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A nonassociative Groenewold-Moyal (GM) plane is constructed using quaternion-valued
function algebras. The symmetrized multiparticle states, the scalar product, the anni-
hilation/creation algebra and the formulation in terms of a Hopf algebra are also devel-
oped. Nonassociative quantum algebras in terms of position and momentum operators
are given as the simplest examples of a framework whose applications may involve string
theory and nonlinear quantum field theory.
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1. Introduction

Noncommutative geometry! has a wide range of applications in quantum field
theory,?? in the construction of noncommutative physical models. These noncom-
mutative theories are associative. A more general framework could be conceived
whereby, in addition to noncommutativity, the algebra is also nonassociative. Our
aim is to find an example where noncommutative and nonassociative algebra ap-
pears naturally in the context of field theory. Since most field theories are based
on associative algebra, our aim is to obtain a deformation parameter 6 such that
associativity is recovered when 6 goes to zero.

In the following pages, this goal is achieved by means of construction: we start
with a field theory where the base space is composed of RP and target space is
composed of quaternions H. The second step is to deform R” into noncommutative
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algebra such that [z#, 2] = i0”*. It turns out that the resulting algebra of fields is
nonassociative. As expected, when 0*” goes to zero, associativity is recovered.

Let us consider a quaternion-valued field theory, and write the field F : RP —
H in a symplectic notation as F = fo + jfi, so that fi_o1 : RP? — C. In this
theory, the sources of noncommutativity are the quaternion complex units ¢, j and
k =ij = —ji. By deforming the commutative multiplication of the complex-valued
functions f;—o,1 to a noncommutative, we obtain a theory with nonassociativity as
a by-product of the superposition of the two different noncommutativities.

Nonassociative phenomena appear in many places, and further information can
be found in reviews on the subject.*5 However, while nonassociativity is common
place in algebra,® examples of nonassociativity in physics are a collection of discon-
nected problems. The most obvious proposals for finding a physical phenomenon
that may be described by nonassociativity involve the octonion field.” 2 Although
octonion algebra is a standard example of nonassociativity, it does not have an
associative limit. Recently, nonassociative structures have appeared in general
1317 string theory'® 2% and brane theory.21 26 The model proposed in
this paper is an attempt to obtain a very simple example of nonassociativity where
associativity can be recovered at a suitable limit.

The field theory described in this paper has a natural interpretation since its
target space may be understood as the tangent space of a hyper-complex manifold.
In the same way a complex manifold is locally complex, a hyper-complex manifold

relativity,

is locally quaternionic. In the context of supersymmetric models, there can be
various types of complex and hyper-complex manifolds as found in supersymmetric

2731 string compactification on K 3 surfaces,??
33,34

extensions of nonlinear sigma models,
generalized hyper-Kéahler applied to string theory,
the nature of time.3® Therefore, the model presented here can be understood as a
linearized version of such non-linear sigma models.

Our results are related to quaternion quantum mechanics and quantum field
theory.?>~4! However, these latter models do not consider multiparticle states, and
consequently in these theories it is impossible to build states with particle statistics,
a problem that has been solved here by defining annihilation and creation operators
of symmetrized states.

This paper is organized as follows: in Sec. 2, we present the nondeformed quater-
nion scalar field theory and its multiparticle states and statistics. In Sec. 3, a
deformed algebra of functions is formulated according to the Groenewold—Moyal
(GM) procedure. We then show that the resulting algebra is nonassociative. Ex-
amples of nonassociative quantum algebra obtained from introducing quaternion

and even speculations on

unity are presented as well. The last section contains our conclusions and future
perspectives.

2. The Quaternion Scalar Field Theory

The aforementioned quaternion field theories have only one-particle state. This
means that multiparticle states cannot be built according to boson—fermion statis-
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tics. In this section, this void is filled in the mathematical structure of quaternion
field theory following the Hopf algebra formalism of Ref. 42, where the Poincaré
group acts on the GM plane with a deformed co-product. In this section the de-
formation is the hyper-complex quaternion structure. A second deformation, in the
usual multiplication, is introduced in Sec. 3.

2.1. Poincaré invariance

If g is an element belonging to the Poincaré group, the action of the symmetry
group (>) on spacetime functions F,G € H must obey

g>(F-9)=(9>F)-(g>9), (1)

where the dot represents ordinary multiplication. The symplectic notation is
adopted for quaternionic functions, so that 7 = fy + f1j, with f;—1 2 C-functions,
and j is the complex element of quaternion algebra, and thus ij = —ji. In terms of
Hopf algebras, the action of the elements of an algebra over a product of complex
functions is determined by the co-product. By way of example, the translation gen-
erator p = i0, of the Poincaré group acts on complex function algebra according
to the co-product

AP)=10p+p®1, (2)
which, acting on f,g € C with multiplication m, is subject to the consistency
constraint m(A(p)(f ® g)) = p(f - g), where m takes the elements of the tensor
product and multiplies them. On the other hand, taking the quaternion functions

fj and gj, again with f, g C-functions, we obtain m(A(p)(fj ® gj)) # p(fj - gj)-
This difficulty is solved by defining a quaternion tensor product, namely

(fog)-mon)=(f -m)e(g-n), (3)
(f ®@gj)-(men) = (f-m)@(gj-n), (4)
(f@g)-(mjeon)=(f -mj)®(G-n), ()
(f©gj) - (mj@n) = (f-mj)©(gj-n). (6)

f, g, m and n are complex-valued functions and barred functions are the complex
conjugates. This result follows for f,n € H as well. This kind of structure is similar
to the Zs tensor product found in Lie super-algebras.*® Adopting this tensor prod-
uct, the co-product satisfies the identity A(pq) = A(p)A(G), and the first element
of a multiparticle quaternionic state is given: a well-defined co-product. As the co-
product of the translation operator of the Poincaré algebra has the expression (2),
either in the quaternion case or in the complex case, it will have the same behavior
when the multiplication operation is deformed according to the Moyal procedure
in both cases.** Thus, the deformed co-product of the rotation operator of the
Poincaré group in the noncommutative complex function algebra is valid for the
deformed quaternion spaces discussed in the next section as well.
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2.2. State statistics

States endowed with well-defined statistics have a permutation operator which in-
terchanges the positions of the functions describing the particles in a state. As the
particles are represented by quaternion functions, for a generic quaternion state

FRG=fo®go+ fo®@g1j+ fii®@go+ f1i® g7, (7)

the following operators are defined:

60 (FeG)=(GaF), (8)
Fe(FRG) =g0@fo+g1i @ fo+G0® fij +915 @ f17, 9)
E(FRG) = fo®go+ fo®gij+ fLi®Go+ fii ® g1j, (10)

so that 62 = 72 = 42 = 1 and & = 67. Symmetrized states and anti-symmetrized

states are defined as follows
1 R
|f1,f2>i=§(ﬂi7)>|f17f2>, (11)

with |Fp, Fa) = F1 @ Fa, the defined states are eigen-states of the permutation
operator 7 according to

7| F1, Fa)x = £|F1, Fa)t - (12)

After defining symmetrized states and anti-symmetrized states, the particle statis-
tics is guaranteed, and a scalar product is needed, which is presented below.

2.3. The scalar product

By expressing a one-particle state as |F) = |fo) + |f1j), so that the orthogonality
condition {f|gj) = (fj|lg) = 0 holds, a complex-valued scalar product is obtained
as a sum of usual scalar products of complex functions

(FIG) = (folgo) + (f1jlgrj)
= (folgo) + (911 f1) - (13)

In the above scalar product, (¢F|G) # (F|gG), where ¢ € H and F,G : R* — H.
As a consequence, when ¢ is a quaternionic operator, this fact will result in the
splitting of the creation/annihilation operator algebra in pure complex and pure
quaternionic operators which separately obey the condition, as shown in the next
item. On the other hand, when defining the scalar product of two-particle states as

(F,GIM,N) = (|F,G),kIM,N)) (14)

= (folmo)(GIN) + (f17|m15)(GIN) , (15)
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it is observed that if F = M and G = N, then
IFegl*=|FPIg”. (16)
The scalar product also obeys the necessary self-adjointness condition
(7| F,G), IM,N)) = (IF,G), FIMN)). (17)

Thus, the scalar product constructed above is valid for multiparticles, something
which has not been observed in previous quaternion quantum theories.

2.4. Creation and annihilation operators

In principle, the creation ojr operator and annihilation operator ar of a quaternionic

state are

0; = a}-ﬂ + a}-lj and OF =af, +ayf;- (18)

However, as the scalar product constructed above is such that (¢F|G) # (F|qg),
where ¢ € H and F,G : R* — H, the creation/annihilation algebra will be built in
terms of a}o, a}-l j» af, and ay, ;. These operators create complex fields, and thus
satisfy commutation rules with the quaternionic unity j, namely

205, = Qfy 2, jag, =agj, Zaf ;= afjZ and jag =ag;j. (19)
The operator creates/annihilates either a bosonic or a fermionic state, thus the wave
function must be either symmetrized or anti-symmetrized. In order to construct
the algebra, the scalar product must have the same result as that obtained by the
creation annihilation operators. The necessary scalar products are

i<f®g7m®n>i:<f7m><g,n>ﬂ:<f,n><g,m), (20)
+(f @ gj,m @ nj) = (f,m){gj,nj), (21)
+(fi®gj.mj@nj)e = (fi,mj)gj,nj) + (fi,nj)(gj,mj), (22)

so that the plus sign corresponds to the symmetric bosonic states and the minus
sign corresponds to the fermionic anti-symmetric states. For the bosonic case, the
operator algebra reproduces the above results as

lag,ag) = [a},af] =0, (23)

afagj — agjag = a}a;j - a; ap=0, (24)
afjagj — agjag; = a}jazu - a:r]ja}j 0, (25)
afja;f] — agafj =0, (26)

lag,af] = (flg) . (27)

agjag; —abag; = (filgi), (28)
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remembering that f and g are complex-valued functions, and that (a, zb) = z{a, b)
and (a,jzb) = Z{a,jb) are adopted. On the other hand, for an anti-symmetric
fermionic state, the operator algebra is

{as, a9} = {a},af} =0, (29)

afagj + agjag = a}a;rlj + a;r]j } =0, (30)
afgjag; + agjag; = afj qj + agjafj 0, (31)
agjal +abag; =0, (32)

{afaa;;} = (fl9), (33)

agal; +aliaz; = (£ilg5). (34)

Thus, the constructed quaternionic scalar field theory has all the necessary struc-
tures: Poincaré invariant one-particle and multiparticle states; symmetrized and
anti-symmetrized states with well-defined statistics; a scalar product and a cre-
ation/annihilation operator algebra. This theory can be deformed according to the
GM procedure generalizing the well-known noncommutative complex field theories,
and this is carried out in Sec. 3.

3. The Deformed Product

Noncommutative geometry is obtained by changing the ordinary commutative prod-
uct of complex-valued functions f and g into the GM deformed product

fz)*g(x) = )+ Z ( ) g inn g, 8, f(2)0y, - 05, 9(x),

(35)
so that #% is anti-symmetric in its indices. Linear functions generate the commu-
tator between coordinates

i xad — ol %t =ifY (36)
and in the limit where §% — 0 the commutative geometry is recovered. Both the
commutative product and the noncommutative product of functions are associative.

A more general picture may be obtained by deforming the usual product of
quaternion-valued functions according to the GM prescription. The quaternionic-

valued functions F : RP — H over a D-dimensional Euclidean space with coordi-
nates ' are represented by

F=fi+fj, sothat fo_12:R” = C, (37)

fa are defined on a Schwarz space, thus allowing a Fourier transform F, where
Fefithi and  fulk)= / P e £, () (38)
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Accordingly, the Weyl symbol of a quaternion function may be introduced as well,
so that

dPk
(2m)P
The Weyl symbol allows the GM product to be introduced, thus replacing the usual
multiplication, so that the complex-valued functions obey W/[f, x fo] = W/[fa] *
W([fy], which results in

FxG=fixgi+ (frxg2)i+ilfarg)+i((f2x92)i), (40)
where the bar means the conjugate of the complex function. This star product of
quaternion functions is, of course, noncommutative; nevertheless, it is also non-
associative, so that

WF] = WA+ W[f]lj  and W[fa]:/ T F L (39)

(FxGQ)xH—F*(GrH)#0. (41)

Equation (41) does not has a simple and illuminating form, and so we do not
express it and emphasize the nonassociativity of the quaternionic fields only. This
is an interesting by-product for introducing a noncommutative local structure on
a former noncommutative complex structure. This simple theory has a number of
possible applications, as cited in Sec. 1.

3.1. Nonassociative quaternion quantum algebras

The simplest example of a nonassociative deformed theory comes from quantum
mechanics and its celebrated commutation relation

[#,p] = ih, (42)

whose i — 0 limit, or classical limit, turns the operators into a commutative algebra.
Introducing the quaternion complex unity j naturally generates a nonassociative
structure. As j does not commute with [Z, p], it does not associate with the products
of the commutator anymore. The associator (Z, j,p) = (2j)p — Z(jp) may be calcu-
lated in the specific case where the quantum quaternion algebra is an alternative
algebra. Using the Moufang identities,® the resulting associator is
so that k = ¢7. This example in which quantum mechanics turns to a nonassociative
theory is somewhat surprising, but it shows very simply how combining noncommu-
tative structures generates a nonassociative one. In this case, the associative limit
goes to a commutative complex theory, but this is a classical one. In this sense,
the commutativity and associativity are coupled. A non-coupled case comes in the
more general framework discussed previously.

On the other hand, it is possible to further extend the quantum algebra. Defining
the operators

= —(p+ix) and 2= —(p—1z), (44)

1
V2 2
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so that [2, 2T] = A, and with the use of the associator (43),
(2.5.2") = (31,5,8) = (2,2,5) = (7. 2,2) = (2,21, )) = (.21, 2T) = 0, (45)
(212.5) = =0, 2",2) = =(3,21.5) = (4,2, 2") = =(2,5,2) = (21,5, 2)) = 7. (46)
This is also a nonassociative and noncommutative algebra, although it is not al-
ternative as that formed by Z, p and 7, but its classical limit is also a classical

quaternion theory as expected. The above examples are the simplest examples of
the deformed algebras, whose geometry is to be analyzed in forthcoming studies.

4. Conclusion

In this paper, two novel quaternion quantum scalar field theories have been pre-
sented. Both of them are noncommutative because of the quaternion nature of
their fields. In one of them ordinary commutative multiplication is defined, and
in this case a multiparticle quaternion scalar theory has been constructed. The
second theory is a deformation of the former one according to the GM procedure.
This second theory is a noncommutative and nonassociative one. These theories are
well-defined, and may be used in a number of physical applications, as the mod-
els are quite general. Developments in quaternion scalar fields and nonassociative
geometry are the most immediate applications. We expect that results derived from
this linear model will be useful when applied to hyper-Kéahler structures in string
theory and nonlinear sigma models.
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