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Artificial intelligence for detecting anaphylaxis in 
electronic medical records
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ABSTRACT 
Background: Despite established criteria, diagnosing anaphylaxis remains challenging but critical for preventing future 
reactions. Fast-paced clinical settings, compounded by underrecording in electronic medical records (EMRs), increase the risk 
of dangerous re-exposures. Leveraging artificial intelligence through automated systems such as large language models (LLMs) 
offers a solution.

Objective: This study aims to assess the efficacy of artificial intelligence, specifically LLMs, in autonomously identifying 
anaphylaxis diagnoses from EMR text to enhance patient safety and optimize care delivery.

Methods: LLMs (GPT 3.5, 4, and 4 Turbo) analyzed 969 medical texts in Brazilian Portuguese, annotated as anaphylaxis-
positive (48) or negative (921) by 3 expert physicians. A primary prompt simulated a general practitioner’s role in reviewing 
medical narratives for anaphylaxis detection, with a secondary prompt incorporating World Allergy Organization (WAO) criteria. 
The experiments were conducted using 3 GPT configurations. The diagnostic suggestions of the LLM were compared to the 
physicians’ diagnoses. Precision, sensitivity (recall), specificity, and accuracy values were calculated.

Results: Using the primary prompt, GPT 4 Turbo detected anaphylaxis cases with 90.6% precision, 100% sensitivity, 99.5% 
specificity, 99.5% accuracy, and a Cohen kappa coefficient of 0.95. The inclusion of WAO criteria slightly improved the performance 
of older models (GPT 3.5 + 4 configuration). However, for GPT 4 Turbo, additional information did not enhance precision.

Conclusion: The results highlight the potential of artificial intelligence, particularly LLMs, to automate anaphylaxis diagnosis, 
support healthcare professionals, and improve patient safety and care.
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1. Introduction

Anaphylaxis is a severe and potentially life-threatening systemic 
hypersensitivity reaction, typically involving multiple body sys-
tems, with an estimated lifetime prevalence ranging from 0.3% 
to 5.1%. Diagnosis relies primarily on clinical assessment, 
which requires a comprehensive patient history and identifica-
tion of characteristic physical signs [1]. In 2006, Sampson et 
al. proposed diagnostic criteria, which were later endorsed by 
the European Academy of Allergy and Clinical Immunology, the 
Latin American Society of Allergy, Asthma, and Immunology, 
and the World Allergy Organization (WAO) [1–4].

However, in fast-paced clinical environments with limited 
resources, where time is of the essence, manual application of 
these diagnostic criteria can pose challenges [5]. This challenge 
is further compounded by the underrecording or inadequate 
registration of anaphylaxis diagnoses in structured formats 
within electronic medical records (EMRs) [6, 7]. Failure to 
accurately document anaphylaxis cases in EMRs could poten-
tially lead to dangerous re-exposure to allergenic triggers and 
recurrent episodes of anaphylaxis, highlighting a significant 
gap.

Leveraging automated systems such as large language models 
(LLMs) presents an opportunity to address this gap by facili-
tating timely identification and documentation of anaphylaxis, 
thereby enhancing patient safety and optimizing care delivery [8].  
While LLMs, including GPT variants, have demonstrated 
remarkable capabilities in healthcare tasks, the complexity of 
EMR texts may present challenges, potentially leading to diag-
nostic inaccuracies [9].

This study aims to explore and validate the efficacy of LLMs 
in autonomously identifying and recommending diagnoses of 
anaphylaxis from the textual data encapsulated within EMRs.

2. Methods

2.1. Data collection

In this study, medical texts served as a foundation for assessing 
the capabilities of LLMs in recommending anaphylaxis diagno-
ses. We planned the compilation process to create a represen-
tative dataset for evaluating the LLMs. The dataset, composed 
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of 969 medical texts in Brazilian Portuguese, was reviewed 
by 3 expert physicians in anaphylaxis to determine whether 
the text information should lead to an anaphylaxis diagnos-
tic indication. Ethical approval was obtained from the Ethics 
Committee of Hospital Sírio-Libanês, with approval number 
76871024.9.0000.5461.

The texts were categorized into distinct groups to facilitate a 
structured analysis:

	 (1)	Real-life anaphylaxis cases (35 texts): Texts from ano-
nymized medical records known to have a confirmed 
diagnosis of anaphylaxis.

	 (2)	Case reports (29 texts): Texts published in medical jour-
nals (13 reporting anaphylaxis and 16 reporting other 
nonrelated conditions).

	 (3)	Differential diagnosis cases (35 texts): These are cases 
particularly challenging to diagnose, as they could pres-
ent clinically with symptoms similar to anaphylaxis. Ten 
cases were adapted from the medical literature, and 25 
were from anonymized medical records, all with other 
diagnoses than anaphylaxis.

	 (4)	SemClinBR cases (870 texts): Medical texts from 
SemClinBR, a corpus of annotated clinical narratives 
about various clinical conditions [10]. None of them were 
suspicious of anaphylaxis. We selected texts in the corpus 
with more than 200 characters to avoid texts with too 
little information.

For a better understanding, we considered the texts with con-
firmed anaphylaxis diagnoses as “positive” and texts with other 
diagnoses as “negative.”

We decided to opt for a 5% rate of positive cases to mimic 
real-world anaphylaxis prevalence estimates, which can reach 
up to 5% [1]. It aims to ensure that the method maintains a 
low false positive rate if applied to actual medical texts, thereby 
preventing users from being overwhelmed with incorrect cases.

2.2. LLM selection and configuration

We opted to employ LLMs due to their novelty and proven pro-
ficiency in understanding and generating human-like text based 
on the input they receive. The LLMs selected for this study were 
OpenAi’s GPT 3.5, 4, and 4 Turbo, chosen due to their original-
ity, widespread use, and demonstrated ability to generate coher-
ent and contextually relevant text. GPT 4 surpasses models 
specifically fine-tuned on medical knowledge (ie, Med-PaLM) 
in competency exams [11]. They have been utilized in various 
applications, including content creation tools, conversational 
agents, and as a tool to assist in more complex decision-making 
processes. In our study, we used prompts to assign GPT the task 
of analyzing medical texts to recommend diagnoses of anaphy-
laxis, identify likely allergens, and explain the basis for its con-
clusions using prompts.

Prompt engineering methodologies often involve the iterative 
development and testing of prompts, ensuring they elicit the 
desired responses or actions from the LLM [12]. In our study, 
that involves several steps:

	 (1)	Initial prompt drafting: Preliminary prompts were for-
mulated to encapsulate the criteria. These prompts were 
structured to guide the LLMs in analyzing medical texts 
and determining the presence or absence of suggestive 
indicators of anaphylaxis.

	 (2)	Iterative refinement: The initial prompts were tested 
on a subset of the medical texts. Based on the LLMs’ 

responses and feedback from the experts in anaphylaxis, 
the prompts underwent refinement iterations to enhance 
clarity and specificity.

The finalized prompt was employed to guide the LLMs in 
analyzing the entire dataset of medical texts. In it, we explicitly 
instructed the LLM to:

	 (1)	suggest an anaphylaxis diagnosis (true or false);
	 (2)	name a probable allergen;
	 (3)	describe the reasons for their recommendation (citing pas-

sages from the medical texts);
	 (4)	provide the probability of anaphylaxis (as a measure of 

their confidence); and 
	 (5)	explain its reasoning process step-by-step, indicating 

which criteria it used and why.

We also instructed the LLM to return an object with items 1 to 
4. The program read the fields returned by the LLM and saved 
them as a table line. Ultimately, we got a table in a CSV file, with 
one line evaluating each medical text data.

One known drawback of LLMs is hallucinations. They refer 
to instances where the model generates incorrect, misleading, 
or nonsensical information presented as factual or logical [13]. 
We asked the model to link its recommendation reasons to text 
passages as a form to “ground” the model and avoid or reduce 
hallucinations [14]. Our experiments only consider whether or 
not the LLM recognizes an anaphylaxis case. If the LLM hallu-
cinates and returns a wrong answer, it will be counted as a false 
positive or negative.

2.3. Experiments setup

We used a Python program to call the LLM’s application pro-
gram interfaces, with the prompts, to run our experiments 
directly. Besides allowing experiment automation, which is 
indispensable as we have almost 1,000 texts, it also gives us 
much better control of the LLM parameters. LLMs are inher-
ently stochastic systems, so their answer can vary from one call 
to another [15]. To some extent, this variance is controlled using 
LLM parameters like temperature. The lower the temperature, 
the more precise the answers, as less probable answers are dis-
carded. High temperatures generate more creative solutions as 
less likely, more unexpected answers are chosen. In all experi-
ments, we used the temperature equal to zero. All other param-
eters were left with their default values.

The experiments were conducted using 3 GPT configurations 
(Fig. 1). Configuration 2 uses the results from configuration 1 
and confirms the positive cases using GPT 4. This choice was 
due to the high price of using GPT 4 in all texts. We created a 
Google Colab notebook with the Python program to run the 
experiments for each configuration and an input table (CSV 
file) with all medical documents (one per line). The prompt’s 
text had a placeholder string to be substituted by the processed 
medical text. The program reads this table, and, for each line, it 
assembles the prompt, using the prompt string, sends it to the 
LLM, gets the LLM response, parses the JSON string returned, 
and records the 4 fields returned by the LLM. For each medical 
text (line), it saves the 4 fields in a corresponding column in an 
output table (CSV file).

After that, we incorporated the prompt text describing 
the WAO clinical criteria for anaphylaxis and ran the experi-
ments for the 3 configurations [1]. Its results served to gauge 
the influence of explicitly stating the criteria on the model’s 
performance.
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Finally, we copied the 6 output tables to a spreadsheet. The 
3 specialists reviewed all texts and classified all cases as ana-
phylaxis or not before these experiments. We compared the 
diagnostic suggestions of the LLM to the physicians’ diagno-
ses. Based on this comparison, the spreadsheet classified the 
suggestions as true and false positives and negatives to cal-
culate precision, sensitivity (recall), specificity, and accuracy 
values.

In addition to these values, Cohen kappa was used to eval-
uate the agreement between the program’s predictions and 
medical diagnostic evaluations [16]. Kappa adjusts for the 
agreement that could happen by chance, which is a crucial 
factor in imbalanced datasets. A high agreement rate could 
occur by chance in such datasets if a rater and a predictive 
model consistently predict the majority class. Unlike accuracy, 
which can be misleading in such datasets, Kappa factors in 
the prevalence of each class considered the probability of ran-
dom agreement. Based on the value of Cohen kappa, the agree-
ment is interpreted as none (<0), slight (0–0.2), fair (0.2–0.4), 

moderate (0.4–0.6), substantial (0.6–0.8), and almost perfect 
(0.8–1.0).

3. Results

Table 1 shows the experiment’s results. The best results came 
using configuration 3, the GPT 4 Turbo. The values with and 
without the WAO criteria were very close, with a slight advan-
tage for the prompt without them with 90.6% precision, 100% 
sensitivity, 99.5% specificity, 99.5% accuracy, and 0.95 kappa’s 
value (almost perfect agreement). The WAO criteria did improve 
the older models’ performance, as for GPT 3.5 + 4 configura-
tion, precision went from 81.0% to 84.2% and kappa from 
0.88 to 0.9, and for the GPT 3.5, configuration had even more 
improvements, with precision going from 44.9% to 60.8% and 
kappa from 0.59 to 0.74.

Figure 2 shows how precision improves as the GPT models 
evolve, and Figure 3 shows the same for Kappa. As the mod-
els got smarter, the advantage of adding extra knowledge (the 
WAO criteria) to the prompt was reduced. It reached the point 
that GPT 4 Turbo precision did not improve with the additional 
information.

3.1. Bias

We considered that the 5% positive to 95% negative ana-
phylaxis cases rate in our 969 texts corpus approximates the 
real-world distribution. Despite this, we also made an analy-
sis removing the 870 texts from SemClinBR (Table 2). Most 
of these texts should be easier to classify as they do not dis-
cuss anything related to anaphylaxis and could introduce a 
bias (some presented other allergy cases but not anaphylaxis). 
In the best configuration results, using GPT 4 Turbo, precision 
and sensitivity remained the same. Specificity went from 99.5% 
to 90.2%, and accuracy from 99.5% to 95%, still outstand-
ing results. Kappa went down from 0.95 to 0.90, which still is 
an almost perfect agreement. The SemClinBR texts had a small 
effect on the overall results.

3.2. Consistency

Before running the experiments, we tested GPT 3.5 consistency. 
With this model, we analyzed 927 medical texts on 3 differ-
ent days using a prompt incorporating the WAO criteria and 
returning the same fields. We compared the results from each 
day, revealing the following differences:

Figure 1.  Flowchart depicting the 3 experimental configurations. The left 
section shows the standalone GPT 3.5 and GPT 4 Turbo configurations. The 
right section shows the hybrid GPT 3.5 and GPT 4 configuration with case-
based branching.

Table 1.

Experiments’ confusion matrix and performance indicators for each GPT model combination with and without the WAO criteria

GPT model Confusion matrix Precision Sensitivity Specificity Accuracy Kappa agreement

4 Turbo TP: 48 FP: 5
TN: 916 FN: 0

90.6% 100% 99.5% 99.5% 0.95 almost perfect

4 Turbo W/criteria TP: 48 FP: 6
TN: 915 FN: 0

88.9% 100% 99.3% 99.4% 0.94 almost perfect

3.5 + 4 TP: 47 FP: 11
TN: 910 FN: 1

81.0% 97.9% 98.8% 98.8% 0.88 almost perfect

3.5 + 4 W/criteria TP: 48 FP: 9
TN: 912 FN: 0

84.2% 100% 99.0% 99.1% 0.90 almost perfect

3.5 TP: 48 FP: 59
TN: 862 FN: 0

44.9% 100% 93.6% 93.9% 0.59 moderate

3.5 W/criteria TP: 48 FP: 31
TN: 890 FN: 0

60.8% 100% 96.6% 96.8% 0.74 substantial
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	 (1)	Textual differences: Of the 927 medical texts, 646 cases 
(70%) showed some textual variation.

	 (2)	Probability variation: In 26 cases (2.8%), the probability 
values, which indicate the model’s confidence in its rec-
ommendation, differed.

	 (3)	Diagnoses: Most notably, 6 cases (0.65%) presented dif-
ferent diagnoses on at least 2 different days. This small 
percentage indicates a high consistency level in the pri-
mary diagnosis recommendation task.

We opted to run this test just with GPT 3.5 because of the 
higher costs of using GPT 4 and the fact that, if the GPT 3.5 
variance was acceptable, the newer models’ variance should be 
even better.

After running the experiments, we again tested the consis-
tency of the LLM results. This time, we reran the program on 
a different date for all configurations. Table 3 shows each run’s 

confusion matrix and changes. The changes were minimal (aver-
age of 1.7); consequently, the precision, sensitivity, etc. values 
changed very little. The changes are primarily in texts where 
the model is unsure (low probabilities). Most of the differences 
were minor textual variations in the sentences generated by the 
models. They did not impact the diagnostic recommendation 
but underscored the LLM’s stochastic behavior.

4. Discussion

The results from our experiments provide a compelling insight 
into the potential and limitations of utilizing LLMs, specifically 
GPT models, in the realm of automated diagnosis from medical 
texts. Several key findings merit further discussion.

The GPT 4 Turbo LLM exhibited impressive performance in 
diagnosing anaphylaxis, with a precision of 90.6%, a sensitiv-
ity of 100%, and a specificity of 99.5%. High sensitivity is cru-
cial here, ensuring the model effectively identifies most cases, 
thereby minimizing false negatives. On the other hand, high 
specificity means the model accurately rules out anaphylaxis 
in those who do not have it, reducing false positives. Too many 
false positives could lead to diagnostic fatigue and potential 
oversight of genuine cases. This balance is essential in medi-
cal diagnostics, where accurately detecting a condition without 
overdiagnosing is vital.

These findings align with recent studies highlighting the effi-
cacy of LLMs in medical data extraction [17].

For earlier models (GPT 3.5 and 4), there was a drop in per-
formance metrics when the WAO criteria text was excluded from 
the prompt. It underscores the importance of effective prompt 
engineering. This resonates with the broader understanding that 
while LLMs possess vast knowledge, guiding them with precise 
instructions can significantly enhance their performance [18].

Carrell et al. [19] research aligns closely with our focus on 
anaphylaxis identification; they enhanced the identification of 
anaphylaxis events by employing machine learning (ML) and 
natural language processing methodologies. Their approach 
utilized logistic regression models, leveraging structured claims 
data, and achieved a cross-validated area under the curve of 
0.58. This work provides a significant benchmark in anaphy-
laxis identification through computational means, particularly 
in utilizing structured data and ML models.

They predominantly relied on structured claims data for 
their ML models and employed logistic regression models, fun-
damentally statistical models that predict the probability of a 
binary outcome. We focus on analyzing unstructured medical 
texts within EMRs using LLMs, which can potentially harness 
richer, more detailed patient information that might be absent 
or not readily accessible in structured data. We achieved a nota-
bly higher precision (86%), sensitivity (100%), and specificity 
(99.13%), potentially indicating a robust predictive capability 
to identify and recommend anaphylaxis diagnoses accurately.

Kural et al. [20] utilized ML to analyze claims data from a 
Content Management System database to identify anaphylaxis 
cases. It uses a combination of unsupervised and supervised 
learning techniques to identify specific words or features in 
claim documents indicative of anaphylaxis rather than attempt 
to understand the text’s context or narrative content. Such a 
method, typical of many traditional ML models, while effec-
tive in specific contexts, cannot fundamentally understand or 
interpret the underlying narrative or context of the text. LLMs 
can understand human-like text, potentially providing more 
nuanced and context-aware analyses.

Figure 2.  Evolution of precision in GPT models: This graph displays the 
diminishing returns of including WAO criteria as the models progress from 
GPT 3.5 to GPT 4 Turbo. The latest model maintains high precision without 
the extra information. WAO, World Allergy Organization.

Figure 3.  Advances in agreement, using Cohen kappa, for GPT models: This 
graph shows a consistent upward trend in Cohen kappa values from GPT 3.5 
to GPT 4 Turbo, demonstrating the reduced impact of WAO criteria. WAO, 
World Allergy Organization.
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Our LLM-based solution grasps not just the explicit men-
tions of anaphylaxis (or related words) but also the nuanced 
context in which these mentions occur. So, they are more flexible 
and can be used in a more extensive range of medical texts.

Our approach explicitly analyses medical texts and applies 
specific clinical criteria in Brazilian Portuguese. That may pro-
vide a culturally and linguistically relevant tool for anaphylaxis 
identification in Portuguese-speaking regions.

While our results are promising, there are some limitations to 
consider. First, the study used a specific set of medical texts in 
Brazilian Portuguese, which may be limited to particular clinical 
narratives. Second, the differential cases experts intentionally 
crafted to be particularly challenging allowed for more chal-
lenging experiments but might not reflect the typical anaphy-
laxis presentations. Furthermore, while the LLMs demonstrated 
high accuracy, they are not infallible and still require human 
oversight.

The findings of this study have important implications for 
clinical practice. The application of LLMs in the automatic rec-
ommendation of anaphylaxis diagnoses from medical texts has 
showcased significant potential, with results indicating high pre-
cision, sensitivity, and specificity. The ability of LLMs to accu-
rately identify anaphylaxis in texts can ensure that structured 
data in EMRs match the information in text format. That can 
streamline clinical workflows by reducing the manual labor 
involved in case identification and documentation.

Also, we anticipate contributing to the broader understand-
ing of the role and utility that LLMs can have in clinical decision 
support and patient safety.

In future research, there is ample scope to refine this meth-
odology for identifying a more comprehensive range of medical 
conditions and harnessing the capabilities of LLMs for EMR opti-
mization [15]. The amalgamation of LLMs with Clinical Decision 
Support Systems has the potential to autonomously extract perti-
nent medical data from textual sources and generate lucid expla-
nations for clinical decisions [21]. This integration can further 
amplify the efficacy of real-time clinical recommendations, thereby 
elevating the standard of patient care. Finally, capitalizing on the 
multilingual proficiency of LLMs can pave the way for more glob-
ally accessible and universally applicable healthcare solutions.
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