

Linear and Multilinear Algebra

ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: http://www.tandfonline.com/loi/glma20

Cocharacters of group graded algebras and multiplicities bounded by one

A. Giambruno, C. Polcino Milies & A. Valenti

To cite this article: A. Giambruno, C. Polcino Milies & A. Valenti (2017): Cocharacters of group graded algebras and multiplicities bounded by one, Linear and Multilinear Algebra, DOI: 10.1080/03081087.2017.1369493

To link to this article: https://doi.org/10.1080/03081087.2017.1369493

	Published online: 04 Sep 2017.
	Submit your article to this journal 🗷
ılıl	Article views: 10
Q ^N	View related articles 🗷
CrossMark	View Crossmark data ௴

Cocharacters of group graded algebras and multiplicities bounded by one

A. Giambruno^a, C. Polcino Milies^{b,c} and A. Valenti^d

^aDipartimento di Matematica e Informatica, Università di Palermo, Palermo, Italy; ^bInstituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil; ^cDepartamento de Matemática, Universidade Federal do ABC, São Paulo, Brazil; ^dDipartimento di Ingegneria Elettrica, Elettronica e delle Telecomunicazioni, di Tecnologie Chimiche, Automatica e Modelli Matematici, Università di Palermo, Palermo, Italy

ABSTRACT

Let G be a finite group and A a G-graded algebra over a field F of characteristic zero. We characterize the T_G -ideals $Id^G(A)$ of graded identities of A such that the multiplicities $m_{\langle \lambda \rangle}$ in the graded cocharacter of A are bounded by one. We do so by exhibiting a set of identities of the T_G -ideal. As a consequence we characterize the varieties of G-graded algebras whose lattice of subvarieties is distributive.

ARTICLE HISTORY

Received 23 April 2017 Accepted 11 August 2017

COMMUNICATED BY

W.-F. Ke

KEYWORDS

Polynomial identity; graded algebra; graded polynomial; cocharacter

AMS SUBJECT CLASSIFICATIONS

Primary: 15A69; 16R10; Secondary: 16R50

1. Introduction

Let G be a finite group and A a G-graded algebra over a field F of characteristic zero. This paper is concerned with the graded polynomial identities satisfied by A. More precisely in the free G-graded algebra of countable rank we consider the set $Id^G(A)$ of graded polynomials vanishing when evaluated in A. $Id^G(A)$ has a natural structure of T_G -ideal, i.e. an ideal invariant under the graded endomorphisms of the free G-graded algebra and, since the base field is of characteristic zero, $Id^G(A)$ is determined by its multilinear polynomials.

An efficient way of studying such T_G -ideals is through the representation theory of symmetric groups [1,2]. If $G=\{g_1,\ldots,g_q\}$, we consider the space of multilinear polynomials of degree n in n_1 fixed variables of homogeneous degree g_1 , n_2 fixed variables of homogeneous degree g_2 , and so on, where $n=n_1+\cdots+n_q$. Then we act on such space (modulo $Id^G(A)$) with the direct product of symmetric groups $S_{n_1}\times\cdots\times S_{n_q}$. Given any q-tuple $\langle n\rangle=(n_1,\ldots,n_q)$, the corresponding $S_{n_1}\times\cdots\times S_{n_q}$ -character, called $\chi_{\langle n\rangle}(A)$, decomposes into irreducibles

$$\chi_{\langle n \rangle}(A) = \sum_{\langle \lambda \rangle \vdash n} \chi_{\lambda(1)} \otimes \cdots \otimes \chi_{\lambda(q)}, \tag{1}$$

where $\langle \lambda \rangle = (\lambda(1), \dots, \lambda(q))$, $\chi_{\lambda(i)}$ is the irreducible S_{n_i} -character corresponding to the partition $\lambda(i) \vdash n_i, 1 \le i \le q$, and $m_{\langle \lambda \rangle} \ge 0$ are the multiplicities.

Since the representation theory of the symmetric group in characteristic zero is well-known, the main problem in this setting is to determine the multiplicities $m_{\langle \lambda \rangle}$. This is in general a difficult problem and some results have been obtained in recent years (see for instance [3–6,12]).

The purpose of this note is to characterize the T_G -ideals $Id^G(A)$ such that the multiplicities $m_{\langle \lambda \rangle}$ in (1) are bounded by one. We shall obtain such characterization by exhibiting a set of polynomials lying in the T_G -ideal.

We should mention that in case G is an abelian group, there is a duality between the representation theory of a product of symmetric groups and that of the wreath products $GwrS_n$ (see [2,7]). In this case one can define an action of the group $GwrS_n$ on the space of multilinear G-graded polynomials of degree n (modulo $Id^G(A)$) (see [8]). The corresponding character denoted $\chi^{GwrS_n}(A)$ decomposes into irreducibles

$$\chi^{GwrS_n}(A) = \sum_{\langle \lambda \rangle \vdash n} m'_{\langle \lambda \rangle} \chi_{\langle \lambda \rangle}$$

where $\chi_{\langle \lambda \rangle}$ is the irreducible $GwrS_n$ character associated to the multipartition $\langle \lambda \rangle$. Then the main result proved here gives also a characterization of the T_G -ideals such that the multiplicities $m'_{\langle \lambda \rangle}$ are bounded by one.

The problem studied here originated from a paper of Ananin and Kemer [9] where they characterized the T-ideals of the free associative algebra such that the multiplicities in the ordinary cocharacter are bounded by one. This result was later extended in [10] to superalgebras and algebras with involution using the representation theory of Z_2wrS_n .

As an outcome of our result we are able to classify the varieties of G-graded algebras whose lattice of subvarieties are precisely those whose T_G -ideal is generated by the polynomials determined in the main theorem. For the ordinary case (trivial G-grading) or the supercase or the case of algebras with involution we refer the reader to [9,11].

2. The general setting

Throughout $G = \{g_1 = 1, g_2, \dots, g_q\}$ is a finite group, F is a field of characteristic zero and F(X|G) is the free G-graded algebra on a countable set $X = \{x_1, x_2, \dots\}$. The set X decomposes into a disjoint union of countables sets

$$X = \bigcup_{i=1}^{q} X_{g_i},$$

where $X_{g_i} = \{x_j^{g_i} | j \geq 1\}$ is a set of variables of homogeneous degree $g_i, 1 \leq i \leq q$. A monomial $x_{j_1}^{g_{i_1}} \cdots x_{j_t}^{g_{i_t}}$ has homogeneous degree $g_{i_1} \cdots g_{i_t}$ and $F\langle X|G\rangle = \bigoplus_i \mathcal{F}_{g_i}$ is a G-graded algebra where \mathcal{F}_{g_i} is the subspace generated by all monomials of homogeneous degree g_i .

Let $A = \bigoplus_{g \in G} A_g$ be a G-graded algebra. Recall that a polynomial $f = f(x_{j_1}^{g_{i_1}}, \dots, x_{j_t}^{g_{i_t}})$ of $F\langle X|G\rangle$ is a G-graded polynomial identity of A, if f vanishes under all evaluations of the graded variables $x_{j_k}^{g_{i_k}}$ into elements of $A_{g_{i_k}}$. Then $Id^G(A) = \{f \in F\langle X|G\rangle | f \equiv 0 \text{ on } A\}$, the set of graded polynomial identities of A, is a T_G -ideal of $F\langle X|G\rangle$, i.e. an ideal invariant

under all G-graded endomorphisms of F(X|G). As in the ordinary case (trivial G-grading), since char F = 0, one can study only the multilinear G-graded identities of A. To this end, for every $n \ge 1$, we set

$$P_n^G = \operatorname{span}_F \{ x_{\sigma(1)}^{h_1} \cdots x_{\sigma(n)}^{h_n} \mid \sigma \in S_n, h_1, \dots, h_n \in G \}.$$

We act on P_n^G with the wreath product

$$GwrS_n = \{(h_1, \ldots, h_n; \sigma) \mid h_1, \ldots, h_n \in G, \sigma \in S_n\}$$

via

$$(h_1,\ldots,h_n;\sigma)x_{\tau(1)}^{k_1}\cdots x_{\tau(n)}^{k_n}=x_{\sigma\tau(1)}^{h_1k_{\sigma(1)}^{-1}},\ldots,x_{\sigma\tau(n)}^{h_nk_{\sigma(n)}^{-1}}.$$

(see [8]).

Now $P_n^G \cap Id^G(A)$ is invariant under this action and we consider the character $\chi^{GwrS_n}(A)$ of the $GwrS_n$ -module $\frac{P_n^G}{P_n^G \cap Id^G(A)}$.

In case G is an abelian group, the irreducible $GwrS_n$ -characters are easily described: if $n = n_1 + \cdots + n_q, n_i \ge 0, 1 \le i \le q$, we let $\langle \lambda \rangle = (\lambda(1), \dots, \lambda(q))$ be a sequence of partitions $\lambda(i) \vdash n_i$, $1 \le i \le q$, and we write $\langle \lambda \rangle \vdash n$. Then we have

$$\chi^{GwrS_n}(A) = \sum_{\langle \lambda \rangle \vdash n} k_{\langle \lambda \rangle} \chi_{\langle \lambda \rangle} \tag{2}$$

where $\chi_{\langle \lambda \rangle}$ is the irreducible $GwrS_n$ -character corresponding to $\langle \lambda \rangle$ and $k_{\langle \lambda \rangle} \geq 0$ is the multiplicity.

There is another useful action of a product of symmetric groups on a subspace of multilinear polynomials as follows. For $n=n_1+\cdots+n_q$ as above, set $\langle n\rangle=(n_1,\ldots,n_q)$ and let $X_{\langle n \rangle} = \left(x_1^{g_1}, \dots, x_{n_1}^{g_1}, x_1^{g_2}, \dots, x_{n_2}^{g_2}, \dots, x_1^{g_q}, \dots, x_{n_q}^{g_q}\right)$. Then set

$$P_{\langle n \rangle} = \operatorname{span}\{w_{\sigma(1)} \cdots w_{\sigma(n)} | (w_1, \dots, w_n) = X_{\langle n \rangle}, \sigma \in S_n\}.$$

We act on $P_{\langle n \rangle}$ with the group $S_{n_1} \times \cdots \times S_{n_q}$ by letting S_{n_i} act on the set of variables $\{x_1^{g_i},\ldots,x_{n_i}^{g_i}\}, 1 \leq i \leq q$. Then $P_{\langle n \rangle} \cap Id^G(A)$ is invariant under this action and we let $\chi_{\langle n \rangle}(A)$ be the character of the quotient space $\frac{P_{\langle n \rangle}}{P_{\langle n \rangle} \cap Id^G(A)}$.

By decomposing the character $\chi_{\langle n \rangle}(A)$ into irreducibles we get

$$\chi_{\langle n \rangle}(A) = \sum_{\langle \lambda \rangle \vdash n} m_{\langle \lambda \rangle} \chi_{\lambda(1)} \otimes \cdots \otimes \chi_{\lambda(q)}$$
 (3)

where $\langle \lambda \rangle = (\lambda(1), \dots, \lambda(q)), \lambda(i) \vdash n_i, \chi_{\lambda(i)}$ is the corresponding irreducible S_{n_i} -character, $1 \le i \le q$ and $m_{\langle \lambda \rangle} \ge 0$ is the multiplicity. $\chi_{\langle n \rangle}(A)$ will be called the $\langle n \rangle$ -th cocharacter of A.

Now if G is an abelian group it is known that the multiplicities $k_{(\lambda)}$ in (2) and $m_{(\lambda)}$ in (3) coincide for the same multipartition $\langle \lambda \rangle \vdash n$. (see [2,10]).

In the above discussion when the grading group is trivial one has the natural notions of free associative algebra F(X), T-ideal Id(A) of the polynomial identities satisfied by an algebra A, etc. The symmetric group S_n acts on P_n , the space of multilinear polynomials in x_1, \ldots, x_n and the S_n -character of the quotient space $P_n/(P_n \cap Id(A))$ is $\chi_n(A)$, the n-th cocharacter of A.

3. Multiplicities bounded by one

In this section we shall prove our main result.

Theorem 1: Let G be a finite group and A a G-graded algebra over a field F of characteristic zero. Let

$$\chi_{\langle n\rangle}(A) = \sum_{\langle \lambda\rangle \vdash n} m_{\langle \lambda\rangle} \chi_{\lambda(1)} \otimes \cdots \otimes \chi_{\lambda(q)}$$

be the $\langle n \rangle$ -th cocharacter of A. Then $m_{\langle \lambda \rangle} \leq 1$, for all $\langle \lambda \rangle \vdash n$ and for all $n \geq 1$, if and only if A satisfies the following graded identities

$$\alpha x_1^{g_1}[x_1^{g_1}, x_2^{g_1}] + \beta [x_1^{g_1}, x_2^{g_1}] x_1^{g_1} \equiv 0$$
(4)

$$\gamma x_1^{\mathcal{G}} x_2^h + \delta x_2^h x_1^{\mathcal{G}} \equiv 0, \tag{5}$$

where $g_1 = 1$, for all $g, h \in G, g \neq h$ and for some $\alpha, \beta, \gamma, \delta \in F$ such that $(\alpha, \beta) \neq (0, 0)$ and $(\gamma, \delta) \neq (0, 0)$.

Proof: Suppose first that $m_{\langle \lambda \rangle} \leq 1$, for all $\langle \lambda \rangle \vdash n$ and for all $n \geq 1$. We consider the sequence $\langle n \rangle = (n, 0, ..., 0)$ and the $\langle n \rangle$ -th cocharacter of A becomes

$$\chi_{\langle n \rangle}(A) = \sum_{\lambda \vdash n} m_{\lambda} \chi_{\lambda} \tag{6}$$

where $\lambda = \lambda(1) \vdash n$. Notice that $\chi_{\langle n \rangle}(A)$ coincides with the ordinary cocharacter $\chi_n(A_{g_1})$ of $A_{g_1} = A_1$. Since A_{g_1} is a subalgebra of A with cocharacter $\chi_n(A_{g_1}) = \sum_{\lambda \vdash n} m_\lambda \chi_\lambda$ whose decomposition is given in (6) and the multiplicities m_λ are bounded by one, by the result of Ananin and Kemer ([9]) we get that A_1 and so A satisfies the identity given in (4).

In order to prove the existence of the identities in (5) we consider two distinct homogeneous components of A, say A_g and A_h with $g \neq h$.

For n=2 we consider $\langle 2 \rangle = (0,\ldots,0,1,0,\ldots,0,1,0,\ldots)$ where the two 1's correspond to the g and h components. Then we have $P_{\langle 2 \rangle} \cong \operatorname{span}\{x_1^g x_2^h, x_2^h x_1^g\}$ and the decomposition of this space into irreducible $S_1 \times S_1$ -modules is $P_{\langle 2 \rangle} \cong M_1 \oplus M_2$, where $M_1 = \operatorname{span}\{x_1^g x_2^h\}$ and $M_2 = \operatorname{span}\{x_2^h x_1^g\}$.

Since M_1 and M_2 are isomorphic as $S_1 \times S_1$ -modules and the multiplicities in $\chi_{\langle 2 \rangle}(A)$ are bounded by one by hypothesis, we get that $x_1^g x_2^h$ and $x_2^h x_1^g$ are linearly dependent modulo $Id^G(A)$. This says that A satisfies the graded identity in (5) and we are done.

Suppose now that A satisfies the identities in (4) and in (5). Notice that the identities in (5) allow to reorder the graded variables in a multilinear monomial of $P_{\langle n \rangle}$ (modulo $Id^G(A)$). In such reordering all variables of the same homogeneous degree form a submonomial. In other words, there is a permutation $\sigma \in S_q$ and a reordering of the group elements $(g_{\sigma(1)}, \ldots, g_{\sigma(q)})$ such that

$$P_{\langle n \rangle} = \operatorname{span}\{x_{i_1}^{g_{\sigma(1)}} \cdots x_{i_{n_{\sigma(1)}}}^{g_{\sigma(1)}} \cdots x_{j_1}^{g_{\sigma(n)}} \cdots x_{j_{n_{\sigma(1)}}}^{g_{\sigma(n)}}\} \pmod{Id^G(A)}.$$

This says that if $\langle \lambda \rangle = (\lambda(1), \dots, \lambda(q)) \vdash n$ where $\lambda(i) \vdash n_i, 1 \le i \le q$, then

$$m_{\langle \lambda \rangle} \leq \max\{m_{\lambda(1),\emptyset,\ldots,\emptyset},\ldots,m_{\emptyset,\ldots,\emptyset,\lambda(q)}\}.$$

Hence in order to prove that $m_{\langle \lambda \rangle} \leq 1$, for all $\langle \lambda \rangle \vdash n$, it is enough to prove that $m_{\emptyset,...,\lambda(i),...,\emptyset} \leq 1$ for all $i, 1 \leq i \leq q$. In other words, we may restrict ourselves to consider the spaces

$$P_{n_i}^{g_i} = span\{x_{\sigma(1)}^{g_i} \cdots x_{\sigma(n_i)}^{g_i} \mid \sigma \in S_{n_i}\} \pmod{Id^G(A)},$$

for all $g_i \in G$.

Let us write $m_{\emptyset,...,\lambda(i),...,\emptyset} = m_{\lambda(i)}$, $\langle \lambda \rangle = \lambda(i)$. Now, if $i = 1, g_1 = 1$, and by the result of Ananin and Kemer ([9]) we get that $m_{\lambda(1),\emptyset,...,\emptyset} \leq 1$.

Hence we may assume that $g_i \neq g_1$. Let us write $g_i = g$. Since $g^2 \neq g$, by (5) we have that $\gamma x_1^g x_2^{g^2} + \delta x_2^{g^2} x_1^g \equiv 0$ is a graded identity of A for some $(\gamma, \delta) \neq (0, 0)$. As a consequence, since $x_2^g x_3^g$ has homogeneous degree g^2 in the free algebra, we get that

$$\gamma x_1^g x_2^g x_3^g + \delta x_2^g x_3^g x_1^g \equiv 0$$

is a graded identity of A. If $\gamma = 0$ or $\delta = 0$, then $m_{\lambda(i)} = 0$, for all $\lambda(i) \vdash n$ such that $|\lambda(i)| \geq 3$. On the other hand for all $|\lambda(i)| \leq 2$, the irreducible representations have multiplicity one in the regular representation, so still the conclusion holds.

Now suppose that $\gamma \neq 0$ and $\delta \neq 0$. Then $x_1^g x_2^g x_3^g \equiv \alpha x_2^g x_3^g x_1^g \pmod{Id^G(A)}$, for some $\alpha \neq 0$, and this says that

$$P_{n_i}^g = \operatorname{span}\{x_1^g x_2^g \cdots x_n^g, x_1^g x_2^g \cdots x_n^g x_{n-1}^g\} \pmod{\operatorname{Id}^G(A)}.$$

Then $\chi_{(n_i)}$ and $\chi_{(1^{n_i})}$ are the only irreducible characters appearing in the decomposition of the S_{n_i} -character of $\frac{P_{n_i}^g}{P_{n_i}^g \cap Id^G(A)}$ both with multiplicity one. This completes the proof of the theorem.

As we mention in Section 2, when G is an abelian group one can study the space of multilinear G-graded polynomials in n variables through the representation theory of the wreath product $GwrS_n$. By the discussion in that section, since the multiplicities in the $GwrS_n$ -character and in the $S_{n_1} \times \cdots \times S_{n_q}$ -character are the same, we get the following

Theorem 2: Let G be a finite abelian group and A a G-graded algebra over a field F of characteristic zero. Let $\chi^{GwrS_n}(A) = \sum_{\langle \lambda \rangle \vdash n} m_{\langle \lambda \rangle} \chi_{\langle \lambda \rangle}$. Then $m_{\langle \lambda \rangle} \leq 1$ for all $\langle \lambda \rangle \vdash n$ and for all $n \ge 1$, if and only if A satisfies the graded identities in (4) and (5).

4. Varieties whose lattice of subvarieties is distributive

Let $\mathcal V$ be a variety of G-graded algebras. In this section we shall characterize the varieties $\mathcal V$ such that the lattice of subvarieties is distributive, i.e. for any subvarieties $\mathcal{U}, \mathcal{W}, \mathcal{S}$ of \mathcal{V} we have that $(\mathcal{U} \cap \mathcal{W}) \cup \mathcal{S} = (\mathcal{U} \cup \mathcal{S}) \cap (\mathcal{W} \cup \mathcal{S})$. In terms of ideals of identities this means that if Q, R, S are T_G -ideals containing $Id^G(V)$, then $(Q+R) \cap S = (Q \cap S) + (R \cap S)$.

If \mathcal{V} is the variety generated by the G-graded algebra A we write $\mathcal{V} = \text{var}^G(A)$ we also write $Id^G(\mathcal{V}) = Id^G(A)$. Next we prove the following.

Theorem 3: Let V be a variety of G-graded algebras over a field F of characteristic zero. Then V is distributive if and only if V satisfies the graded identities

$$\alpha x_1^{g_1}[x_1^{g_1}, x_2^{g_1}] + \beta [x_1^{g_1}, x_2^{g_1}] x_1^{g_1} \equiv 0$$
$$\gamma x_1^{g_1} x_2^{h} + \delta x_2^{h} x_1^{g} \equiv 0,$$

where $g_1 = 1$, for all $g, h \in G, g \neq h$ and for some $\alpha, \beta, \gamma, \delta \in F$ such that $(\alpha, \beta) \neq (0, 0)$ and $(\gamma, \delta) \neq (0, 0)$.

Proof: Suppose that \mathcal{V} satisfies the given graded identities. If $\mathcal{V} = \operatorname{var}^G(A)$, then by Theorem 1 all multiplicities $m_{\langle \lambda \rangle}$ in the $\langle n \rangle$ -cocharacter $\chi_{\langle n \rangle}(A)$ are bounded by one, for all $\langle \lambda \rangle \vdash n$, and for all $n \geq 1$. Now let Q, R, S be the T_G -ideals containing $Id^G(A)$. Since char F = 0, they are determined by their multilinear graded polynomials, for instance, Q is determined by $\{Q \cap P_{\langle n \rangle}\}_{\langle n \rangle, n \geq 1}$. Since $P_{\langle n \rangle} \cap Id^G(A)$ is an $S_{n_1} \times \cdots \times S_{n_q}$ -module (here $\langle n \rangle = (n_1, \ldots, n_q)$), by complete reducibility we have

$$P_{\langle n \rangle} = (P_{\langle n \rangle} \cap Id^G(A)) \oplus M_1 \oplus \cdots \oplus M_r,$$

where M_1, \ldots, M_r are irreducible $S_{n_1} \times \cdots \times S_{n_q}$ -modules. Also, since $m_{\langle \lambda \rangle} \leq 1, M_i \ncong M_j$, for all $i \neq j, 1 \leq i, j \leq r$.

Now, since $Q \supseteq Id^G(A)$,

$$P_{\langle n \rangle} \cap Q = M_{i_1} \oplus \cdots \oplus M_{i_s}$$

for some proper subset $\{i_1, \ldots, i_s\}$ of $\{1, \ldots, r\}$. The same remark applies to $P_{\langle n \rangle} \cap R$ and to $P_{\langle n \rangle} \cap S$. But then it is easily verified that

$$(P_{\langle n \rangle} \cap Q + P_{\langle n \rangle} \cap R) \cap (P_{\langle n \rangle} \cap S) = P_{\langle n \rangle} \cap Q \cap S + P_{\langle n \rangle} \cap R \cap S,$$

and V is distributive.

Suppose now that $V = \text{var}^G(A)$ is distributive. For every $n \ge 1$, consider $\langle n \rangle = (n, 0, ..., 0)$ and the corresponding $\langle n \rangle$ -cocharacter $\chi_{\langle n \rangle}(A) = \sum_{\lambda \vdash n} m_{\lambda} \chi_{\lambda}$.

As we remarked before $\chi_{\langle n \rangle}(A)$ coincides with the ordinary cocharacter $\chi_n(A_1)$ of $A_1 = A_{g_1}$. Let $F\langle X \rangle$ be the free algebra on the set X; clearly $F\langle X \rangle$ can be embedded naturally in $F\langle X|G\rangle$ and if we let $\mathcal U$ be the variety of algebras (with trivial grading) generated by A_1 , then $Id(\mathcal U) = Id(A_1) = Id^G(\mathcal V) \cap F\langle X \rangle$. Since the multiplicities in the cocharacter of A_1 are bounded by one, by [9] A_1 and, so, A satisfies the graded identity in (4).

Now suppose by contradiction that there exist $g,h \in G, g \neq h$ such that $\alpha x_1^g x_2^h + \beta x_2^h x_1^g \neq 0$ is not a graded identity of \mathcal{V} , for all $(\alpha, \beta) \neq (0, 0)$. We shall construct three algebras having special properties.

Let *B* be the Grassmann algebra on a two dimensional vector space; hence $B = \text{span}\{e_1, e_2, e_1e_2 | e_1^2 = e_2^2 = 0, e_1e_2 = -e_2e_1\}$. We *G*-grade *B* by setting $B_g = Fe_1, B_h = Fe_2, B_{gh} = Fe_1e_2$ and $B_a = 0$, for all other $a \in G$. Then *B* is *G*-graded and satisfies the graded identity $x_1^g x_1^h + x_2^h x_1^h \equiv 0$.

Let *C* be the algebra of 3×3 strictly upper triangular matrices over *F*. We *G*-grade *C* as follows. We set $C_g = Fe_{12}$, $C_h = Fe_{23}$, $C_{gh} = Fe_{13}$ and $C_a = 0$, for all other $a \in G$. Then *C* is *G*-graded and satisfies $x_1^g x_2^h \equiv 0$. Notice that $x_2^h x_1^g \not\equiv 0$ is not a graded identity of *C*.

Let D be still the algebra of 3×3 strictly upper triangular matrices over F with the following grading. Set $D_g = Fe_{23}$, $D_h = Fe_{12}$, $D_{hg} = Fe_{13}$ and $D_a = 0$, for all other $a \in G$. Then D satisfies the graded identity $x_2^h x_1^g \equiv 0$. We also have that $x_1^g x_2^h \not\equiv 0$ is not a graded identity of *D*.

Now consider the following three T_G -ideals containing $Id^G(\mathcal{V})$

$$Q = Id^G(\mathcal{V} \cap \text{var}^G(B)), R = Id^G(\mathcal{V} \cap \text{var}^G(C)), S = Id^G(\mathcal{V} \cap \text{var}^G(D)).$$

We have that $x_1^g x_2^h \in (Q+R) \cap S$ but $x_1^g x_2^h \notin (Q+S) \cap (R+S)$. This says that \mathcal{V} is not distributive, a contradiction.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The first author was partially supported by CNPq [proc. 400439/2014-0], the second author was partially supported by FAPESP, [proc. 2005/60411-8] and CNPq [proc. 300243/79-0], the third author was partially supported by GNSAGA of INDAM

ORCID

A. Giambruno http://orcid.org/0000-0002-3422-2539

References

- [1] Drensky V. Free algebras and PI-algebras. Graduate course in algebra: Springer-Verlag, Singapore; 2000. p. xii+271.
- [2] Giambruno A, Zaicev M. Polynomial identities and asymptotic methods, Mathematical surveys and monographs. Vol. 122. Providence (RI): AMS; 2005.
- [3] Bahturin Y, Drensky V. Graded polynomial identities of matrices. Linear Algebra Appl. 2002;357:15-34.
- [4] Cirrito A, Giambruno A. Group graded algebras and multiplicities bounded by a constant. J Pure Appl Algebra. 2013;217:259-268.
- [5] Mishchenko SP, Regev A, Zaicev M. A characterization of P.I. algebras with bounded multiplicities of the cocharacters. J Algebra. 1999;219:356–368.
- [6] Valenti A. The graded identities of upper triangular matrices of size two. J Pure Appl Algebra. 2002;172:325-335.
- [7] James G, Kerber A. The representation theory of the symmetric group, Encyclopedia of mathematics and its applications. Vol. 16. London: Addison-Wesley; 1981.
- [8] Giambruno A, Regev A. Wreath products and P.I. algebras. J Pure Appl Algebra. 1985;35:133–
- [9] Ananin AZ, Kemer AR. Varieties of associative algebras whose lattices of subvarieties are distributive. Sibirsk Mat Z. 1976;17(4):723-730. Russian.
- [10] Giambruno A, Mishchenko S. Super-cocharacters, star-cocharacters and multiplicities bounded by one. Manuscripta Math. 2009;128:483-504.
- [11] Drensky V, Giambruno A. Cocharacters, codimensions and Hilbert series of the polynomial identities for 2×2 matrices with involution. Canad J Math. 1994;46(4):718–733.
- [12] Di Vincenzo OM, Koshlukov P, Valenti A. Gradings on the algebra of upper triangular matrices and their graded identities. J Algebra. 2004;275:550-566.