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and 
J . M. Veloso 

Universidade Federal do Para 
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A sub-Riema.nnian manifold is a differential manifold together with a smooth distribution which 
carries a. metric. See [SJ for an introduction and references on the subject. In this work we consider 
the problem of equivalence in sub-Riema.nnian geometry. We will define a. canonical connection on a. 
non-degenerate sub-Rfomannian manifold analogous to the Levi-Civita connection for Riemannian 
manifolds. This will a.Uow us to study the equivalence problem using Ca.rtan 's method of moving 
fra.mes. The ma.in difference between Riema.nnia.n geometry is the essential a.ppearence of torsion. 
We prove a. classification theorem of sub-riema.nnian manifolds of constant sectional curvature and 
vanishing torsion. 

A related structure studied in [CH) and (T) is of certain Riema.nnian metrics a.dapted to a. con ta.ct 
form. In this work we consider a fixed metric in the distribution. This will define a. canonical conta.ct 
form. We would like to thank Prof. A. A. M. Rodrigues for fruitfull discussions. The first author 
was partially supported by CNPq. 

2 Reduction of the G-structure 

Definition 2.1 A Sub-Riemann manifold is a triple (M, D, g) where Mis a manifold, Dis a smooth 
distribution on Mand g is a ,moothly var'J/ing quadratic fonn defined on D. We will say in this case 
that M is a sub-ricmannian manifold of codimension J: if D is of codimension J:. 

We will concentrate in this work in the case of sub-riemannian manifolds of codimension I. Let 
M be of dimension m+ 1. 
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The G-sfructure &$SOciated to (M, D, g) is given by the set of l-form1 

{ 
fl' = l8 with l / 0 real 
Si' = a}/JJ + ,,;9 where (a}) E O(m) 

Geometrically I, Si is a basis of coframes satisfying l(X;) = 0, /JJ(X;) = 6f with l :5 i,j :S m 

where X; is an orthonormal basis of D. 
Observe that, in general, there exists an antisaymetric matrix (h;;) such that 

Although we could carry on with the theory without restrictive hypothesis, we will further restrict 

to the simplest case. 

Definition 2.2 (M, tJ, g) ia said to 6e non-degenemte if det(h;;); 0. 

As (h;;) is antissymetric, we have that in the non-degenerate case m = 2n is even. Furthermore, 

to show that the definition does not depend on the section of the G-structure, we choose another 
one as in 1. Then we 1ee that 

h1t1 = !h;;'aia{ 
h• = ½{2h;;'vi + lh;')ai - ~ 

(2) 

where El,r = dl. 
It is clear now that the condition det(h;;) :/ 0 is invariant. In fact it is equivalent to the condition 

that 8 A (di)" ; 0 for a section 8. In this case the G-structure can be reduced to a remarkably 

simple one. 

Proposition 2.1 The G-lltructure auociated to a Sub-Riemannian manifold can 6e reduced to a 

Z2 X 0(2n)-11tructure in the non-degenemte case. 

Proof: We will impose the condition det(h,;) = 1. Using the transformations 2 we see that this 
fixes the section 8 modulo a sign. With this particular choice of the section, the second equation in 

2 becomes h• = (2h;;'~ + h;')ai, Again, in the non-degenerate case we can choose vi uniquely such 
that h1c = 0, reducing the G-structure (1) to, ignoring the Z2 term 

{ 

,, = 8 

Si' = a}tJ.i where (an E O(2n) 
dB = h;;BiA9i with (h;;=-h;; and det(h;;)=l) 

(3) 

In particular, if the distribution is orientable then it has an O(2n)-structure. 
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3 Adapted Connection forms 

Let the Sub-Riema.nrua.n manifold (M, D, g) be given, and consider the associated 0(2n)-structure (3). We will construct connection forms and torsion forms which solve the equivalence problem. 
We begin by considering the intrinsically defined tautological forms over the bundle 3 which we will 
denote by the same letters 8,Si. 

Theorem 3.1 There ezists unique forms wj and T; ,atisfying the equation 

dBi = fJi /\ wj + 8 A Ti 

with conditions i) wj == -wf and ii) E Ti fl Oi = 0. 

Proof: Let wj and fi be any forms satisfying the first equation. If wj and Ti also satisfy the 
equation, then 

From Cartan 's lemma we have 
W~ - ,;i = (iLB" + 6i.9 , , ,.. , 

Ti - fi = 619" 
with ajk = at;• We will choose a}t, 6j such that the conditions in the theorem be satisfied for wj, Ti. To verify condition ii) we must have 

LL(fi + bi)Ok A gi = 0 

and using Cartan's lemma again ri +bi= ai with ai == af. On the other hand if i) is satisfied, and 
writing ,i = ;;iLBk + t1i8 , ,.. , 

We get two equations 
ul + wi + a;· + a~ - fl - H = O , ' , ' , 1 

i:ij,. + wf,. + a},. + aik = 0 
. . fi+fl ,i,i.+~ . The first equation, recalling that a} is symmetric, has solution a} = J.? - .::L?- therefore b} is determined. The second equation can be solved using the permutation trick, as in riemannian 

geometry. 
□ 
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4 Reduction of the 0{2n)-structure 

Consider the sub bundle of all orthonormal coframes 81 , • .. , 83" such tha.t (h,;) E u( n), i. e., 

h1c1 = h1,+,.,1+,. and h1,+,.J = -h1c,1+,. 1 ~ A:, l $ n 

If 9'1 , • • •, 8'2" is anolher coframe of this sub bundle, with 8'* = a}B;, then 

Tha.t is, (aj) E U(n). This reduction allows us to define an operator J: D - D with J2 = -/. 

Theorem 4.1 There ezists unique forms wi;, ri;, r& aatisfging the equations 

dBi = Bi I\ w;; + Bi I\ rf; + 8 I\ r~ 

and conditions 

• (h;;) E u(n) 

• wi; = -CJ{;, wtit':. = wt,, wtt" = -wt1+,. for 1 ~ i,j $ 2n, 1 $ k,l $ n 

• rf; = -r{,, rt,t':, = -rt,, rt,+n = rt1+n 

We first state the following 

Lemma 4.1 Let< .,4, B >= -Tr(AB) the acalar product in o(!n). Then 

u(n).l ={BE o(2n) ; JB +BJ= O} 

Proof: If AJ = J 4'i and J B+BJ = 0 then< A, B >= Tr(AJ2 B) = -Tr(J ABJ) = - < A, B >. 
So< A,B >= 0. If Xe o(2n), define A=~. B =~-Then X =A+ B, A e u(n) and 
BE u(n).l. 

Proof of theorem 4.1: Let wj, r& u in theorem 3.1. Then we decompose w} = wJ; + rf;, with 
(wi;) E u(n) and rf; E u(n).l. The unicity of wi; and rf; follows from the unicity of wj. 

□ 

Let's now introdiice complex forms. Let be 
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for I $ o.,/J $ n. If we put also ig00 = h0 p + ihafJ+n we get 

where {ii= (/3. We have 900 = 9/Jo· After introducing this notation, we can write theorem 4.1 as 

Theorem 4.2 There exists unique forms TJfp, '~P' ,8 such that 

satisfying 

• 1'~jj = -,fa 
• 1/f /\ ( 0 + 18 /\ ( 0 = 0 where ,fi0 = r/:.0 and 18 = 1ft 

The next step on this way of reduction is to observe that being 900 a hermitian matrix, it can be 
diagonalized using the group U(n). Those eigenvalues are invariants of the subriemannian structure 
and are functions on the manifold. We will suppose that the diagonalization of Yap gives precisely 
r eigenvalues with constant multiplicities d;. This hypothesis will be sufficient to reduce the U(n) 
bundle to a U(di) x · · · x U(dr) bundle. 

Diagonalizing 900 we obtain coreferentials ( 1 , • • ·, (" such that 

9,;p = 6!>.11 

and Ad,+···+d•-i+l = · · · = >.c1,+-··+d• = Vk for 1 $ k $ r, with d1 + · · ·+dr = n, and v1 < v2 < · · · < 
vr, where the v1, are real functions on M. In these coreferencials, we get 

(4) 

If ('1 , ••• , ("' is another coframe of this sub bundle, with ('a = ap(11 , then it is easy to see that 
ape U(di) x • .. x U(dr), This allows us to reduce the U(n)-structure to a U(d1) x · •· x U(dr)­
structure. 
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We denote by H :: U(d1) x • · · x U(d,) and its Lie algebra h = u(di) x · · · x u(d, ). The inner 
pmduct in o(2n ), restricted to u(n), can be written in complex form as 

< A, B >= 2ReTr(A1f) 

\'.'«• ,lenote J,y fl.l the perpendicular space to h with respect to this inner product. If A E u(n), we 
1rny write A::: (A;;), 11., where each A;; is ad; X d; matrix, with At, = -A;i- Analogously we may 
w1it.e (g

0
p) = (G;;),x, where G;; = 0 if i I j, and G;; = 11;/,1,. With this notation A Eh, if and 

011ly if A;; = 0 for i ~ j, and A;; E u(d;). We characterize the elements of h.L in the following 

[t>mma 4.2 B E hl. if a11d only if B;; = 0, for 1 :5 i :5 r. 

Proof: If A E h, tr.en 
< A, B >= -2ReTr(A;;B;;) 

As A;; can be any element of u(d;), and B;; E u(d;), we get < A, B >= 0 if and only if B;; = 0, 
l:5i$r. 

By decomposing the connection '7I obtained in theorem 4.1 in '11 = '1 + 12, where '7 take values 
in h and 72 in h.L, we get the following 

Theorem 4.3 There erists unique forms 'Ip;, 1;fr,-, 1~)J• 18 with 1 $ i, j :5 r, 1 :5 a, /3 $ n, and 
d1 + · · · + d;-1 + I :$ p;, /3; 5 di + · · · + d,, such that 

satisfying 

o, _IJ; o, 0 f . .J. • • '11J, = -Tfo;, '11J, = I Ir J 

• 1':J, = -1:~; if• -/: j, 1:J, = 0 

• 1~p = -1rli 

We will be particularly interested in structures which have all ~a constants and have vanishing 
torsions 11 and 72• The pseudo-hermitian structure and connection in [W], corresponds precisely to 
the case when the full reduction group is U(n). 
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5 Curvatures 

The curvature forms a.re defined by 

n~ = c1wL + w} 11 wi,. 
Theorem 5.1 The curvature forms are given bJ/ 

Di = ~ Ri.,..B' I\ ,. + wi_s• I\ 8 + hi.18' I\ Ti - hi18' I\ ,,.i. 

with the conditiollll Ri,. = -Rt, Ri,. = -Rt,, Ri., + R~1:, + R~1: = 0, Wi, = -W;~ and 
w;. + W;~ + W! = 0. 

Proof: Define 
ni = dwi - wi I\ wj - h",8' I\ ,,.i + hits' I\ r" 

ni = dTi - Tj I\ wj 
then, differentiating the equation defining the connection forms, we obtain the Bianchi identity, that 
is, B"' I\ Oi +BI\ Oi = 0. Observe that Oi = -nf. To find the symmetry conditions on those forms 
we see that, due to the Bia.nchi identity, we ca.n write 

Oi = xi...B' + AiB for I-forms xi.,. a.nd Ai without terms in 8. 

Writing xi, = -½Ri,.,B' a.nd ~i = Wi,B• and substituting in the Bianchi identities, we get 

(li = !R; 9' II 9• + W; 9• I\ 9 
" 2 "'· "' 

with the conditions Ri,, = -Rfw Ri,, = -Ri,,., Ri,,.+R!k,+R~11 = 0, and Wi, = -W;~- Observe 
that we can write, using the Bia.nchi identity again 

ni = -w;.r "' ,. + i "' s (5) 

Finally, we differentiate the condition fi A Ti = 0 to obtain w:. + W;"1: + W! = 0. 
D 

In computations, we use a section of the the G-structure, that is, a moving frame which we 
write by the same letters as the tautological forms 9T = ( 91 , ••• , 9in) and rT = ( r 1 , ••• , r 1n ). The 
structure equation is written also as d0 = -w I\ 0 - r I\ 8. If 0' = g0 is a new moving frame, then 

w' = gdg-1 + gwg-1 

r1 = gT 
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6 Geometrical Interpretation 

In this section we giv~ a covariant derivation interpretation of the computations with forms above. 
Let (M,D,g) be an orientable non-degenerate metric distribution of codimension 1. Let dV be 

the volume form on D1 The contact form is the unique form such that 

Ker(9) = D 
d8j0 = 2"n!dV 

We denote by { the unique field such that 

9({) = 1 
i(d8 = 0 

We define the antissimetric form h : D - D by dw(X, Y) =< h(X), Y >. The connection 
defined above is translated into the following proposition. Let U be any vector and X, Y he in the 

distribution. 

Proposition 6.1 There emu a unique connection V : TM -+ TM• ® TM with the following 
propertiea, tDhere T is the toraion Ul180r of the connection. 

•Vu: D-+ D 

• V(= 0 

• Vg= 0 

T(X, Y) = d9(X, Y){ h . · · h 
• T({,X} = r(X) - to ere r 18 a aymmetnc tensor wd L(T = O. 

Observe that the torsion tensor is given by T = 9 Ar+ d9 ® {. If (e;) is a local frame and (Si) 
is its dual coframe, we can write in those coordinates Ve; = wf e; and r = ri ® e;. The structure 
equation 

dw= Vw+woT 

where, Vw(X, Y) = (V xw)(Y)-(Vyw)(X), translates into the structure equations of theorem 3.1. 
We collect in the following proposition some straightforward, though useful), properties of the 

connection. • 

Proposition 8.2 The connection V haa the following proper-tie, 
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• d8(X, Y) = 8(T(X, Y)) 

• < r(X),Y >= ½LEg(X,Y) 

• V(h = -(hor+roh) 

Definition 6.1 The metric di.,tribution i., called h-compatible if it., adapted connection aatiafiu 
Vh=O. 

Observe also that, using coframes, this condition is 

It is easy to see that in the reduction of theorem 4.3, if we suppose A0 constants, an h-compatible 
connection has .\0 constants, "ft = "12 = O. In this case the condition 1G I\ (a + 18 I\ ( 0 = 0 in 
theorem 4.3 can be substituted for '1~ fl (a = 0 as can be seen differentiating equation 4. We see 
than, that the pseudo-hermitian structure and connection defined by Websier (W) is equivalent to an 
h-compatible sub-Riemannian structure which has the group U(n) as structure group after reducing 
completely as in theorem 4.3. 

The curvature of this connection is given by 

R(X,Y)Z = VxVyZ- VyVxZ-Vtx.YJZ 

From general theory of connections we have the Bianchi identity 

PR(X, Y)Z = PT(T(X, Y), Z) + P(VxT)(Y,Z) 

where P denotes the cyclic summation. In the case of the adapted connection we get the followin@ 
identities 

• PR(X, Y)Z = P < h(X), Y > r(Z) 

• P < (Vxh)(Y),Z >= 0 

• R({, Y)Z - R({, Z)Y = (V zr)(Y) - (Vyr)(Z) 

where we supposed X, Y, Z E D and { the transverse field. 
A geometrical interpretation of the vanishing torsion condition is obtained in the following 

Proposition 6.3 The trumveraal vector field i., an infinitesimal equivalence if and only if Ti = 0. 
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In this case we aee that {}i = dri - T; I\ wj = 0, and therefore from the symmetries of W;, we get 
also W;, = O. We then write the curvature 

n; 1 R; 9' fJ' ; = 2 ;,. A 

' The adapted Riemannian metric is defined by the reduction (3), where d(J = h;;fJi I\ (Ji. The 
Levi-Civita. connection wj,wi,w; satisfies the structure equation 

dl1 = (Ji I\ wj + 9 A i;;,i 
dfJ = (Ji Aw, 

with conditions wj = -wf and wi = -w;. Writing w; = b;;fJi + b;fJ and substituting in the second 
equation -above follow$ that b; = 0 and w; = (h;; + a;,)fJ; with a;; = a;;, Using the convention 
hj = -h;;, a; = -a;; we prove the following 

Propoeition 6.4 The adapted connection and torsion forms are given by 

i.,j = wj-:- hil 
T' = aj(JJ 

In analogy to the second fundamental form for submanifolds in a riemannia.n manifold, we define 

7 Constant Curvature Models 

Definition 7.1 Two metric distributions Mand M' are equivalent, if there ezists a difjeomorphism 
/: M-+ M' auch that /.(D) = (D') and it preservea the metric in the diatribution. 

To establish the equivalence between two metric distributions, we will consider the U( di) x •, • x 
U(dr)•reduction as in theorem 4.3. We will establish the models for h-compatible sub-riemannian 
metrica with vanishing torsion. In the notation of theorem 4.3 we write the structure equations in 
this case 

d(J = i..Xa,(0
' A (a; 

d("'' = (11• A 'f/p: 
with 1 $ i $ r, and di+···+ d,-i + I $ o;, /3; $di+•••+ d;, satisfying and 'f/p,' = _.,,g: 

The curvature forms may be written u 
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Definition T .2 The h-compatible subriemannian manifold has constant h-sectional curvature if 

where C; is a constant for each l .$ i .$ r. 

We are now ready to state the local classification theorem 

Theorem 7 .1 Suppose M and M' are tu,o h-compatible sub-riemannian manifolds satisfying the 

conditions 
i) r = r', d; = d:, and ,\01 = ,\~; 
ii) They have null torsion and the same constant h-sectional curvatures, C; = C: 
Then they are locally equivalent. 

Proof. We follow the proof of the local equivalence between constant curvature riemannian man­

ifolds. We construct the manifold P x P' the product of the ff-structures (reduced as a.hove) 

Consider over this manifold the pull-ha.ck of the tautological forms on P and P' by the projections 

and denote them by the same letters as in the G-structures. We form then the system 

wo, = (a; -('a, 

w = 8- 8' 
WQ' 

/J; = ,,;: - ,,;:., 
Using conditions i) and ii), we prove that it is involutive. Fixing coframea 0 and 8' in P and P' 

there exists an integral submanifold passing through 0 x 0' . This integral submanilold is given bJ 

the graph of a. function F: P ..... P' which gives rise to an equivalence/: M-+ M'. 
[ 

We now obtain the models realizing each situation arising in theorem 7. We start with th, 

building blocks of the theorem, that is, r = l, d1 = n and ,\01 = ,\ constant. We will give ; 

construction in the most appropriate form for the further construction of the composite models. 

1) Consider in C"+I the hermitian product< z,w >= Lj=oziwi. We define 

S 2"+I(r) = { z E C"+I I < z,z >= r 2
} 

The Hopf fibra.tion is given by S2"+1(r) ...... CP". Observe that the group U(n + 1) acts on th 

sphere preserving the fibration. 
Let (11o,b1, .. •,b,.) be a unitary frame in C"+l . We consider z = rl1o E S2"+1(r) and define th 

cofra.me 8, ( 0 by the formula. 
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where we observe that ib0 is tangent to the sphere. A calculation, using db"' = w~bp and observing 
that ("' = rwC, shows that 

cr=l 

2) Consider in cn+1 the hermitian product < z, w >= -z0w0 + Ei==I ziwi. We define 

Q2"+1(r) = { z e cn+l I < z,z >=-rand Zo > 0} 

The ball in Cl"' is given by B" = { [z) I < z, z >< 0 }. So we have the fibration Q2"+1(r) - B" 
as a S1 bundle. Observe that the group U(n, 1) acts on the quadric preserving the fibration. Let 
(bo, 61, .. •, b,.) be a frame in cn+l with respect to the above hermitian product. We consider 
z = rb0 E Q2"+1(r) and define the coframe 8,("' by the formula 

dz= !o(ibo) + ("'ba 
r 

where we observe that ibo is tangent to the quadric. A calculation, using dba = wgbp, as above, 
ahows that 

1/~ = ~- 6J:2(J 

lllp = - :2((0 
/\ c,P t Op E (1 /\ f) 

3) Let the Heisenberg group H 2"+1 E C"+l be defined by Li=l ziwi + i(z"+l -r+1 ) = 0. Then 
H2n+1 = { (z,~ + iy) I z EC" and y = flzl2 

}. So we have the R-fibration 9 2"+1 - C". The 
grou p acting on 9 2"+1 is represented by 

HU(n+l)={[!. ~ ~l l AEU(n),zEC",xeR} 
x+½lzl2 irA 

12 



and analogously to the previous cases, it preserves the fibration. Let (bo,61, •• •,6,.+1) be a frame i1 
HU(n+l ). From the Lie algebra we obtain 

= ( 0 ba + 86•+1 
= ~6a + i(°6t1+l 

0 

We consider z = bu E H 2"+1. then define the coframes using the formula 

dz= Bb,.+1 + (0 60 

We get 

To construct the composite models, we will define a certain product of fiber bundles. Let 
E1 - Mi and £-z - M2 be 51 bundles. Consider the product bundle E1 ® E2 - M1 x M2 with 
fiber 51, obtained considering the tensor product of the C bundles which are extensions of the 51 

bundles and taking the image of E1 X ~- We denote this bundle by £1 • E2• 
The models are sub-Riemannian structures over an S1 bundle obtained Crom the models defined 

above. Let N = (ni, n2, • • •, n,,.) a sequence of positive integers and R = (r1, r 2, • • •, r,,.) a sequence 
of real numbers r1 $ r2 $ • • • $ r,,.. In the following definition we will denote by Hj"+l(r) the 
quotient of H 2"+1(r) by the discrete group Z acting on the fibers. The resulting bundle is a S1 
bundle. Let 

Let 
MN(R) = M3"+1(r1) • · · · • M2"+1(rm) 

Let (/;o,/;i,···,(/;,.,) be a unitary base for each C",+l with respect to the corresponding 
hermitian forms above. Then define the forms 'ij• by the formula d/;• = cJ;.!;1. 

Consider Z = (ri/10) • (r2'20) • · · • • (r,,./mo) E MN(R). Then TzMN(R) is generated by the 
vectors 

{i/io • · · · • /,,.o , (/io • .. · • /;• • · · · • /,,.o)} 
where 1 $ j $ m and 1 $le$ n;. The dual basis is identified with 

hfo = ~ = · · · = '1!o , ("' = r;w}o } 
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We define the contad form to be 
",\ · 

9 = i I: =1:JJ1o 
;=tr, 

Observe that 9(i/1o • · ··•/mo)= E ~ and 6(/10 • • • • • /;1r •••·•/mo)= 0. Then I 

where I $ a; $ n;. 
It is easy to see that the constructed models have h-sectional curvature constant a.nd vanishing 

torsion . . 
The complete simply connected sub-Rlema.nnia.n manifolds with constant h-sectional curvature, 

vanishing torsion are precisely the universal coverings of the models obtained above. By completeness 
we mean the standard definition on a. structure which carries a connection. 
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