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1 Introduction

A sub-Riemannian manifold is a differential manifold together with a smooth distribution which
carries a metric. See [S] for an introduction and references on the subject. In this work we consider
the problem of equivalence in sub-Riemannian geometry. We will define a canonical connection on a
non-degenerate sub-Riemannian manifold analogous to the Levi-Civita connection for Riemannian
manifolds. This will allow us to study the equivalence problem using Cartan’s method of moving
frames. The main difference between Riemannian geometry is the essential appearence of torsion.
We prove a classification theorem of sub-riemannian manifolds of constant sectional curvature and
vanishing torsion.

A related structure studied in [CH] and [T] is of certain Riemannian metrics adapted to a contact
form. In this work we consider a fixed metric in the distribution. This will define a canonical contact
form. We would like to thank Prof. A. A. M. Rodrigues for fruitfull discussions. The first author
was partially supported by CNPq.

2 Reduction of the G-structure

Definition 2.1 A Sub-Riemann manifold is a triple (M, D, g) where M is a manifold, D is a smooth
distribution on M and g is @ smoothly varying quadratic form defined on D. We will say in this case
that M is a sub-riemannian manifold of codimension k if D is of codimension k.

We will concentrate in this work in the case of sub-riemannian manifolds of codimension 1. Let
M be of dimension m+1.



The G-structure associated to (M, D, g) is given by the set of 1-forms

{o'
O"I

Geometrically 0,8 is a basis of coframes satisfying 8(X;) = 0, 6(X;) = & with1<i,j<m
where X; is an orthonormal basis of D.
Observe that, in general, there exists an antissymetric matrix (h;;) such that

A0 with A # 0 real

ai6 + v'0  where (a}) € O(m) (1)

d0 = h;;6° A&7 + hi6* A

Although we could catry on with the theory without restrictive hypothesis, we will further restrict
to the simplest case.

Definition 2.2 (M, D, g) is said to be non-degenerate if det(hi;) # 0.

As (h;;) is antissymetric, we have that in the non-degenerate case m = 2n is even. Furthermore,
to show that the definition does not depend on the section of the G-structure, we choose another
one as in 1. Then we see that

hy
h;

}h;,-'a" aj
*(2h.,"lv" + Ah.")a'; - -‘-\f @)

where 3~ A8 = dA.

It is clear now that the condition det(h;;) # 0 is invariant. In fact it is equivalent to the condition
that 8 A (d0)" # 0 for a section . In this case the G-structure can be reduced to a remarkably
simple one.

Proposition 2.1 The G-structure associated to a Sub-Riemannian manifold can be reduced to a
Z, X O(2n)-structure in the non-degenerate case.

Proof; We will impose the condition det(h;;) = 1. Using the transformations 2 we see that this
fixes the section # modulo a sign. With this particular choice of the section, the second equation in
2 becomes hy = (2h;;'v7 + h;")a}. Again, in the non-degenerate case we can choose v/ uniquely such
that h; = 0, reducing the G-structure (1) to, ignoring the Z; term

¢ =0
{0" = a6  where (af) € O(2n) (3)
d6 = h;0' A® with (h=—hj; and det(hi;)=1)

In particular, if the distribution is orientable then it has an O(2n)-structure.
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3 Adapted Connection forms

Let the Sub-Riemannian manifold (M, D, g) be given, and consider the associated O(2n)-structure
(3). We will construct connection forms and torsion forms which solve the equivalence problem.
We begin by considering the intrinsically defined tautological forms over the bundle 3 which we will
denote by the same letters 8, §'.

Theorem 3.1 There ezists unigque forms w' and ¥ satisfying the equation

df' =6 Awi+0AT
with conditions i) w} = —w;-i and i) T A0 = 0.

Proof: Let &} and # be any forms satisfying the first equation. If w! and 7 also satisfy the
equation, then _ ) _ . _
AW —@D)+OA (T -F)=0

From Cartan’s lemma we have . ' _ )

w} — @} = aj, 0% + bi0

T - = bk

with a}, = a};. We will choose ai,, b} such that the conditions in the theorem be satisfied for wi, i
To verify condition ii) we must have

0= rAl =) FAl+3 Y bt ag
If we write ¥ = F{8*, then
oSG+ b8k Ae =0
and using Cartan’s lemma again 7 4 b} = a} with a} = a¥. On the other hand if i) is satisfied, and

writing O} = &}, 0% + @}0

(S +@f + aly + ad)0* + (% + & + b+ )8 = 0
We get two equations ) ) ] ) _ .
4] +aj+al - 7 -7 =0
@i +@h +afi+al =0

. . IRV TR TS .
The first equation, recalling that a; is symmetric, has solution a} = 5'-',”—' - "—'L;ﬁ therefore b}

is determined. The second equation can be solved using the permutation trick, as in riemannian
geometry. )



4 Reduction of the O(2n)-structure
Consider the subbundle of all orthonormal coframes 6!, -, 67" such that (h;;) € u(n), i. e.,
At = heynign  80d  hipng = —hipn 1<kI<n
If 67,---,87" is another coframe of this subbundle, with 8% = ai6’, then
O = Qpyntin  80d  Grynt = —Okg4n 1< ki<
That is, (a;'-) € U(n). This reduction allows us to define an operator J : D — D with J? = -],
Theorem 4.1 There ezists unique forms wi;, i;,7§ satisfying the equations
df' =0 Awi; + 0 AT{; +ONT]
and conditions
* (hij) € u(n)
o wi; = —uwl;, Wi = ok, Wit = ~wiyn for1<4,j <20, 1<kI<n
o rij=—rin riin = —h, it =k,

° 1'8/\9‘:0

We first state the following
Lemma 4.1 Let < A,B >= —~Tr(AB) the scalar product in o(2n). Then
u(n) = {B€o(2n) ; JB+BJ=0)
Proof: If AJ = JAand JB+BJ = Othen < A, B >= Tr(AJ*B) = -Tr(JABJ) = — < A,B >.
s,';:u?,:)ﬁ_): 0. If X € o(2n), define A = X=JXJ B = X4+JXJ Then X = A+ B, A € u(n) and

Proof of theorem 4.1: Let wf, 7§ as in theorem 3.1. Then we decompose wi = wi; + 7{;, with
(w};) € u(n) and r{; € u(n)t. The unicity of w}; and 7§; follows from the unicity of wi.
D

Let’s now introduce complex forms. Let be

(" = 6° 4 igotn
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i = wip + iwiy™"
1= et i
18 =15 + gt
for 1 <, < n. If we put also ig z = hap + thagsn We get
40 = ig 50 AP

where C‘_’ = (B. We have 9.5 = 95 After introducing this notation, we can write theorem 4.1 as

Theorem 4.2 There ezists unique forms n{s, 7;’2,-, ~§ such that

d(* = P Anip+ P A +OAYS

satisfying
® N = _ﬂfi
° 7;'5 = —7,ﬂa

* EA(T+1FAC* =0 where nf. =10 and 1§ =73

The next step on this way of reduction is to observe that being 9,52 hermitian matrix, it can be
diagonalized using the group U(n). Those eigenvalues are invariants of the subriemannian structure
and are functions on the manifold. We will suppose that the diagonalization of g 5 gives precisely
r eigenvalues with constant multiplicities d;. This hypothesis will be sufficient to reduce the U(n)
bundle to a U(d;) x - - - x U(d,) bundle.

Diagonalizing 9,5 we obtain coreferentials (', - --, (" such that

9.5=85)s

and Agy4otdy_y41 = " T Adypopdy, = Uk for 1 <k <r owithdy+---+d, =n,and 1y <1y < -+ <
v,, where the v, are real functions on M. In these coreferencials, we get

d0 = iA (" AT (4)

If ("",---,(™ is another coframe of this subbundle, with ("* = a;(’", then it is easy to see that
aj € U(dy) x -+- x U(d,). This allows us to reduce the U(n)-structure to a U(d) x --- x U(d,}-
structure.



We denote by H = U(d;) x --- x U(d,) and its Lie algebra h = u(d;) X - -+ X u(d,). The inner
product in o(2n), restricted to u(n), can be written in complex form as

< A, B >=2ReTr(ABT)

We denote Fy 4t the perpendicular space to h with respect to this inner product. If A € u(n), we
inny write A = (A;5)rxr, where each A;; is a d; x d; matrix, with Z?;- = —A;;. Analogously we may
wiite (g, 7) = (Gij)rxr where G;; = 0if i # j, and Gi; = v;l;,. With this notation A € h, if and
only if A;; = 0 for i ;dj, and A;; € u(d;). We characterize the elements of k4 in the following

Lemma 4.2 Beht ifandonlyif B;; =0, for 1 <i < r.

Proof: If A € h, then
< A,B>= -2RETT(A.‘.’B,’.‘)

As Aj; can be any element of u(d;), and B;; € u(d;), we get < A,B >= 0 if and only if B,; = 0,
1<i<r.

By decomposing the connection 1; obtained in theorem 4.1 in gy = 1+ 7;, where 7 take values
in h and 77 in A, we get the following

Theorem 4.3 There ezists unique forms 11°.,', 1;"‘;_,, 7;’5, 1 withl1 <i, j<r, 1<a, B<n, and
di+---+dig+ 1<, ;i <dy + -+ d;, such that

™ = (P AnG 4 (O AT + AT+ OA RS
satisfying

o =—nl, g =0ifi#;

© =Mk Fi#£5,15,=0

[ 7;’5 = -—7{’8

« BACHFAC =

We will be particularly interested in structures which have all A, constants and have vanishing

torsions 7; and 7;. The pseudo-hermitian structure and connection in [W), corresponds precisely to
the case when the full reduction group is U(n).



5 Curvatures
The curvature forms are defined by

I = dwf +w} Aw]
Theorem 5.1 The curvature forms are given by

!
2
wzth the COﬂdi“ons Rirl = —Rl"‘rs' Rin = —Risr’ R;'ur + Rika + R'trk = 0' Wi' = -wlﬁ and
Wi +Wa+Wk=0.

Proof: Define

M = RO AG + WL A+ hul AT — hyb ATk

i=dw;;—w£/\u;:—hklalAT‘+hilolATk
O =drt - rjAw;:
then, differentiating the equation defining the connection forms, we obtain the Bianchi identity, that

is, 0 AQL + 0 A = 0. Observe that 2 = ~Q%. To find the symmetry conditions on those forms
we see that, due to the Bianchi identity, we can write

i = X0 + AL0 for 1-forms xi, and A} without terms in 4.

Writing x§, = —} R}, ,6* and A{ = W},6* and substituting in the Bianchi identities, we get
0 = %R;’mo’ AO WG A

with the conditions R}, = ~R% ,, R}, = —R{,,, R}, + Ri,, + R.,; = 0,and W}, = —~WX. Observe

irs? rks
that we can write, using the Bianchi identity again

Q= -W,0 NP +u' NS (5)
Finally, we differentiate the condition #* A 7/ = 0 to obtain W{, + W3, + W& = 0.
0

In computations, we use a section of the the G-structure, that is, a moving frame which we
write by the same letters as the tautological forms @7 = (8',...,6°") and rT = (+1,...,7%"). The
structure equation is written also a8 dO = —w A O — 1 Af. If ©’ = ¢O is a new moving (rame, then

W gdg™! + gwg™!
[ gr



6 Geometrical Interpretation

In this section we give a covariant derivation interpretation of the computations with forms above.
Let (M,D,g) be an orientable non-degenerate metric distribution of codimension 1. Let dV be
the volume form on D, The contact form is the unique form such that

Ker(8) = D
ey, = 2"nldV
We denote by £ the unique field such that
0¢) = 1
L(do = 0

We define the antissimetric form h : D — D by dw(X,Y) =< h(X),Y >. The connection
defined above is translated into the following proposition. Let U be any vector and X,Y be in the
distribution.

Proposition 8.1 There ezists a unique connection V : TM — TM* @ TM with the following
properties, where T is the torsion tensor of the connection.

e Vu: D— D
o VE=10
e Vg=0
;2?’ :‘)” )) : f?&;’; YY) where T is @ symmetric tensor with 1¢1 = 0.

Observe that the torsion tensor is given by T = 0 AT + df @ £. If (e;) is a local frame and (6*)
is its dual coframe, we can write in those coordinates Ve; = wle; and 7 = e e;. The structure
equation

do=Vw+woT

where, Vw(X,Y) = (Vxw)(Y) — (Vyw)(X), translates into the structure equations of theorem 3.1.
We collect in the following proposition some straightforward, though usefull, properties of the
connection.

Proposition 8.2 The connection V has the following properties
L] L€ : 2 7 Q



¢ d8(X,Y) = 0(T(X,Y))
¢ <7(X),Y >=1Lg(X,Y)
o Véh=—(hor+T10h)

Definition 8.1 The metric distribution is called h-compatible if its adapted connection satisfies
Vh=0.

Observe also that, using coframes, this condition is
dh;; — huws - h[,'wg =10

It is easy to see that in the reduction of theorem 4.3, if we suppose A, constants, an h-compatible
connection has )\, constants, 71 = 72 = 0. In this case the condition Y A (T +1F A(* = 0 in
theorem 4.3 can be substituted for 7§ A (¥ = 0 as can be seen differentiating equation 4. We see
than, that the pseudo-hermitian structure and connection defined by Webster [W] is equivalent to an
h-compatible sub-Riemannian structure which has the group U(n) as structure group after reducing
completely as in theorem 4.3.

The curvature of this connection is given by

R(X,Y)Z =VxVyZ - VyVx2Z -Vixn)Z
From general theory of connections we have the Bianchi identity
PR(X,Y)Z = PT(T(X,Y),Z)+ P(VxT)Y,Z)

where P denotes the cyclic summation. In the case of the adapted connection we get the following
identities

o PR(X,Y)Z = P < h(X),Y > 7(2)
o P<(Vxh)Y),Z>=0
* R(§Y)Z - R(§,2)Y = (Vzr)(Y) - (Vy7)(2)

where we supposed X,Y,Z € D and £ the transverse field.
A geometrical interpretation of the vanishing torsion condition is obtained in the following

Proposition 8.3 The transversal vector field is an infinitesimal equivalence if and only if r=0.



In this case we see that @ = drf — 77 Aw! = 0, and therefore from the symmetries of W}, we get
also W§, = 0. We then write the curvature

i Lot Y]
I} = SRS, A0
A

The adapted Riemannian metric is defined by the reduction (3), where df = hg,-O‘ A @, The
Levi-Civita connection &,&",&; satisfies the structure equation

df = PAG + OAG
e = & AD;
with conditions &} = —u':{ and &' = —&;. Writing & = b;;67 + b, and substituting in the second

equation above follows that b; = 0 and &; = (h;; + a;;)07 with a;; = a;;. Using the convention
hi = —h;;,a} = —a;; we prove the following
Proposition 6.4 The adapted conneciion and torsion forms are given by
9 = o
™ = a@
In analogy to the second fundamental form for submanifolds in a riemannian manifold, we define

Il=a;,-0‘-0-" =Er‘-0‘

7 Constant Curvature Models

Definition 7.1 Two metric distributions M and M’ are equivalent, if there ezists a diffeomorphism
f: M — M’ such that f.(D) = (D’) and it preserves the metric in the distribution.

To establish the equivalence between two metric distributions, we will consider the U(d;) x -+~ x
U(d,)-reduction as in theorem 4.3. We will establish the models for h-compatible sub-riemannian
metrics with vanishing torsion. In the notation of theorem 4.3 we write the structure equations in
this case .

do = i\, (™ AT

ae = B A

with1 Si<randdi+-+diy + 1< @, f; < di +-- -+ di, satisfying and 13 = —nf;
The curvature forms may be written as

V! = dng; + 1’ A,
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Definition 7.2 The h-compatible subriemannian manifold has constant h-sectional curvature if
Vi = Gi((™ AT + 85 350 AT
where C; is a constant for each1 < i< r.

We are now ready to state the local classification theorem

Theorem 7.1 Suppose M and M' are two h-compatible sub-riemannian manifolds satisfying the
conditions

i)r= ', d; = dﬁ, and Aa, = '\lﬁli

ii) They have null torsion and the same constant h-sectional curvatures, C; = C!

Then they are locally equivalent.

Proof. We follow the proof of the local equivalence between constant curvature riemannian man-
ifolds. We construct the manifold P x P’ the product of the H-structures {reduced as above)
Consider over this manifold the pull-back of the tautological forms on P and P’ by the projections
and denote them by the same letters as in the G-structures. We form then the system

wr = Cﬂi - Cla.'
w = §-¢
wh = g -

Using conditions i) and ii), we prove that it is involutive. Fixing coframes © and ©’ in P and P’
there exists an integral submanifold passing through © x ©’. This integral submanifold is given b}
the graph of a function F : P — P’ which gives rise to an equivalence f: M — M'.
C
We now obtain the models realizing each situation arising in theorem 7. We start with th
building blocks of the theorem, that is, r = 1, d; = n and X,, = X constant. We will give
construction in the most appropriate form for the further construction of the composite models.

1) Consider in C**! the hermitian product < z,w >= ¥7_q /% . We define
§H(p)={zeC™ | <zz>=r1)

The Hopf fibration is given by §2"+1(r) — CP™. Observe that the group U(n + 1) acts on th
sphere preserving the fibration.

Let (bo,b1,--,bn) be a unitary frame in Cn+1, We consider z = rbp € §2*+!(r) and define th
coframe 0, (= by the formula

dz= }a(wo) + (b

11



where we observe that ibo is tangent to the sphere. A calculation, using db, = wBbgs and observing
that {* = rwg, shows that

dﬂ:ii("Af"

a=1

i
7’5 = wg - 65'_—20

= S AT 4850 AT)

2) Consider in C**+1 the hermitian product < z,w >= —z,Wp + i 2w, We define

Q”“(r) = { z € ¢! | <z,2>=~-rand >0 }

The ball in CP™ is given by B" = { [2] | < z,2>< 0 }. So we have the fibration Q?"+(r) — B"
as a §? bundle. Observe that the group U(n, 1) acts on the quadric preserving the fibration. Let
(B0, b1, -+, b,) be a frame in C™*! with respect to the above hermitian product. We consider
z = rbp € Q?"*)(r) and define the coframe 8,(* by the formula

dz = ;G(ibo) +¢ob,

where we observe that ibo is tangent to the quadric. A calculation, using db, = wdbg, as above,

shows that n

dd=i) (A"
a=]

i
n§=wi -850

¥i= (AT + 5T 0OAD)

3) Let the Heisenberg group H2"+! ¢ C+! be defined by Ty P (2" —3+1) = 0. Then

H¥H = {(z,z+iy) | z€Crand y= 1z }. So we have the R-fibration H2"+! —, C". The
group acting on H2"+! js represented by

1 0 0
HUm+)={|z 4 o
z+3z]* 24 1

AeU(n),ze C*",z € R}



and analogously to the previous cases, it preserves the fibration. Let (bo, b1, - - -, byy1) be a frame i
HU(n+1). From the Lie algebra we obtain

dbe = (by+ Obny,y
db, = “’gba + ‘.ann-l-l
dbn+l =0

We consider z = bp € H?"*1. then define the coframes using the formula
dz = 0b,.+1 + Caba
We get

dd=iY ¢*AT”
a=]

5=0

To construct the composite models, we will define a certain product of fiber bundles. Let
Ey — M, and E; —+ M; be S! bundles. Consider the product bundle Ey ®@ Ey — My x My with
fiber 51, obtained considering the tensor product of the C bundles which are extensions of the st
bundles and taking the image of E; x E;. We denote this bundle by E; ¢ E;.

The models are sub-Riemannian structures over an S! bundle obtained from the models defined
above. Let N = (ny1,n3,- -, n,) a sequence of positive integers and R = (r1,72,-**,Tm) a sequence
of real numbers ry < ry < --- < rp. In the following definition we will denote by HE+1(r) the
quotient of H?**1(r) by the discrete group Z acting on the fibers. The resulting bundle is a S!
bundle. Let

Sty r>0
M (r) = { BI*(s) r=0
Q¥i(r) r<0
Let
MPN(R) = M™ (1)) 0.0 M™H(r,)

Let (fjo, fi1,---1(fjn,) be a unitary base for each C™+! with respect to the corresponding
hermitian forms above. Then define the forms q;-,, by the formula df;; = wj-,‘ fi-

Consider Z = (r1 fi0) # (r2f20) ¢ -~ 8 (*m fmo) € MV (R). Then TzMV(R) is generated by the
vectors

{ifioe -8 fmo, (Sro®: -0 fixo---0 frmo))
where 1 < j < m and 1 < k < nj. The dual basis is identified with

{ﬂfo="go="'=’72mv ch =rju;o}
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We define the contact form to be

Observe that 6(ifige---o fmo) = Eé:- and 0(fro®-- o fire:+-0 fro) = 0. Then
df = ir; (™ A (S

where 1 < a; < n;.

It is easy to see that the constructed models have h-sectional curvature constant and vanishing
torsion.

The complete simply connected sub-Riemannian manifolds with constant h-sectional curvature,
vanishing torsion are precisely the universal coverings of the models obtained above. By completeness
we mean the standard definition on a structure which carries a connection.
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