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Abstract
Ultracold interacting atoms are an excellent tool to study correlation functions ofmany-body systems
that are generally eluding detection andmanipulation.Herein, we investigate the ground state of
bosons in a tilted triple-well potential and characterize themany-body state by the eigenvalues of its
reduced one-body densitymatrix andGlauber correlation functions.We unveil how the interplay
between the interaction strength and the tilt can be used to control the number of correlatedwells as
well as the fragmentation, i.e. the number ofmacroscopic eigenvalues of the reduced one-body density
matrix.

1. Introduction

The successful experimental realization of Bose–Einstein condensation in gases of ultracold rubidium atoms in
periodic potentials, so-called optical lattices [1, 2], has provided a powerful platform to study numerous exotic
quantummany-body phenomena [3–5]. The dimensionality and depth of thewells of the lattice can be
experimentally tuned to control the configuration of particles. Remarkably, also the atom-atom interactions can
be tuned via Feshbach resonances [6–8].

Due to this impressive degree of experimental control, ultracold atoms inoptical lattices canbeused tomimic
condensedmatter systems and allow to simulate andprobe their phase transitions [3, 9–12]. Additionally, direct
imaging of quantummany-body correlations is feasible: one-, two-, and evenmany-body correlations have already
beendetected [13–16].

To assess and understand themany-body physics of interacting ultracold atoms inmesoscopic systems, it is a
viable approach tofirst study and investigate their (few-body) building blocks [11, 17–20]. Here, we use a
mesoscopic systemof ultracold bosons in a triple-well potential as a candidate system to investigate the
possibility for the control andmanipulation of correlations inmany-body systems. Some of theirmany-body
aspects have been previously studied [21–23]; however, a scheme to control the emergent correlations still needs
to be devised.

Wework out such a protocol for themanagement of correlations by including the tilt of the optical lattice as
a control parameter. A tilted lattice can routinely be achieved in the laboratory by superimposing amagnetic bias
field to the optical potential. The inclusion of the tilt widens the spectrumof controllable parameters and
enriches the emergent physics. For instance, Ising density-wave order and the appearance of superfluidity in
transverse directions of a systemof ultracold charged bosons confined in a lattice with a tilt were described in
[24]. Reference [25] demonstrates that some eigenstates in the spectrumof neutral bosons confined in a tilted
one-dimensional lattice exhibit localization and are robust against external perturbations. Furthermore, [26]
shows that the tilt is a source of quantumdecoherence formacroscopic quantum superpositions in ultracold
atoms in a tiltedwell.
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In this paper, we study themany-body correlations in the ground state of interacting ultracold bosonic
atoms in a tilted triple-well potential by solving the corresponding Schrödinger equation using the
multiconfigurational time-dependentHartree for bosons (MCTDHB) approach.

Wefind and use the reduced densitymatrix (RDM) of themany-body state to quantify correlations. The
system is said to be coherent and condensed if only one eigenvalue of the RDM ismacroscopic [27] and is said to
be correlated and fragmented ifmultiple eigenvalues of the RDMaremacroscopic [28, 29]. To get a spatially
resolved understanding of the emergent correlations, we compute theGlauber first-order correlation function
from the RDM [30].We study the emergence of correlations and fragmentation in themany-body system as a
function of the interaction strength and the tilt of the triple well. Our results unravel an intriguing interplay
between the tilt of the lattice potential and the strength of the interparticle interactions.We demonstrate how
this interplay can be exploited tomanage the correlations and fragmentation ofmany-boson systems in tilted
optical lattices to a large extent.

The structure of the paper is as follows. Section 2.1 describes themany-bodyHamiltonian, the formof the
trapping potential alongwith the setup of the system. In section 2.2, we briefly discuss the basics ofMCTDHB.
We introduce the quantities of interest, namely, the one-body RDMand the first-order correlation function,
that is extensively used for this work in section 2.3. In section 3we present our results, on the ground state
properties of a systemof bosons in tilted triple wells. Precisely, wefind the natural occupations (section 3.1), the
correlations between the bosons of different wells (sections 3.2, 3.3) and the behavior of the natural orbitals
(section 3.4). Conclusions and an overview are presented in section 4.

2.Method, setup, and quantities

The properties of ultracold bosonicmany-body systems are described by the time-dependentmany-body
Schrödinger equation for interacting and indistinguishable bosonic particles. Commonly, themany-body
problem is solved by themean-fieldGross–Pitaevskii approximation [31, 32] or the Bose–Hubbard (BH)model
[3, 12]. In theGross–Pitaevskii picture the RDMhas only a single eigenvalue and hence correlations and
fragmentation—pivotal in the superfluid toMott-insulator phase transition [3, 12]—cannot be captured. In the
BHmodel afixed basis set ofWannier (orWannier–Stark) states is utilized [33–35]. Albeit being an apt choice
for regular lattices, aWannier basismay not be optimal for tilted lattices because the tilt renders the shape of the
site-local single-particle states different fromWannier functions.

While generalizations within the BHmodel rely onmulti-band orWannier–Stark single-particle basis sets,
we go here beyond the BHmodels and employ the optimized single-particle basis given byMCTDHB. The
optimizedMCTDHBbasis has been demonstrated to be farmore accurate than non-optimized basis sets [36].
TheMCTDHB theory optimizes variationally both the basis set and the expansion coefficients in that basis set
(see [37, 38] and references therein); its solutions thus assume no predetermined symmetry or shape of the
describedmany-body state. Therefore, we useMCTDHB to obtain an optimized problem-adapted basis to
investigate tilted lattices.MCTDHB is in principle exact [36, 39], has been verifiedwith experimental results
[40], can describe both coherent and fragmented condensates, and includes theGP theory as an extreme case
when only one single-particle state is considered; see [38, 41, 42] for details onMCTDHB.

2.1.Hamiltonian
TheN-boson state Yñ∣ is governed by the time-dependent Schrödinger equation

Hi , 1t¶ Yñ = Yñ∣ ˆ ∣ ( )

with theHamiltonian

H x x x h x W x x, , , . 2N
j

N

j
k j

N

j k1 2
1 1

å å¼ = + -
= > =

ˆ ( ) ˆ ( ) ˆ (∣ ∣) ( )

Wecompute the ground state of theHamiltonian in equation (2) by propagating equation (1) in imaginary time
to dampout any excitation in the one-dimensionalmany-body system.Here, xj represents the position of the jth

boson, ĥ is the single-particle Hamiltonian h x T x V x ;trap= +ˆ ( ) ˆ ( ) ˆ ( ) T x
m x2

2 2

2

=- ¶
¶( )ˆ ( ) andV xtrap

ˆ ( ) are the
usual kinetic and external potential energy, respectively. Interactions of ultracold dilute bosonic gases are
typicallymodeled using aDirac-delta distribution:W x x x xj k j k0l d- = -ˆ ( ) ( ). Here,λ0 is referred to as the
strength of interactions.We scaleλ0 with the particle number as N 10l l= -( ). In equations (1), (2) and the
remainder of this work dimensionless units are employed. To define dimensionless units, we divide the
Hamiltonian by mL2 2 ( ), wherem is themass of the considered boson and L a convenient length scale.Wefirst
choose a length scale of L=1 μm.The scale of energy for themass of 87Rb is mL 2 1162 2 p= ´( ) Hz and
the scale of time is mL 1.372  = ms. The one-dimensional scattering parameterλ is related to the

2

New J. Phys. 21 (2019) 053044 SDutta et al



three-dimensional scattering length a3D by Lm a2 D3 l w= ^ , whereω⊥is the frequency of the transversal
confinement [43]. Using a a100.4D3 0= , where a0 is the Bohr radius, andλ=6 (λ=20), one obtains
ω⊥=41.3 kHz (ω⊥=1376 kHz).

We considerN=90 interacting bosons in a trap of the form

V x x V kx f xsin . 3wtrap 0
4a= - + +( ) ( ) ( ) ( )

Hereα is the tilt andV0 the barrier height.Wefix k=2 for the lattice spacing. The term fw(x) introduces quasi-
hard-wall boundary conditions. The tiltαx renders the trapping potential similar to that of charged particles in a
constant electricfield and can be realized by applying amagnetic field gradient to ultracold neutral bosons in a
lattice.We note the possibility of achieving, virtually, any periodic lattice in the experiment [44]. The potential is
plotted infigure 1(a) forαä[0,16].

Figure 1.Potential and density as a function of the tilt. (a) shape of the triple wellVtrap(x) for V 180, 60 l= = and various tiltsα and
(b) corresponding density ρ(x) for the sameα, ranging fromα=0 toα=16 (see color code/gray-scale).
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2.2.Method: themulticonfigurational time-dependentHartreemethod for bosons (MCTDHB)
The key idea of theMCTDHB approach is the use of time-adaptive basis states. The bosonic field operator which
annihilates a particle at position x is represented by a set ofM orthonormal, time-dependent functions (orbitals)
{ji(x, t)}

x t a x t, , . 4
i

M

i i
1

^ ^å jY =
=

( ) ( ) ( )

Here, the bosonic creation and annihilation operators a a,i iˆ ˆ † obey the usual commutation relations at any
instant t.

The ansatz for themany-bosonwave function assumed inMCTDHB is

t C t n t; . 5
n

nåY ñ = ñ
∣ ( ) ( )∣ ( )

Here, the summation runs over all possible configurations n n n, , M1= ¼
{ ( )}, for which n Ni iå = . ThusN

bosons are distributed overM accessible orbitals. Using the bosonic creation operators ak{ ˆ }† , the time-dependent
configurations can bewritten as

n t
a t a t a t
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;
...

...
0
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∣
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† † †

Here, 0ñ∣ is the vacuum state. Since the permanents n n t, , ;M1 ¼ ñ∣ are a complete basis set ofN-bodyHilbert
space for M  ¥, the variational principle [45] guarantees that the solutions of the time-dependentmany-
body problemprovided by theMCTDHBmethod gradually improve towards exactness when the number of
considered creation operatorsM in the ansatz, equation (5), is increased [36, 39]. To derive theMCTDHB
equations, the time-dependent variational principle [45] is employed to determine the time-evolution of the
expansion coefficients C tn

{ ( )}and the orbitals tr,ij{ ( )} [37, 38]. TheMCTDHBequations are obtained by

fixing a gauge freedom in the choice of the orbitals by the condition j i M0, , 1,
t i

j j = " Î
j¶

¶
⟨ ∣ ⟩ [ ].

In Lagrangian formulation, the functional action of the time-dependent Schrödinger equation [withmany-
body ansatz, equation (5)] reads as [37, 38]

S C t t t H i
t

tr, , d . 7n i
i j

M

ij i j ij
, 1

^ò åj m j j d= Y -
¶
¶

Y - -
=

[{ ( )} { ( )}] {⟨ ∣ ∣ ⟩ ( )[⟨ ∣ ⟩ ]} ( )

To ensure that the time-dependent orbitals remain orthonormal during the propagation, time-dependent
Lagrangemultipliersμij(t)have been introduced here.

The variation of the actionwith respect to the expansion coefficients C tn
 ( ) yields the equations ofmotion for

the expansion coefficients [37, 38]

t C i
C

t
. 8

n
nn n

n t
å =

¶
¶

¢
¢


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
( ) ( )( )

This equation ofmotion is afirst-order differential equation and thematrix t n t H n t; ;nn = á ¢ ñ¢
   ( ) ∣ ˆ ∣ is time-

dependent as the permanents n t; ñ
∣ and Ĥ itself are functions of time.

The variation of the actionwith respect to the orbitals { ij (x, t)} yields the equation ofmotion for the orbitals
[37, 38]:

i h t WP , 9i i
k s q l

M

ik ksql sl q
, , , 1

1^ ^ ^å rj j r j= +
=

-
⎡
⎣
⎢⎢
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where

P 1 10
i

M

i i
1

^ å j j= -
=¢

¢ ¢∣ ⟩⟨ ∣ ( )

is a projector, a ajk j kr = áY Yñ∣ ˆ ˆ ∣† are thematrix elements of the one-bodyRDM, and a a a aksql k s l qr = áY Yñ∣ ˆ ˆ ˆ ˆ ∣† † are the

matrix elements of the two-bodyRDM.The local interactionpotentials readW x x t W x x x td , , ,sl s l
^ ò j j= ¢ * ¢ ¢ ¢( ) ( ) ( ).

For the contact interactions thatwe consider in themainpart of this paper, theWsl
ˆ are given

byW x t x t, ,sl s l0
^ l j j= *( ) ( ).
TheMCTDHB thus yields descriptions ofmany-boson systems that allow for correlations to be intrinsically

describedwithout any a priori requirements. Coherent systems (states whose one-body RDMhas a single
contributing eigenvalue) [27] and fragmented systems (states whose one-body RDMhas severalmacroscopic
eigenvalues) [28, 29] can be described byMCTDHBalike [46–50].

4
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Notably, whenM=1 is set in equation (5) theMCTDHB ansatz becomes identical to thewavefunction
ansatz of the time-dependent Gross–Pitaevskii (TDGP) theory and, consequently, theMCTDHBequations of
motion boil down to the TDGP equation. For further details about theMCTDHBmethod see [37, 38, 41].

MCTDHB represents a generalization beyond exact diagonalization approaches with static basis sets like the
Bose–Hubbard approach that usesWannier functions. Necessarily, the self-consistent basis ofMCTDHB is
superior to afixed static (Wannier) basis as shown directly in [36, 39, 51–54].

Since our focus in this work is on the physics of the ground state of interacting bosons in a tilted triple well
potential, wewill, for the sake of brevity, omit indicating the explicit time-dependence of quantities in the
following. The ground states that we discuss in the followingwere obtained by propagating the coupled
MCTDHBequations [equations (8), (9)] in imaginary time to damp out all excitations.

2.3.Quantities of interest
The one-body RDMof theN-boson state tY ñ∣ ( ) is defined as:

x x x x n x x, , 11
i

i i i
1 *år f f¢ = áY Y ¢ Y Yñ = ¢( ) ∣ ˆ ( ) ˆ ( )∣ ( ) ( ) ( )( ) †

in its eigenbasis {fi(x)} [55, 56]. Here ni is the ith eigenvalue andfi(x) the corresponding eigenfunction, also
known as natural occupation and natural orbital, respectively. The diagonal x x,1r ( )( ) is the single-particle
probability distribution ρ(x). A BEC is condensed if its RDMhas only a singlemacroscopic eigenvalue [27] and
k-fold fragmented, if its RDMhas kmacroscopic eigenvalues [28, 29]. Thefirst-order coherence of a condensed
state ismaintained everywhere in space. Therefore, the value of thefirst occupation 1n

N
1 » ( 1n

N
1 < ) is also

indicative of the (loss of) coherence of the state [see equation (12) below].
To obtain a spatially resolved picture of the correlations between the atoms in themany-body state that are

triggered by a specific trap geometry, we study the behavior of the first-order correlation function,

g x x
x x

x x x x
,

,

, ,
. 121 2

1

1 1

2
r

r r
¢ =

¢

¢ ¢
∣ ( )∣ ( )

( ) ( )
( )( )

( )

( ) ( )

The value g x x,1 2¢∣ ( )∣( ) marks thefirst-order coherence between the points x and x¢ ( g x x, 11 2¢ »∣ ( )∣( ) ) or its
absence ( g x x, 01 2¢ »∣ ( )∣( ) ) in the state Yñ∣ [30]. Here, the systemof atoms is said to be in a coherent state if
g x x, 11 2¢ »∣ ( )∣( ) , similarly it is said to be in an incoherent state when g x x, 01 2¢ »∣ ( )∣( ) .

In the following discussion forfirst-order correlation (see section 3.2), we use the term inter-well coherence if
x is in the vicinity of a differentminimumofVtrap than x¢ and g x x, 11 2¢ »∣ ( )∣( ) holds.Moreover, we use the

term intra-well coherence if g x x, 11 2¢ »∣ ( )∣( ) holds for coordinates x and x¢ that are both in the vicinity of the
sameminimum.

3. Results

For our numerical calculations, we useM=3 one-dimensional single-particle basis functions and consider
N=90 particles.We also testedM>3 for convergence and checked the consistency of our results with a
potential wherewe replace the kxsin4( ) term in equation (3) by5 kxsin2( ). For the present computations we use
theMCTDH-X implementation of theMCTDHB theory [41, 42, 57]. For the following simulationswe set the

quasi-hard-wall boundaries as f xw
x

x

60

c
= ( )( ) and xc k k

3

2

1= -p to define the effective extension of the triple

well. Our numerical grid runs from x x k1.09cmin = - - to x x k1.09cmax = + andwe use 256 grid points.
We start our investigation by plotting the one-body density ρ(x) as a function of the tilt a infigure 1(b) as a

function of the tiltα. The effect of the tilt on the density ρ(x) is intuitive: asα increases the density of the atoms is
gradually forced downhill and ρ(x) is localizedmostly at the rightmost well where the potential energy is
minimal forα>0.

We chose the values of the interaction strength (λ=6) and barrier height (V0=180) such that the ground
state is threefold fragmented in the absence of tilt (α=0). To assess the impact of the barrier height and the
interaction strength on the properties of themany-body state, we additionally consider a larger interaction
strength, namelyλ=20, and amoderate barrier height, namelyV0=80.

5
See supplementalmaterial is available online at stacks.iop.org/NJP/21/053044/mmedia at [URL]which includes a description of the

MCTDHBapproach and its convergence, a discussion of the (in-)applicability of aHubbard description, as well as complementary results on
the correlations and the occupation numbers as a function of barrier height and interaction strength for short- and long-range interactions.
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3.1. Natural occupations
To quantify the fragmentation, coherence, and correlation properties of themany-boson systemwe discuss the
behavior of the natural occupations, n

N
i , as a function of the tiltα [equation (3)], seefigure 2.

Formoderate barrier height,V0=80, and no tilt,α=0, the bosons are not completely fragmented, i.e.
60%n

N
1 > and 20%

n

N
2,3 < , for both small and large interaction strengths (λ=6 andλ=20). This is in contrast

to the entirely threefold fragmented state found forV0=180with 33.33%n

N

n

N

n

N
1 2 3» » » [see figure 2, panels

(a), (b) andfigure 2, panels (c), (d)].We conclude that, at zero tilt, fragmentation can be tuned by the barrier
height alone. Asα grows larger so does the first natural occupation, 1n

N
1  , while the other two natural

occupations decrease, i.e. 0
n

N
2,3  , see figures 2(a) and (b).

At large barriers,V0=180, andmoderate interactionsλ=6, the state exhibits threefold fragmentation at
α=0. Asα increases past a threshold value ofα≈7.5, the state becomes coherent with 1, 0n

N

n

N

n

N
1 2 3» » » ,

see figure 2(c). Interestingly, the second natural occupation n

N
2 remains constant up to tilts as large asα≈2,

while n

N
3 starts to drop from 1

3
to 0 already atα≈0. Forα>2, n2 falls off gradually and vanishes atα≈7.5 [see

figure 2(c)]. Beyond this tilt the density is almost exclusively localized in the rightmost well. For larger barriers,
V0=180, andmoderate interactions,λ=6, an increasing tiltα thus triggers a transition froma fully threefold
fragmented to a fully condensed state, i.e. the tilt can be used to control fragmentation.

For larger interactions,λ=20, and a large barrier height,V0=180, the transition between a fragmented
and a depleted state is still found, however, at larger tiltsα [compare figures 2(c) and (d)].

Figure 2. Fragmentation as a function of the tilt of the lattice. The natural occupations n

N
i are shown as a function of the tiltα for

barrier heightsV0=80 [V0=180] in (a), (b) [(c), (d)]. Panels (a), (c) [(b), (d)] correspond to interaction strengthλ=6 [λ=20]. In
all panels, the blue linewith circles represents n

N
1 , the red linewith circles represents n

N
2 , and the green linewith circles represents n

N
3 .

For all depicted parameters, fragmentation gradually diminishes with increasing tiltα; for large tilts, the state hence becomes coherent
and the occupation numbers obtained are 1; 0n

N

n

N

n

N
1 2 3» » » . All quantities shown are dimensionless, see text for further

discussion.
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Wehave verified that the above findings for the natural occupations and the fragmentation of the state also
hold for the case of long-range interactions of the formW r r x xj k j k0

3 3l- = - + Dˆ ( ) (∣ ∣ ) [58–60, 61]. The
natural occupations follow the same pattern as their contact-interaction counterparts, but the restoration of
coherence seems to happen at even larger valuesα as compared to the case of contact interactions. This
demonstrates the sharper effect of long-range interactions on the fragmentation, see supplementalmaterial5.
We thus conclude that the tilt of the triple well can be used to tune themany-body state from fragmented to
condensed.

3.2. First-order correlation
To get a spatially resolved picture of the correlations between the atoms, we plot the first-order correlation
function, g 1 2∣ ∣( ) [as defined in equation (12)] for various tilts (α=0, 2.5, 6.5, 16), barrier heights (V0=80, 180)
and interaction strengths (λ=6, 20) infigure 3.

Wefirst discuss the correlation function for amoderate barrier height,V0=80, infigures 3(a)–(h). At a
small interaction strength (λ=6), coherence between different wells persists since g x x,1 2¢∣ ( )∣( ) is significantly
larger than zero at off-diagonal values x x¹ ¢ for all tilts,figures 3(a)–(d). For larger interaction strengths
(λ=20), inter-well coherence is absent for no tilt (α=0),figure 3(e). As the tilt increases, inter-well coherence
between populated neighboring wells is gradually restored, see figures 3(a)–(d) forλ=6 andfigures 3(f)–(h) for
λ=20: g x x,1 ¢∣ ( )∣( ) gradually grows towards unity for values x x¹ ¢.We note that a tilt-driven localization
takes place for larger tilts: for tiltsα 10, the left well contains almost no particles [see figure 1(b)].

The effect of interactions is tomerely diminish the inter-well coherence, seefigures 3(a)–(d) and (e)–(h): the
value of g x x,1 2¢∣ ( )∣( ) is generally closer to unity on the off-diagonal x x¹ ¢ for small interactions [figures 3(a)–
(d)] as compared to larger interactions [figure 3(e)–(h)].

We now turn to an analysis of the details of the spreading of the coherence. Two competing tendencies are
observed in the evolution of coherence as a function of the tiltα that can be illustratedwith panels (a), (b), (e), (f),
(g) offigures 3: tendency I. is an increase of the coherence between the center and the right well with the tilt see

Figure 3. Spatially tracing correlations between the bosons in the triple well as a function of the tilt and barrier height. The first-order
normalized correlation function g x x,1 2¢∣ ( )∣( ) is visualized as a function ofαwherever the density is larger than a threshold value, i.e.,
where ρ(1)(x, x)>0.01 and x x, 0.011r ¢ ¢ >( )( ) . See labels for the respective values of the barrier heightV0 and the tiltα.We infer that
an increased repulsion between the bosons, postpones changes in the coherence to larger tilts; see the similarity of panels (b) and (g),
(c) and (h) forV0=80 and of panels (j) and (o), (k) and (p) forV0=180. See text for discussion.
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figures 3(a) to (b), andfigures 3(e) to (f), respectively. Tendency II. is the restoration of coherence between the
central and the left well. Both, tendency I. and II. can be understood by the following consideration about the
behavior of interaction and interaction energy as a function of increasing tiltα: naturally, an increase ofα forces
the particles downhill and the density gradually accumulatesmore in the right well, depleting the central and the
left well (see alsofigure 1). This leads to an interaction induced broadening of the density in the right well,
because the presence ofmore particles implies a larger local portion of interaction energy; thus, due to the tilt,
the density in the right well penetratesmore into the potential barrier between central and the right well and,
thereby, increases the tunneling between thesewells—hence the partial revival of coherence between the central
and right well is seen going from figure 3(a) to (b) and going fromfigure 3 (e) to (f). Tendency II., the restoration
of coherence between the left and central wells going from figure 3(a) to (b) or, equivalently, from figure 3(f) to
(g), can also be understood as a consequence of the tilt-drivenmigration of interaction energy towards the right
well: since the central and left wells are gradually depleted, the local contribution to the interaction energy is
decreasing there. The coherence between the left and central well is restored [figures 3(b) and (g)], when the sub-
system remaining in thesewells is effectively non-interacting and its ‘local’ state is well-described by a product of
a single complex-valued function.

Wenote here thatwe verified that the above tendency I. starts affecting the correlation patterns at smaller
tilts than the tendency II. not only forλ=20,V0=80 [see change fromfigure 3(e) to (f)], but also forλ=6,
V0=80: for tilts 1.5a withV0=80 andλ=6, the correlation pattern (not shown) closely resembles the
one depicted in panel (f) offigure 3 forλ=20 andV0=80.

We thus demonstrate that an increase of the tilt, at afixed interaction strength, assists inter-well coherence of
bosons in neighboringwells, while an increase of the interaction strength, forfixedmoderate barrier heights,
diminishes inter-well coherence (section 3.3).

We now analyze the correlations for larger barrier heights (V 1800 = ), figures 3(i)–(p). For zero tilt and in
comparison tomoderate barrier heights, inter-well coherence is completely lost at large barrier heights,
g x x, 01 2¢ »∣ ( ) ∣( ) for x x¹ ¢ infigures 3(i), (m).

By comparing the correlations atmoderate barrier heights to the correlations at larger barrier heights, we
find—as expected—that a larger value ofV0 increases the degree of localization of the system. This is true,
independently of the interparticle interaction strength; compare first and third aswell as second and fourth row
offigure 3.

Similarly tomoderate barrier heights, a restoration of coherence is also seen as the tiltα is increased for larger
barriersV0. This restoration of coherence is followed by a revival of next-to-nearest-neighbor-coherence to a
smaller degree [see figures 3(b) and 3(g)] in the case ofmoderate barriers. For large barriers, however, the revival
of the next-to-nearest-neighbor-coherence ismuchmore prominent, while the nearest neighbors remain
incoherent, see figure 3(j) for weak interactions and figure 3(o) for strong interactions.

Note that we have checked the persistence of the revival of next-to-nearest-neighbor coherence at a larger
accuracy, i.e. forM=4 orbitals.We found that the effect appears at larger tilts (α=7.1) for the case ofM=4.
We therefore speculate that the next-to-nearest neighbor coherence results from a resonance condition
involving two- ormany-particle correlated tunneling processes [39, 62, 63]; the lowered energy at theM=
4-level ofMCTDHB (footnote 5) seems to cause the resonance condition to be fulfilled at a different tilt.

The effect of stronger interactions is, one, to defer the restoration of coherence to larger tilts (fromα=2.5 for
λ=6 toα=6.5 forλ=20) and, two, to shift the tilt-driven localization of the bosons to larger tilts. For strong
interactions,λ=20, atα=16 twowells are populated and atα=6.5 threewells are populated. Forweak
interactions,λ=6, in contrast, only onewell is populated atα=16 and twowells are populated atα=6.5.

We assess the generality of ourfindings for the coherence properties for long-range interactions in the
supplementalmaterial (footnote 5). The inclusion of long-range interactions favors the fragmentation of the
BEC for a larger barrier height.Wefind that ourmain conclusions for short-ranged interactions hold also for the
case of long-ranged interactions.

3.3. Inter-well correlation
The left-right inter-well correlation can be defined as:

g x x
x x

x x x x
,

,

, ,
. 13l r

r l

r r l l

1 2
1

1 1

2
r

r r
=∣ ( )∣ ( )

( ) ( )
( )( )

( )

( ) ( )

The quantity g x x,l r
1 2a a∣ ( ( ) ( ))∣( ) gives the degree offirst-order correlation between points x=xr(α) and

x xl a¢ = ( ). For our potential, equation (3), the position xr(α) [xl(α)] of the right [left]wellminimum isweakly
dependent on the tiltα. The right [left]well extends from about 1.5–2.1 [−1.5 to−2.1] for the considered tiltsα.
We plot the inter-well correlations as a function of the tiltα for various barrier heightsV0 and interaction
strengthsλ infigure 4.
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Formoderate barrier height (and smaller interaction strength), significant inter-well correlations persists for
a smallerαwindow (note the different ranges of the panels infigure 4). However, it disappears with a further
increase ofα at 6l = [see figure 4(a)]. Further increasing the interaction strength (λ=20) leads to left-right
correlations that persist out to larger tiltsα [figure 4(b)]; this behavior is a consequence of the delay of the tilt-
driven localization by the increased repulsion.

In the case of larger barrier height, the left-right correlation is observed only for certain values of the tilting
parameter [figures 4(c) and (d)]. Hence, by tuning the barrier height, interaction strength and tilt of the triple
well, the left-right coherence can be adjusted.

3.4. Natural orbitals: variation as a function of the tilt
The behavior of the natural orbitalsfi(x) is shown infigure 5 as a function of the tiltα for afixed barrier height
V0 and a fixed interaction strengthλ for contact interactions.Without a tilt (α=0), thefirst natural orbital
f1(x)has threemaximawhich are centered at positions of thewells. The second natural orbitalf2(x) has two
maxima that are localized in the first and the thirdwells and the third natural orbitalf3(x) has threemaxima
which are localized at the positions of theminima of the triple well similar tof1(x) [seefigure 5(a)]. The behavior
of the natural orbitals complements the nearly equal population in the three natural orbitals, i.e., the threefold
fragmentation of the condensate [see figures 2(d) and 3(m)].

Forα>0, the natural orbitalsfi(x) adapt their shape tofit the new formof the external trapping potential.
The orbitalsfi(x)nowhave a singlemaximumand are localized independently in the three different wells
[figure 5(b)].With a further increase inα [figure 5(c)], twomaxima emerge inf1(x) that are localized in thefirst
and the thirdwells with different amplitudes. This structure off1 is responsible for the next-to-nearest-

Figure 4.Behavior of thefirst-order inter-well correlation function, g x x,l r
1 2a a∣ ( ( ) ( ))∣( ) , for varying barrier height and interaction

strength for various values ofα. (a) and (b) correspond toλ=6 andλ=20 forV0=80.We plot the correlations for values ofα
where the one-body density xl r,r ( ) is larger than 0.01. Similarly (c) and (d) correspond toλ=6 andλ=20 forV0=180.Here, the
correlations of bosons in the outermostwells at xl(α), xr(α) are considered.
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neighbor correlations, i.e. correlations between the first and the thirdwells [seefigure 3(o)]. The third orbital,
f3(x), shows a node at the center of the thirdwell leading to a higher kinetic energy. The occupation of the third
natural orbital becomes therefore the least energetically favorable. For large values of the tiltα, the natural
orbitals aremainly localized in the second and the thirdwells [figure 5(d)].

We note here, that—similar tofigure 3(o)—we also found the origin of the next-to-nearest-neighbor
correlations infigure 3(j) forV 180, 6, 2.50 l a= = = to be the delocalization of the first natural orbital
between the left and right wells.

We also perform an analysis (footnote 5, section 2) that suggest that theHubbardmodelmay not be
applicable. Direct comparisons ofMCTDHB and the Bose–Hubbardmodel can be found in [64–66].

4. Conclusions

Our analysis has shown intriguing features of the first-order correlation and coherence of bosons in a tilted triple
well [67, 68]. Given the ease in defining the systemparameters in experimental setupswith ultracold bosons, our
work provides a protocol tomanage the coherence of themany-body state: a variety of correlation patterns is
accessible simply by appropriately choosing the interaction strength, potential depth and tilt. Superfluid states—
associatedwith condensation—can be created either localized in onewell or delocalized across all wells.Mott-
insulating states—associatedwith fragmented systems—with a customized particle number imbalance between

Figure 5.This figure shows the variation of natural orbitals, xif ( ) as a function of the tiltα forV0=180 andλ=20 for contact
interactions. It is clearly seen that the optimalMCTDHBbasis does not correspond to site-localizedWannier orWannier–Stark states:
theHubbardmodel is inapplicable. (a)Corresponds toα=0, (b) corresponds toα=2.5, (c) correspondsα=6.5 and (d)
correspondsα=16. In all panels, blue lines with circles representsf1, red lines with circles representsf2 and green lineswith circles
representsf3.We note that, in order to assess their contribution to the one-body density ρ(1)(x, x), the orbitalsfi(x) in this figure
would have to be scaled by their respective occupation number ni given infigure 2.

10

New J. Phys. 21 (2019) 053044 SDutta et al



distinct wells can also be prepared. The superfluid, fully coherent state and theMott-insulating, fully incoherent
phase represent extreme cases. Figure 3 illustrates how intermediate degrees of correlation can also be achieved.
The counter-intuitive revivals of coherence between next-to-nearest neighboring sites seen in panels (j) and (o)
offigure 3 hint that even amanagement of non-local correlations is possible, if the control on the tilt and
interaction strength is sufficiently accurate [69]. A natural extension of ourwork—and in the light of recent
technical developments [70]—would cover bosonswith internal structure and/or embedded in an optical
cavity.

We remark that, owing to its long decoherence time, themany-body state of ultracold atoms can provide a
means to cache correlations and entanglement arising in quantum information processing [71]. For this purpose
protocols to control and quantify correlations in themany-body state of ultracold atoms, like the one that we
outlined in this work, are necessary [72]. As a further continuation of ourwork, we therefore also consider to
quantify entanglement entropy and other quantities of relevance for quantum information processing for tilted
multi-well systems.
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