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A divide‑and‑conquer approach 
for genomic prediction in rubber 
tree using machine learning
Alexandre Hild Aono1,2, Felipe Roberto Francisco1, Livia Moura Souza1,3, 
Paulo de Souza Gonçalves4, Erivaldo J. Scaloppi Junior4, Vincent Le Guen5,6, 
Roberto Fritsche‑Neto7, Gregor Gorjanc2, Marcos Gonçalves Quiles8 & 
Anete Pereira de Souza1,9*

Rubber tree (Hevea brasiliensis) is the main feedstock for commercial rubber; however, its long 
vegetative cycle has hindered the development of more productive varieties via breeding programs. 
With the availability of H. brasiliensis genomic data, several linkage maps with associated quantitative 
trait loci have been constructed and suggested as a tool for marker-assisted selection. Nonetheless, 
novel genomic strategies are still needed, and genomic selection (GS) may facilitate rubber tree 
breeding programs aimed at reducing the required cycles for performance assessment. Even though 
such a methodology has already been shown to be a promising tool for rubber tree breeding, increased 
model predictive capabilities and practical application are still needed. Here, we developed a novel 
machine learning-based approach for predicting rubber tree stem circumference based on molecular 
markers. Through a divide-and-conquer strategy, we propose a neural network prediction system with 
two stages: (1) subpopulation prediction and (2) phenotype estimation. This approach yielded higher 
accuracies than traditional statistical models in a single-environment scenario. By delivering large 
accuracy improvements, our methodology represents a powerful tool for use in Hevea GS strategies. 
Therefore, the incorporation of machine learning techniques into rubber tree GS represents an 
opportunity to build more robust models and optimize Hevea breeding programs.

Rubber tree (Hevea brasiliensis) has an elevated importance in the global economy, being almost the only feed-
stock for commercial rubber1,2. Considering the long perennial vegetative cycle of Hevea, breeding programs aim 
to improve its yield production in order to reach the rapidly increasing rubber demand1–3. Therefore, genomic 
approaches are needed in rubber tree breeding, especially considering its recent domestication history4. H. bra-
siliensis is a diploid species ( 2n = 36 ) with an elevated occurrence of duplicated regions in its genome ( ∼ 70%

)5–7, and this complex genomic organization has hindered the development of genomic strategies for breeding. 
However, with the improvement of next-generation sequencing (NGS) technologies and the consequent reduc-
tion in genotyping costs, data generation has become more efficient, providing more genomic resources in less 
time and with lower associated costs8. This greater availability of data improved precision in selection with higher 
genetic gains in various crops8,9 and, in rubber tree, could complement traditional approaches based on only 
phenotypic and pedigree information8,10.

Various rubber tree genomic resources have become available in recent decades, such as a large set of different 
molecular markers11–14, draft genomes5,6, and, more recently, a chromosome-level assembled genome7. These data 
have already allowed the construction of saturated linkage maps with associated quantitative trait loci (QTLs), 
which were proposed as a tool for marker-assisted selection (MAS)15. Although QTLs for several traits have been 
identified in rubber tree4,15–20, the amount of phenotypic variance explained by these identified QTLs is usually 
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small19 because of the highly complex genetic architectures associated with growth and rubber production traits. 
The configuration of these phenotypes is controlled by many genes with small effects21, and weak QTLs may not 
be identified using existing methodologies2,22, which prevents the identification of interindividual differences23. 
Together with the environmental and genetic background restrictions of QTLs24, these features limit the applica-
tion of Hevea QTLs for MAS14. Consequently, novel genomic strategies that can assist in rubber tree breeding 
programs are needed, especially considering the time required to evaluate these phenotypes, the elevated costs, 
and the low female fertility in H. brasiliensis2,15,25.

Aimed at solving such difficulties in many crops, genomic selection (GS) has arisen as a promising methodol-
ogy for considerably reducing the required breeding cycle26. GS has shown better performance than MAS27,28, 
mainly because of its associated genetic gains29 and reduced costs over a long time period30. This strategy ena-
bles the selection of plants based on their estimated performance obtained with a large dataset of molecular 
markers8,31, reducing breeding time by avoiding the need to evaluate a considerable number of phenotypes over 
different years24. Using known phenotypic and genotypic information from a training population32, it is pos-
sible to create a predictive model that can be used to predict the breeding values of a testing population using 
only genotypic data8. This modeling is generally based on a mixed-effect regression method33 and has already 
been demonstrated to be promising for several crops34–38. In rubber tree25, and2 assessed the potential of GS for 
predicting stem circumference (SC) and rubber production (RP), respectively, simulating breeding schemes 
through cross-validation (CV) techniques.

There are several CV approaches for simulating a real application of GS in a plant breeding program. These 
methods take into account the population structure in the dataset and the appropriateness of applying the 
developed predictive model to a set of plants. There are basically three CV schemes in GS: (1) predicting traits 
in an untested environment using previously tested lines (CV0)8, (2) predicting new lines’ traits that were not 
evaluated in any environment (CV1)39, and (3) predicting traits that were evaluated in some environments but 
not in others (CV2)40. These three scenarios were already evaluated in rubber tree2 assessed the potential of GS 
in a within-family context using CV0 and CV1 methods, and25 tested three different populations with CV1 and 
CV2. These initiatives represent the first attempts to use GS on rubber tree data, but with low associated predic-
tive capabilities for some of the created CV schemes, mostly when prediction is performed with genotypes that 
have not already been tested.

Different approaches have been used in GS to create predictive models, including parametric and non-
parametric methods24,26,41–45. Significant differences in predictive capabilities have not been demonstrated when 
changing the predictive approach31,46,47; thus, linking genotypes and phenotypes remains a great challenge23,48, 
especially for plant species with high genomic complexity. In this context, more robust techniques for estimat-
ing these models with higher prediction capabilities are needed to expand the practical implementation of GS 
in rubber tree. Nonlinear techniques have already shown improved performance in representing complex traits 
with nonadditive effects9,49–51, and, in this context, machine learning (ML) strategies have emerged as a promis-
ing set of tools for complementing these statistical nonlinear methods.

The objective of this work was to develop a genomic prediction approach for rubber tree data. Considering 
that ML methods have not been proven to have better performance than statistical methodologies for GS23,52, we 
evaluated their efficiency in rubber tree, also suggesting a novel approach for constructing a predictive system 
with neural networks based on two-stage prediction: (1) subpopulation prediction and (2) phenotype estima-
tion. Such a divisive approach was created considering a common paradigm in Computer Science: divide and 
conquer. For datasets with a clear subpopulation structure, such as rubber tree, the proposed approach represents 
a promising alternative for the development of predictive models.

Material and methods
Plant material and phenotypic characterization.  The data used in this work were obtained with 
different experiments in two previous studies. The plant material and permissions for collecting rubber tree 
employed in the present study are in compilance with institutional, national, and international guidelines and 
legislation. Therefore, our analyses were conducted by separating the methodologies and considering two data-
sets: experimental group 1 (EG1) and experimental group 2 (EG2). EG1 includes 408 samples of three F1 seg-
regant populations obtained with crosses between (Pop1) GT1 and PB235 (30 genotypes)25, (Pop2) GT1 and 
RRIM701 (127 genotypes)25,53, and (Pop3) PR255 and PB217 (251 genotypes)4,19,25. EG2 is based on an F1 cross 
between RRIM600 and PB260 (330 samples)2.

The parents of the crosses used are important clones for rubber tree breeding programs. PR255, PB235, PB260, 
and RRIM600 have high yield, and PB217 has considerable potential for long-term yield performance due to its 
slow growth process2,25. PR255 and RRIM701 have good growth, and RRIM701 also presents an increased SC 
after initial tapping54. The latex production is stable in PR255 and medium in RRIM600. Stable or medium latex 
production represents a good adaptation to several environments, as observed in GT1, a clone tolerant to wind 
and cold. Additionally, PB260 presents high female fertility55, and PB235 is susceptible to tapping panel dryness56.

In EG1 and EG2, we analyzed the SC trait. In EG1, Pop3 was planted in 2006 in a randomized block design 
in Itiquira, Mato Grosso State, Brazil, 17◦24 ′  03′′ S and 54◦44 ′  53′′ W4,19,25. Each individual was represented by 
four grafted trees in each plot and four replications. Pop1 and Pop2 were planted in 2012 at the Center of Rubber 
Tree and Agroforestry Systems/Agronomic Institute (IAC - Brazil), 20◦25 ′  00′′ S and 49◦59 ′  00′′ W, following an 
augmented block design, with four blocks containing two clones per plot spaced 4 m apart for each trial, which 
was repeated four times25,53.

Even though EG2 corresponds to only one cross, this population was planted following an almost complete 
block design at two different sites2, which for convenience we named site 1 (S1) and site 2 (S2). In S1, 189 clones 
were planted in 2012 in Société des Caoutchoucs de Grand-Béréby (SOGB—Ivory Coast), 4° 40′ 54″ N and 7° 
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06′ 05″ W. In S2, 143 clones were planted in 2013 in Société Africaine de Plantations d’Hévéas (SAPH - Ivory 
Coast), 5° 19′ 47.79″ N and 4° 36′ 39.74″ W. This cross consisted of six blocks with randomized trees spaced 2.5 
m apart and a mean number of ramets per clone of 11 for S1 (ranging between 7 and 17) and 13 for S2 (ranging 
between 5 and 20).

SC measurements of Pop3 in EG1 were obtained in four years (from 2007 to 2010) and those of Pop1 and 
Pop2 were obtained from 2013 to 2016, considering that growth traits are usually measured only during the first 
6 years25,57. According to the water distribution of the experiments installed, EG1 phenotypes were measured to 
supply information considering low-water (LW) and well-watered (WW) conditions; thus, Pop3 was evaluated 
in October 2007–2010 (LW) and in April 2008–2010 (WW), and Pop1 and Pop2 were evaluated in June 2013, 
December 2013, May 2014, November 2014, and June 2015–2016. SCs were measured for individual trees at 50 
cm above ground level. For both phenotypes, the average per plot was calculated. SC in EG2 was measured at 1 
m above ground level before tapping for 3 months every two days except on Sundays (with the beginning at 32 
months after planting in S1 and 38 months after planting in S2).

Phenotypic data analysis.  All phenotypic analyses were performed using R statistical software58. EG1 and 
EG2 traits were analyzed with the following steps: (1) data distribution evaluation; (2) standardized normaliza-
tion with the R package bestNormalize59; (3) mixed-effect model creation and residual appropriateness verifica-
tion through quantile-quantile (Q-Q) plots using the breedR package60; (4) estimation of best linear unbiased 
predictions (BLUPs) based on the models created; (5) hierarchical clustering on BLUP values using a complete 
hierarchical clustering approach based on Euclidean distances and dendrogram visualization with the ggtree R 
package61; and (6) identification of phenotypic groups using the clustering approach of (5), with cluster numbers 
ranging between 2 and 5, and several clustering indexes implemented in the NbClust R package62.

In EG1, we employed the following statistical mixed-effect model:

where Yijk corresponds to the phenotype of the ith genotype in the jth block and kth location. The phenotypic 
mean is represented by µ , and the fixed effects represent the contribution of the kth location ( Lk ), the jth block 
at the kth location ( Bjk ), and the watering condition of the measurement (W). The genotype G and the residual 
error e (nongenetic effects) represent the random effects.

EG2 SC phenotypes were modeled for each site (S1 and S2) according to the following statistical model:

where Yijkr corresponds to the phenotype of the ith genotype positioned in the rth rank of the kth line in the jth 
block. The phenotypic mean is represented by µ , and the fixed effects represent the contribution of the jth block 
( Bj ), the kth line of the jth block ( Lkj ), and the rth rank of the kth line in the jth block ( Rrkj ). The genotype G and 
the residual error e (nongenetic effects) represent the random effects. Broad-sense heritability ( H2 ) was estimated 
as H2 = σ 2

g /σ
2
p  , with σ 2

g  and σ 2
p  representing the genetic and phenotypic variances, respectively.

Genotyping process.  DNA extraction from EG1 was described by19,53, and the genotyping process was 
performed using a genotyping-by-sequencing (GBS) protocol63 with EcoT22I restriction enzyme followed by 
Illumina sequencing using the HiSeq platform for Pop3 and the GAIIx platform for Pop1 and Pop225. EG1 geno-
type data analysis was performed as described by25. In summary, raw sequencing reads were processed using 
the TASSEL 5.0 pipeline64, with a minimum count of 6 reads for creating a tag. The tag mapping process was 
performed using Bowtie2 v.2.165 with the very sensitive algorithm and H. brasiliensis reference genome7. Single 
nucleotide polymorphisms (SNPs) were called with the TASSEL algorithm, and only biallelic SNPs were retained 
using VCFtools66. These markers were filtered using the R package snpReady67 with a maximum of 20% miss-
ing data for a SNP and 50% in an individual and a minimum allele frequency (MAF) of 5%. Missing data were 
imputed using the k-nearest neighbors68 algorithm implemented in the snpReady package.

EG2 samples were genotyped with simple sequence repeat (SSR) markers, following the protocol for DNA 
extraction and genotyping described by69. EG2 genotype data analysis was performed as described by2. In sum-
mary, a total of 332 SSRs were used for S120 and 296 for S22. Missing data were imputed using BEAGLE 3.3.270 
with 25 iterations of the phasing algorithm and 20 haplotype pairs to sample for each individual in an iteration. 
For evaluating the genotypic profile of individuals in EG1 and EG2, we performed principal component analyses 
(PCAs) in R statistical software58 with the ggplot2 package71. Additionally, for evaluating the overall correspond-
ences between genotypic and phenotypic data, we colored the PCA scatter plots with the BLUPs estimated for 
SC trait, as performed by72.

Statistical models for genomic prediction.  We employed two different strategies for creating tradi-
tional genomic prediction models: Bayesian ridge regression (BRR)73 and a single-environment, main genotypic 
effect model with a Gaussian kernel (SM-GK)74. BRR and SM-GK models were implemented in the BGLR75 
and BGGE76 R packages, respectively. Considering the genotype matrix with n individuals and p markers, BRR 
models were implemented considering the following:

where y represents the BLUP values calculated based on the established mixed-effect models for phenotypic 
data analyses, µ the overall mean, Z the genotype matrix, e the residuals, and γ the vector of marker effects. In 

(1)Yijk = µ+ Lk + Bjk +W + Gik + eijk

(2)Yijkr = µ+ Bj + Lkj + Rrkj + Gij + eijkr

(3)y = 1µ+ Zγ + e
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SM-GK, Z is the incidence matrix of genetic effects, and γ is the vector of genetic effects with variance estimated 
through a Gaussian kernel calculated using the snpReady R package.

Genomic prediction via machine learning.  For genomic prediction via ML, we selected the following 
algorithms considering a regression task: (a) AdaBoost77, (b) multilayer perceptron (MLP) neural networks78, 
(c) random forests79, and (d) support vector machine (SVM)80. To create these models, we used Python v.3 
programming language together with the library scikit-learn v.0.19.081. We also tested a combination of feature 
selection (FS) techniques for increasing the predictive accuracies82, using a combination of three different meth-
ods: (i) L1-based FS through an SVM model80, (ii) univariate FS with Pearson correlations (and ANOVA for 
discrete variables) (p-value of 0.05), and (iii) gradient tree boosting83. Such a strategy is based on marker subset 
selection, separating the markers identified by all of these methods together (intersection of the 3 approaches, 
named Inter3) or by at least two of them simultaneously (Inter2), and using such subsets for prediction.

To understand the subset selection, we performed functional annotation of the genomic regions underlying 
these markers selected through FS considering a 10,000 base-pair (bp) window for the up- and downstream 
regions. Using BLASTn software84 (minimum e-value of 1e-6), these sequences were aligned against coding 
DNA sequences (CDSs) from the Malpighiales clade (Linum usitatissimum v1.0, Manihot esculenta v8.1, Populus 
deltoides WV94 v2.1, Populus trichocarpa v4.1, Ricinus communis v0.1, and Salix purpurea v5.1) of the Phyto-
zome v.13 database85. On the basis of significant correspondence, Gene Ontology (GO) terms86 were retrieved.

Multilayer perceptron neural network.  As the final approach for genomic prediction in EG1, we pro-
posed the creation of neural networks with novel architectures for each of the biparental populations, using 
the Keras Python v.3 library for this task87. We employed MLP networks, which have an architecture based on 
multiple layers and feedforward signal propagation88.

For all the predictive tasks, we considered an MLP structure with two hidden layers (HLs) and used the mean 
absolute error (MAE) as the error function for training and defining the architecture of the networks. Addition-
ally, 200 epochs were considered (batch size of 16). The training process of the networks was performed using the 
backpropagation strategy together with the Adam optimization algorithm89, which aims to minimize the MAE 
by updating the synaptic weights using a gradient-based strategy that combines heuristics from a momentum 
term and RMSProp90. The update process is based on a change of �wij for each connection, considering the 
individual influence of a weight wij on the MAE value obtained with the gradient descent gt in the iteration t 
calculated with ∂MAE/∂wij and used in the equation

where η is the learning rate representing the amount of change in the process of training, vt is the exponential 
average of gradients along the weights wi of layer i, and st is the exponential average of squares of gradients along 
wi . The Adam optimizer employs two other hyperparameters for the optimization process ( β1 and β2 ), which are 
used for the calculation of vt ( vt = β1 × vt−1 − (1− β1)× gt ) and st ( st = β2 × st−1 − (1− β2)× g2t  ). We used 
β1 = 0.9 and β2 = 0.99989. We tested the following configurations for the MLP hyperparameters: (a) number of 
neurons in the first HL, varying from 1 to 

√

(q+ 2)m+ 2
√

m/(q+ 2) (m individuals and q output neurons in 
the output layer); (b) number of neurons in the second HL, varying from 1 to q

√

m/(q+ 2) ; (c) rectified linear 
activation (ReLU), sigmoid and hyperbolic tangent activation functions; and (d) learning rates of 0.005, 0.001, 
and 0.0001. The performed tests for the network definition were based on the upper bounds established by91,92.

Proposed approach and validation strategies.  Each of the sets of hyperparameters estimated for the 
MLP networks was used to create a joint and single system for prediction in EG1, which we indicate as part of 
a divide-and-conquer approach created for genomic prediction (Fig. 1). Considering an individual as part of 
a dataset subpopulation that has a specific phenotypic distribution, we propose the use of a two-stage predic-
tion process based on the following steps: (1) creating four different neural networks according to different 
hyperparameter searches and the training data (division step), (2) predicting which subpopulation an unlabeled 
observation belongs to according to the network induced for this task (prediction 1 and conquer step), and (3) 
predicting its phenotypic performance based on the network trained specifically for the subpopulation predicted 
(prediction 2 and final conquer step).

CV1 was the strategy employed for the selection of data for evaluating the models’ performance due to its 
reduced bias when splitting the dataset and the low prediction accuracies described25. We first separated a test 
dataset using 10% of the genotypes with a stratified holdout strategy implemented in the scikit-learn Python v.3 
module81. The stratification was performed only in EG1 and was based on the subpopulation structure present 
in the dataset. For all the models evaluated in this work (statistical and ML based), the same dataset split was 
considered in every round of CV.

The remaining 90% of the genotypes were used as the development set for defining the networks’ architecture 
and for evaluating the overall models’ performance through a stratified k-fold approach (k = 4) with 50 repeti-
tions (subpopulation stratification). The predictive accuracy in every CV split was evaluated by comparing the 
predicted and real BLUPs by measuring (1) the Pearson correlation coefficient (R) and (2) the mean absolute 
percentage error (MAPE). For the subpopulation prediction task, we evaluated the classification accuracy (ratio 
between the number of correctly predicted data and the total number of predictions). For each trait, we compared 
the predictive accuracy differences using ANOVA and multiple comparisons by Tukey’s test with the agricolae 
R package93.

(4)�wij = gt × η
vt√
st + ǫ
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For EG1, four different MLP architectures were estimated: (a) subpopulation prediction, (b) BLUP prediction 
for Pop1, (c) BLUP prediction for Pop2, and (d) BLUP prediction for Pop3. After defining the network hyper-
parameters with the development set, all of these structures were joined into a single predictive system that was 
used for the final prediction. In addition to evaluating the predictive performance through the CV scenarios 
created, we also checked the performance of the model for a leave-one-out (LOO) CV configuration.

Results
Phenotypic and genotypic data analyses.  The raw phenotypic data were evaluated considering the 
experimental groups proposed. EG1 (Supplementary Fig. S1) had reduced values compared to those of EG2 
(Supplementary Fig. S2) due to the different heights and years of stem measurements. However, for the normal-
ized SC values (Supplementary Figs. S3–S5), such an evident discrepancy was not observed. By modeling the 
phenotypic measures with the mixed-effect models established and contrasting the raw values with the normal-
ized ones through Q-Q plots, we observed that the residuals obtained with the normalized measurements in EG1 
(Supplementary Fig. S6) and EG2 (Supplementary Figs. S7, S8) were more appropriate. Heritabilities ( H2 ) were 
estimated as 0.55 for EG1, 0.83 for EG2-S1 and 0.93 for EG2-S2, which is in accordance with the findings of2,25.

Interestingly, BLUPs from EG1 (Supplementary Fig. S9) and EG2-S1 (Supplementary Fig. S10) presented 
reduced variability when compared to that of BLUPs estimated for EG2-S2 (Supplementary Fig. S10). This 
observation is corroborated by the hierarchical clustering analyses performed for these experimental groups. EG1 
(Supplementary Fig. S10) and EG2-S1 (Supplementary Fig. S12) could be divided into three phenotypic groups 
according to the best data partitioning scheme established through NbClust clustering indexes62, and EG2-S2 
could be arranged into 5 such groups (Supplementary Fig. S13). Therefore, it was expected that for the genomic 
prediction step, EG2-S2 would represent a more difficult task due to its higher data variability.

SNP calling in EG1 was performed according to the TASSEL pipeline. Of the 363,641 tags produced, approxi-
mately 84.78% could be aligned against the H. brasiliensis reference genome, which generated 107,466 SNPs. 
These markers were filtered separately for each population using the parameters established, and then these 
separated datasets were combined through intersection comparisons, yielding a final dataset of 7414 high-quality 
SNP markers. For EG2 predictions, 332 and 296 SSR markers were used for EG2-S1 and EG2-S2, respectively.

Using these datasets, we performed PCAs for EG1 (Supplementary Fig. S14) and EG2 (Supplementary 
Fig. S15). In the figures, the colors of the genotypes correspond to their BLUP values, and their shapes correspond 
to population structure in EG1 and site in EG2. As expected, for the SC trait, there were no clear associations 
between markers and BLUPs, underlining the challenge of creating genomic prediction models. Additionally, 
the subpopulation structure in EG1 was evident.

Genomic prediction.  From the BLUP and marker datasets, we fit genomic prediction models using the 
traditional statistical approaches (BRR and SM-GK) and the ML algorithms (AdaBoost, MLP, RF, and SVM) 
selected. For EG1 (Supplementary Fig.  S16), EG2-S1 (Supplementary Fig.  S17) and EG2-S2 (Supplementary 
Fig. S18), no substantial changes were observed when changing the prediction approach. After applying Tukey’s 

Figure 1.   Overview of the approach proposed. Based on a divide-and-conquer strategy with different neural 
networks combined into a single model (part 1), individuals with unknown phenotypic performance (a) are 
classified into a subpopulation using a specific neural network (part 2) and (b) have their phenotypic values 
estimated through an induced network specific to the subpopulation they belong to (part 3).
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multiple comparisons test, we found equivalent performance values for SVM, SM-GK and BRR for all the exper-
imental groups. The worst performance was observed for MLP, however, considering the default architectures 
employed in scikit-learn81.

Additionally, we also tested the inclusion of FS techniques for increasing model performance in ML algo-
rithms. Using the Inter2 approach, we selected 539 ( ∼7.27%), 69 ( ∼20.78%) and 82 ( ∼27.70%) markers for EG1, 
EG2-S1 and EG2-S2, respectively. For Inter3, 113 ( ∼1.52%), 8 ( ∼2.41%) and 15 ( ∼5.07%) markers were identi-
fied. This SNP subsetting approach was beneficial for EG1 (Supplementary Fig. S19A), EG2-S1 (Supplementary 
Fig. S20) and EG2-S2 (Supplementary Fig. S21); however, there were less pronounced improvements for data 
from EG2 sites, which was expected because of the limited SSR marker dataset. We considered that, even with 
increased predictive accuracies, to achieve better results, a wider set of markers would be required. Then, we 
considered the best strategy for EG2-S1 to be the combination of the Inter2 FS approach with SVM and that for 
EG2-S2 to be the combination of Inter3 FS with the AdaBoost ML algorithm.

Even though FS approaches boosted prediction accuracies for EG1, when analyzing model performance by 
calculating the Pearson correlation between the real and predicted BLUPs for each family separately, we observed 
that this better performance was caused by the predictions coming from the family with the largest number of 
individuals, which showed a clear inefficiency of the model for the other families. However, when analyzing 
predictive power within families (Supplementary Fig. S19B), such an approach was not sufficient for obtaining 
a reliable prediction with this evident data stratification. In this context, different from EG2, we developed an 
approach specific to datasets similar to EG1, i.e., a methodology with high capabilities to supply accurate predic-
tions, even considering the subpopulation structure present in a dataset.

Considering a genomic prediction problem based on the creation of a regression model for a dataset contain-
ing genotypes that belong to different groups of genetically similar individuals, we modeled such a task by divid-
ing the prediction into different stages (Fig. 1) and creating a divide-and-conquer approach for prediction. The 
basis of such an approach is that closely related genotypes will share QTLs that might not be the same in another 
group of genotypes. Therefore, we created a different neural network for each biparental population (divide 
part), coupled with an intrapopulation system of FS and with a different form of hyperparameter estimation. 
Following this division part, the separated systems were combined using an additional step (the conquer part). 
To do so, another neural network was created to infer which subpart of the system should be used for prediction.

Feature selection at the subpopulation level.  The selection of subsets of markers was performed 
according to each EG1 network using the four different tasks: (i) subpopulation prediction, (ii) EG1-Pop1 BLUP 
prediction, (iii) EG1-Pop2 BLUP prediction, and (iv) EG1-Pop3 BLUP prediction. As expected, each FS strategy 
returned a different quantity of markers (Table 1). For each subset of markers selected considering Inter2 and 
Inter3, we evaluated their performance using the ML algorithms selected. Some of the models created for task (i) 
did not present any mistakes (Supplementary Fig. S22), which was expected due to the subpopulation structure 
present in the dataset and their evident linear separability. For this task, we considered the most suitable FS 
strategy to be the Inter2 approach.

For EG1-Pop1 (Supplementary Fig. S23), EG1-Pop2 (Supplementary Fig. S24) and EG1-Pop3 (Supplementary 
Fig. S25), the best accuracies were observed for the combination Inter2-SVM. However, considering the overall 
performance with the other algorithms, the best approach for SNP subsetting was Inter3. For this reason, we 
selected this strategy for the BLUP prediction task. Interestingly, there was no intersection between these three 
Inter3 datasets in the populations; the only case of overlap was a single SNP marker in Pop2 and Pop3.

From the genomic regions flanking these markers selected for BLUP prediction, we could retrieve several 
instances of correspondence between rubber tree sequences and CDSs from the Malpighiales clade in the Phy-
tozome database. From the 20 markers used in Pop1 for prediction, 62 in Pop2, and 119 in Pop3, we found CDS 
correspondence for the genomic regions related to 8 (40%), 27 ( ∼43.55%) and 48 ( ∼40.32%) SNPs, respectively. 
Even though there was no obvious complementarity among these markers due to the absence of intersections, we 
found GO terms with similar biological processes (Supplementary Tables S1–S3), indicating common molecular 
processes related to these genomic regions.

Neural network creation.  With the marker dataset established through FS for EG1 subtasks, we estimated 
the best hyperparameter configuration for creating the networks proposed: (i) subpopulation prediction in EG1 
(Supplementary Fig. S26), (ii) BLUP prediction in EG1-Pop1 (Supplementary Fig. S27), (iii) BLUP prediction 
in EG1-Pop2 (Supplementary Fig. S28), and (iv) BLUP prediction in EG1-Pop3 (Supplementary Fig. S29). With 

Table 1.   Feature selection strategies performed on the marker dataset considering the intersection among 
the three methods established (Inter3) and the intersection among at least two out of the three methods 
established (Inter2).

Prediction scenario Inter2 Inter3

Subpopulation prediction 224 17

GT1 x PB235 345 20

GT1 x RRIM701 454 62

PR255 x PB217 591 119
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the exception of network (i), which is a classification task, for each hyperparameter combination, we evaluated 
the MAPE and R Pearson coefficient values using the development set to select the best configuration for predic-
tion. For network (i), several hyperparameter combinations returned prediction capabilities without mistakes 
(Supplementary Fig. S26), which led us to select the configuration with the minimum value for the loss function 
(Table 2).

For networks (ii), (iii) and (iv), we selected the best hyperparameter combination by evaluating the plot pro-
files. We selected the combinations closest to the right corner of the plots (Supplementary Figs. S27–S29), ideally 
representing the best MAPE and R Pearson coefficient simultaneously. Interestingly, for the four networks, the 
best activation function was ReLU, and the learning rate was 0.005, only changing the quantity of neurons in 
the established HLs. An evaluation of the predictive performance of these networks compared to the traditional 
genomic prediction approaches with k-fold CV built in the development set revealed significant improvement 
and effective performance in each population, different from the FS performed using these datasets combined 
(Supplementary Fig. S19).

The network modeled for EG1-Pop1 showed the largest increases (Supplementary Fig. S30), with a mean 
improvement of 9 times the initial obtained accuracies. EG1-Pop2 (Supplementary Fig. S31) and EG1-Pop3 
(Supplementary Fig. S32) showed increases of 7 and 3 times, respectively. In addition to such significant improve-
ments, the models’ performance was also more stable, with the predictive accuracies having a narrow distribution, 
as observed in the boxplots’ conformations.

Divide‑and‑conquer approach.  All of the individual networks were combined to create the proposed 
approach in EG1. Compared with the traditional approaches, this approach showed a mean improvement of 4 
times the initial accuracies (Fig. 2A) in the k-fold evaluations. Moreover, BRR and SM-GK presented equivalent 

Table 2.   Hyperparameter definition for each one of the created neural networks in experimental groups 1 
(EG1) and 2 (EG2) considering (i) the number of neurons selected for the first hidden layer (N-1HL), (ii) the 
number of neurons selected for the second hidden layer (N-2HL), (iii) the learning rate (LR), and (iv) the 
activation function (AF).

Neural network N-1HL N-2HL LR AF

EG1 (Subpopulation Prediction) 45 25 0.005 Rectified linear activation

EG1 (BLUP Prediction in GT1 x PB235) 10 3 0.005 Rectified linear activation

EG1 (BLUP Prediction in GT1 x RRIM701) 30 7 0.005 Rectified linear activation

EG1 (BLUP Prediction in PR255 x PB217) 42 4 0.005 Rectified linear activation

Figure 2.   Predictive accuracies for stem circumference BLUP prediction in experimental group 1 (EG1) 
considering (A) a fourfold cross validation (CV) scheme (50 times repeated) and (B) a leave-one-out CV 
strategy. The models used for prediction were a single-environment model with a nonlinear Gaussian kernel 
(SM-GK), Bayesian ridge regression (BRR), and the proposed strategy using the divide-and-conquer approach. 
The labels indicate the results from Tukey’s multiple comparison test.
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performance values. Additionally, when analyzing the performance of the development set for predicting the 
BLUP values of genotypes from the test set, we found Pearson R coefficients of 0.39, 0.42, and 0.81 for BRR, 
SM-GK, and the proposed approach, respectively, showing the methodology’s efficiency even for data not in the 
development set.

As the final step in model evaluation, we performed a LOO CV split to check whether an increase in the 
training data improves prediction accuracy. By contrasting the real BLUP values with the predicted values, we 
found R Pearson coefficients of 0.14, 0.16 and 0.68 for BRR, SM-GK, and the proposed approach, respectively. 
The regression curve clearly indicates the proposed approach’s appropriateness for rubber tree data (Fig. 2B).

Discussion
GS has emerged as a potential tool for application in plant breeding programs34–38,94,95. In rubber tree, previously 
obtained results2,25 have demonstrated the potential of such a technique for reducing breeding cycles. Because of 
the strong commercial rubber demand, there have been many economic incentives for rubber tree production 
in more environments beyond its natural range1,3. Considering the difficulty of achieving ideal conditions for 
cultivating H. brasiliensis and the rubber demand, the development of more efficient varieties is needed. However, 
Hevea’s long life cycle considerably reduces breeding efficiency15. Therefore, the application of GS in rubber tree 
represents an alternative for achieving the desired rubber production in less time by replacing clone trials and 
reducing the long period of phenotypic evaluation2.

The main objective of rubber tree breeding programs is to increase latex production with rapid growth4. 
Increased SC development can be associated with several rubber tree characteristics, such as growth96, latex 
production25, and drought resistance97. Due to the high versatility of SC in evaluating rubber trees98–101, we 
proposed to develop more effective models for predicting this trait, providing a method to be incorporated into 
the estimation of tree performance. The lack of high genotype variability in the datasets used represents a real 
scenario for rubber tree breeding programs25, which face the difficulty of generating a population2. In addition 
to the within-family approach suggested for GS with full-sib families by2, the use of interconnected families is a 
common strategy for perennial species22,102,103.

Using these dataset configurations, we evaluated ML algorithms as a more accurate methodology for pre-
dicting SC, a complex trait2 obtained a mean accuracy for rubber production in a CV0 scenario of 0.53, which 
increased to 0.56 when selecting a set of markers based on heterozygosity values. In a CV1 scheme, the mean 
values ranged between 0.33 and 0.60. In the proposed work, we observed even lower accuracies when using SC 
instead of rubber production, which is in accordance with the findings of25. In25, the authors achieved mean 
accuracies ranging between 0.19 and 0.28 in a CV1 scenario, contrasted with a CV2 scheme with values ranging 
between 0.84 and 0.86. For unknown tested genotypes, the predictive accuracies in rubber tree are low, and the 
inclusion of GS in Hevea breeding programs is therefore still not feasible.

Using the traditional approaches for prediction, we achieved LOO configurations of 0.14 and 0.16 for the BRR 
and SM-GK approaches, respectively, which is similar to what25 observed. The BRR and SM-GK methodologies 
were selected to represent a parametric and a semiparametric approach104. Different from BRR, which estimates 
marker effects, SM-GK estimates genotype effects through a relationship matrix obtained with a reproducing 
kernel76. Even though25 found similar results when using a linear and a nonlinear kernel for the estimation of the 
genomic relationship matrix105, considered GK to have a more flexible structure and a higher associated perfor-
mance. Therefore, considering these findings together with the fact that no significant differences have been found 
among statistical models for GS31,46,47, we selected only these two statistical models for predictive evaluation.

Even though some previous attempts did not reveal significant differences in employing ML in GS compared 
with traditional linear regression methodologies32,33,39,52,106, this is not what we observed in our study, which 
corroborates the findings of23,31,107,108. This discrepancy may be explained by the different strategies used in the 
ML algorithms, especially distinct neural network architectures, training methodologies, and CV scenarios. 
The design of neural network architectures is an important step in using deep learning for prediction because 
differences in the definition of topologies can lead to decreased accuracies31.

Several factors are known to influence prediction accuracy in GS, such as the relationship between the indi-
viduals used to train models and those that will be predicted21, the size and structure of the populations used24, 
the trait heritability109, the marker density110, and the linkage disequilibrium (LD) between the set of markers 
used and the associated QTLs111. This last aspect is especially critical in the datasets employed because of the 
limited set of markers obtained through GBS and SSR genotyping. Considering the reduced accuracies obtained 
with the CV1 technique already described in2,25, it was expected that when using a K-fold strategy, the same 
observations would be found for the traditional regression models.

One of the main challenges in GS is the high dimensionality of the features in the datasets because the number 
of SNPs is much larger than the number of phenotypic observations112 (‘large p, small n’ problem). Although a 
greater saturation of markers enables an increase in the probability of finding LD, a larger number of markers 
in the same LD block does not contribute to better prediction performance110. In this context, FS techniques 
may be an alternative strategy for building a predictive model, considering that not all markers are related to a 
specific phenotype113 and that the quantity required for this task directly depends on the complexity and genetic 
architecture of the traits used110. Therefore, like23,82,114–118, and119, we decided to test the prediction improvements 
by using an FS technique to enhance network performances.

Subset selection showed improvements for EG2 (Supplementary Figs. S20, S21); however, there were no siz-
able improvements because of the genetic complexity of SC120 and the low density of SSR markers121. In EG1, 
although an overall improvement in prediction accuracy was observed (Supplementary Fig. S19), when evaluat-
ing the intrapopulation predictive accuracy, we observed clear inefficiency of the approach, probably caused by 
the different allele substitution effects between the three subpopulations employed111. In such a scenario with 
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unbalanced interconnected families, novel approaches are needed, and in this work, we have proposed the use 
of a divide-and-conquer strategy.

In computer science, the divide-and-conquer paradigm is based on the principle that if a problem is not 
simple enough to be solved directly, it can be divided into subproblems, and their results can be combined122. In 
our prediction task, the BLUPs of the populations could not be properly predicted together; thus, we separated 
the problem into different networks for prediction, combining the strategy into a single network structure. Such 
an approach has already been applied to the development of neural network architectures123–126; however, such a 
formulation has not been explored in genomic prediction. In addition to increasing prediction accuracies, such an 
approach can reduce the time required for network training and hyperparameter estimation124, supply superior 
model interpretability without loss of performance127, and be used in combination with other models128, including 
traditional genomic prediction methods. Considering that in genomic prediction, most of the scenarios include 
different population structures, such a paradigm can benefit the application and development of GS strategies.

In our dataset, most of the observed variance within SNP markers was caused by population structure, which 
is clearly shown by the PCA results (Supplementary Fig. S14). As this strong variability can be associated with 
several genomic regions and influence various traits differently and simultaneously in the populations129, we 
hypothesize that traditional genomic prediction models are not capable of capturing these interpopulation dif-
ferences related to SC QTLs. This is the main reason why performing FS on these unbalanced datasets together 
was not a promising strategy in our study. As intrapopulation QTLs are not transferable to other populations, 
the main effects on phenotypic variation are specific to the within-population genetic structure130. In this sense, 
the prediction task in single populations can be seen as simpler than that in multiple populations131, which 
was the basis for developing the divide-and-conquer strategy. Considering the specific effects of causal genetic 
variants within populations132,133, we tried to incorporate such factors into separate networks with their specific 
hyperparameter optimization processes.

Interestingly, FS steps performed in the three different populations of EG1 returned different markers, but 
these markers were putatively associated with genes acting in similar biological processes. GO mRNA splicing 
was found in the intersection set of markers selected for the three populations. The occurrence of genetic varia-
tion related to such a regulatory process may influence the transcription of diverse mRNAs from the same gene 
in different ways. Such diversity of molecules may be related to differences in phenotypic performance, leading 
to increased plant capabilities134–136. Additionally, base-excision repair was found in both Pop1 and Pop3, which 
represents a very important defense pathway for maintaining genomic integrity137 and is clearly essential for 
rubber tree growth and development138. Due to the increased quantity of individuals in Pop2 and Pop3, more 
GO categories were found, including important processes for plant growth, such as response to different types 
of stress and several metabolic processes120.

Different studies have reported the use of deep learning for genomic prediction with various datasets, includ-
ing for humans23,113, sows107, and plant species such as soybean108, wheat31–33,39,52, maize33, and strawberry and 
blueberry106. Even though all of these studies used deep learning, the neural network creation approaches were 
not the same; some of them included architectures of convolutional neural networks (CNNs)106,107,113, while others 
included MLPs32,33,39,52 or both approaches23,31,108. There is no consensus on the efficiency of neural networks for 
genomic prediction; however, we decided to use such an architecture for combining multiple training processes 
into a single predictive structure.

For each of the neural network architectures, we employed an MLP structure. We did not include convolu-
tional operations because of the reduced quantity of markers obtained through FS. Additionally, CNNs were 
developed for extracting unknown patterns from the dataset, and as we hypothesized that FS operations might 
work as indicators of QTL regions, such operations would not be necessary. To define the most promising net-
work architecture, we used a grid search, testing different combinations of hyperparameters as already performed 
in relation to GS strategies32,33,39,52. Although other researchers have used the ‘trial and error’ approach to define 
the network topology139, we preferred to develop a strategy that could be replicated in other predictive scenarios, 
especially with other traits and crops.

The approximation of functions through neural networks was supported first based on140 and later on141, 
which extended the theorem of140, proving that any continuous function can be represented by a neural network 
with one HL containing 2n+ 1 nodes (n features) and a more complex activation function than that usually 
employed by current researchers92. It has already been proven that one HL is capable of universal approximation 
by using a complex activation function91,142–145; however, when using regular functions, such as sigmoid and 
ReLU functions, there is reduced efficiency of such networks. In this context146, suggested that two HLs could 
be a solution for this reduced efficiency. In addition, the usage of an additional HL can substantially reduce the 
total number of required nodes for a satisfactory predictive capability92, and it has already been shown that some 
problems can be solved only by the use of two HLs143,147,148. In practical situations, a neural network architecture 
with two HLs generalizes better than that with one and has been considered a superior approach143,149. Therefore, 
in our study, we decided to include two HLs in our proposed architecture, representing a network with more 
complex training complexity150.

Concerning the quantity of hidden neurons in a neural network, many researchers have developed different 
strategies, aiming at increasing accuracy and prediction while decreasing errors139.91 has already proven that in 
a network architecture with two HLs, the number of nodes required to achieve a reasonable predictive accuracy 
with m samples and q output neurons is 

√

(q+ 2)m+ 2
√

m/(q+ 2) in the first HL and q
√

m/(q+ 2) in the 
second HL. However, the quantity of suggested nodes tends to lead to overfitting of the training data with any 
arbitrary small error139, and considering the capability of predicting unknown data, these values can be con-
sidered the maximum number of nodes in an artificial neural network structure92. The lower bound for hidden 
neurons was already proposed by151, which can be useful for accelerating the learning speed, but there was no 
evidence on separating this quantity across HLs, and the study was based on an MLP with 3 HLs139. Thus, in 
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our architecture definition, we decided to test a large quantity of neurons, considering the findings of91, as our 
upper bound.

The created network coupling the population-specific architectures could increase the initial prediction capa-
bilities by more than four times. Such an improvement represents the first attempt to develop a ML strategy 
for genomic prediction in rubber tree, with a high potential to be adapted to other species with the same data 
configuration. Considering a broader scenario with distantly related genotypes belonging to a population with 
undefined structure, this same approach could be applied. Instead of relying on the predefined stratification, 
clustering analyses could be performed and used for the divide part. Such a practice is already common in breed-
ing, i.e., taking advantage of population structure for model prediction through multivariate techniques152–155. 
Taking into account the importance of such group configuration in the differentiation of multiple traits156–158, the 
strategy developed represents a promising approach for several plant species with a difficult prediction scenario.

The use of GS in rubber tree can optimize breeding programs, and the incorporation of ML techniques can 
be seen as a new possibility for building more robust models with higher associated prediction capabilities. By 
using data from rubber tree breeding programs, we were able to generate promising predictive results for a highly 
complex trait and a novel strategy for prediction, which has significant potential to enhance selection efficiency, 
and reduce the length of the selection cycle. Although our results confirmed the efficiency of the methodology 
proposed for rubber tree data, to properly evaluate the full potential of the method in other species and broader 
scenarios, our approach should be investigated in further studies with more genetically diverse populations in 
contrasting environments.

Data availibility
All the genotypic data from this study are available in the Supplementary Material and under NCBI accessions 
PRJNA540286 (ID: 5440286) (GT1 × PB235 and GT1 × RRIM701) and PRJNA541308 (ID: 541308) (PR255 × 
PB217).
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