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1. Introduction

Noncommutative geometry1 has a wide range of applications in quantum field

theory,2,3 in the construction of noncommutative physical models. These noncom-

mutative theories are associative. A more general framework could be conceived

whereby, in addition to noncommutativity, the algebra is also nonassociative. Our

aim is to find an example where noncommutative and nonassociative algebra ap-

pears naturally in the context of field theory. Since most field theories are based

on associative algebra, our aim is to obtain a deformation parameter θ such that

associativity is recovered when θ goes to zero.

In the following pages, this goal is achieved by means of construction: we start

with a field theory where the base space is composed of RD and target space is

composed of quaternions H. The second step is to deform RD into noncommutative
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algebra such that [xµ, xν ] = iθνµ. It turns out that the resulting algebra of fields is

nonassociative. As expected, when θµν goes to zero, associativity is recovered.

Let us consider a quaternion-valued field theory, and write the field F : RD →H in a symplectic notation as F = f0 + jf1, so that fi=0,1 : RD → C. In this

theory, the sources of noncommutativity are the quaternion complex units i, j and

k = ij = −ji. By deforming the commutative multiplication of the complex-valued

functions fi=0,1 to a noncommutative, we obtain a theory with nonassociativity as

a by-product of the superposition of the two different noncommutativities.

Nonassociative phenomena appear in many places, and further information can

be found in reviews on the subject.4,5 However, while nonassociativity is common

place in algebra,6 examples of nonassociativity in physics are a collection of discon-

nected problems. The most obvious proposals for finding a physical phenomenon

that may be described by nonassociativity involve the octonion field.7–12 Although

octonion algebra is a standard example of nonassociativity, it does not have an

associative limit. Recently, nonassociative structures have appeared in general

relativity,13–17 string theory18–20 and brane theory.21–26 The model proposed in

this paper is an attempt to obtain a very simple example of nonassociativity where

associativity can be recovered at a suitable limit.

The field theory described in this paper has a natural interpretation since its

target space may be understood as the tangent space of a hyper-complex manifold.

In the same way a complex manifold is locally complex, a hyper-complex manifold

is locally quaternionic. In the context of supersymmetric models, there can be

various types of complex and hyper-complex manifolds as found in supersymmetric

extensions of nonlinear sigma models,27–31 string compactification onK3 surfaces,32

generalized hyper-Kähler applied to string theory,33,34 and even speculations on

the nature of time.35 Therefore, the model presented here can be understood as a

linearized version of such non-linear sigma models.

Our results are related to quaternion quantum mechanics and quantum field

theory.35–41 However, these latter models do not consider multiparticle states, and

consequently in these theories it is impossible to build states with particle statistics,

a problem that has been solved here by defining annihilation and creation operators

of symmetrized states.

This paper is organized as follows: in Sec. 2, we present the nondeformed quater-

nion scalar field theory and its multiparticle states and statistics. In Sec. 3, a

deformed algebra of functions is formulated according to the Groenewold–Moyal

(GM) procedure. We then show that the resulting algebra is nonassociative. Ex-

amples of nonassociative quantum algebra obtained from introducing quaternion

unity are presented as well. The last section contains our conclusions and future

perspectives.

2. The Quaternion Scalar Field Theory

The aforementioned quaternion field theories have only one-particle state. This

means that multiparticle states cannot be built according to boson–fermion statis-
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tics. In this section, this void is filled in the mathematical structure of quaternion

field theory following the Hopf algebra formalism of Ref. 42, where the Poincaré

group acts on the GM plane with a deformed co-product. In this section the de-

formation is the hyper-complex quaternion structure. A second deformation, in the

usual multiplication, is introduced in Sec. 3.

2.1. Poincaré invariance

If g is an element belonging to the Poincaré group, the action of the symmetry

group (⊲) on spacetime functions F ,G ∈ H must obey

g ⊲ (F · G) = (g ⊲ F) · (g ⊲ G) , (1)

where the dot represents ordinary multiplication. The symplectic notation is

adopted for quaternionic functions, so that F = f0 + f1j, with fi=1,2 C-functions,
and j is the complex element of quaternion algebra, and thus ij = −ji. In terms of

Hopf algebras, the action of the elements of an algebra over a product of complex

functions is determined by the co-product. By way of example, the translation gen-

erator p̂ = i∂x of the Poincaré group acts on complex function algebra according

to the co-product

∆(p̂) = 1⊗ p̂+ p̂⊗ 1 , (2)

which, acting on f, g ∈ C with multiplication m, is subject to the consistency

constraint m(∆(p̂)(f ⊗ g)) = p̂(f · g), where m takes the elements of the tensor

product and multiplies them. On the other hand, taking the quaternion functions

fj and gj, again with f, g C-functions, we obtain m(∆(p)(fj ⊗ gj)) 6= p(fj · gj).
This difficulty is solved by defining a quaternion tensor product, namely

(f ⊗ g) · (m⊗ n) = (f ·m)⊗ (g · n) , (3)

(f ⊗ gj) · (m⊗ n) = (f · m̄)⊗ (gj · n) , (4)

(f ⊗ g) · (mj ⊗ n) = (f ·mj)⊗ (ḡ · n) , (5)

(f ⊗ gj) · (mj ⊗ n) = (f · m̄j)⊗ (ḡj · n) . (6)

f , g, m and n are complex-valued functions and barred functions are the complex

conjugates. This result follows for f, n ∈ H as well. This kind of structure is similar

to the Z2 tensor product found in Lie super-algebras.43 Adopting this tensor prod-

uct, the co-product satisfies the identity ∆(p̂q̂) = ∆(p̂)∆(q̂), and the first element

of a multiparticle quaternionic state is given: a well-defined co-product. As the co-

product of the translation operator of the Poincaré algebra has the expression (2),

either in the quaternion case or in the complex case, it will have the same behavior

when the multiplication operation is deformed according to the Moyal procedure

in both cases.44 Thus, the deformed co-product of the rotation operator of the

Poincaré group in the noncommutative complex function algebra is valid for the

deformed quaternion spaces discussed in the next section as well.
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2.2. State statistics

States endowed with well-defined statistics have a permutation operator which in-

terchanges the positions of the functions describing the particles in a state. As the

particles are represented by quaternion functions, for a generic quaternion state

F ⊗ G = f0 ⊗ g0 + f0 ⊗ g1j + f1j ⊗ g0 + f1j ⊗ g1j , (7)

the following operators are defined:

σ̂ ⊲ (F ⊗ G) = (G ⊗ F) , (8)

τ̂ ⊲ (F ⊗ G) = g0 ⊗ f0 + g1j ⊗ f̄0 + ḡ0 ⊗ f1j + ḡ1j ⊗ f̄1j , (9)

κ̂ ⊲ (F ⊗ G) = f0 ⊗ g0 + f̄0 ⊗ g1j + f1j ⊗ ḡ0 + f̄1j ⊗ ḡ1j , (10)

so that σ̂2 = τ̂2 = κ̂2 = 1 and κ̂ = σ̂τ̂ . Symmetrized states and anti-symmetrized

states are defined as follows

|F1,F2〉± =
1

2
(1± τ̂ ) ⊲ |F1,F2〉 , (11)

with |F1,F2〉 = F1 ⊗ F2, the defined states are eigen-states of the permutation

operator τ̂ according to

τ̂ |F1,F2〉± = ±|F1,F2〉± . (12)

After defining symmetrized states and anti-symmetrized states, the particle statis-

tics is guaranteed, and a scalar product is needed, which is presented below.

2.3. The scalar product

By expressing a one-particle state as |F〉 = |f0〉 + |f1j〉, so that the orthogonality

condition 〈f |gj〉 = 〈fj |g〉 = 0 holds, a complex-valued scalar product is obtained

as a sum of usual scalar products of complex functions

〈F|G〉 = 〈f0 |g0〉+ 〈f1j |g1j〉

= 〈f0 |g0〉+ 〈g1 |f1〉 . (13)

In the above scalar product, 〈qF|G〉 6= 〈F |q̄G〉, where q ∈ H and F ,G : R4 → H.
As a consequence, when q is a quaternionic operator, this fact will result in the

splitting of the creation/annihilation operator algebra in pure complex and pure

quaternionic operators which separately obey the condition, as shown in the next

item. On the other hand, when defining the scalar product of two-particle states as

〈F ,G|M,N〉 = (|F ,G〉, κ̂|M,N〉) (14)

= 〈f0 |m0〉〈G|N〉 + 〈f1j |m1j〉〈G|N〉 , (15)
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it is observed that if F = M and G = N , then

|F ⊗ G|2 = |F|2 |G|2 . (16)

The scalar product also obeys the necessary self-adjointness condition

(τ̂ |F ,G〉, |M,N〉) = (|F ,G〉, τ̂ |M,N〉) . (17)

Thus, the scalar product constructed above is valid for multiparticles, something

which has not been observed in previous quaternion quantum theories.

2.4. Creation and annihilation operators

In principle, the creation a†F operator and annihilation operator aF of a quaternionic

state are a†F = a
†
f0

+ a
†
f1j

and aF = af0 + af1j . (18)

However, as the scalar product constructed above is such that 〈qF|G〉 6= 〈F |q̄G〉,
where q ∈ H and F ,G : R4 → H, the creation/annihilation algebra will be built in

terms of a†f0 , a
†
f1j

, af0 and af1j . These operators create complex fields, and thus

satisfy commutation rules with the quaternionic unity j, namely

zaf0 = af0z , jaf0 = af̄0j , zaf1j = af1j z̄ and jaf1j = af̄1jj . (19)

The operator creates/annihilates either a bosonic or a fermionic state, thus the wave

function must be either symmetrized or anti-symmetrized. In order to construct

the algebra, the scalar product must have the same result as that obtained by the

creation annihilation operators. The necessary scalar products are

±〈f ⊗ g,m⊗ n〉± = 〈f,m〉〈g, n〉 ± 〈f, n〉〈g,m) , (20)

±〈f ⊗ gj,m⊗ nj〉± = 〈f,m〉〈gj, nj〉 , (21)

±〈fj ⊗ gj,mj ⊗ nj〉± = 〈fj,mj〉〈ḡj, n̄j〉 ± 〈fj, n̄j〉〈ḡj,mj〉 , (22)

so that the plus sign corresponds to the symmetric bosonic states and the minus

sign corresponds to the fermionic anti-symmetric states. For the bosonic case, the

operator algebra reproduces the above results as

[af , ag] = [a†f , a
†
g] = 0 , (23)

afagj − agjaf̄ = a
†
fa

†
gj − a

†
gja

†

f̄
= 0 , (24)

afjagj − aḡjaf̄j = a
†
fja

†
gj − a

†
ḡja

†

f̄ j
= 0 , (25)

afja
†
g − a

†
ḡafj = 0 , (26)

[af , a
†
g] = 〈f |g〉 , (27)

afja
†
gj − a

†
ḡjaf̄ j = 〈fj |gj〉 , (28)
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remembering that f and g are complex-valued functions, and that 〈a, zb〉 = z〈a, b〉
and 〈a, jzb〉 = z̄〈a, jb〉 are adopted. On the other hand, for an anti-symmetric

fermionic state, the operator algebra is

{af , ag} = {a†f , a†g} = 0 , (29)

afagj + agjaf̄ = a
†
fa

†
gj + a

†
gja

†

f̄
= 0 , (30)

afjagj + aḡjaf̄ j = a
†
fja

†
gj + a

†
ḡja

†

f̄ j
= 0 , (31)

afja
†
g + a

†
ḡafj = 0 , (32)

{af , a†g} = 〈f |g〉 , (33)

afja
†
gj + a

†
ḡjaf̄ j = 〈fj |gj〉 . (34)

Thus, the constructed quaternionic scalar field theory has all the necessary struc-

tures: Poincaré invariant one-particle and multiparticle states; symmetrized and

anti-symmetrized states with well-defined statistics; a scalar product and a cre-

ation/annihilation operator algebra. This theory can be deformed according to the

GM procedure generalizing the well-known noncommutative complex field theories,

and this is carried out in Sec. 3.

3. The Deformed Product

Noncommutative geometry is obtained by changing the ordinary commutative prod-

uct of complex-valued functions f and g into the GM deformed product

f(x) ⋆ g(x) = f(x)g(x) +

∞
∑

n=1

(

i

2

)

1

n
θi1j1 · · · θjnjn∂i1 · · · ∂inf(x)∂j1 · · · ∂jng(x) ,

(35)

so that θij is anti-symmetric in its indices. Linear functions generate the commu-

tator between coordinates

xi ⋆ xj − xj ⋆ xi = iθij (36)

and in the limit where θij → 0 the commutative geometry is recovered. Both the

commutative product and the noncommutative product of functions are associative.

A more general picture may be obtained by deforming the usual product of

quaternion-valued functions according to the GM prescription. The quaternionic-

valued functions F : RD → H over a D-dimensional Euclidean space with coordi-

nates xi are represented by

F = f1 + f2j , so that fa=1,2 : RD → C , (37)

fa are defined on a Schwarz space, thus allowing a Fourier transform F̃ , where

F̃ = f̃1 + f̃2j and f̃a(k) =

∫

dDx e−ikµx
µ

fa(x) . (38)
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Accordingly, the Weyl symbol of a quaternion function may be introduced as well,

so that

Ŵ [F ] = Ŵ [f1] + Ŵ [f2]j and Ŵ [fa] =

∫

dDk

(2π)D
e−ikµx

µ

f̃a . (39)

The Weyl symbol allows the GM product to be introduced, thus replacing the usual

multiplication, so that the complex-valued functions obey Ŵ [fa ⋆ fb] = Ŵ [fa] ⋆

Ŵ [fb], which results in

F ⋆ G = f1 ⋆ g1 + (f1 ⋆ g2)j + j(f̄2 ⋆ g1) + j((f̄2 ⋆ g2)j) , (40)

where the bar means the conjugate of the complex function. This star product of

quaternion functions is, of course, noncommutative; nevertheless, it is also non-

associative, so that

(F ⋆ G) ⋆H−F ⋆ (G ⋆H) 6= 0 . (41)

Equation (41) does not has a simple and illuminating form, and so we do not

express it and emphasize the nonassociativity of the quaternionic fields only. This

is an interesting by-product for introducing a noncommutative local structure on

a former noncommutative complex structure. This simple theory has a number of

possible applications, as cited in Sec. 1.

3.1. Nonassociative quaternion quantum algebras

The simplest example of a nonassociative deformed theory comes from quantum

mechanics and its celebrated commutation relation

[x̂, p̂] = i~, (42)

whose ~ → 0 limit, or classical limit, turns the operators into a commutative algebra.

Introducing the quaternion complex unity j naturally generates a nonassociative

structure. As j does not commute with [x̂, p̂], it does not associate with the products

of the commutator anymore. The associator (x̂, j, p̂) = (x̂j)p̂− x̂(jp̂) may be calcu-

lated in the specific case where the quantum quaternion algebra is an alternative

algebra. Using the Moufang identities,6 the resulting associator is

(x̂, j, p̂) = k~ , (43)

so that k = ij. This example in which quantum mechanics turns to a nonassociative

theory is somewhat surprising, but it shows very simply how combining noncommu-

tative structures generates a nonassociative one. In this case, the associative limit

goes to a commutative complex theory, but this is a classical one. In this sense,

the commutativity and associativity are coupled. A non-coupled case comes in the

more general framework discussed previously.

On the other hand, it is possible to further extend the quantum algebra. Defining

the operators

ẑ† =
1√
2
(p+ ix) and ẑ =

1√
2
(p− ix) , (44)
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so that [ẑ, ẑ†] = ~, and with the use of the associator (43),

(ẑ, j, ẑ†) = (ẑ†, j, ẑ) = (ẑ, ẑ, j) = (j, ẑ, ẑ) = (ẑ†, ẑ†, j) = (j, ẑ†, ẑ†) = 0 , (45)

(ẑ†, ẑ, j) = −(j, ẑ†, ẑ) = −(ẑ, ẑ†, j) = (j, ẑ, ẑ†) = −(ẑ, j, ẑ) = (ẑ†, j, ẑ†) = j . (46)

This is also a nonassociative and noncommutative algebra, although it is not al-

ternative as that formed by x̂, p̂ and j, but its classical limit is also a classical

quaternion theory as expected. The above examples are the simplest examples of

the deformed algebras, whose geometry is to be analyzed in forthcoming studies.

4. Conclusion

In this paper, two novel quaternion quantum scalar field theories have been pre-

sented. Both of them are noncommutative because of the quaternion nature of

their fields. In one of them ordinary commutative multiplication is defined, and

in this case a multiparticle quaternion scalar theory has been constructed. The

second theory is a deformation of the former one according to the GM procedure.

This second theory is a noncommutative and nonassociative one. These theories are

well-defined, and may be used in a number of physical applications, as the mod-

els are quite general. Developments in quaternion scalar fields and nonassociative

geometry are the most immediate applications. We expect that results derived from

this linear model will be useful when applied to hyper-Kähler structures in string

theory and nonlinear sigma models.
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