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ABSTRACT \
Background: Despite established criteria, diagnosing anaphylaxis remains challenging but critical for preventing future
reactions. Fast-paced clinical settings, compounded by underrecording in electronic medical records (EMRs), increase the risk
of dangerous re-exposures. Leveraging artificial intelligence through automated systems such as large language models (LLMs)
offers a solution.

Objective: This study aims to assess the efficacy of artificial intelligence, specifically LLMs, in autonomously identifying
anaphylaxis diagnoses from EMR text to enhance patient safety and optimize care delivery.

Methods: LLMs (GPT 3.5, 4, and 4 Turbo) analyzed 969 medical texts in Brazilian Portuguese, annotated as anaphylaxis-
positive (48) or negative (921) by 3 expert physicians. A primary prompt simulated a general practitioner’s role in reviewing
medical narratives for anaphylaxis detection, with a secondary prompt incorporating World Allergy Organization (WAQ) criteria.
The experiments were conducted using 3 GPT configurations. The diagnostic suggestions of the LLM were compared to the
physicians’ diagnoses. Precision, sensitivity (recall), specificity, and accuracy values were calculated.

Results: Using the primary prompt, GPT 4 Turbo detected anaphylaxis cases with 90.6% precision, 100% sensitivity, 99.5%
specificity, 99.5% accuracy, and a Cohen kappa coefficient of 0.95. The inclusion of WAQ criteria slightly improved the performance
of older models (GPT 3.5 + 4 configuration). However, for GPT 4 Turbo, additional information did not enhance precision.

Conclusion: The results highlight the potential of artificial intelligence, particularly LLMs, to automate anaphylaxis diagnosis,
support healthcare professionals, and improve patient safety and care.
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1. Introduction However, in fast-paced clinical environments with limited
resources, where time is of the essence, manual application of
these diagnostic criteria can pose challenges [5]. This challenge
is further compounded by the underrecording or inadequate
registration of anaphylaxis diagnoses in structured formats
within electronic medical records (EMRs) [6, 7]. Failure to
accurately document anaphylaxis cases in EMRs could poten-
tially lead to dangerous re-exposure to allergenic triggers and
recurrent episodes of anaphylaxis, highlighting a significant
gap.

Leveraging automated systems such as large language models
(LLMs) presents an opportunity to address this gap by facili-
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Anaphylaxis is a severe and potentially life-threatening systemic
hypersensitivity reaction, typically involving multiple body sys-
tems, with an estimated lifetime prevalence ranging from 0.3%
to 5.1%. Diagnosis relies primarily on clinical assessment,
which requires a comprehensive patient history and identifica-
tion of characteristic physical signs [1]. In 2006, Sampson et
al. proposed diagnostic criteria, which were later endorsed by
the European Academy of Allergy and Clinical Immunology, the
Latin American Society of Allergy, Asthma, and Immunology,
and the World Allergy Organization (WAO) [1-4].
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of 969 medical texts in Brazilian Portuguese, was reviewed
by 3 expert physicians in anaphylaxis to determine whether
the text information should lead to an anaphylaxis diagnos-
tic indication. Ethical approval was obtained from the Ethics
Committee of Hospital Sirio-Libanés, with approval number
76871024.9.0000.5461.

The texts were categorized into distinct groups to facilitate a
structured analysis:

(1) Real-life anaphylaxis cases (35 texts): Texts from ano-
nymized medical records known to have a confirmed
diagnosis of anaphylaxis.

(2) Case reports (29 texts): Texts published in medical jour-
nals (13 reporting anaphylaxis and 16 reporting other
nonrelated conditions).

(3) Differential diagnosis cases (35 texts): These are cases
particularly challenging to diagnose, as they could pres-
ent clinically with symptoms similar to anaphylaxis. Ten
cases were adapted from the medical literature, and 25
were from anonymized medical records, all with other
diagnoses than anaphylaxis.

(4) SemClinBR cases (870 texts): Medical texts from
SemClinBR, a corpus of annotated clinical narratives
about various clinical conditions [10]. None of them were
suspicious of anaphylaxis. We selected texts in the corpus
with more than 200 characters to avoid texts with too
little information.

For a better understanding, we considered the texts with con-
firmed anaphylaxis diagnoses as “positive” and texts with other
diagnoses as “negative.”

We decided to opt for a 5% rate of positive cases to mimic
real-world anaphylaxis prevalence estimates, which can reach
up to 5% [1]. It aims to ensure that the method maintains a
low false positive rate if applied to actual medical texts, thereby
preventing users from being overwhelmed with incorrect cases.

2.2. LLM selection and configuration

We opted to employ LLMs due to their novelty and proven pro-
ficiency in understanding and generating human-like text based
on the input they receive. The LLMs selected for this study were
OpenAi’s GPT 3.5, 4, and 4 Turbo, chosen due to their original-
ity, widespread use, and demonstrated ability to generate coher-
ent and contextually relevant text. GPT 4 surpasses models
specifically fine-tuned on medical knowledge (ie, Med-PalLM)
in competency exams [11]. They have been utilized in various
applications, including content creation tools, conversational
agents, and as a tool to assist in more complex decision-making
processes. In our study, we used prompts to assign GPT the task
of analyzing medical texts to recommend diagnoses of anaphy-
laxis, identify likely allergens, and explain the basis for its con-
clusions using prompts.

Prompt engineering methodologies often involve the iterative
development and testing of prompts, ensuring they elicit the
desired responses or actions from the LLM [12]. In our study,
that involves several steps:

(1) Initial prompt drafting: Preliminary prompts were for-
mulated to encapsulate the criteria. These prompts were
structured to guide the LLMs in analyzing medical texts
and determining the presence or absence of suggestive
indicators of anaphylaxis.

(2) Iterative refinement: The initial prompts were tested
on a subset of the medical texts. Based on the LLMs’
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responses and feedback from the experts in anaphylaxis,
the prompts underwent refinement iterations to enhance
clarity and specificity.

The finalized prompt was employed to guide the LLMs in
analyzing the entire dataset of medical texts. In it, we explicitly
instructed the LLM to:

(1) suggest an anaphylaxis diagnosis (true or false);

(2) name a probable allergen;

(3) describe the reasons for their recommendation (citing pas-
sages from the medical texts);

(4) provide the probability of anaphylaxis (as a measure of
their confidence); and

(5) explain its reasoning process step-by-step, indicating
which criteria it used and why.

We also instructed the LLM to return an object with items 1 to
4. The program read the fields returned by the LLM and saved
them as a table line. Ultimately, we got a table in a CSV file, with
one line evaluating each medical text data.

One known drawback of LLMs is hallucinations. They refer
to instances where the model generates incorrect, misleading,
or nonsensical information presented as factual or logical [13].
We asked the model to link its recommendation reasons to text
passages as a form to “ground” the model and avoid or reduce
hallucinations [14]. Our experiments only consider whether or
not the LLM recognizes an anaphylaxis case. If the LLM hallu-
cinates and returns a wrong answer, it will be counted as a false
positive or negative.

2.3. Experiments setup

We used a Python program to call the LLM’s application pro-
gram interfaces, with the prompts, to run our experiments
directly. Besides allowing experiment automation, which is
indispensable as we have almost 1,000 texts, it also gives us
much better control of the LLM parameters. LLMs are inher-
ently stochastic systems, so their answer can vary from one call
to another [15]. To some extent, this variance is controlled using
LLM parameters like temperature. The lower the temperature,
the more precise the answers, as less probable answers are dis-
carded. High temperatures generate more creative solutions as
less likely, more unexpected answers are chosen. In all experi-
ments, we used the temperature equal to zero. All other param-
eters were left with their default values.

The experiments were conducted using 3 GPT configurations
(Fig. 1). Configuration 2 uses the results from configuration 1
and confirms the positive cases using GPT 4. This choice was
due to the high price of using GPT 4 in all texts. We created a
Google Colab notebook with the Python program to run the
experiments for each configuration and an input table (CSV
file) with all medical documents (one per line). The prompt’s
text had a placeholder string to be substituted by the processed
medical text. The program reads this table, and, for each line, it
assembles the prompt, using the prompt string, sends it to the
LLM, gets the LLM response, parses the JSON string returned,
and records the 4 fields returned by the LLM. For each medical
text (line), it saves the 4 fields in a corresponding column in an
output table (CSV file).

After that, we incorporated the prompt text describing
the WAO clinical criteria for anaphylaxis and ran the experi-
ments for the 3 configurations [1]. Its results served to gauge
the influence of explicitly stating the criteria on the model’s
performance.
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Figure 1. Flowchart depicting the 3 experimental configurations. The left
section shows the standalone GPT 3.5 and GPT 4 Turbo configurations. The
right section shows the hybrid GPT 3.5 and GPT 4 configuration with case-
based branching.

Finally, we copied the 6 output tables to a spreadsheet. The
3 specialists reviewed all texts and classified all cases as ana-
phylaxis or not before these experiments. We compared the
diagnostic suggestions of the LLM to the physicians’ diagno-
ses. Based on this comparison, the spreadsheet classified the
suggestions as true and false positives and negatives to cal-
culate precision, sensitivity (recall), specificity, and accuracy
values.

In addition to these values, Cohen kappa was used to eval-
uate the agreement between the program’s predictions and
medical diagnostic evaluations [16]. Kappa adjusts for the
agreement that could happen by chance, which is a crucial
factor in imbalanced datasets. A high agreement rate could
occur by chance in such datasets if a rater and a predictive
model consistently predict the majority class. Unlike accuracy,
which can be misleading in such datasets, Kappa factors in
the prevalence of each class considered the probability of ran-
dom agreement. Based on the value of Cohen kappa, the agree-
ment is interpreted as none (<0), slight (0-0.2), fair (0.2-0.4),
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moderate (0.4-0.6), substantial (0.6-0.8), and almost perfect
(0.8-1.0).

3. Results

Table 1 shows the experiment’s results. The best results came
using configuration 3, the GPT 4 Turbo. The values with and
without the WAO criteria were very close, with a slight advan-
tage for the prompt without them with 90.6% precision, 100%
sensitivity, 99.5% specificity, 99.5% accuracy, and 0.95 kappa’s
value (almost perfect agreement). The WAO criteria did improve
the older models’ performance, as for GPT 3.5 + 4 configura-
tion, precision went from 81.0% to 84.2% and kappa from
0.88 to 0.9, and for the GPT 3.5, configuration had even more
improvements, with precision going from 44.9% to 60.8% and
kappa from 0.59 to 0.74.

Figure 2 shows how precision improves as the GPT models
evolve, and Figure 3 shows the same for Kappa. As the mod-
els got smarter, the advantage of adding extra knowledge (the
WAO criteria) to the prompt was reduced. It reached the point
that GPT 4 Turbo precision did not improve with the additional
information.

3.1. Bias

We considered that the 5% positive to 95% negative ana-
phylaxis cases rate in our 969 texts corpus approximates the
real-world distribution. Despite this, we also made an analy-
sis removing the 870 texts from SemClinBR (Table 2). Most
of these texts should be easier to classify as they do not dis-
cuss anything related to anaphylaxis and could introduce a
bias (some presented other allergy cases but not anaphylaxis).
In the best configuration results, using GPT 4 Turbo, precision
and sensitivity remained the same. Specificity went from 99.5%
to 90.2%, and accuracy from 99.5% to 95%, still outstand-
ing results. Kappa went down from 0.95 to 0.90, which still is
an almost perfect agreement. The SemClinBR texts had a small
effect on the overall results.

3.2. Consistency

Before running the experiments, we tested GPT 3.5 consistency.
With this model, we analyzed 927 medical texts on 3 differ-
ent days using a prompt incorporating the WAO criteria and
returning the same fields. We compared the results from each
day, revealing the following differences:

Experiments’ confusion matrix and performance indicators for each GPT model combination with and without the WAO criteria

GPT model Confusion matrix Precision Sensitivity Specificity Accuracy Kappa agreement

4 Turbo TP: 48 FP: 5 90.6% 100% 99.5% 99.5% 0.95 almost perfect
TN: 916 FN: 0

4 Turbo W/criteria TP: 48 FP: 6 88.9% 100% 99.3% 99.4% 0.94 almost perfect
TN: 915FN: 0

35+4 TP: 47 FP: 11 81.0% 97.9% 98.8% 98.8% 0.88 almost perfect
TN: 910 FN: 1

3.5 + 4 W/criteria TP: 48 FP: 9 84.2% 100% 99.0% 99.1% 0.90 almost perfect
TN: 912 FN: 0

3.5 TP: 48 FP: 59 44.9% 100% 93.6% 93.9% 0.59 moderate
TN: 862 FN: 0

3.5 W/criteria TP: 48 FP: 31 60.8% 100% 96.6% 96.8% 0.74 substantial
TN: 890 FN: 0
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Figure 2. Evolution of precision in GPT models: This graph displays the
diminishing returns of including WAO criteria as the models progress from
GPT 3.5 to GPT 4 Turbo. The latest model maintains high precision without
the extra information. WAO, World Allergy Organization.
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Figure 3. Advances in agreement, using Cohen kappa, for GPT models: This
graph shows a consistent upward trend in Cohen kappa values from GPT 3.5
to GPT 4 Turbo, demonstrating the reduced impact of WAO criteria. WAO,
World Allergy Organization.

(1) Textual differences: Of the 927 medical texts, 646 cases
(70%) showed some textual variation.

(2) Probability variation: In 26 cases (2.8%), the probability
values, which indicate the model’s confidence in its rec-
ommendation, differed.

(3) Diagnoses: Most notably, 6 cases (0.65%) presented dif-
ferent diagnoses on at least 2 different days. This small
percentage indicates a high consistency level in the pri-
mary diagnosis recommendation task.

We opted to run this test just with GPT 3.5 because of the
higher costs of using GPT 4 and the fact that, if the GPT 3.5
variance was acceptable, the newer models’ variance should be
even better.

After running the experiments, we again tested the consis-
tency of the LLM results. This time, we reran the program on
a different date for all configurations. Table 3 shows each run’s
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confusion matrix and changes. The changes were minimal (aver-
age of 1.7); consequently, the precision, sensitivity, etc. values
changed very little. The changes are primarily in texts where
the model is unsure (low probabilities). Most of the differences
were minor textual variations in the sentences generated by the
models. They did not impact the diagnostic recommendation
but underscored the LLM’s stochastic behavior.

4. Discussion

The results from our experiments provide a compelling insight
into the potential and limitations of utilizing LLMs, specifically
GPT models, in the realm of automated diagnosis from medical
texts. Several key findings merit further discussion.

The GPT 4 Turbo LLM exhibited impressive performance in
diagnosing anaphylaxis, with a precision of 90.6%, a sensitiv-
ity of 100%, and a specificity of 99.5%. High sensitivity is cru-
cial here, ensuring the model effectively identifies most cases,
thereby minimizing false negatives. On the other hand, high
specificity means the model accurately rules out anaphylaxis
in those who do not have it, reducing false positives. Too many
false positives could lead to diagnostic fatigue and potential
oversight of genuine cases. This balance is essential in medi-
cal diagnostics, where accurately detecting a condition without
overdiagnosing is vital.

These findings align with recent studies highlighting the effi-
cacy of LLMs in medical data extraction [17].

For earlier models (GPT 3.5 and 4), there was a drop in per-
formance metrics when the WAO criteria text was excluded from
the prompt. It underscores the importance of effective prompt
engineering. This resonates with the broader understanding that
while LLMs possess vast knowledge, guiding them with precise
instructions can significantly enhance their performance [18].

Carrell et al. [19] research aligns closely with our focus on
anaphylaxis identification; they enhanced the identification of
anaphylaxis events by employing machine learning (ML) and
natural language processing methodologies. Their approach
utilized logistic regression models, leveraging structured claims
data, and achieved a cross-validated area under the curve of
0.58. This work provides a significant benchmark in anaphy-
laxis identification through computational means, particularly
in utilizing structured data and ML models.

They predominantly relied on structured claims data for
their ML models and employed logistic regression models, fun-
damentally statistical models that predict the probability of a
binary outcome. We focus on analyzing unstructured medical
texts within EMRs using LLMs, which can potentially harness
richer, more detailed patient information that might be absent
or not readily accessible in structured data. We achieved a nota-
bly higher precision (86 %), sensitivity (100%), and specificity
(99.13%), potentially indicating a robust predictive capability
to identify and recommend anaphylaxis diagnoses accurately.

Kural et al. [20] utilized ML to analyze claims data from a
Content Management System database to identify anaphylaxis
cases. It uses a combination of unsupervised and supervised
learning techniques to identify specific words or features in
claim documents indicative of anaphylaxis rather than attempt
to understand the text’s context or narrative content. Such a
method, typical of many traditional ML models, while effec-
tive in specific contexts, cannot fundamentally understand or
interpret the underlying narrative or context of the text. LLMs
can understand human-like text, potentially providing more
nuanced and context-aware analyses.
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Experiment values without SemClinBr data: confusion matrix and performance indicators for each GPT model combination with and

without the WAO criteria

GPT model Confusion matrix Precision Sensitivity Specificity Accuracy Kappa agreement

4 Turbo TP: 48 FP: 5 90.6% 100% 90.2% 95.0% 0.90 almost perfect
TN: 46 FN: 0

4 Turbo W/criteria TP: 48 FP: 5 90.6% 100% 90.2% 95.0% 0.90 almost perfect
TN: 46 FN: 0

35+4 TP: 47 TP: 42 83.9% 97.9% 82.4% 89.9% 0.80 substantial
FP: 9 FP: 1

3.5 + 4 W/criteria TP: 48 FP: 9 84.2% 100% 82.4% 90.9% 0.82 almost perfect
TN: 42 FN: O

35 TP: 48 TN: 32 71.6% 100% 62.7% 80.8% 0.62 substantial
FP: 19 FN: 0

3.5 W/criteria TP: 48 FP: 9 71.6% 100% 62.7% 80.8% 0.62 substantial
TN: 42 FN: O

Results for 2 program runs for 4 model configurations on
different days

Confusion matrix

GPT model First run Second run Changes

4 Turbo TP: 48 TN: 916 TP: 48 TN: 917 1
FP: 5 FN: 0 FP: 4 FN: 0

4 Turbo W/criteria TP: 48 TN: 915 TP: 48 TN: 912 3
FP: 6 FN: 0 FP:9 FN: 0

35+4 TP: 47 TN: 910 TP: 48 TN: 909 2
FP: 11 FN: 1 FP:12 FN: 0

3.5 + 4 W/criteria TP: 48 TN: 912 TP: 48 TN: 913 1
FP:9FN: 0 FP: 8 FN: 0

3.5 TP: 48 TN: 862 TP: 48 TN: 862 0
FP:59 FN: 0 FP: 59 FN: 0

3.5 Wi/criteria TP: 48 TN: 890 TP: 48 TN: 887 3
FP:31FN: 0 FP: 34 FN: 0

There were not many changes.

Our LLM-based solution grasps not just the explicit men-
tions of anaphylaxis (or related words) but also the nuanced
context in which these mentions occur. So, they are more flexible
and can be used in a more extensive range of medical texts.

Our approach explicitly analyses medical texts and applies
specific clinical criteria in Brazilian Portuguese. That may pro-
vide a culturally and linguistically relevant tool for anaphylaxis
identification in Portuguese-speaking regions.

While our results are promising, there are some limitations to
consider. First, the study used a specific set of medical texts in
Brazilian Portuguese, which may be limited to particular clinical
narratives. Second, the differential cases experts intentionally
crafted to be particularly challenging allowed for more chal-
lenging experiments but might not reflect the typical anaphy-
laxis presentations. Furthermore, while the LLMs demonstrated
high accuracy, they are not infallible and still require human
oversight.

The findings of this study have important implications for
clinical practice. The application of LLMs in the automatic rec-
ommendation of anaphylaxis diagnoses from medical texts has
showcased significant potential, with results indicating high pre-
cision, sensitivity, and specificity. The ability of LLMs to accu-
rately identify anaphylaxis in texts can ensure that structured
data in EMRs match the information in text format. That can
streamline clinical workflows by reducing the manual labor
involved in case identification and documentation.
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Also, we anticipate contributing to the broader understand-
ing of the role and utility that LLMs can have in clinical decision
support and patient safety.

In future research, there is ample scope to refine this meth-
odology for identifying a more comprehensive range of medical
conditions and harnessing the capabilities of LLMs for EMR opti-
mization [15]. The amalgamation of LLMs with Clinical Decision
Support Systems has the potential to autonomously extract perti-
nent medical data from textual sources and generate lucid expla-
nations for clinical decisions [21]. This integration can further
amplify the efficacy of real-time clinical recommendations, thereby
elevating the standard of patient care. Finally, capitalizing on the
multilingual proficiency of LLMs can pave the way for more glob-
ally accessible and universally applicable healthcare solutions.
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