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of clements is associative. More generally, if three elements of a Moufang
loop (or alternative ring) associate, they generate a group (or an associative
ring). One useful and important property of an RA loop is called LC for
“lack of commutativity”: if a,b € L and ab = ba, then at least one of a, b,
ab is central; in particular squares in L are always central. The standard
reference for the theory of RA loops and their alternative rings is [GIM96].
In this paper, we try also to quote the original literature wherever possible.
For example, the LC property was established in {CG86], but one can also
consult [GIM96, §4.2]. ' ;

Any involution of an RA loop L extends by linearity to an involution of the
loop ring RL. Throughout this paper, it is convenient to use the same label
8 for such a map. Call a € RL symmetric if of = a and skew-symmetric if
af = —a. Denote by Lt and (RL)* the symmetric elements in L and RL,
respectively, and by L~ and (RL)~ the skew-symmetric elements of L and
RL, respectively, Since s is the only nonidentity commutator in L, it is easy
to see that this element must be symmetric.

The product of symmetric elements is symmetric if and only if, given
a,B8 € RL with o = o and 8% = g, we have (a8)? = af. This occwrs if
and only if 8%? = af, that is, if and only if fa = af. Thus the symmetric
elements of RL form a commutative set if and only (RL)* is a subring. It is
well known that the “bracket” operation [a,b] = ab— ba turns an associative
algcbra into a Lie algebra. On an alternative algebra, the bracket induces
the structure of a Malcev algebra, that is, an anticommutative algebra that
satisfies the identity

(zy)(w2) = (s - 2)7 + (yz - )z + (33 - o)y

[Saghl]. It follows that if RL is an alternative algebra, then RL~ is Malcev
with respect to the bracket operation and, when RL™ is commmutative, this
new product is clearly trivial. These two observations explain some of the
interest in the commutativity of (RL)Y and (RL)™.

2. SKEW-SYMMETRIC ELEMENTS

Throughout this paper, # denctes an involution of an RA locp L and
(by linear extension) also on the alternative ring RL. In characteristic 2,
elements that are skew or symunetric relative to ¢ coincide. Since we will
investigate the commutativity of symmetric eléments in characteristic 2 in
the next section, we assume here that char R # 2. .

In what follows, we shall find it convenient to refer to the support of a
loop ring element a = 37 . pa¢f, this being the set of those clements of L
which actually appear in the sum: supp(a) = {{ € L | o # 0}.

Suppose @ = 3 ayf is a skew-symmetric element in the loop ring RL.

Then
Zalfo =’ =-a= —Zatf.
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Proposition 2.3. In characteristic different from 2, commutativity of (RL)™
implies that LY is an abelian group.

Proof. Suppose there exist z,y € Lt with zy ¢ L*. Then zy # (zy)? =
y?2% = yz, so yz = szy. Let a = ry. Then a’ = sa and a is not central (z
and y do not commute), so C(a) = {b € L | ab = ba} is proper and a subloop
[GIMI6, Corollary 1V.1.15), Let b,c € C(a). The LC property and ab = ba
imply that o is central or b is central or ab is central. Since a is not central,
either b is central, or ab = 2z for some z € Z(L) giving that b = e %za is
a central multiple of . Similarly, ¢ is central or a central multiple of a.
In all cases, we have bc = cb, so C(a) is commutative. Suppose w ¢ C(a)
and t ¢ C(a). By Lemma 2.2, w = w® and t = 17, and a third appeal to
Lemma 2.2 gives either wt € C(a) or (wt)® = wt. Suppose wt ¢ C(a). Then
wt = t%uw% = tw, so t is central or w is central or wt is central. None of these
possibilities actually occurs, however, because none of w, t, wt commute with
a. Thus wt = c € C(a) and t = w™*cw € C(a)w. It follows that C(a) has
index 2. As noted prior to the statement of the proposition, this cannot
occur in an RA loop because C(a) is commutative. Thus L* is closed under
multiplication, hence commutative and hence a group. (In an RA loop, if
two elements commute, they associate with every third element {Goo83],
[GIM36, Theorem 1V.1.8).) O

Theorem 2.4. Let R be a coefficient ring of characteristic different from
2 and 4 and let 6 be an involution of an RA loop L. Then (RL)™ is not
commutative,

Proof. We obtain the result by contradiction, assuming initially that (RLY~
is indeed a commutative set.

Suppose first that char B = 3 and that there exist noncommuting elements
k, ¢ € L satisfying condition (b) of Proposition 2.1. The first set of equations,
ke = (k% = €%, imply k? = £71k¢ = sk and, similarly, that &% = s¢. The
second set of equations, k€ = k% = k%%, imply k® = sk and stk = k€ =
(£k)?, and the third set of equations, k¢ = ¢’k = k%¢, imply £° = s and
(¢k)? = sfk. Thus each alternative of (b) gives two noncommuting elements
a and b with ¢® = sa and 8° 5 b, a situation in conflict with Lemma 2.2.
We conclude that for every k, 2 € L with k€ # £k, we have condition (a) of
Proposition 2.1.

As in the proof of Proposition 2.3, we show that L contains a commutative
subloop of index 2, which can never be the case for L an RRA loop. The
subloop A generated by Z(L) and LT is commutative by Proposition 2.3.
Suppose k, € ¢ A, If k€ = Ck, then k€ € Z(L) C A because L has LC and
neither k nor € is in Z(L). If k€ 5 £k, then k¢ € L+ C A because & # &
and ¢/ # ¢, and we know that condition (a) of Proposition 2.1 is the case.
So, whether or not k and £ commute, ké = a € A, so £ = k(k7%a) € kA.
Thus A4 has index 2. .|
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of Proposition 2.3 show that L7 is an abelian group. Then the argument
establishing Lemma 2.5 shows that condition (a) of Proposition 2.1 holds
for any k, £ with k€ # £k and the last paragraph of the proof of Theorem 2.4
produces a commutative subloop of index two in L, an impossibility. Thus
we may fix a noncentral element k € X.

Suppose £ € L and k€ # £k. Applying 8 to k£ = sk gives (k% = sk9¢% =
k£9, s0 £k = sk€® and (2.3) becomes

(1— s)(kE ~ k%) = —(1 — 8)(k — k),
giving 2(1 — 8)(k€ — k£%) = 0. This is
2k€ + 25k€” = 2kl + 2k£0.

I ¢ # 07 then k¢ is not in the support of the right side, so kf = skf’
implying £ = s¢.

Suppose £ € L and k¢ = £k. Fix an clement a with ak # ka (so thata? = a
or ¥ = sa by what we have already shown). In an RA loop, two commuting
elements associate with every third, so parentheses are not needed when we
record the fact that (af)k # k(af) [GIMIG, Theorem IV.1.8]. Using again
what we have already learned about clements that do not commute with &,

we have £%a? = (af)? € {af,5al}, so €% € {¢,5(} too. O

We have reached our main theorem about the commutativity of skew-
symmetric elements in characteristic 4,

Theorem 2.8. Suppose 6§ is an tnvolution of an RA loop L and R is a
coefficient ring of characteristic 4. Then the set (RL)™ of skew-symmetric
elements of RL is commutative if and only if elements of RL of the form
af, £ € Lt and 20 = 0, commute and k° € {k, sk} for each k € L.

Proof. Recall that (RL)™ is spanned by R U S, where
R={al|fecl™ 2a=0} and S={{-¢1¢eL},

so that (RL)™ is commutative if and only if R is commutative, § is commu-
tative, and cach clement of R commutes with each element of §. If (RL)™
is commutative, then k? € {k, sk} for any k by Lemma 2.7, so we have the
theorem in one direction,

Conversely, assume that R is commutative and that k% € {k, sk} for any
k € L. Fitst we claim that k — k% and £— ¢° commute for any k, £ € L. This
is clear if k¥ = k or & = ¢, so assume the contrary. Thus k% = sk, ¢ = sl
and (k ~ k7)€ - €7) = (1 — 5)*k¢ while

(1—5)2ke  if ké =tk

NV =Y = (1~ =
((2 £ )(k k ) = (1 )zgk {__(1 _ S)Qk[ if kf = stk.

Since s> = 1 and we work in characteristic 4, we have (1 — 8)2 =2 —2s =
—{2 —25) = ~(1 —35)?. 1t follows that S is commutative. By assumption,
R is commuiative, so it remains to prove that each clement of R commutes
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Case 3. Suppose k€ = k. Then stk = k& = £%, so 0 = s¢, giving
2elLt.

In all three cases, we lLave ¢* € L, showing that squares of noncentral
clements are fixed by 8. On the other hand, if € Z(L)and £ ¢ Z(L) is
arbitrary, then ¢z ¢ Z(L), so [(¢z)?])’ = (z)?, that is, (2z?) = (22* =
(¢2)9(z?)?. Since (€2)? = ¢%, we have (z2)? = z? too. Thus any square is
fixed by 0.

Now remember that ¢(£) was defined by 6 = ()¢ and ¢(£) is central.
Thus ¢ € LT implies £2 = (£)* = (£)*¢%, so ©(£)? = 1, which is state-
ment (ii).

Furthermore, if k¢ = €k, then (kf)ke = (k0)? = KO0 = o(k)p(f)ke,
so p(kf) = @(k)p(f). On the other hand, if k€ # £k, then k¢ = stk
gives p(kf)(kE) = (k0)? = (stk) = k000 = s(k)p(€)ke, hence p(kf) =
so(k)p(€). So we have statement (iii).

Finally, if k and £ do not commute, we have (3.3) and three possibilities.
If ke = kP60, then o(k)p(€) = 1,50 @(k) = ¢(£) because of (ii). If ke = o’ =
@(k)ske, then p(k) = s, while, if ke = % = (£)sk{, we have p(£) = s.
Thus statement (iv) Lolds and the proof is complete. 0O

Ezamples 3.3. As noted in Section 2, an RA loop L is generated by its
centre and three elements z, y, ¢ which do not associate. Since squarcs are
central, each element of L can be written in the form zw, where z € Z(L)
and w € W = {z,y,u, Ty, T% YU, (zy)u}. Moreover, since w{'lwg ¢ Z(L)
for distinct wy,wy € W, the elements 2 and w in the representation 2w
are unique. Suppose @: L — Z(L) satisfies properties i-iv of Theorem 3.2
and Z(L) is cyclic of order a power of 2. (For example, L could be an
indecomposable loop in classes L1 or Lo—see [GIM96, Chapter V].) Then
s is the unique clement of order 2 in the centre so, if £ ¢ Z(L), o(€) =s
because ¢(£) has order 2. It follows readily that ¢(a) = 1ifa € Z(L), so
@ = * is the canonical involution on L.

We claim that in any other situation, that is, where Z(L) contains an
element ¢ # s of order 2, there arc other maps ¢ satisfying the conditions
of Theorem 3.2 and hence involutions # other than the canonical one that
force the symmetric clements to commute. Specifically, let @(a) =1 for
a € Z(L), choose ¢(x), ¢(y) and o(u) arbitrarily in {s,t} (but not all s),
extend ¢ to W by the rule p(wiw2) = se(w))p(we), and then to L via the
rule ¢(zw) = @(w), for z € Z(L), w € W. One sucll ¢ is defined by the
table

w |z y u Ty TU YU (zy)u
plw)|s t s t s t

It is straightforward to check that p(wiw,) = s(wy )p(ws) for any wy, w2 €
W, wy # wy. For cxample, if wy = zy and wy = yu, using the fact that zy,
y and u do not associate (otherwisc, they would gencrate a group containing
z, y and u) we have wiwy = (zy)(yu) = s{zy-yhu = s(zy?)u = (sy*)zu with
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sy? central. So ¢(wiwz) = p(ru) = s. On the other hand, w(w;)p(wz) = ts,
50 @(wiwsz) = sp(wy)e(wz). Now z1wy and z;wp commute if and only if
wp =1orw =1orw =w € W, so ¢ indeed has the properties of
Theorem 3.2 and the corresponding map 6 is an involution of L, different
from *, with the property that the symmetric elements of RL commute.

Thevrem 3.4. Let L be an RA loop and let R be an associative, commu-
tative ming of coefficients with characteristic 2. The canonical involution
£ £* has the property that the symmetric elements of RL commute. There

exist other involutions with this property if and only if Z(L) contains more
than one element of order 2.

Proof. We have just constructed a noncanonical involution with (RL)* com-
mutative assuming Z(L) contains an element ¢ # s of order 2. Conversely, if
s is the only element of order 2 in Z(L), then statement (ii) of Theorem 3.2
says @(€) € {1,s} for any £ € L and then statements (i) and (iv) say that
@(€) = s for any ¢ ¢ Z(L). This implics that if ¢ ¢ Z(L) then ¢(f) = L
take k ¢ Z(L); then kL ¢ Z(L), so s = ¢(kf) = @(k)p(f) = sp(f). So the
involution # defined by €° = (£)? is canonical. O
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