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Sommaire. Nous considerons ces feuilletages de .codimension 1 

qui ont la propriete suivant: Toute fonction changant son 

sur la variete feuillet~e _compact H parait comme la 

signe 

courbure 

moyenne des feuilles pour certaine m~trique riemannienne sur M. 

§ O. Introduction~ 

In the papers [6] - [9], the family Mean(F) 1 where 

F is a tran·sversely oriented, codimension-one c"" -foliation of a 
I 

compac~ c""-manifold M, was considered~ Recall, that f E Mean(F) 

if and only if f EC (M) and there exists a Riemannian metric g on 

M for which f is the mean curvature of (the leaves of) F w.r.t.g. 

Among the . others, we proved that if either all the leaves of Fare 

compact or Fis transverse to the fibres of an s1-bundle M - B, 
then 

(1) Mean(F) = c;(M), 

.., 
where C+(M) consists of zero and all smooth functions which are 

somewhere positive and elsewhere negative on M. In this note, we 

prove that the equality (1) holds if and o~ly· if there exists a 

'closed transversal intersecting all the levaes of F. 

that studying the family Mean(F) one can get . some 

concerning the topology of F. Earlier ([l], [4] and the 

This shows 

information 

others), 

• The paper was accomplished duri~g the author's stay at 
(Brasil) and partially supported by FAPESP [Brasil). 
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it was shown that minimalizability, i.e. the condition 

"O t: Mean(Fl", forces some topological properties of F. 

§ 1, Mean curvature functions. 

Let F be a transversely oriented 

c"'-foliation of a compact criented manifold M. 

codimension-one 

If . g is a 

Riemannian metric on M, then the, mean curvature of F w. r. t. g is 

the real c"'-function h(F,g) which assigns to each x of M the mean 

curvature at x of the leaf L passing through x. It is well known 
X 

that h = h(~,g) satisfies the equation 

dw = Ml 
g g 

where 11.1 and n are the volume forms of F and M, respectively. 
g g 

Therefore, 

J h n = 0 
M 

g 

and if U is an open saturated set bounded by closed leaves L1 , ••• , , 

~, then 
k. 
E ~gn(U,L1 ).vol(L1 ), 

1•1 

where sgn(U,L.) = 1 when a positively oriented transverse to F 
l. 

vector fi~ld turns on Li inwards U and sgn(U,Li) = -1 otherwise. 

Consequently, ht: c"'+<M) and if sgn(U,L.) = l (reso., -1) for all 
l. -

boundary components Li' then h must be positive (resp., negative) 

eo:uewhere in U. 

Let us denote by Adm(F) the set of · all smooth 

functions on M which satisfy the sign conditions described above. 

Clearly, 
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(3) 
... 

Mean (F) c Adm (F) c C+ (M). 

§ 2. Novikov components. 

Let us recall that points x and y belong to the 

same Novikov component of a transversely oriented codimension-one 

foliation F whenever L = L or there exists a closed transversal 
X y 

passing through x and y. 

Novikov [2] proved that if the foliated manifold M 

is compact, then there are three possibilities: 

(i) All the manif_o;d M is _the only Novikov cx::mpc:nent 

of P'. This holds if and only if there exists a closed transversal 

intersecting all the leaves of F . . · 
I 

(ii) A component consists of a · single closed 

L. In this case, there are no closed transversals meeting L. 

leaf 

· (iii) A component is open, s~turated and bounded by 

a finite number of compact leyaes, components of type (11). 

Denote by N(F) the family of all the Novikov 

' components of a foliation F. If A and B E N (F) , then · we write 

A< B whenever either A• B or there exists a positively oriented 

transversal which starts in A and ends in B. The .relation < 

provides a partial ordering of N(P'). 

Lemma 1. There are maximal elements in (N(F), < ). 

~- Take a finite covering U = {u1 , ••• ,uk~ of M 
. n 

by closed charts $i:u1 --,. D x <0:l>(D c R, ~=dimF) distinguished 

by F. For any i, denote by Ni the Novikov component containing the 

Uj-plaque corresponding tot= 1 (Figure l). If NE N(F) and 

N n u1 ~ i, then N <Ni.Therefore, any maximal element of the set 
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N1 , ••• ,Nk is maximal in N(F). 

Lemma 2. If N is a maximal element of (N (Ff, < ) , 

then either N =Mor N is of the . type (iii) and the positively 

oriented transverse to F vector field turns inwards Non all the 

components of the boundary 3N. 

P1'oof. Obvious. 

Lemma 3. If Mis the only Novikov component of F, 

then there exists a no\,here vanishing transverse to F vector field 

X such that any its trajectory meets all the leaves of F. 

P1'oof. If dim F = 1, then M = T2 and Fis equivalent 

to a suspension of a diffeomorphism of s1 • Therefore, · we may 

assume that dim F ~ 2. 

Let y be a circle embedded into M transversely to F 

and such that every leaf of F meets y. Extend y to an embedding 

D x s1 - M, where D c Rn (n - dim F) is a closed ball, 

D x {e} (e ( s 1 1 lies on a leaf and {u} x s 1 (u ( D) meets all 

the leaves of F. 

Take an arbitrary non-vanishing vector ' field Y• 

transverse to F and such that Y is tangent to the circles {u} x s1 

for u ( D. There are closed plaques P1 , ••• ,Pk such that any 

trajectory of Y meets uiPi. Since the plaques Pi can be joined 

by chains of plaques to some points of D x s1 and since a foliation 

in a neighbourhood of a relatively compact simply connected domain 

of a leaf is equivalent to a trivial one, then it follows 

[3) that there exists a preserving F diffeomorphism t such 

from 

that 

Ci= tCP1 ) (i = l, ••• ,k) are closed cells lying on D x {0i}, 

t(D x s1 ) c D x s1 and tlD'x s1 = id for some closed ball P' c 

Int D. We may assume that 01 i 0. when i -:j j. 
J 
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Putz= t*Y. Then z is . transverse to F and 
trajectory of z meets one. of the c~lls Ci. · 

Now, choose pairwise disjoint open 

every 

segments 
Ii,··••Ik c s1 

such that 01 t _I 1. For any i there exists a 
diffeomorphism v1 of M such that supp v1 c D x I1, ~i(Dx{~}) 
= D x {9} for any a; Ki= Vi (Ci) =z Ki X {ai} and Ki'= li {Cf) = 

Ki X {Bi}, where Ii= <ai,Bi> C Ii, Ci CD X {ai} and crcox{Bi} 
are cells obtained by pushing Ci along traject9ries of Z, and 
Ki c D', We may also assume that s1-saturations of supports-of t 1s 

1 in D x s are pairwise disjoint. 

Gluing together vector fields ZIM \ ui D x 11 and 
t 1 *(3/30) I D x Ii (i = l,.~.,k) we obtain a vector field X with 
the required properties (Figure 2). 

' I I 

§ 3. Main results. 

Assume that a transversely oriented codimension-one 
.foliation F of a compact manifold M adl'iits several Novikov 
',components. According to Lemmas l and 2, there exists a . saturated 

\ open set U such that any function f i Adm(F) 1s positive somewhere 
in U. On the other hand, if Mis the only component of F, 
there -are no obstructions related to the equality (2) and 

I 

then 

the 
families Adm(F) and c:(M) coincide. In this manner, we established 
the following: 

Pro position. Adm(F) 
... 

C+(M)•if and only if His the 
only Novikov component of F. 

We have also the followings . ... Theorem. Mean(F) c .ct(M) if . and . only if M is the 
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only Novikov component of F. 

In ·the proof, we shall use the following: 

Lemma 4 (a. f . [6]). The class Mean(F) is closed 

under multiplication by positive factors and under composition 

with diffeomorphisms preserving F, If Riernannian metrics g and g' 

are conformally equivalent, 

2 'f 
. g' = e g 

then 

where n = dim F , X is the positively oriented g-unit orthogonal to 

F vector field on Mand Vn denotes the gradient (w.r.t.g.) of a 

smooth function a. 

P'l'OO [_ of the Theo'l'em. In ' view of (3) and the 

Proposition, it remains to show that if Mis the only Novikov 

component of F and f £ c:(M}, then f £ Mean(F}. 

If f - O, then f £ Mean(F) according to _ Rurnmler's 

[4,Prop. 1) and Sullivan,'s [5, Theorem II.20] results. 

Suppose that f(x1 ) > 0 and f(x 2
) < 0 for some ·x1 

and x 2 of M. Take a vector field X satisfying. the conditions of 

Lemma 3 and distinguished by both F and X chart~ ~land ~2 
such 

u
1 

> 0 and f I u2 
< O. Next, take 

the leaf Li passing through x 1 and cover it by closed cells 

v1 , •• .• ,Vm such that any trajectory of X meets Ui fJ i. Choose leaves 

L2 , •.• ,Lm and Li ••• ,Lx:i such that . Lj n u1 _l ·"• Lj n u2 ; SJ, Li ; Lj 
.. 

and L1 ; Lj when i,j £ {l, ••• ,m}, i -/- "j •~:·_F~r any i, push the cell 

.· . 
111 along trajectories of X to get cell~ , Vi c: Li and Vi c: L1 (Figure 

3). Taking cells 11
1 

small enough one ma~( assume that any segment 
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y with end points of v 1 meets ujvj. 
Denote by Pi and Pi the closures of some plaques of 

u1 n Li and u2 n L1, respectively. As in the proof of Lemma 3, one 
can establish the existence of a diffeomorphism t of M which 

preserves F and maps vi onto Pi and v1 onto P1 for i = l, ••• ·,m. 

Take a Riemannian metric g on M such that !XI= 1 

and Xis orthogonal to F, and denote by h the mean curvature func­

tion of F with respect tog. Since the function £1 = f o ~ is 
somewhere positive and elsewhere negative on any segment y of a 

trajectory of X wit~ end points on Vi (i = l, ... ,m), then 

exists a strictly positive c'"'-function k:M .::.__... R • such that 

(4) = 0, 

n = dim F and Y. is as above. 

there 

From (4), it follows that there 

).i: Vi;--+ R (1 = l, ••• ,m) such that 

exists functions 

).i (x) - ).j (y) = /sf
2 Ccr>tx)dt 

. 0 

! ,. 
when c,t> is the flow of the vector field X, x · t ; Vi 

I 

and the 

_traject~ry of X passing through x mee~s Vj at the pointy= tsx. 

The formulae 

(x e: vi, s e: R, 
i ::s l, ... ,m) 

define a c'"'-function 'i' satisfying the equation X'i' = -f
2

• 

2 'I' Finally, put g' = c g. Lemma 4 sho~s that 

h(F,g') ... ne'i'(f • t). 

Applying Lemma 4 once again one can see that f e: Mean(F). 

~emark. The realized hitherto study. of mean curvature functions 
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for foliations allow us to conjecture that the equality 

Adm(F) = Mean(F) 

holds for any codimension-one transversely oriented foliation F of 

any compact manifold. 
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