

RT-MAT 2007 - 11

INVOLUTIONS OF RA LOOPS

Edgar G. Goodaire and
César Polcino Milies

Maio 2007

Esta é uma publicação preliminar (“preprint”).

INVOLUTIONS OF RA LOOPS

EDGAR G. GOODAIRE AND CÉSAR POLCINO MILIES

ABSTRACT. Let L be an RA loop, that is, a loop whose loop ring over any coefficient ring R is an alternative, but not associative, ring. Let $\ell \mapsto \ell^\theta$ denote an involution on L and extend it linearly to the loop ring RL . An element $\alpha \in RL$ is *symmetric* if $\alpha^\theta = \alpha$ and *skew-symmetric* if $\alpha^\theta = -\alpha$. In this paper, we show that there exists an involution making the symmetric elements of RL commute if and only if the characteristic of R is 2 or θ is the canonical involution on L and an involution making the skew-symmetric elements of RL commute if and only if the characteristic of R is 2 or 4.

1. INTRODUCTION

This is a contribution to the volume of recent papers that consider involutions of group rings and, specifically, the sets of elements that are symmetric [Cri, CM06, Lee03, Lee99, GSV98] or skew-symmetric [CM, JM05, GM03] relative to an involution. The twist here is that we focus attention on RA loops and their loop rings.

An RA or “ring alternative” loop is a loop for which the loop ring RL is alternative (but not associative) for any associative, commutative coefficient ring R with 1. If L is an RA loop, then L is Moufang and it has a unique nonidentity commutator/associator that we always denote s . Thus, if $a, b \in L$, then either $ba = ab$ or $ba = (ab)s$ and, if $a, b, c \in L$, either $ab \cdot c = a \cdot bc$ or $ab \cdot c = (a \cdot bc)s$. It is easy to see that $s \in Z(L)$, the centre of L , and that s has order 2. For $\ell \in L$, define

$$(1.1) \quad \ell^* = \begin{cases} \ell & \text{if } \ell \in Z(L) \\ s\ell & \text{otherwise.} \end{cases}$$

Then $\ell \mapsto \ell^*$ is an involution on L (that is, an antiautomorphism of order 2) that extends to the loop ring RL by linearity. We refer to $*$ as the *canonical involution* of L . *Diassociativity* is a fundamental property of Moufang loops and alternative rings; that is, the subloop (or subring) generated by any pair

2000 *Mathematics Subject Classification*. Primary 20N05; Secondary 17D05.

The first author wishes to thank FAPESP of Brasil and the Instituto de Matemática e Estatística of the Universidade de São Paulo for their support and hospitality.

This research was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada, by FAPESP, Proc. 2005/00411-8 and CNPq., Proc. 300243/79-0(RN) of Brasil.
May 23, 2007.

of elements is associative. More generally, if three elements of a Moufang loop (or alternative ring) associate, they generate a group (or an associative ring). One useful and important property of an RA loop is called *LC* for “lack of commutativity”: if $a, b \in L$ and $ab = ba$, then at least one of a, b , ab is central; in particular squares in L are always central. The standard reference for the theory of RA loops and their alternative rings is [GJM96]. In this paper, we try also to quote the original literature wherever possible. For example, the LC property was established in [CG80], but one can also consult [GJM96, §4.2].

Any involution of an RA loop L extends by linearity to an involution of the loop ring RL . Throughout this paper, it is convenient to use the same label θ for such a map. Call $\alpha \in RL$ *symmetric* if $\alpha^\theta = \alpha$ and *skew-symmetric* if $\alpha^\theta = -\alpha$. Denote by L^+ and $(RL)^+$ the symmetric elements in L and RL , respectively, and by L^- and $(RL)^-$ the skew-symmetric elements of L and RL , respectively. Since s is the only nonidentity commutator in L , it is easy to see that this element must be symmetric.

The product of symmetric elements is symmetric if and only if, given $\alpha, \beta \in RL$ with $\alpha^\theta = \alpha$ and $\beta^\theta = \beta$, we have $(\alpha\beta)^\theta = \alpha\beta$. This occurs if and only if $\beta^\theta\alpha^\theta = \alpha\beta$, that is, if and only if $\beta\alpha = \alpha\beta$. Thus the symmetric elements of RL form a commutative set if and only if $(RL)^+$ is a subring. It is well known that the “bracket” operation $[a, b] = ab - ba$ turns an associative algebra into a Lie algebra. On an alternative algebra, the bracket induces the structure of a *Malcev algebra*, that is, an anticommutative algebra that satisfies the identity

$$(xy)(xz) = (xy \cdot z)x + (yz \cdot x)x + (zx \cdot x)y$$

[Sag61]. It follows that if RL is an alternative algebra, then RL^- is Malcev with respect to the bracket operation and, when RL^- is commutative, this new product is clearly trivial. These two observations explain some of the interest in the commutativity of $(RL)^+$ and $(RL)^-$.

2. SKEW-SYMMETRIC ELEMENTS

Throughout this paper, θ denotes an involution of an RA loop L and (by linear extension) also on the alternative ring RL . In characteristic 2, elements that are skew or symmetric relative to θ coincide. Since we will investigate the commutativity of symmetric elements in characteristic 2 in the next section, we assume here that $\text{char } R \neq 2$.

In what follows, we shall find it convenient to refer to the *support* of a loop ring element $\alpha = \sum_{\alpha_\ell \in R} \alpha_\ell \ell$, this being the set of those elements of L which actually appear in the sum: $\text{supp}(\alpha) = \{\ell \in L \mid \alpha_\ell \neq 0\}$.

Suppose $\alpha = \sum \alpha_\ell \ell$ is a skew-symmetric element in the loop ring RL . Then

$$\sum \alpha_\ell \ell^\theta = \alpha^\theta = -\alpha = -\sum \alpha_\ell \ell.$$

Assume k is in the support of α . There are two possibilities. If $k^\theta = k$, then the coefficient of k in $-\sum \alpha_\ell \ell$ is $-\alpha_k$, whereas the coefficient of k in α^θ is α_k , so $2\alpha_k = 0$. If $k^\theta \neq k$, then there exists $\ell \in \text{supp}(\alpha)$ such that $-\alpha_k k = \alpha_\ell \ell^\theta$. Thus $\ell^\theta = k$ (and $\ell = k^\theta$), so that $k \neq \ell$, and $\alpha_k = -\alpha_\ell$. So $\alpha_k k + \alpha_\ell \ell = -\alpha_\ell \ell^\theta + \alpha_\ell \ell = \alpha_\ell(\ell - \ell^\theta)$. It follows that $(RL)^-$ is spanned by the set $\mathcal{R} \cup \mathcal{S}$, where

$$\mathcal{R} = \{\alpha\ell \mid \ell \in L^+, 2\alpha = 0\} \quad \text{and} \quad \mathcal{S} = \{\ell - \ell^\theta \mid \ell \in L\}.$$

Proposition 2.1. *Let L be an RA loop and let θ denote an involution θ of L with the property that the set $(RL)^-$ of skew-symmetric elements commutes. For noncommuting elements $k, \ell \in L$, consider the conditions*

- (a) $k^\theta = k$ or $\ell^\theta = \ell$ or $(k\ell)^\theta = k\ell$, and
- (b) $k\ell = \ell k^\theta = \ell^\theta k$ or $k\ell = \ell k^\theta = k^\theta \ell^\theta$ or $k\ell = \ell^\theta k = k^\theta \ell^\theta$.

If the coefficient ring R has characteristic different from 2, 3 and 4, then condition (a) holds. If $\text{char } R = 3$, then (a) or (b) holds.

Proof. If $(RL)^-$ is commutative, so is \mathcal{S} , so

$$(2.1) \quad (k - k^\theta)(\ell - \ell^\theta) = (\ell - \ell^\theta)(k - k^\theta)$$

for any $k, \ell \in L$, that is,

$$(2.2) \quad k\ell + \ell k^\theta + \ell^\theta k + k^\theta \ell^\theta = \ell k + k\ell^\theta + k^\theta \ell + \ell^\theta k^\theta.$$

Suppose $k\ell \neq \ell k$. In characteristic different from 2, 3, 4, $k\ell$ is in the support of the left side, so it is in the support of the right. Thus $k\ell \in \{k\ell^\theta, k^\theta \ell, \ell^\theta k^\theta\}$ meaning that $k^\theta = k$ or $\ell^\theta = \ell$ or $k\ell = \ell^\theta k^\theta = (k\ell)^\theta$. If $\text{char } R = 3$, then, in addition, it is possible that $k\ell$ is not in the support of the left side. This occurs in exactly the three situations described by condition (b). \square

Lemma 2.2. *Let R be a coefficient ring of characteristic different from 2 and suppose θ is an involution of an RA loop L such that $(RL)^-$ is commutative. If $a \in L$ has the property that $a^\theta = sa$, then, for any $b \in L$, either $b^\theta = b$ or $ab = ba$. Thus, $ab = ba$ for every $b \notin L^+$.*

Proof. Suppose $b \in L$ and $ab \neq ba$. The elements $a - a^\theta = (1 - s)a$ and $b - b^\theta$ commute, so

$$(1 - s)(ab - ab^\theta) = (1 - s)(ba - b^\theta a).$$

If a and b^θ commute, this becomes $(1 - s)ab = (1 - s)ba = (1 - s)(sab) = -(1 - s)ab$, which cannot happen. Thus $b^\theta a = sab^\theta$ and

$$(1 - s)(ab - ab^\theta) = (1 - s)(sab - sab^\theta) = -(1 - s)(ab - ab^\theta),$$

so $(1 - s)(ab - ab^\theta) = 0$. This says $ab + sab^\theta = sab + ab^\theta$. Since $ab \neq sab$, we have $ab = ab^\theta$ and hence $b^\theta = b$. \square

A fact about RA loops that is crucial in the proof of the proposition and theorem that follow is that an RA loop L cannot contain a commutative subloop of index 2. This is so because if B is a commutative subloop and $x \in L$, then $\langle B, x \rangle$ is a group [GM96], [GJM96, Corollary IV.2.4].

Proposition 2.3. *In characteristic different from 2, commutativity of $(RL)^-$ implies that L^+ is an abelian group.*

Proof. Suppose there exist $x, y \in L^+$ with $xy \notin L^+$. Then $xy \neq (xy)^\theta = y^\theta x^\theta = yx$, so $yx = sxy$. Let $a = xy$. Then $a^\theta = sa$ and a is not central (x and y do not commute), so $C(a) = \{b \in L \mid ab = ba\}$ is proper and a subloop [GJM96, Corollary IV.1.15]. Let $b, c \in C(a)$. The LC property and $ab = ba$ imply that a is central or b is central or ab is central. Since a is not central, either b is central, or $ab = z$ for some $z \in Z(L)$ giving that $b = a^{-2}za$ is a central multiple of a . Similarly, c is central or a central multiple of a . In all cases, we have $bc = cb$, so $C(a)$ is commutative. Suppose $w \notin C(a)$ and $t \notin C(a)$. By Lemma 2.2, $w = w^\theta$ and $t = t^\theta$, and a third appeal to Lemma 2.2 gives either $wt \in C(a)$ or $(wt)^\theta = wt$. Suppose $wt \notin C(a)$. Then $wt = t^\theta w^\theta = tw$, so t is central or w is central or wt is central. None of these possibilities actually occurs, however, because none of w, t, wt commute with a . Thus $wt = c \in C(a)$ and $t = w^{-2}cw \in C(a)w$. It follows that $C(a)$ has index 2. As noted prior to the statement of the proposition, this cannot occur in an RA loop because $C(a)$ is commutative. Thus L^+ is closed under multiplication, hence commutative and hence a group. (In an RA loop, if two elements commute, they associate with every third element [Goo83], [GJM96, Theorem IV.1.8].) \square

Theorem 2.4. *Let R be a coefficient ring of characteristic different from 2 and 4 and let θ be an involution of an RA loop L . Then $(RL)^-$ is not commutative.*

Proof. We obtain the result by contradiction, assuming initially that $(RL)^-$ is indeed a commutative set.

Suppose first that $\text{char } R = 3$ and that there exist noncommuting elements $k, \ell \in L$ satisfying condition (b) of Proposition 2.1. The first set of equations, $kl = \ell k^\theta = \ell^\theta k$, imply $k^\theta = \ell^{-1}k\ell = sk$ and, similarly, that $\ell^\theta = sl$. The second set of equations, $kl = \ell k^\theta = k^\theta \ell^\theta$, imply $k^\theta = sk$ and $slk = kl = (\ell k)^\theta$, and the third set of equations, $kl = \ell^\theta k = k^\theta \ell^\theta$, imply $\ell^\theta = sl$ and $(\ell k)^\theta = slk$. Thus each alternative of (b) gives two noncommuting elements a and b with $a^\theta = sa$ and $b^\theta \neq b$, a situation in conflict with Lemma 2.2. We conclude that for every $k, \ell \in L$ with $kl \neq \ell k$, we have condition (a) of Proposition 2.1.

As in the proof of Proposition 2.3, we show that L contains a commutative subloop of index 2, which can never be the case for L an RA loop. The subloop A generated by $Z(L)$ and L^+ is commutative by Proposition 2.3. Suppose $k, \ell \notin A$. If $kl = \ell k$, then $kl \in Z(L) \subseteq A$ because L has LC and neither k nor ℓ is in $Z(L)$. If $kl \neq \ell k$, then $kl \in L^+ \subseteq A$ because $k^\theta \neq k$ and $\ell^\theta \neq \ell$, and we know that condition (a) of Proposition 2.1 is the case. So, whether or not k and ℓ commute, $kl = a \in A$, so $\ell = k(k^{-2}a) \in kA$. Thus A has index 2. \square

Characteristic 4. When considering the commutativity of elements that are skew relative to some involution of an RA loop L , and in view of Theorem 2.4, it is clear that characteristic 4 is special because, in this case, the canonical involution on L makes $(RL)^-$ commutative. To see why, notice that $L^+ = \{\ell \in L \mid \ell^* = \ell\} = \mathcal{Z}(L)$, so the elements of $\mathcal{R} = \{\alpha\ell \mid \ell \in L^+, 2\alpha = 0\}$ are central. Also, if $k, \ell \in L$ and either of these elements is central, then $k^* = k$ or $\ell^* = \ell$ and (2.1) holds whereas, if neither k nor ℓ is central, then $k^* = sk$ and $\ell^* = s\ell$, the left side of (2.1) is $(1-s)^2 k\ell$ and the right side is $(1-s)^2 \ell k$. The two sides are clearly equal if $k\ell = \ell k$; otherwise, $\ell k = sk\ell$, the right side is $-(1-s)^2 k\ell = (1-s)^2 k\ell$ since $2(1-s)^2 = 4 - 4s = 0$ and again the two sides are equal. In all situations, (2.1) holds, the set $\mathcal{S} = \{\ell - \ell^\theta \mid \ell \in L\}$ is commutative, so $\mathcal{R} \cup \mathcal{S}$ and hence $(RL)^-$ are commutative as well.

Other involutions force commutativity of $(RL)^-$ as well in characteristic 4. See Example 2.10.

We proceed now towards a theorem giving necessary and sufficient conditions for $(RL)^-$ to be commutative in characteristic 4 (Theorem 2.8). Thus our underlying assumption is that R is a coefficient ring of characteristic 4 and that θ is an involution of an RA loop L for which $(RL)^-$ is commutative.

Suppose that for any $k \in L$, it is the case that $k^\theta \neq sk$. The first two lines of the proof of Proposition 2.3 show that L^+ is closed under multiplication and hence an abelian group. Moreover, for any $k, \ell \in L$ with $k\ell \neq \ell k$, $k\ell$ is in the support of the left hand side of equation (2.2) because the possibilities $k\ell = \ell k^\theta$, $k\ell = \ell^\theta k$, $k\ell = k^\theta \ell^\theta$ imply, respectively, $k^\theta = sk$, $\ell^\theta = s\ell$, $(\ell k)^\theta = s(\ell k)$. So for any $k, \ell \in L$ with $k\ell \neq \ell k$, we have $k\ell \in \{k\ell^\theta, k^\theta \ell, \ell^\theta k^\theta\}$, so $\ell^\theta = \ell$ or $k^\theta = k$ or $(k\ell)^\theta = k\ell$, these possibilities comprising condition (a) of Proposition 2.1. The last paragraph of the proof of Theorem 2.4 carries over verbatim to the present situation giving a commutative subloop of L of index 2, which cannot be the case.

The next lemma is now clear.

Lemma 2.5. *The loop L contains an element k with $k^\theta = sk$.*

Now take $k \in L$ with $k^\theta = sk$ and suppose $k\ell \neq \ell k$ for some $\ell \in L$. Commutativity of $k - k^\theta = k - sk$ and $\ell - \ell^\theta$ implies

$$(2.3) \quad (1-s)(k\ell - k\ell^\theta) = (1-s)(\ell k - \ell^\theta k).$$

If $k\ell^\theta = \ell^\theta k$, we are left with $(1-s)k\ell = (1-s)\ell k = -(1-s)k\ell$ so $2(1-s) = 0$, a contradiction. Thus $k\ell^\theta \neq \ell^\theta k$. This little argument establishes the next lemma.

Lemma 2.6. *If $k \in L$ satisfies $k^\theta = sk$, then $k\ell = \ell k$ for $\ell \in L$ if and only if $k\ell^\theta = \ell^\theta k$.*

Lemma 2.7. *For any $\ell \in L$, we have $\ell^\theta \in \{\ell, s\ell\}$.*

Proof. By Lemma 2.5, the set $K = \{k \in L \mid k^\theta = sk\}$ is nonempty. We claim it is not central. Supposing otherwise, the first two lines of the proof

of Proposition 2.3 show that L^+ is an abelian group. Then the argument establishing Lemma 2.5 shows that condition (a) of Proposition 2.1 holds for any k, ℓ with $k\ell \neq \ell k$ and the last paragraph of the proof of Theorem 2.4 produces a commutative subloop of index two in L , an impossibility. Thus we may fix a noncentral element $k \in K$.

Suppose $\ell \in L$ and $k\ell \neq \ell k$. Applying θ to $k\ell = sk\ell$ gives $\ell^\theta k^\theta = sk^\theta \ell^\theta = k\ell^\theta$, so $\ell^\theta k = sk\ell^\theta$ and (2.3) becomes

$$(1-s)(k\ell - k\ell^\theta) = -(1-s)(k\ell - k\ell^\theta),$$

giving $2(1-s)(k\ell - k\ell^\theta) = 0$. This is

$$2k\ell + 2sk\ell^\theta = 2sk\ell + 2k\ell^\theta.$$

If $\ell \neq \ell^\theta$, then $k\ell$ is not in the support of the right side, so $k\ell = sk\ell^\theta$ implying $\ell^\theta = sk\ell$.

Suppose $\ell \in L$ and $k\ell = \ell k$. Fix an element a with $ak \neq ka$ (so that $a^\theta = a$ or $a^\theta = sa$ by what we have already shown). In an RA loop, two commuting elements associate with every third, so parentheses are not needed when we record the fact that $(a\ell)k \neq k(a\ell)$ [GJM96, Theorem IV.1.8]. Using again what we have already learned about elements that do not commute with k , we have $\ell^\theta a^\theta = (a\ell)^\theta \in \{a\ell, sa\ell\}$, so $\ell^\theta \in \{\ell, sk\}$ too. \square

We have reached our main theorem about the commutativity of skew-symmetric elements in characteristic 4.

Theorem 2.8. *Suppose θ is an involution of an RA loop L and R is a coefficient ring of characteristic 4. Then the set $(RL)^-$ of skew-symmetric elements of RL is commutative if and only if elements of RL of the form $a\ell$, $\ell \in L^+$ and $2a = 0$, commute and $k^\theta \in \{k, sk\}$ for each $k \in L$.*

Proof. Recall that $(RL)^-$ is spanned by $\mathcal{R} \cup \mathcal{S}$, where

$$\mathcal{R} = \{a\ell \mid \ell \in L^+, 2a = 0\} \quad \text{and} \quad \mathcal{S} = \{\ell - \ell^\theta \mid \ell \in L\},$$

so that $(RL)^-$ is commutative if and only if \mathcal{R} is commutative, \mathcal{S} is commutative, and each element of \mathcal{R} commutes with each element of \mathcal{S} . If $(RL)^-$ is commutative, then $k^\theta \in \{k, sk\}$ for any k by Lemma 2.7, so we have the theorem in one direction.

Conversely, assume that \mathcal{R} is commutative and that $k^\theta \in \{k, sk\}$ for any $k \in L$. First we claim that $k - k^\theta$ and $\ell - \ell^\theta$ commute for any $k, \ell \in L$. This is clear if $k^\theta = k$ or $\ell^\theta = \ell$, so assume the contrary. Thus $k^\theta = sk$, $\ell^\theta = sk$ and $(k - k^\theta)(\ell - \ell^\theta) = (1-s)^2 k\ell$ while

$$(\ell - \ell^\theta)(k - k^\theta) = (1-s)^2 \ell k = \begin{cases} (1-s)^2 k\ell & \text{if } k\ell = \ell k \\ -(1-s)^2 k\ell & \text{if } k\ell = sk\ell \end{cases}$$

Since $s^2 = 1$ and we work in characteristic 4, we have $(1-s)^2 = 2 - 2s = -(2 - 2s) = -(1-s)^2$. It follows that \mathcal{S} is commutative. By assumption, \mathcal{R} is commutative, so it remains to prove that each element of \mathcal{R} commutes

with each element of \mathcal{S} . So let $\alpha\ell \in \mathcal{R}$, $k - k^\theta = (1 - s)k \in \mathcal{S}$ and compare the elements

$$\alpha\ell(k - k^\theta) = \alpha(1 - s)\ell k \quad \text{and} \quad \alpha(k - k^\theta)\ell = \alpha(1 - s)k\ell.$$

These are certainly equal if $\ell k = \ell k$ whereas, if $\ell k = sk\ell$, the elements in question are $\alpha(1 - s)sk\ell = \alpha(s - 1)k\ell = -\alpha(1 - s)k\ell$ and $\alpha(1 - s)k\ell$. Again these are equal because $\alpha = -\alpha$. This completes the theorem. \square

Remarks 2.9. 1. With reference to Theorem 2.8, suppose $\ell_1, \ell_2 \in L^+$ do not commute. Then $\ell_1\ell_2 - \ell_2\ell_1 = (1 - s)\ell_1\ell_2$. If $\alpha\ell_1, \beta\ell_2 \in \mathcal{R}$, then $0 = \alpha\beta(\ell_1\ell_2 - \ell_2\ell_1) = \alpha\beta(1 - s)\ell_1\ell_2$ and it follows that $\alpha\beta = 0$. So the condition that \mathcal{R} be commutative is equivalent to the condition

- either L^+ is commutative or $\alpha, \beta \in R$ with $2\alpha = 2\beta = 0$ implies $\alpha\beta = 0$.

From this we see, for example, that \mathcal{R} is commutative when the coefficient ring $R = \mathbb{Z}_4$ is the ring of integers modulo 4 or, more generally, any ring that is free as a module over \mathbb{Z}_4 .

2. We have observed that, in characteristic 4, the standard involution forces the skew-symmetric elements to commute. It is interesting to note that the converse is nearly satisfied in the sense that when the skew-symmetric elements commute, for each pair of elements $k, \ell \in L$ which do not commute and for which $k^\theta = sk$ and $\ell^\theta = sl$, the map θ is the restriction of the canonical involution to the group $\langle k, \ell \rangle$ generated by k and ℓ .

To see why, assume that $(RL)^-$ is commutative. By Theorem 2.8, $k^\theta \in \{k, sk\}$ and so $(k^2)^\theta = k^2$ for any $k \in L$. Let $k, \ell \in L$ with $k\ell \neq \ell k$, $k^\theta = sk$ and $\ell^\theta = sl$, and let $G = \langle k, \ell \rangle$. Since squares in L are central and since L has just one nonidentity (central) commutator/associator, any $g \in G$ can be written $g = zk$ or $g = z\ell$ or $g = zk\ell$ with $z \in \mathcal{Z}(G)$. Also, easily, $\mathcal{Z}(G) = \langle s, k^2, \ell^2 \rangle$. Thus θ is the identity on $\mathcal{Z}(G)$ and, since $\ell^\theta = \ell^*$, $k^\theta = k^*$ and $(k\ell)^\theta = \ell^\theta k^\theta = (sl)(sk) = \ell k = sk\ell = (k\ell)^*$, we have $\theta(w) = sw$ for $w \notin \mathcal{Z}(G)$. Thus θ is canonical on G .

Example 2.10. We offer an example of an involution of an RA loop different from the canonical involution, with $(RL)^-$ commutative and L^+ not commutative. Let $x, y, u \in L$ be elements which do not associate and let $G = \langle \mathcal{Z}(L), x, y \rangle$ be the subloop generated by x, y , and the centre of L . It is known that G is a group of index 2 in L and so $L = G \cup Gu$ [CG86, §3], [GJM96, Corollary IV.2.3]. The reader may check that the map $\theta: L \rightarrow L$ defined by $g^\theta = g^*$ and $(gu)^\theta = gu$ for $g \in G$ is an involution with $k^\theta \in \{k, sk\}$ for all $k \in L$. With $R = \mathbb{Z}_4$, the set \mathcal{R} is commutative by the first of Remarks 2.9, so $(RL)^-$ is commutative by Theorem 2.8.

3. SYMMETRIC ELEMENTS

In this section, we consider involutions that force the **symmetric** elements to commute. As with our considerations of skew-symmetric elements,

characteristic is important. We have two theorems, according as the characteristic is or is not 2.

Theorem 3.1. *Let θ be an involution of an RA loop L . Assume R is a commutative, associative ring with 1 and characteristic different from 2. Then the following are equivalent assertions.*

- (1) $(RL)^+$ is closed under multiplication.
- (2) The elements of $(RL)^+$ commute.
- (3) $(RL)^+ = \mathcal{Z}(RL)$, the centre of RL .
- (4) $\theta = *$ is canonical.

Proof. This theorem and its proof are suggested by [JM06].

We noted the equivalence of (1) and (2) at the end of the introduction. That (3) implies (2) is trivial while (4) implies (3) is a known property of * [GP87, Corollary 2.2], [GJM96, Corollary III.4.3] so, to complete the proof, it suffices to show that (2) implies (4).

So assume that the elements of $(RL)^+$ commute. Then the elements of

$$\mathcal{S} = L^+ \cup \{\ell + \ell^\theta \mid \ell \in L, \ell^\theta \neq \ell\}$$

commute because \mathcal{S} spans $(RL)^+$. We claim that $L^+ \subseteq \mathcal{Z}(L)$. For this, take $\ell_0 \in L^+$ and $\ell \in L$. If $\ell \in L^+$ then $\ell_0\ell = \ell\ell_0$ because the elements of \mathcal{S} commute. If $\ell \notin L^+$, then

$$\ell_0(\ell + \ell^\theta) = (\ell + \ell^\theta)\ell_0$$

gives $\ell_0\ell \in \{\ell\ell_0, \ell^\theta\ell_0\}$. In the case $\ell_0\ell = \ell^\theta\ell_0$, we have $\ell_0\ell = \ell^\theta\ell_0 = \ell^\theta\ell_0^\theta = (\ell_0\ell)^\theta$ giving $\ell_0\ell \in L^+$. Since \mathcal{S} is a commutative set, it follows that ℓ_0 commutes with $\ell_0\ell$, so ℓ_0 commutes with ℓ . In any case, ℓ_0 and ℓ commute, so $L^+ \subseteq \mathcal{Z}(L)$ as claimed.

Now let $k, \ell \in L$ with $kl \neq lk$. Thus neither k nor ℓ is central, so $k \notin L^+$, $\ell \notin L^+$ and $k + k^\theta, \ell + \ell^\theta$ must commute. We obtain

$$(3.1) \quad kl + kl^\theta + k^\theta\ell + k^\theta\ell^\theta = lk + lk^\theta + \ell^\theta k + \ell^\theta k^\theta$$

and claim that kl is in the support of the left hand side. To see why, note that $kl \neq kl^\theta$ because ℓ is not central (hence not in L^+) and, similarly, $kl \neq k^\theta\ell$. So kl is in the support of the left side with a coefficient of 1 or 2 $\neq 0$, so kl is in the support of the right side too. Thus $kl \in \{lk^\theta, \ell^\theta k, \ell^\theta k^\theta\}$.

If $kl = \ell^\theta k^\theta$, then $kl = (kl)^\theta$, so $kl \in L^+ \subseteq \mathcal{Z}(L)$, giving $kl = lk$ which is not true. So either $kl = lk^\theta$ or $kl = \ell^\theta k$.

Assume that $kl = lk^\theta$. Applying to kl and ℓ what we have learned about noncommuting elements, we have $(kl)\ell = \ell(kl)^\theta$ or $(kl)\ell = \ell^\theta(kl)$. In the first case, $(kl)\ell = \ell(kl)^\theta = \ell\ell^\theta k^\theta$. (No parentheses are needed in the product $\ell\ell^\theta k^\theta$ because $\ell\ell^\theta \in L^+ \subseteq \mathcal{Z}(L)$ implies that ℓ and ℓ^θ commute and hence associate with every third element.) Moreover, $k\ell\ell = k^\theta\ell^\theta\ell$, so $kl = k^\theta\ell^\theta$. In the second case, $(kl)\ell = \ell^\theta(kl) = \ell^\theta\ell k^\theta$, so $\ell^2 k = k\ell^2 = \ell\ell^\theta k^\theta$ and $lk = \ell^\theta k$. Thus $k^\theta\ell^\theta = (lk)^\theta = kl$. In both cases, $kl = k^\theta\ell^\theta$. Thus $lk^\theta = k^\theta\ell^\theta = s\ell^\theta k^\theta$

giving $\ell^\theta = s\ell$. In passing, note too that the assumption of this paragraph gives $k^\theta = \ell^{-1}k\ell = sk$.

Similarly, if we assume $k\ell = \ell^\theta k$, we can again show that both $k^\theta = sk$ and $\ell^\theta = s\ell$. All this shows that if $k \notin \mathcal{Z}(L)$, then $k^\theta = sk$.

Now let ℓ be a central element of L and let k be any element which is not central. Then $k\ell \notin \mathcal{Z}(L)$, so $\ell^\theta k^\theta = (k\ell)^\theta = s(k\ell)$. Since $k^\theta = sk$, we have $\ell^\theta = \ell$. Thus $\theta = *$ is canonical. \square

Now we turn our attention to the case of characteristic 2 where the next theorem tells the story.

Theorem 3.2. *Suppose R is a commutative, associative coefficient ring with 1 and of characteristic 2 and L is an RA loop. Then there exists an involution θ of L which makes the set $(RL)^+$ of symmetric elements in RL commutative if and only if there exists a map $\varphi: L \rightarrow \mathcal{Z}(L)$ satisfying*

- i) if $\varphi(\ell) = 1$, then $\ell \in \mathcal{Z}(L)$,
- ii) $\varphi(\ell)^2 = 1$ for all $\ell \in L$,
- iii) $\varphi(k\ell) = \begin{cases} \varphi(k)\varphi(\ell) & \text{if } k\ell = \ell k \\ s\varphi(k)\varphi(\ell) & \text{if } k\ell \neq \ell k, \end{cases}$
- iv) if $k\ell \neq \ell k$, then $\varphi(k) = s$ or $\varphi(\ell) = s$ or $\varphi(k) = \varphi(\ell)$,
and $\ell^\theta = \varphi(\ell)\ell$ for all $\ell \in L$.

Proof. We remind the reader that any involution of an RA loop must fix s , the unique nonidentity commutator/associator. As in Theorem 3.1, $(RL)^+$ is commutative if and only if

$$S = L^+ \cup \{\ell + \ell^\theta \mid \ell \in L, \ell^\theta \neq \ell\}$$

is a commutative set.

Suppose there exists a map $L \rightarrow \mathcal{Z}(L)$ with the indicated properties. It is straightforward to check that the map $\theta: L \rightarrow L$ defined by $\ell^\theta = \varphi(\ell)\ell$ is an involution. If $\ell \in L^+$, then $\ell^\theta = \ell$ so $\varphi(\ell) = 1$ and ℓ is central so, to show that $(RL)^+$ is commutative, we have only to show that two elements of the form $k + k^\theta$, $k \notin L^+$, commute; that is, for $k, \ell \notin L^+$,

$$k\ell + k\ell^\theta + k^\theta\ell + k^\theta\ell^\theta = \ell k + \ell k^\theta + \ell^\theta k + \ell^\theta k^\theta.$$

This is

$$\begin{aligned} (3.2) \quad k\ell + \varphi(\ell)k\ell + \varphi(k)k\ell + \varphi(k)\varphi(\ell)k\ell \\ = \ell k + \varphi(k)\ell k + \varphi(\ell)\ell k + \varphi(k)\varphi(\ell)\ell k. \end{aligned}$$

This equation is obviously satisfied if k and ℓ commute. We use condition (iv) to show that it also holds if they don't. For example, if $k\ell \neq \ell k$ and $\varphi(k) = s$, using $\ell k = sk\ell$, equation (3.2) reads

$$k\ell + \varphi(\ell)k\ell + sk\ell + s\varphi(\ell)k\ell = sk\ell + k\ell + s\varphi(\ell)k\ell + \varphi(\ell)k\ell.$$

The situation is similar if $\varphi(\ell) = s$. Finally, if $kl \neq lk$ and $\varphi(k) = \varphi(\ell)$, then $\varphi(k)\varphi(\ell) = 1$ by condition (ii), and (3.2) reads

$$kl + \varphi(k)kl + \varphi(k)kl + kl = lk + \varphi(k)lk + \varphi(k)lk + lk.$$

In characteristic 2, each side is 0, so we have established sufficiency.

For necessity, we suppose that θ is an involution of L with the property that $(RL)^+$ and hence S are commutative sets. As in Theorem 3.1, $L^+ \subseteq \mathcal{Z}(L)$ because the argument used previously was characteristic independent. Thus $\ell\ell^\theta \in \mathcal{Z}(L)$ for any $\ell \in L$ and, since $\ell^{-1} = \ell^{-2}\ell$ with ℓ^{-2} central, $\ell^\theta = \varphi(\ell)\ell$ for some $\varphi(\ell) \in \mathcal{Z}(L)$. If $\varphi(\ell) = 1$, then $\ell \in L^+ \subseteq \mathcal{Z}(L)$ giving statement (i).

Towards the proof of statement (ii), note first that for any $k, \ell \in L$ that do not commute, we have

$$(3.1) \quad kl + k\ell^\theta + k^\theta\ell + k^\theta\ell^\theta = lk + \ell k^\theta + \ell^\theta k + \ell^\theta k^\theta,$$

just as in Theorem 3.1. This shows that if $\ell \in L$ is not central and $k \in L$ does not commute with ℓ , then

$$(3.3) \quad kl \in \{k^\theta\ell^\theta, \ell k^\theta, \ell^\theta k\}.$$

In what follows, we use implicitly that ℓ, ℓ^θ and k associate for any $k, \ell \in L$ (because centrality of $\ell\ell^\theta$ implies that ℓ and ℓ^θ commute).

Case 1. Assume first that $kl = k^\theta\ell^\theta$. Then $\ell^\theta k^\theta = lk$ and (3.1) becomes

$$(3.4) \quad k\ell^\theta + k^\theta\ell = lk^\theta + \ell^\theta k.$$

Now k and ℓ^θ cannot commute, for otherwise, $k\ell^\theta\ell = \ell^\theta k\ell$, so $\ell^\theta\ell k = \ell^\theta k\ell$ implying $kl = lk$, which is not true. Thus (3.4) yields either

$$k\ell^\theta = k^\theta\ell \quad \text{and} \quad lk^\theta = \ell^\theta k$$

or

$$k\ell^\theta = \ell k^\theta = (k\ell^\theta)^\theta.$$

The latter implies $k\ell^\theta \in L^+ \subseteq \mathcal{Z}(L)$ giving that k and ℓ^θ commute, which is not true. So we must have $k\ell^\theta = k^\theta\ell$, which says $k^\theta = k\ell^\theta\ell^{-1}$, $kl = k^\theta\ell^\theta = (k\ell^\theta\ell^{-1})\ell^\theta$, $\ell = \ell^\theta\ell^{-1}\ell^\theta = (\ell^\theta)^2\ell^{-1}$ and $(\ell^2)^\theta = (\ell^\theta)^2 = \ell^2$; that is, $\ell^2 \in L^+$.

Case 2. Assume that $kl = lk^\theta$. Then $k^\theta = \ell^{-1}kl = sk$, implying $(k^2)^\theta = (k^\theta)^2 = s^2k^2 = k^2$, that is, $k^2 \in L^+$. Now k and ℓ^θ do not commute; otherwise, $(kl)^\theta = (\ell^\theta k)^\theta$, hence $kl = lk^\theta = k^\theta\ell$, and $k \in L^+$ is central. Now apply (3.3) to the noncommuting elements kl and ℓ , obtaining

$$(kl)\ell \in \{(kl)^\theta\ell^\theta, \ell(kl)^\theta, \ell^\theta(kl)\}.$$

There are three possibilities.

If $(kl)\ell = (kl)^\theta\ell^\theta$, then $kl^2 = \ell^\theta k^\theta\ell^\theta = sk\ell^\theta k\ell^\theta = k(\ell^\theta)^2 = k(\ell^2)^\theta$, so $\ell^2 \in L^+$.

If $(kl)\ell = \ell(kl)^\theta$, then $kl^2 = \ell\ell^\theta k^\theta = k^\theta\ell\ell^\theta = sk\ell\ell^\theta$ so $\ell^\theta = sk$ and $(\ell^2)^\theta = (\ell^\theta)^2 = s^2\ell^2 = \ell^2$. Again $\ell^2 \in L^+$.

If $(kl)\ell = \ell^\theta kl$, then $kl = \ell^\theta k$, so $\ell^\theta = klk^{-1} = sk$ giving, again, $\ell^2 \in L^+$.

Case 3. Suppose $k\ell = \ell^\theta k$. Then $slk = k\ell = \ell^\theta k$, so $\ell^\theta = sl$, giving $\ell^2 \in L^+$.

In all three cases, we have $\ell^2 \in L^+$, showing that squares of noncentral elements are fixed by θ . On the other hand, if $x \in \mathcal{Z}(L)$ and $\ell \notin \mathcal{Z}(L)$ is arbitrary, then $\ell x \notin \mathcal{Z}(L)$, so $[(\ell x)^2]^\theta = (\ell x)^2$, that is, $(\ell^2 x^2)^\theta = \ell^2 x^2 = (\ell^2)^\theta (x^2)^\theta$. Since $(\ell^2)^\theta = \ell^2$, we have $(x^2)^\theta = x^2$ too. Thus any square is fixed by θ .

Now remember that $\varphi(\ell)$ was defined by $\ell^\theta = \varphi(\ell)\ell$ and $\varphi(\ell)$ is central. Thus $\ell^2 \in L^+$ implies $\ell^2 = (\ell^\theta)^2 = \varphi(\ell)^2 \ell^2$, so $\varphi(\ell)^2 = 1$, which is statement (ii).

Furthermore, if $k\ell = \ell k$, then $\varphi(k\ell)k\ell = (k\ell)^\theta = k^\theta \ell^\theta = \varphi(k)\varphi(\ell)k\ell$, so $\varphi(k\ell) = \varphi(k)\varphi(\ell)$. On the other hand, if $k\ell \neq \ell k$, then $k\ell = slk$ gives $\varphi(k\ell)(k\ell) = (k\ell)^\theta = (slk)^\theta = sk^\theta \ell^\theta = s\varphi(k)\varphi(\ell)k\ell$, hence $\varphi(k\ell) = s\varphi(k)\varphi(\ell)$. So we have statement (iii).

Finally, if k and ℓ do not commute, we have (3.3) and three possibilities. If $k\ell = k^\theta \ell^\theta$, then $\varphi(k)\varphi(\ell) = 1$, so $\varphi(k) = \varphi(\ell)$ because of (ii). If $k\ell = \ell k^\theta$, then $\varphi(k) = s$, while, if $k\ell = \ell^\theta k = \varphi(\ell)sk\ell$, we have $\varphi(\ell) = s$. Thus statement (iv) holds and the proof is complete. \square

Examples 3.3. As noted in Section 2, an RA loop L is generated by its centre and three elements x, y, u which do not associate. Since squares are central, each element of L can be written in the form zw , where $z \in \mathcal{Z}(L)$ and $w \in W = \{x, y, u, xy, xu, yu, (xy)u\}$. Moreover, since $w_1^{-1}w_2 \notin \mathcal{Z}(L)$ for distinct $w_1, w_2 \in W$, the elements z and w in the representation zw are unique. Suppose $\varphi: L \rightarrow \mathcal{Z}(L)$ satisfies properties i-iv of Theorem 3.2 and $\mathcal{Z}(L)$ is cyclic of order a power of 2. (For example, L could be an indecomposable loop in classes \mathcal{L}_1 or \mathcal{L}_2 —see [GJM96, Chapter V].) Then s is the unique element of order 2 in the centre so, if $\ell \notin \mathcal{Z}(L)$, $\varphi(\ell) = s$ because $\varphi(\ell)$ has order 2. It follows readily that $\varphi(a) = 1$ if $a \in \mathcal{Z}(L)$, so $\theta = *$ is the canonical involution on L .

We claim that in any other situation, that is, where $\mathcal{Z}(L)$ contains an element $t \neq s$ of order 2, there are other maps φ satisfying the conditions of Theorem 3.2 and hence involutions θ other than the canonical one that force the symmetric elements to commute. Specifically, let $\varphi(a) = 1$ for $a \in \mathcal{Z}(L)$, choose $\varphi(x)$, $\varphi(y)$ and $\varphi(u)$ arbitrarily in $\{s, t\}$ (but not all s), extend φ to W by the rule $\varphi(w_1w_2) = s\varphi(w_1)\varphi(w_2)$, and then to L via the rule $\varphi(zw) = \varphi(w)$, for $z \in \mathcal{Z}(L)$, $w \in W$. One such φ is defined by the table

w	x	y	u	xy	xu	yu	$(xy)u$
$\varphi(w)$	s	t	s	t	s	t	t

It is straightforward to check that $\varphi(w_1w_2) = s\varphi(w_1)\varphi(w_2)$ for any $w_1, w_2 \in W$, $w_1 \neq w_2$. For example, if $w_1 = xy$ and $w_2 = yu$, using the fact that xy , y and u do not associate (otherwise, they would generate a group containing x , y and u) we have $w_1w_2 = (xy)(yu) = s(xy \cdot y)u = s(xy^2)u = (sy^2)xu$ with

sy^2 central. So $\varphi(w_1w_2) = \varphi(xu) = s$. On the other hand, $\varphi(w_1)\varphi(w_2) = ts$, so $\varphi(w_1w_2) = s\varphi(w_1)\varphi(w_2)$. Now z_1w_1 and z_2w_2 commute if and only if $w_1 = 1$ or $w_2 = 1$ or $w_1 = w_2 \in W$, so φ indeed has the properties of Theorem 3.2 and the corresponding map θ is an involution of L , different from $*$, with the property that the symmetric elements of RL commute.

Theorem 3.4. *Let L be an RA loop and let R be an associative, commutative ring of coefficients with characteristic 2. The canonical involution $\ell \mapsto \ell^*$ has the property that the symmetric elements of RL commute. There exist other involutions with this property if and only if $\mathcal{Z}(L)$ contains more than one element of order 2.*

Proof. We have just constructed a noncanonical involution with $(RL)^+$ commutative assuming $\mathcal{Z}(L)$ contains an element $t \neq s$ of order 2. Conversely, if s is the only element of order 2 in $\mathcal{Z}(L)$, then statement (ii) of Theorem 3.2 says $\varphi(\ell) \in \{1, s\}$ for any $\ell \in L$ and then statements (i) and (iv) say that $\varphi(\ell) = s$ for any $\ell \notin \mathcal{Z}(L)$. This implies that if $\ell \notin \mathcal{Z}(L)$ then $\varphi(\ell) = 1$: take $k \notin \mathcal{Z}(L)$; then $kl \notin \mathcal{Z}(L)$, so $s = \varphi(kl) = \varphi(k)\varphi(l) = s\varphi(l)$. So the involution θ defined by $\ell^\theta = \varphi(\ell)\ell$ is canonical. \square

Acknowledgement. This paper was read carefully by a referee who was clearly interested in our work. We are grateful for the help and have tried to follow all suggestions in the report.

REFERENCES

- [CG86] Orin Chein and Edgar G. Goodaire, *Loops whose loop rings are alternative*, Comm. Algebra **14** (1986), no. 2, 293–310.
- [CM] Osnel Broche Cristo and César Polcino Milies, *Commutativity of skew symmetric elements in group rings*, to appear in the Proceedings of the Edinburgh Mathematical Society, after 2005.
- [CM06] Osnel Broche Cristo and Manuel Ruiz Marín, *Lie identities in symmetric elements in group rings: A survey*, Groups, rings and group rings (Boca Raton), Lecture Notes in Pure and Applied Mathematics, vol. 248, Chapman & Hall/CRC, 2006, pp. 43–55.
- [Cri] O. Broche Cristo, *Commutativity of symmetric elements in group rings*, to appear in the Journal of Group Theory, after 2005.
- [GJM96] E. G. Goodaire, E. Jespers, and C. Polcino Milies, *Alternative loop rings*, North-Holland Math. Studies, vol. 184, Elsevier, Amsterdam, 1996.
- [GM96] Edgar G. Goodaire and César Polcino Milies, *Finite conjugacy in alternative loop algebras*, Comm. Algebra **24** (1996), no. 3, 881–889.
- [GM03] A. Giambruno and C. Polcino Milies, *Unitary units and skew elements in group algebras*, Manuscripta Math. **111** (2003), 195–209.
- [Goo83] Edgar G. Goodaire, *Alternative loop rings*, Publ. Math. Debrecen **30** (1983), 31–38.
- [GP87] Edgar G. Goodaire and M. M. Parmenter, *Semi-simplicity of alternative loop rings*, Acta Math. Hungar. **50** (1987), no. 3–4, 241–247.
- [GSV98] A. Giambruno, S. K. Sehgal, and A. Valenti, *Symmetric units and group identities*, Manuscripta Math. **96** (1998), 443–461.
- [JM05] E. Jespers and Manuel Ruiz Marín, *Antisymmetric elements in group rings*, J. Algebra Appl. **4** (2005), no. 4, 341–353.

- [JM06] Eric Jespers and Manuel Ruiz Marín, *On symmetric elements and symmetric units in group rings*, Comm. Algebra **34** (2006), 727–736.
- [Lee99] G. T. Lee, *Group rings whose symmetric elements are Lie nilpotent*, Proc. Amer. Math. Soc. **127** (1999), no. 11, 3153–3159.
- [Lee03] _____, *Nilpotent symmetric units in group rings*, Comm. Algebra **31** (2003), no. 2, 581–608.
- [Sag61] Arthur A. Sagle, *Malcev algebras*, Trans. Amer. Math. Soc. **101** (1961), 426–458.

MEMORIAL UNIVERSITY OF NEWFOUNDLAND, ST. JOHN'S, NEWFOUNDLAND, CANADA
A1C 5S7

E-mail address: edgar@math.mun.ca

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA, UNIVERSIDADE DE SÃO PAULO, CAIXA
POSTAL 66.281, CEP 05315-970, SÃO PAULO SP, BRASIL

E-mail address: polcino@ime.usp.br

TRABALHOS DO DEPARTAMENTO DE MATEMÁTICA
TÍTULOS PUBLICADOS

2006-01 MIRANDA, J. C. S. Adaptive maximum probability estimation of multidimensional Poisson processes intensity function. 9p.

2006-02 MIRANDA, J. C. S. Some inequalities and asymptotics for a weighted alternate binomial sum. 7p.

2006-03 BELITSKII, G., BERSHADSKY, M., SERGEICHUK, V. and ZHARKO, N. Classification of $2 \times 2 \times 2$ matrices; criterion of positivity. 16p.

2006-04 FUTORNY, V. and SERGEICHUK, V. Classification of sesquilinear forms whit the first argument on a subspace or a factor space. 25p.

2006-05 DOKUCHAEV, M. A., KIRICHENKO, V. V., NOVIKOV, B.V. and PETRAVCHUK, A. P. On incidence modulo ideal rings. 41p.

2006-06 DOKUCHAEV, M., DEL RÍO, Á. and SIMÓN, J. J. Globalizations of partial actions on non unital rings. 10p.

2006-07 DOKUCHAEV, M., FERRERO, M. and PAQUES, A. Partial actions and Galois theory. 20p.

2006-08 KIRICHENKO, V. V. On semiperfect rings of injective dimension one. 25p.

2006-09 SHESTAKOV, I. and ZHUKAVETS. N. The free alternative superalgebra on one odd generator. 30p.

2006-10 MIRANDA, J. C. S. Probability density functions of the wavelet coefficients of a wavelet multidimensional poisson intensity estimator. 7p.

2006-11 ALEXANDRINO, M. M and GORODSKI, C. Singular Riemannian foliations with sections, transnormal maps and basic forms. 17p.

2006-12 FERNANDEZ, J. C. G. On right-nilalgebras of index 4. 21p.

2006-13 FUTORNY, V. and OVSIENKO, S. Galois Algebras I: Structure Theory. 52p.

2006-14 FUTORNY, V. and OVSIENKO, S. Galois Algebras II: Representation Theory. 36p.

2006-15 DRUCK, I. O. Frações: uma análise de dificuldades conceituais. 16p.

2006-16 FUTORNY, V, HORN, R. A. and SERGEICHUK V. V. Tridiagonal canonical matrices of bilinear or sesquilinear forms and of pairs of symmetric, skew-symmetric, or Hermitian forms. 21p.

2006-17 MIRANDA, J. C. S. Infinite horizon non ruin probability for a non homogeneous risk process with time-varying premium and interest rates. 4p.

2007-01 GREBENEV, V. N., GRISHKOV, A. N. and OBERLACK, M. Lie algebra methods in Statistical Theory of Turbulence. 29p.

2007-02 FUTORNY, V. and SERGEICHUK, V. Change of the congruence canonical form of 2×2 and 3×3 matrices under perturbations. 18p.

2007-03 KASHUBA, I. and PATERA, J. Discrete and continuous exponential transforms of simple Lie groups of rank two. 24p.

2007-04 FUTORNY, V. and SERGEICHUK, V. Miniversal deformations of matrices of bilinear forms. 34p.

2007-05 GONÇALVES, D. L., HAYAT, C., MELLO, M.H.P.L. and ZIESCHANG, H. Spin-structures of bundles on surfaces and the fundamental group. 22p.

2007-06 GOODAIRE, E. G. and MILIES, C.P. Polynomial and group identities in alternative loop algebras. 7p.

2007-07 GOODAIRE, E. G. and MILIES, C.P. Group identities on symmetric units in alternative loop algebras. 8p.

2007-08 ALEXANDRINO, M. M. Singular holonomy of singular Riemannian foliations with sections. 16p.

2007-09 ASPERTI, A. C. and VALÉRIO, B. C. Ruled Weingarten surfaces in a 3-dimensional space form. 6p.

2007-10 ASPERTI, A. C. and VILHENA, J. A. M. Spacelike surfaces in \mathbb{IL}^4 with prescribed Gauss map and nonzero mean curvature. 22p.

2007-11 GOODAIRE, E. G. and MILIES, C. P. Involutions of RA loops. 13p.

Nota: Os títulos publicados nos Relatórios Técnicos dos anos de 1980 a 2005 estão à disposição no Departamento de Matemática do IME-USP.
 Cidade Universitária “Armando de Salles Oliveira”
 Rua do Matão, 1010 - Cidade Universitária
 Caixa Postal 66281 - CEP 05315-970