASTILLA, M.S.A.C. On Przymusinski's theorem. 6 p.

81-17 CHEN, C.C. & GOES, C.C. Degenerate minimal surfaces in R^4 . 21 p.

81-18 CASTILLA, M.S.A.C. Imagens inversas de algumas aplicações fechadas. 11 p.

81-19 ARAGONA VALLEJO, A.J. & EXEL FILHO, R. An infinite dimensional version of Hartogs' extension theorem. 9 p.

81-20 GONCALVES, J.Z. Groups rings with solvable unit groups. 15 p.

81-21 CARNIELLI, W.A. & ALCANTARA, L.P. de. Paraconsistent algebras. 16 p.

81-22 GONCALVES, D.L. Nilpotent actions. 10 p.

81-23 COELHO, S.P. Group rings with units of bounded exponent over the center. 25 p.

81-24 PARMENTER, M.M. & POLCINO MILIES, F.C. A note on isomorphic group rings. 4 p.

81-25 MERKLEN GOLDSCHMIDT, H.A. Hereditary algebras with maximum spectra are of finite type. 10 p.

81-26 POLCINO MILIES, F.C. Units of group rings: a short survey. 32 p.

81-27 CHEN, C.C. & GACKSTATTER, F. Elliptic and hyperelliptic functions and complete minimal surfaces with handles. 14 p.

81-28 POLCINO MILIES, F.C. A glance at the early history of group rings. 22 p.

81-29 FERRER SANTOS, W.R. Reductive actions of algebraic groups on affine varieties. 52 p.

81-30 COSTA, N.C.A. da. The philosophical import of paraconsistent logic. 26 p.

81-31 GONCALVES, D.L. Generalized classes of groups, spaces c-nilpotent and "the Hurewicz theorem". 30 p.

81-32 COSTA, N.C.A. da & MORTENSEN, Chris. Notes on the theory of variable binding term operators. 18 p.

81-33 MERKLEN GOLDSCHMIDT, H.A. Homogenous L -hereditary algebras with maximum spectra. 32 p.

81-34 PERESI, L.A. A note on semiprime generalized alternative algebras. 10 p.

81-35 MIRAGLIA NETO, F. On the preservation of elementary equivalence and embedding by filtered powers and structures of stable continuous functions. 9 p.

81-36 FIGUEIREDO, G.V.R. Catastrophe theory: some global theory a full proof. 91 p.

82-37 COSTA, R.C.F. On the derivations of gametic algebras. 17 p.

82-38 FIGUEIREDO, G.V.R. A shorter proof of the Thom-Zeeman global theorem for catastrophes of cod 5. 7 p.

82-39 VELOSO, J.M.M. Lie equations and Lie algebras: the intrasitive case. 97 p.

82-40 GOES, C.C. Some results about minimal immersions having flat normal bundle. 37 p.

82-41 FERRER SANTOS, W.R. Cohomology of comodules II. 15 p.

82-42 SOUZA, V.H.G. Classification of closed sets and diffeos of one-dimensional manifolds. 15 p.

82-43 GOES, C.C. The stability of minimal cones of codimension greater than one in R^n . 27 p.

82-44 PERESI, L.A. On automorphisms of gametic algebras. 27 p.

82-45 POLCINO MILIES, F.C. & SENHAL, S.K. Torsion units in integral group rings of metacyclic groups. 18 p.

82-46 GONCALVES, J.Z. Free subgroups of units in group rings. 8 p.

82-47 VELOSO, J.M.M. New classes of intransitive simple Lie pseudogroups. 8 p.

82-48 CHEN, C.C. The generalized curvature ellipses and minimal surfaces. 10 p.

82-49 COSTA, R.C.F. On the derivation algebra of zygotic algebras for polyploidy with multiple alleles. 24 p.

83-50 GONCALVES, J.Z. Free subgroups in the group of units of group rings over algebraic integers. 3 p.

83-51 MANDEL, A. & GONCALVES, J.Z. Free k-triples in linear groups. 7 p.

83-52 BRITO, F.G.B. A remark on closed minimal hypersurfaces of S^4 with second fundamental form of constant length. 12 p.

83-53 KIIHL, J.C.S. U-structures and sphere bundles. 8 p.

83-54 COSTA, R.C.F. On genetic algebras with prescribed derivations. 23 p.

83-55 SALVITTI, R. Integrabilidade das distribuições dadas por subalgebras de Lie de codimensão finita no $gh(n, C)$. 4 p.

83-56 MANDEL, A. & GONCALVES, J.Z. Construction of open sets of free k-Tuples of matrices. 18 p.

83-57 BRITO, F.G.B. A remark on minimal foliations of codimension two. 24 p.

83-58 GONCALVES, J.Z. Free groups in subnormal subgroups and the residual nilpotence of the group of units of group rings. 9 p.

83-59 BELOQUI, J.A. Modulus of stability for vector fields on 3-manifolds. 40 p.

83-60 GONCALVES, J.Z. Some groups not subnormal in the group of units of its integral group ring. 8 p.

84-61 GOES, C.C. & SIMÕES, P.A.Q. Imersões mínimas nos espaços hiperbólicos. 15 p.

84-62 GIAM BRUNO, A.; MISSO, P. & POLCINO MILIES, F.C. Derivations with invertible values in rings with involution. 12 p.

84-63 FERRER SANTOS, W.R. A note on affine quotients. 6 p.

84-64 GONCALVES, J.Z. Free-subgroups and the residual nilpotence of the group of units of modular and p-adic group rings. 12 p.

84-65 GONCALVES, D.L. Fixed points of S^1 -fibrations. 18 p.

84-66 RODRIGUES, A.A.M. Contact and equivalence of submanifolds of homogenous spaces. 15 p.

84-67 LOURENCO, M.L. A projective limit representation of (DFC)-spaces with the approximation property. 20 p.

84-68 FORNARI, S. Total absolute curvature of surfaces with boundary. 25 p.

84-69 BRITO, F.G.B. & WALCZAK, P.G. Totally geodesic foliations with integral normal bundles. 6 p.

84-70 LANGÉVIN, R. & POSSANI, C. Quase-folheações e integrais de curvatura no plano. 26 p.

84-71 OLIVEIRÁ, M.E.G.G. de Non-orientable minimal surfaces in R^4 . 41 p.

84-72 PERESI, L.A. On baric algebras with prescribed automorphisms. 42 p.

84-73 MIRAGLIA NETO, F. & ROCHA FILHO, G.C. The measurability of Riemann integrable-function with values in Banach spaces and applications. 27 p.

84-74 MERKLEN GOLDSCHMIDT, H.A. Artin algebras which are equivalent to a hereditary algebra modulo preprojectives. 38 p.

84-75 GOES, C.C. & SIMÕES, P.A.Q. The generalized Gauss map of minimal surfaces in H^3 and H^4 . 16 p.

84-76 GONCALVES, J.Z. Normal and subnormal subgroups in the group of units of a group rings. 13 p.

85-77 ARAGONA VALLEJO, A.J. On existence theorems for the $\bar{\partial}$ operator on generalized differential forms. 13 p.

85-78 POLCINO MILIES, C. ; RITTER, J. & SEHGAL, S.K. On a conjecture of Zassenhaus on torsion units in integral group rings II. 14 p.

85-79 JONES RODRIGUES, A.R. & MICHLER, G.O. On the structure of the integral Green ring of a cyclic group of order p^2 . The Jacobson radical of the integral Green ring of a cyclic group of order p^2 . 26 p.

85-80 VELOSO, J.M.M. & VERDERESI, J.A. Three dimensional Cauchy-Riemann manifolds. 19 p.

85-81 PERESI, L.A. On baric algebras with prescribed automorphisms II. 18 p.

85-82 KNUDSEN, C.A. O impasse aritmético-geométrico e a evolução do conceito de número na Grécia antiga. 43 p.

85-83 VELOSO, J.M.M. & VERDERESI, J.A. La géométrie, le problème d'équivalence et le classification des CR-variétés homogènes en dimension 3. 30 p.

85-84 GONCALVES, J.Z. Integral group rings whose group is solvable, an elementary proof. 11 p.

85-85 LUCIANO, O.O. Nebuleuses infinitesimalmente fibrées. 5 p.

85-86 ASPERTI, A.C. & Dajczer, M. Conformally flat Riemannian manifolds as hypersurfaces of the lioth cone. 8p.

85-87 BELOQUI, J.A. A quasi-transversal Hopf bifurcations. 11p.

85-88 POLCINO MILIES, C. & RAPHAEL D.M. A note on derivations with power central values in prime rings. 7p.

85-89 POLCINO MILIES. Torsion units in group rings and a conjecture of H.J.Zassenhaus. 14p

86-90 LOURENCO, M.L. Riemann domains over (DFC) spaces. 32p.

85-91 ARAGONA VALLEJO, A.J. & FERNANDES, J.C.D. The Hartogs extension theorem for holomorphic generalized functions. 9p.

86-92 CARRARA ZANETIC, V.L. Extensions of immersions in dimension two. 27p.

86-93 PERESI, L.A. The derivation algebra of gametic and zygotic algebras for linked loci. 25p.

86-94 COELHO, S.P. A note on central idempotents in group ring. 5p.

86-95 PERESI, L.A. On derivations of baric algebras with prescribed automorphisms. 21p.

86-96 COELHO, F.U. A generalization of a theorem of Todorov on preprojectives partitions 18p.

86-97 ASPERTI, A.C. A note on the minimal immersions of the two-sphere. 11p.

86-98 COELHO, S.P. & POLCINO MILIES, C. A note on central idempotents in group rings II. 8p.

86-99 EXEL, R. Hankel matrices over right ordered amenable groups. 18p.

NOVA SÉRIE

86-01 GOODAIRE, E. G. & POLCINO MILIES, C. Isomorphisms of integral alternative loop rings. 11p.

86-02 WALCZAK, P. G. Foliations which admit the most mean curvature functions. 11p.