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Abstract. The problem of controlling mobile robots in dynamic environments
is an interesting challenge. This paper investigates the problem of controlling
mobile robots in dynamic environments through robust control laws defined by
echo state networks (ESN). The output weights of the ESN are optimized by
genetic algorithms (GAs). Different GAs developed for optimization in dynamic
environments are compared in the problem of searching for robust solutions.
Two approaches are investigated: through dynamic evolutionary optimization
and robust evolutionary optimization. In the experiments, the GA evolved in
the static environment produces good trajectories in environments that resemble
the static environment (without obstacles). However, it presents unsatisfactory
performance in environments that are very different from the static environment.
Both GAs evolved in the dynamic and robust optimization approaches present
good results in environments that differ from the static environment.

1. Introdução
Algoritmos genéticos (AGs), e outros algoritmos evolutivos, têm sido utilizados em di-
versas áreas da robótica, quer para o desenvolvimento da arquitetura do robô, quer
para a otimização de leis de controle e de estratégias de navegação e planejamento
[Floreano and Nolfi 2000]. Tal fato ocorre principalmente porque o projeto de robôs
autônomos e seus controladores para ambientes não-estruturados, dinâmicos e/ou parcial-
mente desconhecidos é uma tarefa difı́cil para um projetista humano [Siegwart et al. 2011,
Romero et al. 2014].

Utilizando algoritmos evolutivos, o ambiente e a tarefa a ser executada passam
a ser os fatores principais no desenvolvimento do robô e de seu controlador, tirando o
posto que antes cabia ao projetista. Tal é a perspectiva do uso de algoritmos evolutivos
em robótica que se cunhou um termo especialmente para designar os mecanismos por
eles criados: robôs evolutivos (REs) [Floreano and Nolfi 2000]. Salienta-se que a co-
nexão entre robótica e biologia não têm um sentido único neste caso: robôs autônomos
podem servir como uma importante ferramenta para o desenvolvimento e teste de mode-
los comportamentais, de habilidades cognitivas e de modelos evolutivos de organismos
vivos [Webb 2001, Shimo et al. 2010].

A aplicação crescente de robótica em ambientes não-estruturados ocasionou um
aumento no interesse por algoritmos evolutivos que produzam soluções que mudam com o
tempo [Branke 2002] ou soluções robustas. As mudanças que podem ocorrer em robótica



são causadas, entre outras, pela ocorrência de falhas [Tinós and de Carvalho 2006] e por
mudanças nas caracterı́sticas do ambiente [Billard et al. 1999]. Tais mudanças represen-
tam variações nas restrições das soluções, no número de variáveis e/ou na avaliação das
soluções (fitness), afetando o processo de otimização devido às alterações na superfı́cie
de fitness [Tinós and Yang 2014].

A área de pesquisa em algoritmos evolutivos para ambientes dinâmicos tem re-
cebido grande atenção recentemente [Jin and Branke 2005], com diversos trabalhos em
teoria e no desenvolvimento de algoritmos e aplicações. Uma dificuldade que pode ser
enfrentada quando o problema muda é a perda da diversidade da população de soluções.
Isto geralmente ocorre devido à convergência da população para ótimos locais. Quando
o problema muda, é difı́cil escapar destes ótimos utilizando-se um algoritmo genético
padrão. Para solucionar esse problema, diversos mecanismos têm sido criados para con-
trolar ou aumentar a diversidade da população em AGs aplicados a problemas em ambi-
entes incertos [Jin and Branke 2005]. Dois dos mais utilizados são a hipermutação e os
imigrantes aleatórios [Cobb and Grefenstette 1993].

Mais recentemente, pesquisadores na área de computação evolutiva dinâmica
começaram a estudar o problema de busca por soluções robustas para ambientes
dinâmicos [Beyer and Sendhoff 2007, Fu et al. 2015]. Enquanto que em problemas de
otimização dinâmica se está preocupado em adaptar rapidamente a solução durante o
processo de otimização, em otimização robusta busca-se encontrar uma solução que seja
robusta para mudanças futuras, ou seja, após o processo de otimização.

Este artigo tem por objetivo a investigação de AGs aplicados na otimização de leis
de controle de robôs móveis que sejam robustas a mudanças no ambiente que ocorram
após o processo de otimização. No problema estudado, o robô móvel deve explorar ao
máximo o ambiente sem se chocar com os obstáculos e retornar periodicamente para uma
área definida a priori. Em um problema real, mudanças que afetam o hardware ou o am-
biente poderão ocorrer após o processo de otimização. A grande dificuldade do projeto
de robôs nestes casos advém da impossibilidade de prever as situações que serão confron-
tadas pelos robôs em ambientes não-estruturados ou desconhecidos. Com as mudanças,
soluções encontradas pelo AG podem se tornar ruins no novo ambiente devido ao fato
das soluções serem otimizadas considerando-se superfı́cies de fitness estáticas. Neste
trabalho, diferentes algoritmos genéticos desenvolvidos para a otimização em ambientes
dinâmicos são comparados no problema da busca por soluções robustas, ou seja, que apre-
sentem um bom desempenho mesmo que o robô ou o ambiente sofram alterações. Parti-
cularmente, são investigados os mecanismos de imigrantes aleatórios e hipermutação. De
acordo com o conhecimento dos autores, tais mecanismos não foram investigados no con-
texto de otimização robusta. Além disso, estratégias próprias para se encontrar soluções
robustas são investigadas [Fu et al. 2015]. Uma outra contribuição deste trabalho é o uso
de uma rede neural recorrente do tipo echo state network (ESN) [Jaeger and Haas 2004]
para o controle do robô móvel.

A metodologia proposta é apresentada na Seção 2. A Seção 3 apresenta os resul-
tados obtidos nos experimentos, enquanto que a Seção 4 apresenta as conclusões deste
trabalho.



2. Metodologia

Neste trabalho, considera-se um robô móvel que pode realizar em cada instante uma das
seguintes ações: andar em frente 10 cm, girar -45 graus, girar +45 graus, ou girar 90
graus. O robô possui quatro sensores, sendo um posicionado para frente, um para cima,
um na diagonal direita e um na diagonal esquerda (ambos formando um ângulo de 45◦

com o sensor da frente). O sensor voltado para cima permite detectar a área de recarga
de bateria (ver adiate), já que esta é a única área coberta da arena em que o robô deve
navegar.

Aqui, o robô móvel é controlado por uma rede neural recorrente do tipo ESN
[Jaeger and Haas 2004]. Para cada posição da arena em que o robô estiver navegando,
a ESN gera uma saı́da correspondente a uma das quatro ações. Cada neurônio de saı́da
é relacionado a uma destas ações, sendo que o neurônio com máxima ativação define a
ação tomada pela ESN em cada instante de tempo. As entradas da rede correspondem
às leituras dos sensores do robô. As conexões recorrentes são necessárias para que o
robô tenha comportamentos não simplesmente reativos. A Figura 1 mostra a rede neural
utilizada neste trabalho.

Figura 1. Rede neural ESN utilizada para controlar o robô. Por simplicidade, as
conexões recorrentes dos neurônios localizados no reservatório não são mos-
tradas. Os únicos pesos a serem ajustados (treinados) são aqueles entre os
neurônios do reservatório e da camada de saı́da. Aqui, propõe-se otimizar estes
pesos utilizando-se um algoritmo genético.

A ESN usa um reservatório com neurônios esparsamente conectados através de
pesos gerados aleatoriamente e posteriormente normalizados. Os pesos que conectam as
unidades sensoriais (entradas) aos neurônios do reservatório são também aleatórios. O
fato de utilizar um grande reservatório de neurônios possibilita a obtenção de comporta-
mentos dinâmicos complexos. Em ESN supervisionadas, os pesos entre os neurônios do
reservatório e os neurônios da camada de saı́da são ajustados utilizando-se o método dos
mı́nimos quadrados, o que torna o aprendizado bastante rápido [Jaeger and Haas 2004].
Entretanto, as saı́das desejadas não são conhecidas para o problema estudado neste traba-
lho, i.e., não se conhece a priori a ação que o robô deve tomar em cada instante de sua
trajetória ou para posições e orientações especı́ficas.

Desta forma, propõe-se utilizar um AG para otimizar o vetor de pesos entre a ca-
mada intermediária (reservatório) e a camada de saı́da. Como dito anteriormente, os pesos



da camada de entrada e do reservatório são aleatórios (estes últimos são normalizados para
que a ESN possua certas propriedades dinâmicas inerentes a esta arquitetura). Após al-
guns testes iniciais, a arquitetura adotada foi de 4 entradas (sensores), 50 neurônios no re-
servatório e 4 saı́das (movimentos) com um valor de densidade de conexão de 0,15 (15%)
no reservatório. O raio espectral de 0,95 é utilizado para normalizar os pesos aleatórios.

A aptidão (fitness) de cada indivı́duo é obtida testando-se as leis de controle (ESN)
definidas pelo cromossomo do indivı́duo. Devido ao longo tempo necessário para avaliar
uma solução no robô real, um simulador foi utilizado durante a otimização (Seção 2.6). A
seguir, algumas das caracterı́sticas dos AGs implementados são discutidas. A população
inicial dos AGs é gerada aleatoriamente de acordo com uma distribuição uniforme.

2.1. Codificação

Cada indivı́duo é representado por um vetor real (cromossomo), na qual cada posição re-
presenta o peso correspondente na camada de saı́da da rede ESN. Cada indivı́duo codifica
um vetor de pesos, que por sua vez define uma ESN. Cada ESN, por sua vez, define um
comportamento para o robô (trajetória) no ambiente. O tamanho do cromossomo varia de
acordo com a quantidade de neurônios no reservatório e na camada de saı́da.

2.2. Reprodução e Seleção

Os indivı́duos são reproduzidos pelos operadores de crossover de dois pontos e mutação
gaussiana. O método do torneio, no qual Kt indivı́duos da população são aleatoriamente
escolhidos e aquele com maior fitness é selecionado, é empregado. Este método é in-
teressante pois permite o controle da pressão seletiva por meio do parâmetro Kt , além
de representar um procedimento computacionalmente mais simples, quando comparado
com o método da roleta [Mitchell 1996]. Elitismo também é empregado, sendo que os
dois melhores indivı́duos da população atual são copiados para a próxima população.

2.3. Avaliação

Diferentes ESNs geram comportamentos diferentes (trajetórias) do robô. Assim, para
avaliar um indivı́duo, o robô com a ESN dada pelo cromossomo do indivı́duo que está
sendo avaliado deve navegar pelo ambiente, andando o máximo possı́vel em linha reta,
até atingir algum dos seguintes critérios de parada:

• Colidir com um obstáculo;
• Não voltar para carregar a bateria dentro de uma determinada quantidade de mo-

vimentos. Esta condição simula o processo de descarga da bateria do robô;
• Atingir o número máximo de movimentos.

Assim, o número de iterações do robô, com a ESN definida pelo indivı́duo x, é
dado por:

tmax(x) = min(300, tchoque, tbateria) (1)

sendo tchoque o instante em que o robô chocou-se com um obstáculo e tbateria o instante em
que a bateria do robô ficou totalmente descarregada. É importante observar que tbateria
muda cada vez que a bateria é recarregada. A carga da bateria é simulada utilizando-
se uma função linear cujos valores decrescem com o tempo [Floreano and Nolfi 2000].
O tempo de carga é considerado instantâneo, sendo que a bateria é recarregada sempre



que o robô entra em uma área pré-definida da arena (a pontuação não é contada quando
o robô está na área de recarga). O tempo de descarga simulado é de 80 iterações, ou
seja, a bateria fica descarregada após 80 iterações depois do inı́cio do experimento ou 80
iterações depois que o robô saiu da área de recarga.

A seguinte função de avaliação (fitness) é utilizada:

f(x) =
tmax∑
t=1

α(x, t) (2)

na qual x é o vetor de pesos (da camada de saı́da) da ESN armazenado no cromossomo
do indivı́duo, t é a iteração (em cada iteração, o robô executa uma ação), e:

α(x, t) =

{
1, se o robô andou para frente na interação t
0, caso contrário

(3)

Para atingir o fitness máximo, o robô deve navegar no ambiente em linha reta o
máximo possı́vel, sem se chocar com os obstáculos e retornar à área de recarga sempre que
a bateria estiver quase descarregada. A tarefa de simplesmente andar na arena sem se cho-
car com os obstáculos exigi apenas ações reativas. Entretanto, ao colocar a restrição para
o tempo de bateria, exigindo assim que o robô volte periodicamente para a área de recarga,
faz com que ações que envolvem memória sejam necessárias [Floreano and Nolfi 2000].

O pseudo-código apresentado na Figura 2 mostra como a função de fitness é cal-
culada para uma dado indivı́duo do AG (ou seja, uma rede neural ESN com pesos dados
pelo cromossomo do indivı́duo).

Figura 2. Pseudo-código para computar o fitness de um indivı́duo do AG. A
variável qtdMovExec representa a quantidade de movimentos executados pelo
robô durante a avaliação do indivı́duo, e deve ser menor que qtdMov (neste tra-
balho, qtdMov = 300). Já a variável qtdFrente representa a quantidade de movi-
mentos em linha reta que o robô executou.

2.4. Robustez

Neste trabalho, considera-se que o ambiente pode mudar periodicamente. Deseja-se uma
estratégia de controle (dada pela rede neural) que seja robusta às mudanças. Duas es-
tratégias são investigadas. Na primeira, o AG otimiza a ESN considerando-se mudanças
periódicas no ambiente ocorridas durante a otimização. Esta é a estratégia utilizada em



otimização evolutiva dinâmica [Tinós and Yang 2014]. A população do AG deve, neste
caso, se adaptar às mudanças do ambiente. Estratégias para controle da diversidade (ver
próxima subseção) são geralmente adotadas neste caso para facilitar a fuga de ótimos lo-
cais na otimização de um dado ambiente. Neste trabalho, estamos interessados em obter
soluções robustas. Assim, a primeira hipótese que será investigada é a de que técnicas de
manutenção de diversidade desenvolvidas em otimização evolutiva dinâmica podem ser
interessantes para obter soluções robustas para o robô sujeito a mudanças no ambiente.

A segunda hipótese que será investigada é a de que tais técnicas de manutenção
de diversidade podem ser interessantes quando técnicas de avaliação de fitness desenvol-
vidas em otimização evolutiva robusta são empregadas para se obter soluções robustas
para o robô sujeito a mudanças no ambiente. Neste caso, a seguinte função de fitness
[Fu et al. 2015] é utilizada:

f(x) =
1

n

n∑
s = 1

tmax∑
t=1

α(x, t) (4)

na qual s é o ı́ndice do ambiente em que o robô está sendo avaliado e n é o número total
de ambientes. Esta estratégia de avaliação é bastante simples: o robô é avaliado em n
ambientes, sendo que o fitness é dado pela média do fitness (Eq. 2) considerando-se todos
os ambientes. Ambas as estratégias (por otimização evolutiva dinâmica ou robusta) são
aqui avaliadas, ao fim da otimização, apresentando-se o robô em novos ambientes não
vistos durante o processo de otimização. A avaliação média nestes novos ambientes é
utilizada como medida de eficiência.

2.5. Manutenção da diversidade
Aqui, técnicas para manutenção ou aumento da diversidade das soluções são empregadas
no AG. Os ambientes são dinâmicos devido à introdução de mudanças de configurações
dos obstáculos. Além do AG padrão, as seguintes estratégias são investigadas:

• Hipermutação: nesta estratégia, a taxa de mutação é aumentada toda vez que
a diversidade da população de soluções atinge um patamar ou quando o algo-
ritmo converge para uma solução. Aumentando-se a taxa de mutação, aumenta-
se a chance de o algoritmo escapar do ótimo local em que ele se encontra
[Cobb and Grefenstette 1993].

• Imigrantes aleatórios: a estratégia dos imigrantes aleatórios é inspirada no fluxo
de indivı́duos que entram e saem de uma população entre duas gerações na na-
tureza [Cobb and Grefenstette 1993]. O AG com imigrantes aleatórios é bastante
simples e interessante, sendo que em cada geração do processo de otimização, al-
guns indivı́duos da população corrente são substituı́dos por indivı́duos aleatórios.
Uma estratégia de substituição, como por exemplo, substituir indivı́duos aleato-
riamente (estratégia utilizada aqui) ou os indivı́duos menos aptos, define quais
indivı́duos são substituı́dos. Por meio da introdução de novos indivı́duos, a es-
tratégia tenta manter o nı́vel de diversidade em um patamar razoável.

O AG padrão estático (sem que ocorram alterações durante a otimização) é com-
parado com: i) o AG padrão com alterações no problema ocorrendo durante o processo
de otimização (enfoque por otimização evolutiva dinâmica); ii) o AG com função de fit-
ness para problemas robustos (enfoque por otimização evolutiva robusta). Para os dois



enfoques, são testadas duas estratégias de manutenção de diversidade: i) Hipermutação;
ii) Imigrantes Aleatórios.

2.6. Simulador

Como o processo de otimização em um robô real é muito demorado, foi desenvolvido um
simulador para reduzir o tempo de otimização. Durante a simulação não é considerado
que possam existir ruı́dos e ações imperfeitas. Entretanto, ruı́dos e ações imperfeitas são
intrı́nsicas a experimentos que envolvam robôs reais. Assim, após encontradas as soluções
no simulador, pode ser necessário evoluir estas soluções por mais algumas gerações no
robô real.

O AG executado nos experimentos com o simulador é o mesmo aplicado nos ex-
perimentos com o robô real, caso este seja utilizado. A única diferença é que, ao invés
do fitness ser calculado utilizando o robô real, ele é calculado utilizando o robô simulado.
É interesante notar que, ao transferir as soluções evoluı́das no simulador e continuar os
experimentos em robôs reais, mudanças no problema de otimização ocorrem. Assim, a
busca por soluções robustas é de grande relevância do ponto de vista prático.

No simulador, antes de iniciar a avaliação de um indivı́duo, são sorteadas uma
posição e um ângulo inicial. As novas posições e orientações do robô após cada ação são
calculadas através de modelos cinemáticos. Por meio de cálculos envonvendo geometria,
são simuladas as saı́das produzidas pelos sensores. Os critérios de parada do AG são os
mesmos citados anteriormente. A posição e o ângulo inicial aleatórios são importantes
pois, se um indivı́duo for passado de geração em geração, ele será avaliado várias vezes
iniciando em configurações distintas.

Todos os códigos utilizados no trabalho foram desenvolvidos em C++. As
simulações foram executadas em um servidor com 2 processadores Intel Xeon E5-2620
v2 (com 15 MB Cache e 2.10 GHz) e 32 GB de memória RAM.

3. Resultados

Nos experimentos realizados nas abordagens por otimização evolutiva dinâmica e ro-
busta, todos os indivı́duos de cada uma das populações foram apresentados a 10 ambi-
entes diferentes durante o processo de otimização. Estes ambientes diferem no número
de obstáculos e na posição destes em uma arena retangular de 2 m por 1,20 m. Para cada
um dos AGs, foram realizadas 25 execuções com diferentes sementes aleatórias. Cada
execução demorou cerca de 40 horas na plataforma computacional utilizada. De modo a
reduzir o tempo total, diversas execuções ocorreram em paralelo.

Todos os AGs utilizam: população composta por 100 indivı́duos, taxa de crossover
definida como 0,6, taxa de mutação definida como 1/m, sendo m o tamanho do cromos-
somo. Na seleção por torneio, Kt = 3. Foi utilizado também o método do elitismo,
onde os dois melhores indivı́duos da população atual passam para a próxima geração. Na
mutação Gaussiana foi utilizado desvio padrão igual a 1,0.

Quando a hipermutação é ativada, a taxa de mutação é aumentada, ficando 4 vezes
maior que a taxa de mutação inicial por 10 gerações. A taxa de substituição de indivı́duos
para o AG com Imigrantes Aleatórios é 0,05, o que significa que 5% dos indivı́duos são
substituı́dos por novos indivı́duos aleatórios em cada geração. Os indivı́duos a serem



substituı́dos são escolhidos aleatoriamente e com distribuição uniforme, com exceção dos
dois indivı́duos selecionados pelo método do elitismo. Todos estes parâmetros foram
obtidos realizando-se experimentos iniciais.

3.1. Enfoque por Otimização Evolutiva Dinâmica
Nos experimentos em que são inseridas mudanças no ambiente durante a otimização,
estas ocorrem a cada 200 gerações. O processo de otimização ocorre durante 2.200
gerações da seguinte forma: nas 200 primeiras gerações é utilizado o ambiente inicial
sem nenhum obstáculo; nas 1.800 gerações seguintes são utilizados 9 ambientes com di-
ferentes obstáculos; nas últimas 200 gerações é utilizado o ambiente inicial sem nenhum
obstáculo. A Figura 3 apresenta o fitness médio (para 25 execuções) do melhor indivı́duo
de cada geração para cada um dos quatro algoritmos estudados.

Figura 3. Média do fitness do melhor indivı́duo (considerando 25 execuções)
para: i) AG estático (sem considerar mudança no ambiente durante otimização);
ii) AG padrão; iii) AG com hipermutação; iv) AG com imigrantes aleatórios.
Considerou-se aqui o Enfoque por Otimização Evolutiva Dinâmica.

Para comparar a robustez dos algoritmos, foram selecionados o melhor indivı́duo
entre todas as execuções para cada um do quatro algoritmos estudados. Este indivı́duos
foram avaliados 10 vezes (com diferentes posições e orientações iniciais) em 5 ambien-
tes diferentes dos apresentados durante o processo de otimização. Os novos ambientes
podem ser vistos na Figura 5. Como os novos ambientes apresentam diferentes nı́veis
de dificuldade, os resultados de robustez são analisados por ambiente. A Tabela 1 mos-
tra os resultados obtidos. Para avaliar a significância estatı́stica, foi utilizado o teste de
Wilcoxon Signed-Rank com um nı́vel de significância de 5%. Os resultados do AG com
imigrantes aleatórios foram comparados com os resultados dos outros algoritmos.

3.2. Enfoque por Otimização Evolutiva Robusta
A diferença deste experimento para o anterior é que ao invés do ambiente ser alterado
depois de um certo número de gerações (Enfoque por Otimização Evolutiva Dinâmica),
cada indivı́duo é avaliado nos 10 ambientes ao mesmo tempo, ou seja, a Eq. 4 é utilizada
para a avaliação do fitness ao invés da Eq. 2. Os ambientes utilizados durante a otimização
e para posterior teste da robustez são os mesmos utilizados anteriormente. A evolução do
fitness do melhor indivı́duo para cada algoritmo é apresentada na Figura 4.



Tabela 1. Resultados para o enfoque por Otimização Evolutiva Dinâmica. São
mostrados os resultados da média e desvio padrão dos fitness do melhor in-
divı́duo da última geração de todas as execuções de cada um dos quatro AGs
avaliado nos 5 novos ambientes. A letra S indica que a comparação de re-
sultados do AG com Imigrantes Aleatórios com o respectivo algoritmo é esta-
tisticamente significante considerando-se o Teste Wilcoxon Signed-Rank . Os
sı́mbolos + e − significam respectivamente que médias do AG com Imigrantes
Aleatórios foi maior ou menor que a média do respectivo algoritmo.

Ambiente AG Padrão Ambiente Estático Hipermutação Imigrantes Aleatórios
1 0,4385 ± 0,1921 (S+) 0,4346 ± 0,1918 (S+) 0,4855 ± 0,1974 (+) 0,5304 ± 0,1738
2 0,6776 ± 0,1459 (S+) 0,7174 ± 0,1192 (S+) 0,6821 ± 0,1418 (S+) 0,7295 ± 0,1026
3 0,4532 ± 0,1824(-) 0,4886 ± 0,2161(-) 0,4009 ± 0,1609 (+) 0,4316 ± 0,2090
4 0,6068 ± 0,1853 (S+) 0,6527 ± 0,1866 (+) 0,6698 ± 0,1562 (+) 0,7215 ± 0,1348
5 0,4963 ± 0,1869(-) 0,4137 ± 0,1790 (+) 0,4468 ± 0,2006 (-) 0,4446 ± 0,2182

Figura 4. Média do fitness do melhor indivı́duo de cada execução de cada um
dos três AGs para o Enfoque por Otimização Evolutiva Robusta.

Do mesmo modo que para o enfoque anterior, foram selecionados o melhor in-
divı́duo da última geração de todas as execuções dos quatro algoritmos estudados, e em
seguida cada um desses indivı́duos foram avaliados 10 vezes em 5 ambientes diferen-
tes dos apresentados durante o processo de otimização. A Tabela 2 mostra os resultados
obtidos.

Tabela 2. Resultados para o enfoque por Otimização Evolutiva Robusta.
Ambiente AG Padrão Ambiente Estático Hipermutação Imigrantes Aleatórios

1 0,3898 ± 0,1837(+) 0,4346 ± 0,1918 (+) 0,3915 ± 0,1889 (+) 0,4605 ± 0,2133
2 0,7427 ± 0,0450 (+) 0,7174 ± 0,1192 (+) 0,7509 ± 0,0453(-) 0,7433 ± 0,0473
3 0,5581 ± 0,1842 (+) 0,4886 ± 0,2161 (+) 0,5562 ± 0,1822 (+) 0,5582 ± 0,1693
4 0,6097 ± 0,1792(-) 0,6527 ± 0,1866 (S-) 0,6053 ± 0,1791 (+) 0,6091 ± 0,1870
5 0,6240 ± 0,1405 (+) 0,4137 ± 0,1790 (S+) 0,6307 ± 0,1227 (+) 0,6690 ± 0,1135

3.3. Comparação e análise dos resultados obtidos

Para o Enfoque por Otimização Evolutiva Dinâmica, o AG com imigrantes aleatórios se
destaca por ter obtido geralmente o maior fitness entre os AGs na maioria dos ambientes
de simulação. Isto ocorre tanto durante a otimização (Figura 3) quanto para o teste de



robustez (Tabela 1). Os resultados do AG foram superiores em 11 dos 15 casos, sendo
estatisticamente significante em 6.

Já para o Enfoque por Otimização Evolutiva Robusta, houve a mudança na função
de fitness. Com esta alteração, ao invés do ambiente se alterar de tempos em tempos,
os indivı́duos são avaliados nos 10 ambientes durante toda a fase de otimização (exceto
para o AG no Ambiente Estático). É possı́vel observar que aqui também a estratégia dos
Imigrantes Aleatórios produz os melhores resultados durante a otimização (Figura 4). Os
melhores resultados da estratégia por Imigrantes Aleatórios são explicados pela maior
diversidade da população propiciada durante o processo de otimização. Tal diversidade é
portanto importante em problemas de otimização robusta. No teste da robustez, o AG com
imigrantes aleatórios foi superior em 12 dos 15 casos; entretanto foi significativamente
superior em apenas um caso (Tabela 2).

Ambiente AG Padrão Hipermutação Imigrantes Aleatórios
1 + + +
2 - - -
3 - S- S-
4 - + S+
5 S- S- S-

Tabela 3. Comparação das duas estratégias. Os sı́mbolos + e − aparecem res-
pectivamente quando a estatégia por otimização evolutiva dinâmica é melhor ou
pior que a estratégia por otimização evolutiva robusta.

Na Tabela 3, são comparados os resultados das duas estratégias. Nota-se que, para
o AG com Imigrantes Aleatórios, a segunda estratégia (otimização robusta) é melhor que
a primeira (otimização dinâmica) nos ambientes 2, 3 e 5. Na Figura 5 são apresentados
algumas soluções produzidas pelo AG com Imigrantes Aleatórios obtidas pelo enfoque
robusto. Verifica-se que 1, 3 e 5 são os mais desafiadores pois são os que mais diferem do
ambiente estático (sem obstáculos). O AG evoluı́do por ambiente estático produziu em
geral soluções em que a solução evoluı́da foi a de andar rente a parede. Nota-se que tal
estratégia não é boa para alguns ambientes, como por exemplo o ambiente 3. É possı́vel
observar na Figura 5, que o AG com imigrantes aleatórios produziu uma solução que
produz bons resultados para este ambiente.

3.4. Teste das soluções em um robô real

Algumas das soluções evoluı́das no robô simulado foram testadas em um robô real. Os
experimentos ocorreram utilizando a plataforma robótica Curumim desenvolvida pela em-
presa XBot. O robô simulado possui as mesmas caracterı́sticas da configuração do robô
real utilizada nesta pesquisa (ver Seção 2). Como dito na Seção 2.6, pode ser necessário
evoluir por mais algumas gerações a população de soluções obtidas durante os experimen-
tos com o simulador. Entretanto, esta evolução adicional não foi necessária, mostrando
que as soluções evoluı́das são robustas a mudanças no problema. Neste caso, a mudança
ocorreu devido a transferência do soluções do robô simulado para o robô real.

Nos experimentos com o robô real, a melhor solução obtida nos experimentos
com o AG com Imigrantes Aleatórios no Enfoque por Otimização Evolutiva Robusta foi
testada em quatro experimentos na arena sem obstáculos. Nestes quatro experimentos, a
posição inicial do robô era diferente. O AG com Imigrantes Aleatórios no Enfoque por
Otimização Evolutiva Robusta foi escolhido pois este apresentou os melhores resultados



Figura 5. Trajeto percorrido pela solução produzida pelo AG com Imigrantes
Aleatórios (Enfoque por Otimização Evolutiva Robusta). A área de recarga é re-
presentada pelo retângulo azul na parte inferior da arena. Os obstáculos são
representados pelos retângulos em verde.

nas simulações considerando-se a robustez das soluções. Os valores de fitness obtidos
nos experimentos foram: 0,7; 0,74; 0,73 e 0,69. Quando comparados com os valores
obtidos na simulações (Tabela 2), é possı́vel perceber a boa qualidade das soluções. O
robô foi capaz de percorrer a arena sem se chocar com as paredes, retornando perio-
dicamente à área de recarga. Um vı́deo dos experimentos pode ser visto em https:
//www.youtube.com/watch?v=v8oEpdo4dc8&feature=youtu.be.

4. Conclusões
Todos os AGs estudados conseguiram encontrar leis de controle robustas à mudanças no
ambiente, obtendo soluções que não colidiram em nenhum dos ambientes utilizados na
fase de teste de robustez. Em relação às técnicas estudadas, o destaque foi para o Algo-
ritmo Genético com Imigrantes Aleatórios, que se mostrou superior na maioria dos testes
realizados. Os resultados encontrados pelo segundo experimento, na qual a robustez era
considerada durante o processo de otimização, foram geralmente superiores aos resulta-
dos encontrados no primeiro onde a robustez não era considerada.

Apesar de o AG evoluı́do para o ambiente estático produzir boas trajetórias em
ambientes que lembram o ambiente estático (sem obstáculos), ele apresenta trajetórias não
satisfatórias em ambientes muito diferentes do ambiente estático. Tanto o AG evoluı́do
no enfoque por otimização dinâmica, como o AG evoluı́do no enfoque por otimização
robusta, apresentaram bons resultados em ambientes que diferem do ambiente estático.
Isto mostra que tais enfoques conseguiram produzir soluções robustas às mudanças nos
ambientes. Além disso, as técnicas de manutenção de diversidade se mostraram bastante
interessantes no problema estudado. No futuro, mais experimentos com robô real devem



ser realizados. Também, outras estratégias robustas descritas em [Fu et al. 2015] devem
ser investigadas.
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