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SINGULAR HOLONOMY OF SINGULAR
RIEMANNIAN FOLIATIONS WITH SECTIONS

M. M. Alexandrino

Abstract

In this paper we review some author’s results about singular holonomy
of singular riemannian foliation with sections (s.r.f.s for short) and also
some results of a joint work with T'6ben and a joint work with Gorodski.
We stress here that the condition that the leaves are compact, used in
some of these results, can be replaced by the condition that the leaves are
closed embedded. We also briefly recall some of Tében’s results about
blow-up of s.r.f.s. Then we use this technique to get conditions under
which a holonomy map can be extended to a global isometry.

1 Introduction

A singular riemannian foliation F on a complete riemannian manifold M is said
to admit sections if each regular point of M is contained in a complete totally
geodesic immersed submanifold 3 that meets every leaf of F orthogonally and
whose dimension is the codimension of the regular leaves of F (see Definition
2.1).

Typical examples of a singular riemannian foliation with section (s.r.f.s for
short) are the partition formed by the orbits of a polar action, partition formed
by parallel submanifolds of an isoparametric submanifold and partition formed
by parallel submanifolds of an equifocal submanifold (see definitions in Section
2). Others examples can be constructed by suspension of homomorphism,

suitable changes of metric and surgery.
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The property that s.r.f.s are equifocal (see Definition 2.8 and Theorem 2.9)
allow us to extend the (regular) normal holonomy map of regular leaves to the
so called singular holonomy map which is also defined on singular points (see

Proposition 2.10).

Singular holonomy and the Slice Theorem (see Theorem 2.3) give us a com-

plete description of a s.r.f.s on a neighborhood of a singular point.

On the other hand, singular holonomy turned out to be a useful tool to
study global properties of s.r.f.s (e.g. see Corollary 3.2, Theorem 4.14 and
Theorem 4.15).

In this paper we review some author’s results about singular holonomy and
also some results of a joint work with T6ben and a joint work with Gorodski.
We stress here that the condition that the leaves are compact, used in some
of these results, can be replaced by the condition that the leaves are closed
embedded (see Theorem 4.4, Theorem 4.14 and Theorem 4.15 ). From this
new remark we also infer a new result (see Corollary 4.13). Finally, we briefly
recall some of Tében’s results about blow-up of s.r.f.s (see Theorem 5.1 and
Proposition 5.5). Then we use this technique to get conditions under which a

holonomy map can be extended to a global isometry (see Proposition 5.8).

This paper is organized as follows. In Section 2, we review some facts about
s.r.f.s and fix the notation. In Section 3 we recall an author’s result conerning
to Molino’s conjecture and orbits of Weyl pseudogroups (see Theorem 3.1). In
Section 4 we discuss the relation between the holonomy of a s.r.s.f and the
fundamental group of the space. In particular, we prove Theorem 4.4 and
reformulate previous results. Finally, in Section 5 we review Toben’s results

about blow-up of s.r.f.s and prove Proposition 5.8.
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2 Facts about s.r.f.s.

In this section, we recall some results about s.r.f.s. that will be used in this
text. Details can be found in [2]. Throughout this section, we assume that
F is a singular riemannian foliation with sections on a complete riemannian

manifold M; we start by recalling its definition.

Definition 2.1. A partition F of a complete riemannian manifold M by con-
nected immersed submanifolds (the leaves) is called a singular riemannian fo-
liation with sections of M (s.r.f.s., for short) if it satisfies the following condi-

tions:

a. F is singular, i.e. the module Xz of smooth vector fields on M that are
tangent at each point to the corresponding leaf acts transitively on each
leaf. In other words, for each leaf L and each v € T'L with footpoint p,

there exists X € Xz with X (p) = v.

b. The partition is transnormal, i.e. every geodesic that is perpendicular to

a leaf at one point remains perpendicular to every leaf it meets.

c. For each regular point p, the set ¥ := exp,, (v, L) is a complete immersed
submanifold that meets all the leaves and meets them always orthogo-

nally. The set ¥ is called a section.

Remark 2.2. The concept of s.r.f.s was introduced in [2] and continued to
be studied by me in [1, 3, 4], by Tében in [17, 18], by Tében and I in [5], by
Lytchak and Thorbergsson in [12] and recently by Gorodski and I in [6]. In [9]
Boualem dealt with a singular riemannian foliation F on a complete manifold

M such that the distribution of normal spaces of the regular leaves is integrable.
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It was proved in [4] that such an F must be a s.r.f.s. and, in addition, the set

of regular points is open and dense in each section.

A typical example of s.r.f.s is the partition formed by the orbits of a polar
action. An isometric action of a compact Lie group G on a complete riemannian
manifold M is called polar if there exists a complete immersed submanifold X
of M that meets all G-orbits orthogonally and whose dimension is equal to the
codimension of a regular orbit.

Another typical example of a s.r.f.s is the partition formed by parallel sub-
manifolds of an isoparametric submanifold N of a euclidean space. A subman-
ifold N of a euclidean space is called isoparametric if its normal bundle is flat
and the principal curvatures along any parallel normal vector field are constant.
Theorem 2.3 below shows how s.r.f.s. and isoparametric foliations are related to
each other. In order to state this theorem, we need the concepts of slice and lo-
cal section. Let ¢ € M, and let Tub(P,) be a tubular neighborhood of a plaque
P, that contains ¢. Then the connected component of exp, (vP,) NTub(F,) that
contains ¢ is called a slice at ¢ and is usually denoted by S,. A local section o
(centered at ¢) of a section ¥ is a connected component Tub(FP,) N X (which

contains q).

Theorem 2.3 ([2]). Let F be a s.r.f.s. on a complete riemannian manifold

M. Let q be a singular point of M and let Sy a slice at g. Then
a. Denote A(q) the set of local sections o centered at ¢ Then Sy = Ugep(q) 0-
b. S, C Sy forallx € S,.

c. F|Sq is a s.r.f.s. on Sq with the induced metric from M.
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d. F|Sy is diffeomorphic to an isoparametric foliation on an open subset of

R", where n is the dimension of Sy.

From (d), it is not difficult to derive the following corollary.

Corollary 2.4. Let o be a local section. Then the set of singular points of
F that are contained in o is a finite union of totally geodesic hypersurfaces.
These hypersurfaces are mapped by a diffeomorphism to the focal hyperplanes
contained in a section of an isoparametric foliation on an open subset of a

euclidean space.

We will call the set of singular points of F contained in o the singular
stratification of the local section o. Let M, denote the set of regular points
in M. A Weyl Chamber of a local section ¢ is the closure in ¢ of a connected
component of M,. No. One can prove that a Weyl Chamber of a local section
is a convex set.

Theorem 2.3 also implies that a s.r.f.s can be locally trivialized by a transnor-

mal map, whose definition we recall now.

Definition 2.5 (Transnormal Map). Let M"Y be a complete riemannian

manifold. A smooth map F = (f1--- f,) : M"T% — R is called transnormal if
(0) F has a regular value,

(1) for each regular value ¢ there exist a neighborhood V of F~1(c) in M and

smooth functions b; ; on F(V') such that

(grad f;(x),grad f;(x)) =b;; o F(x), for every x € V,

(2) there is a sufficiently small neighborhood of each regular level set such
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that [grad f;,grad f;] is a linear combination of grad fi,---,grad fg,

with coefficients being functions of F, for all 4 and j.

This definition is equivalent to saying that F' has a regular value and for
each regular value c there exists a neighborhood V' of F~!(c) in M such that
F |y— F(V) is an integrable Riemannian submersion, where the Riemannian

metric g; ; of F(V) is the inverse matrix of [b; ;].

Remark 2.6. Recall that each isoparametric submanifold in an euclidian space
can always be described as a regular level set of an isoparametric polynomial
map (see Terng[15] or Terng and Palais [14]). On the other hand, the regu-
lar leaves of an analytic transnormal map on a complete analytic riemannian

manifold are equifocal manifolds and leaves of a s.r.f.s (see [1]).

Proposition 2.7. The plaques of a s.r.f.s. are always level sets of a transnor-

mal map.

In [16], Terng and Thorbergsson introduced the concept of equifocal sub-
manifolds with flat sections in symmetric spaces in order to generalize the
definition of isoparametric submanifolds in euclidean space. Next we review
the slightly more general definition of equifocal submanifolds in riemannian

manifolds.

Definition 2.8. A connected immersed submanifold L of a complete rieman-

nian manifold M is called equifocal if it satisfies the following conditions:

a. The normal bundle v(L) is flat.
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b. L has sections, i.e. for each p € L, the set ¥ := expp(vpr) is a complete

immersed totally geodesic submanifold.

c. For each parallel normal field £ on a neighborhood U C L, the derivative

of the map ne : U — M defined by n¢ () := exp,(§) has constant rank.

The next theorem relates s.r.f.s. and equifocal submanifolds.

Theorem 2.9 ([2]). Let L be a regular leaf of a s.r.f.s. F of a complete rie-

mannian manifold M.

a. Then L is equifocal. In particular, the union of the reqular leaves that
have trivial normal holonomy is an open and dense set in M provided

that all the leaves are compact.

b. Let 8 be a smooth curve of L and & a parallel normal field to L along (.

Then the curve ne o 3 belongs to a leaf of F.

c. Suppose that L has trivial holonomy and let = denote the set of all parallel
normal fields on L. Then F = {n¢(L)}ec=.

The above theorem allows us to define the singular holonomy map, which

will be very useful to study F.

Proposition 2.10 (Singular holonomy map). Let F be a s.r.f.s. on a complete
riemannian manifold M and qo and g1 two points contained in a leaf Ly. Let
B :10,1] — L, be a smooth curve contained in a regular leaf L,, such that
B(i) € Sy, where Sy, is the slice at q; for i = 0,1. Let o; be a local section
contained in Sq, which contains B(i) and g; for i =0,1. Finally let 5] denote

the homotopy class of 3. Then there exists an isometry og : Uy — Uy, where
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the source Uy and target Uy are contained in oy and o1 respectively, which has

the following properties:
1) qo0 € Uo
2) ¢ig)(x) € Ly for each x € Uy.
3) dp€(0) = £(1), where £(s) is a parallel normal field along 3(s).

An isometry as in the above proposition is called the singular holonomy
map along (.

We remark that, in the definition of the singular holonomy map, singular
points can be contained in the domain Uy. If the domain Uy and the range U
are sufficiently small, then the singular holonomy map coincides with the usual
holonomy map along 3.

Theorem 2.3 establishes a relation between s.r.f.s. and isoparametric foli-
ations. Similarly as in the usual theory of isoparametric submanifolds, it is
natural to ask if we can define a (generalized) Weyl group action on o. The

following definitions and results deal with this question.

Definition 2.11 (Weyl pseudogroup W). The pseudosubgroup generated by
all singular holonomy maps ¢g such that $(0) and 3(1) belong to the same
local section o is called the generalized Weyl pseudogroup of o. Let W, denote
this pseudogroup. In a similar way, we define Wy for a section ¥. Given a
slice S, we define W as the set of all singular holonomy maps ¢z such that 3

is contained in the slice S.

Remark 2.12. Regarding the definition of pseudogroups and orbifolds, see
Salem [13, Appendix DJ.
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Proposition 2.13. Let o be a local section. Then the reflections in the hyper-
surfaces of the singular stratification of the local section o leave F|o invariant.

Moreover these reflections are elements of W.,.

By using the technique of suspension, one can construct an example of a
s.r.f.s. such that W, is larger than the pseudogroup generated by the reflections
in the hypersurfaces of the singular stratification of . On the other hand, a
sufficient condition to ensure that both pseudogroups coincide is that the leaves
of F have trivial normal holonomy and be compact. So it is natural to ask under
which conditions we can garantee that the normal holonomy of regular leaves

are trivial. This question will be answered in Section 4.

3 Molino’s conjecture and singular holonomy

In this section we review an author’s result concerning to Molino’s conjecture.

In [13] Molino proved that, if M is compact, the closure of the leaves of
a (regular) riemannian foliation form a partition of M which is a singular
riemannian foliation. He also proved that the leaf closure are orbits of a locally
constant sheaf of germs of (transversal) Killing fields. If the foliation is a
singular riemannian foliation and M is compact, then Molino was able to prove
(see [13] Theorem 6.2 page 214) that the closure of the leaves should be a
transnormal system, but as he remarked, it remains to prove that the closure
of the leaves is in fact a singular foliation. In [4] we proved the Molino’s
conjecture, when F is a s.r.f.s. In addition we studied the singular holonomy
of F and in particular the tranverse orbits of the closure of a leaf. In this work

was not assumed that M should be compact.
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Theorem 3.1 ([4]). Let F be a s.r.f.s. on a complete riemannian manifold

M. Then

a)

b)

d)

the closure of the leaves of F form a partition of M which is a singular

riemannian foliation,i.e, {L}rcx is a singular riemannian foliation.

Each point q is contained in an homogenous submanifold O, (possible
with dimension 0). If we fiz a local section o that contains q, then Oy is a

connected component of an orbit of the closure of the Weyl pseudogroup

of o.

If q is a point of the submanifold L, then a neighborhood of q in L is the
product of the homogenous submanifold O, with plaques with the same

dimension of the plaque P,.

Let q be a singular point and T the intersection of the slice S, with the
singular stratum that contains q. Then the normal connection of T in S,

is flat.

Let g be a singular point and T' defined as in Item d). Let v be a parallel

normal vector field along T, x € T and y = exp,(v). Then Oy = 1,(Oy).

One can construct examples that illustrate the above theorem by means of

suspension of homomorphisms (see Example 3.4). In fact, the suspension tech-

nique is very useful to construct examples of s.r.f.s. with nonembedded leaves,

with exceptional leaves and also inhomogeneous examples. Other techniques

to construct examples of s.r.f.s on nonsymmetric spaces are suitable changes of

metric and surgery (see [5] for details).
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Corollary 3.2. Let F be a s.r.f.s. on a complete manifold M and q a singu-
lar point. Let T' denote the intersection of the slice Sq with the stratum that

contains q. Suppose that T = {q}. Then all the leaves of F are closed.

Remark 3.3. According to the slice theorem (see Theorem 2.3) the restriction
of the foliation F to the slice S, is diffeomorphic to an isoparametric foliation
F on an open set of a euclidean space. Therefore the condition that T is a
point is equivalent to saying that a regular leaf of F is a full isoparametric

submanifold.

Example 3.4. In what follows we construct a s.r.f.s such that the intersection
of a local section with the closure of a regular leaf is an orbit of an action of a
subgroup of isometries of the local section. This isometric action is not a polar
action. This implies that there exists a s.r.f.s F such that the partition formed
by the closure of the leaves of F is a singular riemannian foliation without

sections.

First, define an homomorphism p as

p: (St q) — Iso(R?xCxC)
n — ((z,21,20) = (z,e0mF) . 21, e(mR) L 2)))

where k is an irrational number. Set M := R x (R? x C x C) and define an

action of 71 (S, bo) on M by

where [a] - b denotes the deck transformation associated to [a] applied to a

point beR. Let M := M/ ~ be the orbit space, II : M — M the canonical
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projection and P:R — S!the covering map. Finally define a map P: M — S!

as follows

P: M — St
(b,t) — P(b)

It is possible to prove that M is a total space of a fiber bundle, which
has P as the projection over the basis S'. Besides the fiber of this bundle is
R? x C x C and the structural group is given by the image of p.

Now let Fy be the singular foliation of codimension 5 on R2 x C x C whose
leaves are the product of points in C x C with circles in R? centered at (0,0).
It is easy to see that the foliation Fois a singular riemannian foliation with
sections.

Finally set F := II(R x Fp). It turns out that F is s.r.f.s. such that the
intersection of the section II(0 x R x C x C) with the closure of a regular leaf
is an orbit of an isometric action on the section. This isometric action is not a

polar action, since the isometric action

S!xCxC — CxC
(57Z17Z2) - (8'2175'22)

is not a polar action.

4 holonomy and fundamental group of M

In this section we review a result of a joint work with T6ben [5], where we
discuss the relation between holonomy of a s.r.f.s F on M and the fundamental
group of M. We stress here that the condition that the leaves are compact,
which was used in [5], can be replaced by the condition that the leaves are

embedded and closed (see Theorem 4.4). This remark allow us to generalize a
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previus result (see Theorem 4.14) and infer a new one(see Corollary 4.13). We

also briefly recall a result of a joint work with Gorodski [6] (see Theorem 4.15).

4.1 Transversal Frame Bundle of a s.r.f.s

In [13] Molino associated an O(k)-principal bundle, the orthogonal transverse
frame bundle to a regular riemannian foliation (M, F) of codimension k. A fiber
of this bundle over a point p in M is defined as the set of orthonormal k-frames
in v, Ly, where L, is the leaf through p. Proposition 4.1 generalize this notion
for a s.r.f.s. of codimension k. Its restriction to the regular stratum M, will
coincide with the orthogonal transverse frame bundle in the sense of Molino.

We will use this bundle to review the proof of Theorem 4.4 and Theorem 4.12.

Proposition 4.1 ([5]). Let F be a s.r.f.s on a complete riemannian manifold

M.

a) There exists a continuous principal O(k)-bundle E over M that is asso-
ciated to the s.r.f.s. F. The restriction of E over M, (denoted by E,)
coincides with the usual orthogonal transverse frame bundle of the rie-

mannian foliation F, (the restriction of F to M, ).

b) There exists a singular C°-foliation F on E. The restriction of F to
E,. coincides with the usual parallelizable foliation .7?T on E,, which is a

foliation with trivial holonomy whose leaves cover the leaves of F,.

¢) There exist C° holonomy map associated to .7-'; hence we can define a

Weyl pseudogroup W .

d) There exist C°local trivializations of F.
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e) If the sections of F are flat, the bundle E, the foliation ,7-:, holonomy

maps and trivializations are smooth.

Before we sketch the construction of the bundle E, we present a very simple

example.

Example 4.2. Consider M := R? foliated by circles centered at the origin.
We denote it by F. The only singular leaf is the origin and the sections are
the lines through the origin. Excising the singular leaf we obtain a regular
riemannian foliation F, of M, := R? — {(0,0)}. Let E, be the orthogonal
transverse frame bundle (in the sense of Molino) associated to F,. It is not
difficult to see that E, = M} II M1, where M! := (R? — {(0,0)}) x {i} for
i = 1,—1. We can identify M} (respectively M, ') with the unit normal field
outward (respectively inward) oriented. Set E = M1UM ~!, where M*® := MU
({(0,0)} x {i}). We will define E as the transverse frame bundle associated to
F. It is obvious that the restriction of E to 7= 1(M,.) is the orthogonal tranverse
frame bundle E,.. The set F can also be regarded as a set of equivalence classes,
where the equivalence is defined as follows. Let (¢}, C;) for i = 1,2 be a pair
of a vector tangential to some local sections o through p with footpoint p € M
and Weyl Chamber C; in o that contains p. Then ( ;,,Cl-) are defined to be
equivalent if there exists a rotation ¢ (a holonomy map) such that ¢(Cy) =
©(C3) and ¢.C! = p,.(2. We say that p := [((,, C)] belongs to M (respectively
M~1) if a representative ((,,C) induces the outward (respectively inward)
orientation of F,. by parallel transport along the Weyl chamber and the circles.
Note that if p is not (0,0) then there exists only one Weyl chamber C that
contains p and hence this new definition coincides with the definition of a

vector (, with footpoint p, when p is regular.
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Sketch of construction of the Transversal Frame Bundle E.

Let F be a s.r.f.s. on a complete riemannian manifold M. Let (,, C) be a
pair of an orthonormal k-frame ¢ with footpoint p tangential to a local section
o and the germ of a Weyl chamber C of o at p. We identify ( ;,Cl) and
(¢7,C>) if there is a holonomy map ¢ € Wg, (which fixes p) that maps Cy
to Cy as germs in p and ¢} to ¢ at first order, where W, is the set of all
holonomy map ¢ such that 3 is contained in the slice S;,. In other words, the
equivalence class [((p, C')] consists of the W -orbit (¢.(p, (C)), ¢ € Ws,. We
call an equivalence class [((,, C)] transverse frame, and the set E of transverse
frames transverse frame bundle.

Let 7 : E — M be the footpoint map. The fiber F,, = 77'(q) is equal to
the set of transverse frames [((4, C)]. There is a natural right action of O(k)
on E by [({;,C)] - g := [(¢; - g,C)]. This action is well-defined and simply
transitive on the fiber. Note that in each equivalence class there is only one
representative with a given Weyl chamber.

Given a transverse frame ¢ = [({;, C')] over a point ¢ it is possible to use
parallel transport and equifocality of F to find a neighborhood U of ¢ in M
and a map ¢ : U — 7 1(U) such that ¢(¢) = § and wo¢(z) = = for x € U.

With the cross section ¢ we can define a trivialization of E|U as follows.

¢o:UxO0O(k) — ElU
(,9) — <(z)-g. (4.1)
Let E|U take the induced topology via ¢. One has to show that this topol-

ogy on F is coherently defined, i.e., the transition from one trivialization to

another trivialization is a homeomorphism. This follows from the next lemma.
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Lemma 4.3. Consider two cross-sections g; : U; — E with U;NU; # 0 and the
corresponding trivializations ¢; : U; x O(k) — E|U;. Define h : UyNUs — O(k)
by ¢1(x) = () - h(x). Then

a. ¢3' 0 di(,9) = (v, h(z) - ).
b. h is constant along the plaques in Uy N Us.

c. The map h : UyNUs — O(k) is continuous at all points and differentiable

at all regular points. If the sections are flat, h is locally constant.

Finally we define a singular foliation F on E as follows: Let ¢ : U x O(k) —
E\U be a trivialization and P, for x € U the plaque of F in U. We define .7?|U
by the partition ﬁ¢(r,g) := ¢(Py,g). Since the transition map h is constant
along the plaques, F is well-defined on E. We define a leaf L through a point
x as the set of endpoints of continuous paths contained in plaques that start
in z. The restriction of F to the bundle E, = E|M, over the regular stratum

M, is the standard foliation described in [13].

4.2 Main result

In [5] T6ben and I proved that the holonomy of the leaves of a s.r.f.s F on
a complete manifold M is trivial, if the leaves are compact and M is simply
connected. We stress here that the condition that the leaves are compact is

too strong. It is enought to assume that the leaves are embedded and closed.

Theorem 4.4. Let F be a s.r.f.s. on a simply connected riemannian manifold
M. Suppose also that the leaves of F are embedded and closed. Then each

regular leaf has trivial holonomy.
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Proof. In this proof we need the concept of fundamental group of a pseu-
dogroup, which we briefly recall below (for details see Salem [13, Appendix
DJ).

We start by recalling the definition of a W-loop of a pseudogroup W on a

C° manifold ¥. A W-loop with base point zy € ¥ is defined by
a. asequence 0 =ty < --- <t, =1,
b. continuous paths ¢; : [t;—1,t;] — 3, 1 <i <mn,

c. elements w; € W defined in a neighborhood of ¢;(¢;) for 1 < i < n such

that ¢1(0) = wpe, (1) = xo and wic;(t;) = ¢i1(t;), where 1 <4 <mn — 1.

Two W-loops are in the same homotopy class if one can be obtained from the
other by a series of subdivisions, equivalences and deformations. The homotopy
classes of W-loops based at 2y € X form a group w1 (W, zg) called fundamental

group of the pseudogroup W at the point xg.

Remark 4.5. If the orbit space £/W is a connected orbifold, then m (W, z) =

m(2/W, p(x)), where p: ¥ — X /W is the natural projection.

The proof of Theorem 4.4 is basically the same proof of Theorem 1.6 of [5]
apart from the modified Lemma 4.6 and Lemma 4.7. Therefore we only sketch
its main steps. For details (e.g. the proofs of Lemma 4.10 and Lemma 4.11)
see [5].

Let L be a regular leaf, p € L and « a curve in L such that a(0) = p = «(1).
Let ¢(t) be the parallel transport of an orthonormal frame ¢ in p along «. Note
that ((t) is contained in a regular leaf of the singular foliation FinE.

We want to show that ¢(0) = ((1).
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Since M is simply connected we have a homotopy G : [0,1] x [0,1] — M

with
a. G(0,t) = «(t) for all ¢ € [0,1].
b. G(s,0) = G(s,1) = p for all s.
c. G(1,t) =p for all t.

We define p := ((0). Let # : E — M be the canonical projection of the
transversal frame bundle E of F. We can lift G to a homotopy G : [0, 1] x

[0,1] — E with
a. G(0,t) = ¢(t) for all t.
b. G(S,O) = p for all s.
c. G(1,t) = p for all t.
d. moG(s,1) = p for all s.

Let X be the section of F that contains p and define ¥ := 7~ 1(X). Let j: E —

E/F be the natural projection.

Lemma 4.6. Let L be the lift of a regular leaf L. Then L is closed and
embedded in the frame bundle E,..

Proof. First we prove that L is embedded. Let # € L and set o = 7(). Let
U be a neighborhood of x such that U N L has only one connected component.

Then

N U)NL=7"YUNL)NL (4.2)
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Note that the holonomy of L if finite, because the leaves of F are closed
and embedded. Since the holonomy of L is finite, L meets 7~ 1(z) only a finite
number of times. This fact and Equation 4.2 impy that L is embedded.

Now we have to prove that L is closed. Let {Z,} be a sequence contained in
L that converge to a point Z. Since L is closed we conclude that # € 7=1(L). Set
x = m(Z). Let U be a neighborhood of x such that UNL has only one connected
component. As before, we can note that 7=*(U) N L has only a finite numbers
of connected component. This fact and the fact that the sequence {Z,} C L

converge to & imply that & € L.

Lemma 4.7. p: i,. — E,/]} is a covering map, where i,. =¥N E,..

Proof. It is easy to verify that p : Y, — ET/]:' is surjective. Now the result

follows from Lemma 4.6 and the claim that we will prove below.

Claim 4.8. Let F be a s.r.f.s with trivial holonomy and assume that the leaves
are closed and embedded. Let L, be a regular leaf and define Tub.(L,) :=
Urer, Dz, where Dy := exp,(B(0)) for a ball B(0) C v, L. Then there exists

an € > 0 such that
a) for each z € L, and y € D, we have Dy N L, = {y}.
b) The map exp, : Bc(0) — D, is a diffeomorphism.

Since L is embedded and has trivial holonomy we can find an € > 0 such
that D, is contained in a normal neiborhood of p and D, N L, = {y} for each

y € Dp.
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a) Suppose that there are two points y; and y, that belong to D, NL,,. Then
there are two vectors &; and & € vL, such that exp, (&) = y; for i = 1,2. Since
the holonomy of L,, is trivial, we can extend &; to a global parallel normal field.
Now using the fact that F is equifocal and that D, is contained in a normal
neiborhood of p, we conclude that exp,,(£1(p)) and exp,,(§2(p)) are two different
points contained in D, N L, and this contradicts our choise of e.

b) We conclude that the map exp, : B.(0) — D, is a bijection, by the
same argument used in the proof of Item a). Therefore it sufficies to prove
that the map exp, : B.(0) — D, is a local diffcomorphism. We can extend
a vector £ € vL, to a global parallel normal field. Gluing germs of holonomy
maps along the curve 7,(t) = exp,(t§), (0 <t < 1), we can construct a local
isometry ¢ : U, — U, where U, (respectively Up,) is a neighborhood of the
curve 7, (respectively v,) in the section that contain x (repectively p). The
existence of the local isometry ¢ implies that the vector £(z) is not a critical
point of the map exp;-. The arbitrarity of choise of the vector () implies that
expy | B.(0) is a local diffeomorphism.

O

We define R(s,t) = (1—t,1—s) and 79 := G o R(0,-). Go R is a homotopy
between 7o and the constant curve 75 = p. We have (0) = p and w0 v = p.
These facts imply that vy and ~y; are contained in 3.

It is easy to check that

Lemma 4.9. v is a Wir -loop based at p and in particular a Wg-loop based

at p.

Using the holonomy map and trivializations of F , we can project the ho-

motopy GoR to W5, -loop deformations on 3 and prove the next lemma.
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Lemma 4.10. vy and the trivial Wg-loop 5 belong to the same homotopy

class of w1 (Ws, D).

Finally reflecting W-loops in the walls of Weyl chambers it is possible to

prove the lemma below.

Lemma 4.11. Consider two Ws,-loops 6y and 1 based at p that belong to the
same homotopy class of w1 (Ws, p). Suppose that 69 and 61 are contained in DN

Then dg and §1 belong to the same homotopy class of Fl(WiT,ﬁ).

Lemmas 4.9, 4.10, 4.11 and the fact that m (Wg ,p) = (B, F, p(p)) (see
Remark 4.5) imply that p o vy and the constant curve p o5 are homotopic in
E./ F fixing endpoints. The lift of this homotopy along the covering j : &, —
E,/F (see Lemma 4.7) to the curve 7o in %, is a homotopy to a constant curve

fixing endpoints. Thus ¢(0) = 7(0) = vo(1) = ¢(1).

4.3 Some applications

Theorem 4.12 ([5]). Let F be a s.r.f.s. on a simply connected riemannian
mamnifold M. Assume that the sections are flat. Then each regular leaf has

trivial holonomy.

Proof. If the sections of F are flat, F is a smooth bundle and F is a (smooth)
singular foliation. Let ¢ : U — E be the cross-section with respect to ¢, which
was used in the construction of the bundle E (see Proposition 4.1).We can
define a distribution H on E by Hy := Ts(U). It is not difficult to check that
this distribution is integrable. This implies that F is foliated by submanifolds

{Mj} and for each £ € E the map 7 : Mi — M is a covering map. For each
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manifold M; the lift of F along 7 coincides with F |Mg~g This is exactly what

happens in Example 4.2. The covering map 7 : Mi — M is a diffeomorphism

if M is simply connected. This implies that the regular leaves of F have trivial
holonomy.

O

Note that, in the above result, we do not assume that the leaves are em-

bedded or closed.

Corollary 4.13. Let F be a s.r.f.s on a complete riemannian manifold M.
Suppose that the cardinality of the fundamental group m (M) is equal to n.

Assume that one of the two conditions below is satisfied
a. The leaves of F are embedded and closed.
b. The sections are flat.

Then the cardinality of the holonomy of F is lower or equal to n.

Proof. Let M be the riemannian covering space of M and 7 : M — M be the
riemannian covering map. Denote F as the lift of the foliation F. Let xq be
a regular point and consider a loop 8 C L, with 8(0) = zo = 3(1). Finally
define 3 as the leaft of 3 such that ﬁ(O) = 7. We claim that

Qg 0T =T 0 P (4.3)

In fact we can find a partition 0 = ¢t < --- < t, = 1 such that §; :=

B

F. We can also assume that (; is contained in a neighborhood U such that

[ti_1.4.t;] 18 contained in a distinguished neighorhood of a foliation chart of

77 1(U) is a disjoint union of open subsets U, such that = : U, — U is a
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diffeomorphism. Clearly
Pl o =T o Py (4.4)
for each 7. Assume by induction that
PlBio--0p1] ©T = T O D3 0...05,]" (4.5)

Therefore

P[Bit10-081] O P[Biy1] © P[Bio--0p] O T

=
2
=~
w

PlBiy1] OO Sa[éio"'oél]

=
2

i

=

o 95[ﬁ~1+1] © ('5[@1‘0"'0,51]

O Pl romofa]y
and this prove Equation 4.3.

On the other hand, it follows from Theorem 4.4 and Theorem 4.12 that the
holonomy of F is trivial. Thus there exist only n—1 holonomy gb[ 3 between I
and the others points 1 ...&,_1 € 7 (o). This fact and Equation 4.3 imply
the result.

O

In [5] Toben and I proved the existence of fundamental domains in each
section of a s.r.f.s. when the leaves are compact and M is simpy connected.

Due to Theorem 4.4 we can reformulate our result as follows.
Theorem 4.14. Let F be a s.r.f.s. on a simply connected riemannian manifold
M. Suppose also that the leaves of F are closed embedded. Then

a. M/F is a simply connected Cozxeter orbifold.

b. Let X be a section of F and let 11 : M — M/F be the canonical projection.

Denote by Q0 a connected component of the set of reqular points in X.
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Then 11 : Q — M,/F and I1 : Q@ — M/F are homeomorphisms, where
M, denotes the set of reqular points in M. In addition, §) is convez,
i.e. for any two points p and q in ), every minimal geodesic segment

between p and q lies entirely in €.

The existence of fundamental domain turns out to be a useful tool to study
s.r.f.s. Indeed, this was one of the techniques used by Gorodski and I in [6] to
prove that the leaves of a s.r.f.s are pre image of a transnormal map, when the
leaves are compact, the sections are flat and M is simply connected (for the
definition of transormal map see Definition 2.5). Due to Theorem 4.14, we can

reformulate our result as follows.

Theorem 4.15. Let F be a singular riemannian foliation with sections on a
complete simply connected riemannian manifold M. Assume that the leaves of
F are closed embedded and that F admits a flat section of dimension n. Then

the leaves of F are given by the level sets of a transnormal map F : M — R".

The above theorem generalizes previous results of Carter and West [10],
Terng [15] and Heintze, Liu and Olmos [11] for isoparametric submanifolds.
It can also be viewed as a converse to the main result in [1], and as a global

version of Proposition 2.7

5 Blow-up and extension of the holonomy map

In [17] T6ben used the blow up technique to study equifocal submanifolds
(which he called submanifold with parallel focal structure). He gave a necessary
and sufficient condition for a closed embedded equifocal submanifold to induce

a s.r.f.s (see [3] for an alternative proof).
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The aim of this section is twofold. First we we will briefly recall some of
Toben’s results about blow-up of s.r.f.s (see Theorem 5.1 and Proposition 5.5).
Then we will use this technique to get conditions under which a holonomy map
can be extended to a global isometry (see Proposition 5.8).

We start by recalling the blow-up technique.

Theorem 5.1 (Toben [17]). Let F be a s.r.f on a complete riemannian man-

ifold M. Then

a) Set M = {T,X| p € N,X is a section of F through p}. Then M car-
ries a natural differentiable structure, for which the inclusion into the
Grassmann bundle G, (TM) is an immersion. Moreover, M has a nat-
ural riemannian/ totally geodesic bifoliation (ﬁ, ]?J-), with respect to the

pull-back metric. We have F+ = {TS| ¥ is a section of F}.

b) The footpoint map 7 : (]/\4\, F) = (M, F) is foliated and maps each hori-

zontal leaf of Pt isometrically to the corresponding section 3 of F.

Remark 5.2. The result above is a strengthening of Boualem’s result [9]. He
stated it for some differentiable structure and some metric. Toben proved it
for the natural differential structure and natural metric. Morover he did not

need that the leaves were relatively compact, as assumed by Boualem.

In order to study the singular holonomy of F, T6ben considered the uni-
versal covering space of M , which turns out to be diffeomorphic to LxYas

we recall below.

Lemma 5.3 ([7]). Let (F,F1) be the bifoliation on M defined in Theorem

5.1. Let &g a point of]\//T . B:0,1] — M be a curve contained in the leaf
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€ F and 4 : [0,1] — M a curve contained in the leaf iio € F* such that

4(0) = B(0) = &o. Then there exists a unique continuou map H = ﬁ(@m :

c. f](~7t) is contained in a leaf of F.
d. H(s,-) is contained in a leaf of F*.

The continuous map H is called rectangle with initial vertical (respectively

horizontal) curve 3 (respectively 7).

Remark 5.4. For a curve 8 : [0,1] — M in a regular leaf of F and a curve
v :[0,1] — M in a section, both starting in a regular point zq, we can define the
lift 3(t) == Ty Sp) and 5(t) := Ty S0y Clearly 7o = and 704 = 1.
As remarked in [17], the above lemma is also true for a s.r.f.s F. If we write
H g ) for the rectangle with initial vertical (respectively horizontal) curve (

(respectively ) we can note that Hg ) = 7 o ﬁ([ﬁy

We recall that the universal cover M of a manifold M is equal to the set of
equivalence of curves starting from a fixed point x(, where the equivalence is

given by homotopy fixing endpoints. Therefore, for a regular point xo we have
L= {[8] | B is vertical and 3(0) = xo},

S ={[4] | v is horizontal and v(0) = zo},

M= {li) | pis a curve in M and p(0) = &o = Ty Say }-
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Now consider the manifold L x % provided with the natural bifoliation and
the covering space ﬁ provided with the pull-back bifoliation of the covering
map ﬁ — M. It follows from Blumenthal and Hebda 8] that the map @ : L x
PO ]\;2\7 defined as ([5],[7]) — [t — ﬁ(ﬁﬂm(t, t)], is a bifoliated diffeomorphism
(i.e., foliated with respect to both pairs of foliations). We conclude that
— M
— Hg o (1,1)
is a bifoliated universal covering map of M. Define (I LXY — M as 1) := oW,

The above discution and Theorem 5.1 imply the next proposition.

Proposition 5.5 ([17]). The map VU is the universal covering map, and it is
bifoliated with respect to the natural bifoliation of Lx 3 and to (J/W\, 13, ﬁL)
The map 1 is foliated with respect to the vertical foliation on LxY and (M;F),

and its restriction to a horizontal leaf is a riemannian covering to a section.

Corollary 5.6 ([17]). Let F be a s.r.f.s on a complete riemannian manifold
M. Then the sections have the same riemannian universal cover. Similarly the

reqular leaves of F have the same universal cover.

Using Theorem 5.1 and Proposition 5.5, Toben proved the next result.

Proposition 5.7 ([17]). Let F be a s.r.f.s on a complete riemannian manifold
M. Assume that the sections are embedded. Then there exists a section ¥ such

that its Weyl pseudogroup Wy is in fact a group.

Now we infer from Theorem 5.1 and Lemma 5.3 that the each holonomy

map can be extended to a global isometry, if the sections are embedded and if
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there exists a singular point ¢ such that the leaf passing through this point is

just q.

Proposition 5.8. Let F be a s.r.f.s on a complete riemannian manifold M.
Assume that the sections of F are embedded and that there is a leaf which is
point q, i.e., Ly = {q}. Let p : 0o — o1 be a holonomy map where oy
(respectively o1) is a local section of a section X (respectively %1 ). Then there

exists an isometry ¢ : X — X1 such that p|s, = @[5 and o(x) = L,.

Proof. First we note that the leaves of I are embedded, since the sections
of F are embedded. Then we define E,j := (7)7*(g). The fact that L, = {q}
implies that each leaf of FL meets E,j once and only once. This implies that
the holonomy of the leaves of FL are trivial. Now the result follows from the

lemma below.

Lemma 5.9. If the leaves of]?J‘ are embedded and have trivial holonomy, then

each holonomy map of F admits an extension to a global isometry.

Proof. It sufficies to prove that for each loop v C 3,, with v(0) = (1) =
xg := (3(0), the continuation of the germ of g along ~y leads back to the initial
germ.

Let (3 (respectively 4) be the lift of the curve 3 (respectively 7) defined in
Remark 5.4. Note that 4 is also a loop, because there exists only one point
Zo such that #(Zg) = zo. Let H denote the rectangle with initial vertical
(respectively horizontal) curve (3 (respectively 4) (see Lemma 5.3).

We can find partitions0 = sp < -+ < s, =land 0=ty < ---t, = 1 so that

H

[si—1,8:)x[t;_1,¢;) 18 contained in a distinguished neighorhood of a foliation
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si_1,s;] and let ¥; denote the section which contains

chart of F. Set §; = |,
B(si).

Define a holonomy map ap{ : 09 — o1  such that

0 _
a. P17 = PB1]s
J — 1
b. 901|Go]'—1ﬂ00j =% |00j—1ﬂ00j7
where oy ; are local sections of ¥y centered at v(¢;) and o1 ; are local sections

of 21.

We want to prove
(5.1)

n _ 0
#1 ‘O'OT:,OUOO = 501|00nﬁ000'

We note that each holonomy map gp{ is associated to an holonomy map

cﬁ{ 1 69 — 01, of the regular foliation F , where ¢;; is a neigborhood of f]z

(the leaf of F- which contains (3(s;)) such that

a. 7?(6”) =034,

Aj_ j ~
op; =pyom.

>

b.

Note that 6o, N Goo # O since ¥ is a loop.

To prove Equation 5.1 it sufficies to prove

(5.2)

an _ 20y N
¥1 ‘?To”ﬁ&oa = 901|0’0nﬂffoo'

Now Equation 5.2 follows direct from te fact that the holonomy of Flis

[si_1,s:]x[t;_1,t;] 18 contained in a distinguished neighborhood

trivial and that H
of a foliation chart of F.

By induction we can prove that

il = ¢l
Pi loonNooo = PiloonNooo-
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Defining ¢/ = ¢J o--- 0 ¢!, we conclude that

(pn|00nﬂUoo = 900‘00n0000 = 50[,3”00”0000' (54)

Equation 5.4 implies that the continuation of the germ of yg along v leads
back to the initial germ. This completes the proof.

O
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