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Abstract. The problem of controlling mobile robots in dynamic environments
is an interesting challenge. This paper investigates the problem of controlling
mobile robots in dynamic environments through robust control laws defined by
echo state networks (ESN). The output weights of the ESN are optimized by
genetic algorithms (GAs). Different GAs developed for optimization in dynamic
environments are compared in the problem of searching for robust solutions.
Two approaches are investigated: through dynamic evolutionary optimization
and robust evolutionary optimization. In the experiments, the GA evolved in
the static environment produces good trajectories in environments that resemble
the static environment (without obstacles). However, it presents unsatisfactory
performance in environments that are very different from the static environment.
Both GAs evolved in the dynamic and robust optimization approaches present
good results in environments that differ from the static environment.

1. Introducao

Algoritmos genéticos (AGs), e outros algoritmos evolutivos, t€m sido utilizados em di-
versas areas da robdtica, quer para o desenvolvimento da arquitetura do rob0d, quer
para a otimizacdo de leis de controle e de estratégias de navegacdo e planejamento
[Floreano and Nolfi 2000]. Tal fato ocorre principalmente porque o projeto de robos
autdnomos e seus controladores para ambientes ndo-estruturados, dindmicos e/ou parcial-
mente desconhecidos € uma tarefa dificil para um projetista humano [Siegwart et al. 2011,
Romero et al. 2014].

Utilizando algoritmos evolutivos, o ambiente e a tarefa a ser executada passam
a ser os fatores principais no desenvolvimento do robd e de seu controlador, tirando o
posto que antes cabia ao projetista. Tal € a perspectiva do uso de algoritmos evolutivos
em robdtica que se cunhou um termo especialmente para designar os mecanismos por
eles criados: robds evolutivos (REs) [Floreano and Nolfi 2000]. Salienta-se que a co-
nexado entre robdtica e biologia ndo t€ém um sentido Ginico neste caso: robos autdbnomos
podem servir como uma importante ferramenta para o desenvolvimento e teste de mode-
los comportamentais, de habilidades cognitivas e de modelos evolutivos de organismos
vivos [Webb 2001, Shimo et al. 2010].

A aplicacdo crescente de robdtica em ambientes ndo-estruturados ocasionou um
aumento no interesse por algoritmos evolutivos que produzam solucdes que mudam com o
tempo [Branke 2002] ou solugdes robustas. As mudangas que podem ocorrer em roboética



sdo causadas, entre outras, pela ocorréncia de falhas [Tin6s and de Carvalho 2006] e por
mudangas nas caracteristicas do ambiente [Billard et al. 1999]. Tais mudangas represen-
tam variacOes nas restri¢cdes das solucdes, no nimero de varidveis e/ou na avaliacdo das
solugdes (fitness), afetando o processo de otimizagao devido as alteragdes na superficie
de fitness [Tinds and Yang 2014].

A drea de pesquisa em algoritmos evolutivos para ambientes dindmicos tem re-
cebido grande aten¢do recentemente [Jin and Branke 2005], com diversos trabalhos em
teoria e no desenvolvimento de algoritmos e aplicagcdes. Uma dificuldade que pode ser
enfrentada quando o problema muda € a perda da diversidade da populacdo de solugdes.
Isto geralmente ocorre devido a convergéncia da populacdo para 6timos locais. Quando
o problema muda, € dificil escapar destes 6timos utilizando-se um algoritmo genético
padrdo. Para solucionar esse problema, diversos mecanismos tém sido criados para con-
trolar ou aumentar a diversidade da populacdo em AGs aplicados a problemas em ambi-
entes incertos [Jin and Branke 2005]. Dois dos mais utilizados sdo a hipermutagdo e os
imigrantes aleatorios [Cobb and Grefenstette 1993].

Mais recentemente, pesquisadores na drea de computacdo evolutiva dinamica
comecaram a estudar o problema de busca por solucdes robustas para ambientes
dindmicos [Beyer and Sendhoff 2007, Fu et al. 2015]. Enquanto que em problemas de
otimiza¢do dindmica se estd preocupado em adaptar rapidamente a solu¢do durante o
processo de otimizagdo, em otimizagdo robusta busca-se encontrar uma solucio que seja
robusta para mudancas futuras, ou seja, apos o processo de otimizacao.

Este artigo tem por objetivo a investigacao de AGs aplicados na otimizagao de leis
de controle de robds moveis que sejam robustas a mudangas no ambiente que ocorram
apos o processo de otimizacdo. No problema estudado, o robd mdvel deve explorar ao
maximo o ambiente sem se chocar com os obstaculos e retornar periodicamente para uma
area definida a priori. Em um problema real, mudangas que afetam o hardware ou o am-
biente poderdo ocorrer apos o processo de otimizacdo. A grande dificuldade do projeto
de robos nestes casos advém da impossibilidade de prever as situagdes que serdo confron-
tadas pelos robds em ambientes ndo-estruturados ou desconhecidos. Com as mudancas,
solugdes encontradas pelo AG podem se tornar ruins no novo ambiente devido ao fato
das solugdes serem otimizadas considerando-se superficies de fitness estdticas. Neste
trabalho, diferentes algoritmos genéticos desenvolvidos para a otimizacdo em ambientes
dindmicos sdo comparados no problema da busca por solucdes robustas, ou seja, que apre-
sentem um bom desempenho mesmo que o robd ou o ambiente sofram alteracdes. Parti-
cularmente, sdo investigados os mecanismos de imigrantes aleatérios e hipermutagdo. De
acordo com o conhecimento dos autores, tais mecanismos nao foram investigados no con-
texto de otimizagdo robusta. Além disso, estratégias proprias para se encontrar solugdes
robustas sao investigadas [Fu et al. 2015]. Uma outra contribui¢io deste trabalho € o uso
de uma rede neural recorrente do tipo echo state network (ESN) [Jaeger and Haas 2004]
para o controle do robd mével.

A metodologia proposta € apresentada na Sec@o 2. A Secdo 3 apresenta os resul-
tados obtidos nos experimentos, enquanto que a Secio 4 apresenta as conclusdes deste
trabalho.



2. Metodologia

Neste trabalho, considera-se um robd mével que pode realizar em cada instante uma das
seguintes acoes: andar em frente 10 cm, girar -45 graus, girar +45 graus, ou girar 90
graus. O robd possui quatro sensores, sendo um posicionado para frente, um para cima,
um na diagonal direita e um na diagonal esquerda (ambos formando um angulo de 45°
com o sensor da frente). O sensor voltado para cima permite detectar a area de recarga
de bateria (ver adiate), j4 que esta € a Unica darea coberta da arena em que o robd deve
navegar.

Aqui, o rob6 mével é controlado por uma rede neural recorrente do tipo ESN
[Jaeger and Haas 2004]. Para cada posicao da arena em que o robd estiver navegando,
a ESN gera uma saida correspondente a uma das quatro agdes. Cada neurdnio de saida
€ relacionado a uma destas agdes, sendo que o neurdnio com méxima ativacao define a
acao tomada pela ESN em cada instante de tempo. As entradas da rede correspondem
as leituras dos sensores do robd. As conexdes recorrentes sao necessdrias para que o
robo tenha comportamentos nao simplesmente reativos. A Figura 1 mostra a rede neural
utilizada neste trabalho.

sensor 1

sensor 2

sensor n

Figura 1. Rede neural ESN utilizada para controlar o robo. Por simplicidade, as
conexoes recorrentes dos neuronios localizados no reservatério nao sao mos-
tradas. Os Unicos pesos a serem ajustados (treinados) sdao aqueles entre os
neuronios do reservatorio e da camada de saida. Aqui, propoe-se otimizar estes
pesos utilizando-se um algoritmo genético.

A ESN usa um reservatério com neurdnios esparsamente conectados através de
pesos gerados aleatoriamente e posteriormente normalizados. Os pesos que conectam as
unidades sensoriais (entradas) aos neuronios do reservatério sao também aleatorios. O
fato de utilizar um grande reservatério de neurdnios possibilita a obtengao de comporta-
mentos dindmicos complexos. Em ESN supervisionadas, os pesos entre os neuronios do
reservatorio e os neurdnios da camada de saida sdo ajustados utilizando-se o método dos
minimos quadrados, o que torna o aprendizado bastante rapido [Jaeger and Haas 2004].
Entretanto, as saidas desejadas ndo sdao conhecidas para o problema estudado neste traba-
lho, i.e., ndo se conhece a priori a agao que o robd deve tomar em cada instante de sua
trajetdria ou para posicoes e orientacdes especificas.

Desta forma, propde-se utilizar um AG para otimizar o vetor de pesos entre a ca-
mada intermedidria (reservatorio) e a camada de saida. Como dito anteriormente, 0s pesos



da camada de entrada e do reservatorio sdo aleatorios (estes ultimos sdo normalizados para
que a ESN possua certas propriedades dindmicas inerentes a esta arquitetura). Apods al-
guns testes iniciais, a arquitetura adotada foi de 4 entradas (sensores), S0 neurdnios no re-
servatorio e 4 saidas (movimentos) com um valor de densidade de conexdo de 0,15 (15%)
no reservatério. O raio espectral de 0,95 € utilizado para normalizar os pesos aleatdrios.

A aptidao (fitness) de cada individuo € obtida testando-se as leis de controle (ESN)
definidas pelo cromossomo do individuo. Devido ao longo tempo necessério para avaliar
uma solucao no robd real, um simulador foi utilizado durante a otimizacao (Secdo 2.6). A
seguir, algumas das caracteristicas dos AGs implementados sdo discutidas. A populacdo
inicial dos AGs ¢ gerada aleatoriamente de acordo com uma distribui¢do uniforme.

2.1. Codificacao

Cada individuo € representado por um vetor real (cromossomo), na qual cada posi¢ao re-
presenta o peso correspondente na camada de saida da rede ESN. Cada individuo codifica
um vetor de pesos, que por sua vez define uma ESN. Cada ESN, por sua vez, define um
comportamento para o robd (trajetoria) no ambiente. O tamanho do cromossomo varia de
acordo com a quantidade de neur6nios no reservatorio e na camada de saida.

2.2. Reproduciao e Selecao

Os individuos sdo reproduzidos pelos operadores de crossover de dois pontos e mutagdo
gaussiana. O método do torneio, no qual K; individuos da populacdo sdo aleatoriamente
escolhidos e aquele com maior fitness € selecionado, é empregado. Este método € in-
teressante pois permite o controle da pressdo seletiva por meio do parametro K; , além
de representar um procedimento computacionalmente mais simples, quando comparado
com o método da roleta [Mitchell 1996]. Elitismo também é empregado, sendo que os
dois melhores individuos da populacdo atual sdo copiados para a préxima populacao.

2.3. Avaliacao

Diferentes ESNs geram comportamentos diferentes (trajetérias) do robo. Assim, para
avaliar um individuo, o robd com a ESN dada pelo cromossomo do individuo que esta
sendo avaliado deve navegar pelo ambiente, andando o maximo possivel em linha reta,
até atingir algum dos seguintes critérios de parada:

e Colidir com um obstaculo;

e Naio voltar para carregar a bateria dentro de uma determinada quantidade de mo-
vimentos. Esta condicdo simula o processo de descarga da bateria do robd;

e Atingir o nimero maximo de movimentos.

Assim, o nimero de iteracdes do robo, com a ESN definida pelo individuo x, é
dado por:
tma:c (X) = mm(300, tchoquev tbateria) (1)

sendo . oque O Instante em que o robd chocou-se com um obstaculo e tp,4criq O instante em
que a bateria do robd ficou totalmente descarregada. E importante observar que tpuieria
muda cada vez que a bateria € recarregada. A carga da bateria é simulada utilizando-
se uma fungdo linear cujos valores decrescem com o tempo [Floreano and Nolfi 2000].
O tempo de carga é considerado instantaneo, sendo que a bateria € recarregada sempre



que o robd entra em uma area pré-definida da arena (a pontuacdo nao € contada quando
o rob0 estd na drea de recarga). O tempo de descarga simulado é de 80 iteracdes, ou
seja, a bateria fica descarregada apds 80 iteragdes depois do inicio do experimento ou 80
iteracOes depois que o rob0 saiu da area de recarga.

A seguinte funcdo de avaliagdo (fitness) € utilizada:

tnzaa:

fx) =) alxt) )

t=1

na qual x € o vetor de pesos (da camada de saida) da ESN armazenado no cromossomo
do individuo, ¢ € a itera¢do (em cada iteragdo, o robd executa uma acao), e:

(x,1) 1, se orobd andou para frente na interagao ¢ 3)
a(x,t) =
’ 0, caso contrario

Para atingir o fitness maximo, o robd deve navegar no ambiente em linha reta o
maximo possivel, sem se chocar com os obstaculos e retornar a drea de recarga sempre que
a bateria estiver quase descarregada. A tarefa de simplesmente andar na arena sem se cho-
car com os obstdculos exigi apenas acgdes reativas. Entretanto, ao colocar a restri¢do para
o tempo de bateria, exigindo assim que o rob0 volte periodicamente para a drea de recarga,
faz com que a¢des que envolvem memoria sejam necessarias [Floreano and Nolfi 2000].

O pseudo-cédigo apresentado na Figura 2 mostra como a fungdo de fitness € cal-
culada para uma dado individuo do AG (ou seja, uma rede neural ESN com pesos dados
pelo cromossomo do individuo).

Algoritmo: Fitness (individuo)
Inicio
Enquanto (qtdMovExec < qtdMov) {
Realiza a leitura dos sensores
Executa a rede ESN definida pelo individuo de acordo com a leitura dos sensores
Determina o neurénio de maior ativaciio e executa a agiio correspondente
qtdMovExec++;

Se a acfo executada foi andar para frente
qtdFrente++;
Fim se
}
Retorna qtdFrente/qtdMov;
Fim

Figura 2. Pseudo-cddigo para computar o fithess de um individuo do AG. A
variavel qtdMovExec representa a quantidade de movimentos executados pelo
robo durante a avaliacao do individuo, e deve ser menor que gtdMov (neste tra-
balho, ¢qtdMov = 300). Ja a variavel qtdFrente representa a quantidade de movi-
mentos em linha reta que o rob6 executou.

2.4. Robustez

Neste trabalho, considera-se que o ambiente pode mudar periodicamente. Deseja-se uma
estratégia de controle (dada pela rede neural) que seja robusta as mudangas. Duas es-
tratégias sdo investigadas. Na primeira, o AG otimiza a ESN considerando-se mudancas
periddicas no ambiente ocorridas durante a otimizagdo. Esta € a estratégia utilizada em



otimizacao evolutiva dindmica [Tinds and Yang 2014]. A populacdo do AG deve, neste
caso, se adaptar as mudancas do ambiente. Estratégias para controle da diversidade (ver
proxima subsecao) sdo geralmente adotadas neste caso para facilitar a fuga de 6timos lo-
cais na otimiza¢ao de um dado ambiente. Neste trabalho, estamos interessados em obter
solugcdes robustas. Assim, a primeira hipétese que serd investigada € a de que técnicas de
manutencdo de diversidade desenvolvidas em otimizagdo evolutiva dindmica podem ser
interessantes para obter solucdes robustas para o robd sujeito a mudangas no ambiente.

A segunda hipotese que serd investigada € a de que tais técnicas de manutengao
de diversidade podem ser interessantes quando técnicas de avaliacao de fitness desenvol-
vidas em otimizag@o evolutiva robusta sdo empregadas para se obter solu¢des robustas
para o rob0 sujeito a mudangas no ambiente. Neste caso, a seguinte fun¢do de fitness
[Fu et al. 2015] é utilizada:

flay==%_ > alx1) “)

na qual s é o indice do ambiente em que o robd estd sendo avaliado e n é o nimero total
de ambientes. Esta estratégia de avaliacdo € bastante simples: o robd é avaliado em n
ambientes, sendo que o fitness € dado pela média do fitness (Eq. 2) considerando-se todos
os ambientes. Ambas as estratégias (por otimizacao evolutiva dindmica ou robusta) sdo
aqui avaliadas, ao fim da otimizagdo, apresentando-se o robd em novos ambientes nao
vistos durante o processo de otimizacdo. A avaliacdo média nestes novos ambientes é
utilizada como medida de eficiéncia.

2.5. Manutencao da diversidade

Aqui, técnicas para manutengdo ou aumento da diversidade das solucdes sdo empregadas
no AG. Os ambientes sao dinamicos devido a introdu¢ao de mudancas de configuracdes
dos obstaculos. Além do AG padrdo, as seguintes estratégias sdo investigadas:

e Hipermutacao: nesta estratégia, a taxa de mutacdo é aumentada toda vez que
a diversidade da populacdo de solucdes atinge um patamar ou quando o algo-
ritmo converge para uma solucdo. Aumentando-se a taxa de mutagdo, aumenta-
se a chance de o algoritmo escapar do 6timo local em que ele se encontra
[Cobb and Grefenstette 1993].

e Imigrantes aleatorios: a estratégia dos imigrantes aleatérios é inspirada no fluxo
de individuos que entram e saem de uma populacdo entre duas geragdes na na-
tureza [Cobb and Grefenstette 1993]. O AG com imigrantes aleatérios € bastante
simples e interessante, sendo que em cada geracdo do processo de otimizagao, al-
guns individuos da populagdo corrente sdao substituidos por individuos aleatérios.
Uma estratégia de substituicdo, como por exemplo, substituir individuos aleato-
riamente (estratégia utilizada aqui) ou os individuos menos aptos, define quais
individuos sdo substituidos. Por meio da introduc¢do de novos individuos, a es-
tratégia tenta manter o nivel de diversidade em um patamar razodvel.

O AG padrao estético (sem que ocorram alteragdes durante a otimizagao) é com-
parado com: i) o AG padrdao com alteragdes no problema ocorrendo durante o processo
de otimizacdo (enfoque por otimizacdo evolutiva dindmica); i1) o AG com func¢do de fit-
ness para problemas robustos (enfoque por otimizacdo evolutiva robusta). Para os dois



enfoques, sao testadas duas estratégias de manutencao de diversidade: i) Hipermutagdo;
i1) Imigrantes Aleatorios.

2.6. Simulador

Como o processo de otimiza¢do em um robd real € muito demorado, foi desenvolvido um
simulador para reduzir o tempo de otimizacdo. Durante a simula¢do nio € considerado
que possam existir ruidos e agoes imperfeitas. Entretanto, ruidos e a¢des imperfeitas sao
intrinsicas a experimentos que envolvam robos reais. Assim, apds encontradas as solugdes
no simulador, pode ser necessario evoluir estas solu¢des por mais algumas geragdes no
robd real.

O AG executado nos experimentos com o simulador € o mesmo aplicado nos ex-
perimentos com o robd real, caso este seja utilizado. A tnica diferenca é que, ao invés
do fitness ser calculado utilizando o robd real, ele € calculado utilizando o rob6 simulado.
E interesante notar que, ao transferir as solugdes evoluidas no simulador e continuar os
experimentos em robds reais, mudangas no problema de otimiza¢do ocorrem. Assim, a
busca por solugdes robustas € de grande relevancia do ponto de vista pratico.

No simulador, antes de iniciar a avaliacdo de um individuo, sd@o sorteadas uma
posicdo e um angulo inicial. As novas posi¢cdes e orientagdes do robd apds cada acao sdo
calculadas através de modelos cineméticos. Por meio de calculos envonvendo geometria,
sao simuladas as saidas produzidas pelos sensores. Os critérios de parada do AG sdo os
mesmos citados anteriormente. A posicdo e o angulo inicial aleatérios sdo importantes
pois, se um individuo for passado de geracdo em geracdo, ele serd avaliado varias vezes
iniciando em configuragdes distintas.

Todos os codigos utilizados no trabalho foram desenvolvidos em C++. As
simulacdes foram executadas em um servidor com 2 processadores Intel Xeon E5-2620
v2 (com 15 MB Cache e 2.10 GHz) e 32 GB de memodria RAM.

3. Resultados

Nos experimentos realizados nas abordagens por otimiza¢do evolutiva dindmica e ro-
busta, todos os individuos de cada uma das populacdes foram apresentados a 10 ambi-
entes diferentes durante o processo de otimizagdo. Estes ambientes diferem no numero
de obstaculos e na posi¢cao destes em uma arena retangular de 2 m por 1,20 m. Para cada
um dos AGs, foram realizadas 25 execugdes com diferentes sementes aleatérias. Cada
execucao demorou cerca de 40 horas na plataforma computacional utilizada. De modo a
reduzir o tempo total, diversas execugdes ocorreram em paralelo.

Todos os AGs utilizam: populagdao composta por 100 individuos, taxa de crossover
definida como 0,6, taxa de mutacdo definida como 1/m, sendo m o tamanho do cromos-
somo. Na selecdo por torneio, K; = 3. Foi utilizado também o método do elitismo,
onde os dois melhores individuos da populagdo atual passam para a proxima geracdo. Na
muta¢do Gaussiana foi utilizado desvio padrado igual a 1,0.

Quando a hipermutagao ¢ ativada, a taxa de mutacdo é aumentada, ficando 4 vezes
maior que a taxa de mutagao inicial por 10 geracdes. A taxa de substitui¢ao de individuos
para o AG com Imigrantes Aleatdrios € 0,05, o que significa que 5% dos individuos sdao
substituidos por novos individuos aleatérios em cada geracdo. Os individuos a serem



substituidos sdo escolhidos aleatoriamente e com distribui¢ao uniforme, com excecao dos
dois individuos selecionados pelo método do elitismo. Todos estes parametros foram
obtidos realizando-se experimentos iniciais.

3.1. Enfoque por Otimizacao Evolutiva Dinamica

Nos experimentos em que sao inseridas mudangas no ambiente durante a otimizagao,
estas ocorrem a cada 200 geracdes. O processo de otimizagdo ocorre durante 2.200
geracoes da seguinte forma: nas 200 primeiras geragdes € utilizado o ambiente inicial
sem nenhum obstdculo; nas 1.800 geragdes seguintes sao utilizados 9 ambientes com di-
ferentes obstdculos; nas ultimas 200 geragdes € utilizado o ambiente inicial sem nenhum
obstaculo. A Figura 3 apresenta o fitness médio (para 25 execucdes) do melhor individuo
de cada geragdo para cada um dos quatro algoritmos estudados.
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Figura 3. Média do fithess do melhor individuo (considerando 25 execucoes)
para: i) AG estatico (sem considerar mudanca no ambiente durante otimizacao);
il) AG padrao; iii) AG com hipermutacao; iv) AG com imigrantes aleatorios.
Considerou-se aqui o Enfoque por Otimizacao Evolutiva Dinamica.

Para comparar a robustez dos algoritmos, foram selecionados o melhor individuo
entre todas as execucdes para cada um do quatro algoritmos estudados. Este individuos
foram avaliados 10 vezes (com diferentes posicdes e orientacdes iniciais) em 5 ambien-
tes diferentes dos apresentados durante o processo de otimizagdo. Os novos ambientes
podem ser vistos na Figura 5. Como os novos ambientes apresentam diferentes niveis
de dificuldade, os resultados de robustez sdo analisados por ambiente. A Tabela 1 mos-
tra os resultados obtidos. Para avaliar a significancia estatistica, foi utilizado o teste de
Wilcoxon Signed-Rank com um nivel de significAncia de 5%. Os resultados do AG com
imigrantes aleatorios foram comparados com os resultados dos outros algoritmos.

3.2. Enfoque por Otimizacao Evolutiva Robusta

A diferenca deste experimento para o anterior € que ao invés do ambiente ser alterado
depois de um certo nimero de geracdes (Enfoque por Otimizagao Evolutiva Dinamica),
cada individuo € avaliado nos 10 ambientes ao mesmo tempo, ou seja, a Eq. 4 € utilizada
para a avaliagdo do fitness ao invés da Eq. 2. Os ambientes utilizados durante a otimizagao
e para posterior teste da robustez sdo os mesmos utilizados anteriormente. A evolugdo do
fitness do melhor individuo para cada algoritmo € apresentada na Figura 4.



Tabela 1. Resultados para o enfoque por Otimizacdo Evolutiva Dinamica. Sao
mostrados os resultados da média e desvio padrao dos fithess do melhor in-
dividuo da ultima geracao de todas as execucoes de cada um dos quatro AGs
avaliado nos 5 novos ambientes. A letra S indica que a comparacao de re-
sultados do AG com Imigrantes Aleatérios com o respectivo algoritmo é esta-
tisticamente significante considerando-se o Teste Wilcoxon Signed-Rank . Os
simbolos + e — significam respectivamente que médias do AG com Imigrantes

Aleatorios foi maior ou menor que a média do respectivo algoritmo.
Ambiente ‘ AG Padrio ‘ Ambiente Estdtico ‘ Hipermutacao ‘ Imigrantes Aleatdrios
1 0,4385 +0,1921 (S+) | 0,4346 £ 0,1918 (S+) | 0,4855 £ 0,1974 (+) 0,5304 + 0,1738
0,6776 40,1459 (S+) | 0,7174 £ 0,1192 (S+) | 0,6821 £ 0,1418 (S+) 0,7295 + 0,1026
0,4532 £+ 0,1824(-) 0,4886 + 0,2161(-) 0,4009 % 0,1609 (+) 0,4316 £ 0,2090
0,6068 £+ 0,1853 (S+) | 0,6527 % 0,1866 (+) 0,6698 + 0,1562 (+) 0,7215 + 0,1348
0,4963 + 0,1869(-) 0,4137 +0,1790 (+) 0,4468 £ 0,2006 (-) 0,4446 + 0,2182
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Figura 4. Média do fitness do melhor individuo de cada execugao de cada um
dos trés AGs para o Enfoque por Otimizacao Evolutiva Robusta.

Do mesmo modo que para o enfoque anterior, foram selecionados o melhor in-
dividuo da ultima geracdo de todas as execucdes dos quatro algoritmos estudados, € em
seguida cada um desses individuos foram avaliados 10 vezes em 5 ambientes diferen-
tes dos apresentados durante o processo de otimizacdo. A Tabela 2 mostra os resultados
obtidos.

Tabela 2. Resultados para o enfoque por Otimizacao Evolutiva Robusta.

Ambiente ‘ AG Padrio ‘ Ambiente Estatico ‘ Hipermutagao ‘ Imigrantes Aleatdrios
1 0,3898 + 0,1837(+) 0,4346 +0,1918 (+) | 0,3915 + 0,1889 (+) 0,4605 £+ 0,2133
2 0,7427 £ 0,0450 (+) | 0,7174 £0,1192 (+) 0,7509 =+ 0,0453(-) 0,7433 4+ 0,0473
3 0,5581 +0,1842 (+) | 0,4886 £ 0,2161 (+) | 0,5562 %+ 0,1822 (+) 0,5582 +0,1693
4 0,6097 £ 0,1792(-) 0,6527 +0,1866 (S-) | 0,6053 +0,1791 (+) 0,6091 + 0,1870
5 0,6240 + 0,1405 (+) | 0,4137 +0,1790 (S+) | 0,6307 & 0,1227 (+) 0,6690 4+ 0,1135

3.3. Comparacao e analise dos resultados obtidos

Para o Enfoque por Otimizacdo Evolutiva Dinamica, o AG com imigrantes aleatdrios se
destaca por ter obtido geralmente o maior fitness entre os AGs na maioria dos ambientes
de simulagdo. Isto ocorre tanto durante a otimizacao (Figura 3) quanto para o teste de



robustez (Tabela 1). Os resultados do AG foram superiores em 11 dos 15 casos, sendo
estatisticamente significante em 6.

Ja para o Enfoque por Otimizacao Evolutiva Robusta, houve a mudanca na funcao
de fitness. Com esta alteracdo, ao invés do ambiente se alterar de tempos em tempos,
os individuos sdo avaliados nos 10 ambientes durante toda a fase de otimizacao (exceto
para o0 AG no Ambiente Estético). E possivel observar que aqui também a estratégia dos
Imigrantes Aleatorios produz os melhores resultados durante a otimizacao (Figura 4). Os
melhores resultados da estratégia por Imigrantes Aleatorios sdo explicados pela maior
diversidade da populacdo propiciada durante o processo de otimizagdo. Tal diversidade é
portanto importante em problemas de otimizacdo robusta. No teste da robustez, o AG com
imigrantes aleatdrios foi superior em 12 dos 15 casos; entretanto foi significativamente
superior em apenas um caso (Tabela 2).

Ambiente ‘ AG Padrio ‘ Hipermutacio ‘ Imigrantes Aleatdrios

1 + + +
2 - -
3 S- S-
4 - + S+
5 S- S- S-

Tabela 3. Comparacao das duas estratégias. Os simbolos + e — aparecem res-
pectivamente quando a estatégia por otimizacao evolutiva dinamica é melhor ou
pior que a estratégia por otimizacao evolutiva robusta.

Na Tabela 3, sdo comparados os resultados das duas estratégias. Nota-se que, para
0 AG com Imigrantes Aleatorios, a segunda estratégia (otimizagdo robusta) é melhor que
a primeira (otimizacao dinamica) nos ambientes 2, 3 e 5. Na Figura 5 sdo apresentados
algumas solugdes produzidas pelo AG com Imigrantes Aleatdrios obtidas pelo enfoque
robusto. Verifica-se que 1, 3 e 5 sdo os mais desafiadores pois sdo os que mais diferem do
ambiente estdtico (sem obsticulos). O AG evoluido por ambiente estitico produziu em
geral solucdes em que a solucdo evoluida foi a de andar rente a parede. Nota-se que tal
estratégia ndo é boa para alguns ambientes, como por exemplo o ambiente 3. E possivel
observar na Figura 5, que o AG com imigrantes aleatérios produziu uma solucdo que
produz bons resultados para este ambiente.

3.4. Teste das solucoes em um robo real

Algumas das solucdes evoluidas no robd simulado foram testadas em um robo real. Os
experimentos ocorreram utilizando a plataforma robética Curumim desenvolvida pela em-
presa XBot. O robd simulado possui as mesmas caracteristicas da configuracdo do robo
real utilizada nesta pesquisa (ver Secao 2). Como dito na Sec¢do 2.6, pode ser necessario
evoluir por mais algumas geracdes a populagdo de solucdes obtidas durante os experimen-
tos com o simulador. Entretanto, esta evolucdo adicional ndo foi necesséria, mostrando
que as solugdes evoluidas sdo robustas a mudangas no problema. Neste caso, a mudanga
ocorreu devido a transferéncia do solugdes do rob6 simulado para o robd real.

Nos experimentos com o robd real, a melhor solu¢do obtida nos experimentos
com o AG com Imigrantes Aleatdrios no Enfoque por Otimizacao Evolutiva Robusta foi
testada em quatro experimentos na arena sem obstdculos. Nestes quatro experimentos, a
posi¢do inicial do robd era diferente. O AG com Imigrantes Aleatdrios no Enfoque por
Otimizacdo Evolutiva Robusta foi escolhido pois este apresentou os melhores resultados
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Figura 5. Trajeto percorrido pela solucdo produzida pelo AG com Imigrantes
Aleatdrios (Enfoque por Otimizacao Evolutiva Robusta). A area de recarga é re-
presentada pelo retangulo azul na parte inferior da arena. Os obstaculos sao
representados pelos retangulos em verde.

nas simulagdes considerando-se a robustez das solugdes. Os valores de fitness obtidos
nos experimentos foram: 0,7; 0,74; 0,73 e 0,69. Quando comparados com os valores
obtidos na simulacoes (Tabela 2), é possivel perceber a boa qualidade das solugdes. O
robd foi capaz de percorrer a arena sem se chocar com as paredes, retornando perio-
dicamente a drea de recarga. Um video dos experimentos pode ser visto em https:
//www.youtube.com/watch?v=v8oEpdo4dc8&feature=youtu.be.

4. Conclusoes

Todos os AGs estudados conseguiram encontrar leis de controle robustas a mudangas no
ambiente, obtendo solucdes que nao colidiram em nenhum dos ambientes utilizados na
fase de teste de robustez. Em relacdo as técnicas estudadas, o destaque foi para o Algo-
ritmo Genético com Imigrantes Aleatdrios, que se mostrou superior na maioria dos testes
realizados. Os resultados encontrados pelo segundo experimento, na qual a robustez era
considerada durante o processo de otimizacao, foram geralmente superiores aos resulta-
dos encontrados no primeiro onde a robustez ndo era considerada.

Apesar de o AG evoluido para o ambiente estitico produzir boas trajetérias em
ambientes que lembram o ambiente estdtico (sem obstaculos), ele apresenta trajetdrias nao
satisfatorias em ambientes muito diferentes do ambiente estatico. Tanto o AG evoluido
no enfoque por otimizagdao dindmica, como o AG evoluido no enfoque por otimizacao
robusta, apresentaram bons resultados em ambientes que diferem do ambiente estético.
Isto mostra que tais enfoques conseguiram produzir solu¢des robustas as mudancas nos
ambientes. Além disso, as técnicas de manutencao de diversidade se mostraram bastante
interessantes no problema estudado. No futuro, mais experimentos com robo real devem



ser realizados. Também, outras estratégias robustas descritas em [Fu et al. 2015] devem
ser investigadas.
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