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A divide-and-conquer approach
for genomic prediction in rubber
tree using machine learning
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Rubber tree (Hevea brasiliensis) is the main feedstock for commercial rubber; however, its long
vegetative cycle has hindered the development of more productive varieties via breeding programs.
With the availability of H. brasiliensis genomic data, several linkage maps with associated quantitative
trait loci have been constructed and suggested as a tool for marker-assisted selection. Nonetheless,
novel genomic strategies are still needed, and genomic selection (GS) may facilitate rubber tree
breeding programs aimed at reducing the required cycles for performance assessment. Even though
such a methodology has already been shown to be a promising tool for rubber tree breeding, increased
model predictive capabilities and practical application are still needed. Here, we developed a novel
machine learning-based approach for predicting rubber tree stem circumference based on molecular
markers. Through a divide-and-conquer strategy, we propose a neural network prediction system with
two stages: (1) subpopulation prediction and (2) phenotype estimation. This approach yielded higher
accuracies than traditional statistical models in a single-environment scenario. By delivering large
accuracy improvements, our methodology represents a powerful tool for use in Hevea GS strategies.
Therefore, the incorporation of machine learning techniques into rubber tree GS represents an
opportunity to build more robust models and optimize Hevea breeding programs.

Rubber tree (Hevea brasiliensis) has an elevated importance in the global economy, being almost the only feed-
stock for commercial rubber!?. Considering the long perennial vegetative cycle of Hevea, breeding programs aim
to improve its yield production in order to reach the rapidly increasing rubber demand'->. Therefore, genomic
approaches are needed in rubber tree breeding, especially considering its recent domestication history*. H. bra-
siliensis is a diploid species (2n = 36) with an elevated occurrence of duplicated regions in its genome (~ 70%
)>77, and this complex genomic organization has hindered the development of genomic strategies for breeding.
However, with the improvement of next-generation sequencing (NGS) technologies and the consequent reduc-
tion in genotyping costs, data generation has become more efficient, providing more genomic resources in less
time and with lower associated costs®. This greater availability of data improved precision in selection with higher
genetic gains in various crops®® and, in rubber tree, could complement traditional approaches based on only
phenotypic and pedigree information®™°.

Various rubber tree genomic resources have become available in recent decades, such as a large set of different
molecular markers'' ™", draft genomes™®, and, more recently, a chromosome-level assembled genome’. These data
have already allowed the construction of saturated linkage maps with associated quantitative trait loci (QTLs),
which were proposed as a tool for marker-assisted selection (MAS)"°. Although QTLs for several traits have been
identified in rubber tree*!>~*, the amount of phenotypic variance explained by these identified QTLs is usually
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small'® because of the highly complex genetic architectures associated with growth and rubber production traits.
The configuration of these phenotypes is controlled by many genes with small effects®!, and weak QTLs may not
be identified using existing methodologies>?, which prevents the identification of interindividual differences®.
Together with the environmental and genetic background restrictions of QTLs?, these features limit the applica-
tion of Hevea QTLs for MAS'. Consequently, novel genomic strategies that can assist in rubber tree breeding
programs are needed, especially considering the time required to evaluate these phenotypes, the elevated costs,
and the low female fertility in H. brasiliensis>'>%.

Aimed at solving such difficulties in many crops, genomic selection (GS) has arisen as a promising methodol-
ogy for considerably reducing the required breeding cycle?. GS has shown better performance than MAS?"%,
mainly because of its associated genetic gains* and reduced costs over a long time period®. This strategy ena-
bles the selection of plants based on their estimated performance obtained with a large dataset of molecular
markers®’!, reducing breeding time by avoiding the need to evaluate a considerable number of phenotypes over
different years®*. Using known phenotypic and genotypic information from a training population®, it is pos-
sible to create a predictive model that can be used to predict the breeding values of a testing population using
only genotypic data®. This modeling is generally based on a mixed-effect regression method*® and has already
been demonstrated to be promising for several crops**-3%. In rubber tree?®, and” assessed the potential of GS for
predicting stem circumference (SC) and rubber production (RP), respectively, simulating breeding schemes
through cross-validation (CV) techniques.

There are several CV approaches for simulating a real application of GS in a plant breeding program. These
methods take into account the population structure in the dataset and the appropriateness of applying the
developed predictive model to a set of plants. There are basically three CV schemes in GS: (1) predicting traits
in an untested environment using previously tested lines (CV0)?, (2) predicting new lines’ traits that were not
evaluated in any environment (CV1)*, and (3) predicting traits that were evaluated in some environments but
not in others (CV2)*. These three scenarios were already evaluated in rubber tree? assessed the potential of GS
in a within-family context using CV0 and CV1 methods, and® tested three different populations with CV1 and
CV2. These initiatives represent the first attempts to use GS on rubber tree data, but with low associated predic-
tive capabilities for some of the created CV schemes, mostly when prediction is performed with genotypes that
have not already been tested.

Different approaches have been used in GS to create predictive models, including parametric and non-
parametric methods®****1~%>, Significant differences in predictive capabilities have not been demonstrated when
changing the predictive approach®*6#7; thus, linking genotypes and phenotypes remains a great challenge®*,
especially for plant species with high genomic complexity. In this context, more robust techniques for estimat-
ing these models with higher prediction capabilities are needed to expand the practical implementation of GS
in rubber tree. Nonlinear techniques have already shown improved performance in representing complex traits
with nonadditive effects**~>!, and, in this context, machine learning (ML) strategies have emerged as a promis-
ing set of tools for complementing these statistical nonlinear methods.

The objective of this work was to develop a genomic prediction approach for rubber tree data. Considering
that ML methods have not been proven to have better performance than statistical methodologies for GS**2, we
evaluated their efficiency in rubber tree, also suggesting a novel approach for constructing a predictive system
with neural networks based on two-stage prediction: (1) subpopulation prediction and (2) phenotype estima-
tion. Such a divisive approach was created considering a common paradigm in Computer Science: divide and
conquer. For datasets with a clear subpopulation structure, such as rubber tree, the proposed approach represents
a promising alternative for the development of predictive models.

Material and methods

Plant material and phenotypic characterization. The data used in this work were obtained with
different experiments in two previous studies. The plant material and permissions for collecting rubber tree
employed in the present study are in compilance with institutional, national, and international guidelines and
legislation. Therefore, our analyses were conducted by separating the methodologies and considering two data-
sets: experimental group 1 (EG1) and experimental group 2 (EG2). EG1 includes 408 samples of three F; seg-
regant populations obtained with crosses between (Popl) GT1 and PB235 (30 genotypes)®, (Pop2) GT1 and
RRIM701 (127 genotypes)*>3, and (Pop3) PR255 and PB217 (251 genotypes)*!*?*. EG2 is based on an F; cross
between RRIM600 and PB260 (330 samples)*.

The parents of the crosses used are important clones for rubber tree breeding programs. PR255, PB235, PB260,
and RRIM600 have high yield, and PB217 has considerable potential for long-term yield performance due to its
slow growth process*?*. PR255 and RRIM701 have good growth, and RRIM701 also presents an increased SC
after initial tapping®®. The latex production is stable in PR255 and medium in RRIM600. Stable or medium latex
production represents a good adaptation to several environments, as observed in GT1, a clone tolerant to wind
and cold. Additionally, PB260 presents high female fertility>>, and PB235 is susceptible to tapping panel dryness®.

In EG1 and EG2, we analyzed the SC trait. In EG1, Pop3 was planted in 2006 in a randomized block design
in Itiquira, Mato Grosso State, Brazil, 17°24’ 03” S and 54°44’ 53” W*!%%*_ Each individual was represented by
four grafted trees in each plot and four replications. Popl and Pop2 were planted in 2012 at the Center of Rubber
Tree and Agroforestry Systems/Agronomic Institute (IAC - Brazil), 20°25" 00” S and 49°59’ 00" W, following an
augmented block design, with four blocks containing two clones per plot spaced 4 m apart for each trial, which
was repeated four times®*.

Even though EG2 corresponds to only one cross, this population was planted following an almost complete
block design at two different sites?, which for convenience we named site 1 (S1) and site 2 (S2). In S1, 189 clones
were planted in 2012 in Société des Caoutchoucs de Grand-Béréby (SOGB—Ivory Coast), 4° 40’ 54" N and 7°
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06’ 05" W. In S2, 143 clones were planted in 2013 in Société Africaine de Plantations d'Hévéas (SAPH - Ivory
Coast), 5°19'47.79" N and 4° 36’ 39.74" W. This cross consisted of six blocks with randomized trees spaced 2.5
m apart and a mean number of ramets per clone of 11 for S1 (ranging between 7 and 17) and 13 for S2 (ranging
between 5 and 20).

SC measurements of Pop3 in EG1 were obtained in four years (from 2007 to 2010) and those of Popl and
Pop2 were obtained from 2013 to 2016, considering that growth traits are usually measured only during the first
6 years*>’. According to the water distribution of the experiments installed, EG1 phenotypes were measured to
supply information considering low-water (LW) and well-watered (WW) conditions; thus, Pop3 was evaluated
in October 2007-2010 (LW) and in April 2008-2010 (WW), and Pop1 and Pop2 were evaluated in June 2013,
December 2013, May 2014, November 2014, and June 2015-2016. SCs were measured for individual trees at 50
cm above ground level. For both phenotypes, the average per plot was calculated. SC in EG2 was measured at 1
m above ground level before tapping for 3 months every two days except on Sundays (with the beginning at 32
months after planting in S1 and 38 months after planting in S2).

Phenotypic data analysis. All phenotypic analyses were performed using R statistical software®. EG1 and
EG2 traits were analyzed with the following steps: (1) data distribution evaluation; (2) standardized normaliza-
tion with the R package bestNormalize®’; (3) mixed-effect model creation and residual appropriateness verifica-
tion through quantile-quantile (Q-Q) plots using the breedR package®; (4) estimation of best linear unbiased
predictions (BLUPs) based on the models created; (5) hierarchical clustering on BLUP values using a complete
hierarchical clustering approach based on Euclidean distances and dendrogram visualization with the ggtree R
package®!; and (6) identification of phenotypic groups using the clustering approach of (5), with cluster numbers
ranging between 2 and 5, and several clustering indexes implemented in the NbClust R package®.
In EG1, we employed the following statistical mixed-effect model:

Yijg = 1+ Ly + Bjx + W + Gi + ek 1)

where Yjj corresponds to the phenotype of the ith genotype in the jth block and kth location. The phenotypic
mean is represented by 1, and the fixed effects represent the contribution of the kth location (Ly), the jth block
at the kth location (Bjx), and the watering condition of the measurement (W). The genotype G and the residual
error e (nongenetic effects) represent the random effects.

EG2 SC phenotypes were modeled for each site (S1 and S2) according to the following statistical model:

Yijkr =un+ Bj + ij + Rrkj + Gij + Cijkr (2)

where Y, corresponds to the phenotype of the ith genotype positioned in the rth rank of the kth line in the jth
block. The phenotypic mean is represented by i, and the fixed effects represent the contribution of the jth block
(B)), the kth line of the jth block (Ly;), and the rth rank of the kth line in the jth block (Ry;). The genotype G and
the residual error e (nongenetic effects) represent the random effects. Broad-sense heritability (H?) was estimated
as H = o7 /oy, with o and o representing the genetic and phenotypic variances, respectively.

Genotyping process. DNA extraction from EG1 was described by'>, and the genotyping process was
performed using a genotyping-by-sequencing (GBS) protocol®® with EcoT22I restriction enzyme followed by
Illumina sequencing using the HiSeq platform for Pop3 and the GAIIx platform for Pop1 and Pop2%. EG1 geno-
type data analysis was performed as described by*. In summary, raw sequencing reads were processed using
the TASSEL 5.0 pipeline®, with a minimum count of 6 reads for creating a tag. The tag mapping process was
performed using Bowtie2 v.2.1% with the very sensitive algorithm and H. brasiliensis reference genome’. Single
nucleotide polymorphisms (SNPs) were called with the TASSEL algorithm, and only biallelic SNPs were retained
using VCFtools®. These markers were filtered using the R package snpReady®” with a maximum of 20% miss-
ing data for a SNP and 50% in an individual and a minimum allele frequency (MAF) of 5%. Missing data were
imputed using the k-nearest neighbors®® algorithm implemented in the snpReady package.

EG2 samples were genotyped with simple sequence repeat (SSR) markers, following the protocol for DNA
extraction and genotyping described by®’. EG2 genotype data analysis was performed as described by?. In sum-
mary, a total of 332 SSRs were used for S1?° and 296 for S2°. Missing data were imputed using BEAGLE 3.3.27°
with 25 iterations of the phasing algorithm and 20 haplotype pairs to sample for each individual in an iteration.
For evaluating the genotypic profile of individuals in EG1 and EG2, we performed principal component analyses
(PCAs) in R statistical software® with the ggplot2 package”'. Additionally, for evaluating the overall correspond-
ences between genotypic and phenotypic data, we colored the PCA scatter plots with the BLUPs estimated for
SC trait, as performed by’

Statistical models for genomic prediction. We employed two different strategies for creating tradi-
tional genomic prediction models: Bayesian ridge regression (BRR)”* and a single-environment, main genotypic
effect model with a Gaussian kernel (SM-GK)”*. BRR and SM-GK models were implemented in the BGLR™
and BGGE’® R packages, respectively. Considering the genotype matrix with n individuals and p markers, BRR
models were implemented considering the following:

y=1lpu+Zy +e ©)

where y represents the BLUP values calculated based on the established mixed-effect models for phenotypic
data analyses, i the overall mean, Z the genotype matrix, e the residuals, and y the vector of marker effects. In
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SM-GK, Z is the incidence matrix of genetic effects, and y is the vector of genetic effects with variance estimated
through a Gaussian kernel calculated using the snpReady R package.

Genomic prediction via machine learning. For genomic prediction via ML, we selected the following
algorithms considering a regression task: (a) AdaBoost”’, (b) multilayer perceptron (MLP) neural networks’s,
(c) random forests”, and (d) support vector machine (SVM)*. To create these models, we used Python v.3
programming language together with the library scikit-learn v.0.19.0%'. We also tested a combination of feature
selection (FS) techniques for increasing the predictive accuracies®, using a combination of three different meth-
ods: (i) L1-based FS through an SVM model®, (ii) univariate FS with Pearson correlations (and ANOVA for
discrete variables) (p-value of 0.05), and (iii) gradient tree boosting®’. Such a strategy is based on marker subset
selection, separating the markers identified by all of these methods together (intersection of the 3 approaches,
named Inter3) or by at least two of them simultaneously (Inter2), and using such subsets for prediction.

To understand the subset selection, we performed functional annotation of the genomic regions underlying
these markers selected through FS considering a 10,000 base-pair (bp) window for the up- and downstream
regions. Using BLASTn software® (minimum e-value of le-6), these sequences were aligned against coding
DNA sequences (CDSs) from the Malpighiales clade (Linum usitatissimum v1.0, Manihot esculenta v8.1, Populus
deltoides WV 94 v2.1, Populus trichocarpa v4.1, Ricinus communis v0.1, and Salix purpurea v5.1) of the Phyto-
zome v.13 database®. On the basis of significant correspondence, Gene Ontology (GO) terms®® were retrieved.

Multilayer perceptron neural network. As the final approach for genomic prediction in EG1, we pro-
posed the creation of neural networks with novel architectures for each of the biparental populations, using
the Keras Python v.3 library for this task®”. We employed MLP networks, which have an architecture based on
multiple layers and feedforward signal propagation®.

For all the predictive tasks, we considered an MLP structure with two hidden layers (HLs) and used the mean
absolute error (MAE) as the error function for training and defining the architecture of the networks. Addition-
ally, 200 epochs were considered (batch size of 16). The training process of the networks was performed using the
backpropagation strategy together with the Adam optimization algorithm®, which aims to minimize the MAE
by updating the synaptic weights using a gradient-based strategy that combines heuristics from a momentum
term and RMSProp®’. The update process is based on a change of Aw;; for each connection, considering the
individual influence of a weight w;; on the MAE value obtained with the gradient descent g; in the iteration ¢
calculated with 9 MAE/9w;j and used in the equation

Vt
Jeie @

where 7 is the learning rate representing the amount of change in the process of training, v; is the exponential
average of gradients along the weights w; of layer i, and s; is the exponential average of squares of gradients along
w;. The Adam optimizer employs two other hyperparameters for the optimization process (8 and ,), which are
used for the calculation of v (v = B1 X vi—1 — (1 — B1) x gr)and s; (s = B2 X s—1 — (1 — B2) X gtz). We used
B1 = 0.9and B, = 0.999%. We tested the following configurations for the MLP hyperparameters: (a) number of
neurons in the first HL, varying from 1 to /(g + 2)m + 2,/m/(q + 2) (m individuals and g output neurons in
the output layer); (b) number of neurons in the second HL, varying from 1 to g1/m/(q + 2); (c) rectified linear
activation (ReLU), sigmoid and hyperbolic tangent activation functions; and (d) learning rates of 0.005, 0.001,

and 0.0001. The performed tests for the network definition were based on the upper bounds established by?*2.

Awij =g X1

Proposed approach and validation strategies. Each of the sets of hyperparameters estimated for the
MLP networks was used to create a joint and single system for prediction in EG1, which we indicate as part of
a divide-and-conquer approach created for genomic prediction (Fig. 1). Considering an individual as part of
a dataset subpopulation that has a specific phenotypic distribution, we propose the use of a two-stage predic-
tion process based on the following steps: (1) creating four different neural networks according to different
hyperparameter searches and the training data (division step), (2) predicting which subpopulation an unlabeled
observation belongs to according to the network induced for this task (prediction 1 and conquer step), and (3)
predicting its phenotypic performance based on the network trained specifically for the subpopulation predicted
(prediction 2 and final conquer step).

CV1 was the strategy employed for the selection of data for evaluating the models’ performance due to its
reduced bias when splitting the dataset and the low prediction accuracies described®. We first separated a test
dataset using 10% of the genotypes with a stratified holdout strategy implemented in the scikit-learn Python v.3
module®. The stratification was performed only in EG1 and was based on the subpopulation structure present
in the dataset. For all the models evaluated in this work (statistical and ML based), the same dataset split was
considered in every round of CV.

The remaining 90% of the genotypes were used as the development set for defining the networks’ architecture
and for evaluating the overall models’ performance through a stratified k-fold approach (k = 4) with 50 repeti-
tions (subpopulation stratification). The predictive accuracy in every CV split was evaluated by comparing the
predicted and real BLUPs by measuring (1) the Pearson correlation coefficient (R) and (2) the mean absolute
percentage error (MAPE). For the subpopulation prediction task, we evaluated the classification accuracy (ratio
between the number of correctly predicted data and the total number of predictions). For each trait, we compared
the predictive accuracy differences using ANOVA and multiple comparisons by Tukey’s test with the agricolae
R package®.
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Figure 1. Overview of the approach proposed. Based on a divide-and-conquer strategy with different neural
networks combined into a single model (part 1), individuals with unknown phenotypic performance (a) are
classified into a subpopulation using a specific neural network (part 2) and (b) have their phenotypic values
estimated through an induced network specific to the subpopulation they belong to (part 3).

For EG1, four different MLP architectures were estimated: (a) subpopulation prediction, (b) BLUP prediction
for Pop1, (c) BLUP prediction for Pop2, and (d) BLUP prediction for Pop3. After defining the network hyper-
parameters with the development set, all of these structures were joined into a single predictive system that was
used for the final prediction. In addition to evaluating the predictive performance through the CV scenarios
created, we also checked the performance of the model for a leave-one-out (LOO) CV configuration.

Results

Phenotypic and genotypic data analyses. The raw phenotypic data were evaluated considering the
experimental groups proposed. EG1 (Supplementary Fig. S1) had reduced values compared to those of EG2
(Supplementary Fig. S2) due to the different heights and years of stem measurements. However, for the normal-
ized SC values (Supplementary Figs. S3-S5), such an evident discrepancy was not observed. By modeling the
phenotypic measures with the mixed-effect models established and contrasting the raw values with the normal-
ized ones through Q-Q plots, we observed that the residuals obtained with the normalized measurements in EG1
(Supplementary Fig. $6) and EG2 (Supplementary Figs. S7, S8) were more appropriate. Heritabilities (H?2) were
estimated as 0.55 for EG1, 0.83 for EG2-S1 and 0.93 for EG2-S2, which is in accordance with the findings of>.

Interestingly, BLUPs from EG1 (Supplementary Fig. S9) and EG2-S1 (Supplementary Fig. S10) presented
reduced variability when compared to that of BLUPs estimated for EG2-S2 (Supplementary Fig. $10). This
observation is corroborated by the hierarchical clustering analyses performed for these experimental groups. EG1
(Supplementary Fig. S10) and EG2-S1 (Supplementary Fig. S12) could be divided into three phenotypic groups
according to the best data partitioning scheme established through NbClust clustering indexes®, and EG2-S2
could be arranged into 5 such groups (Supplementary Fig. S13). Therefore, it was expected that for the genomic
prediction step, EG2-S2 would represent a more difficult task due to its higher data variability.

SNP calling in EG1 was performed according to the TASSEL pipeline. Of the 363,641 tags produced, approxi-
mately 84.78% could be aligned against the H. brasiliensis reference genome, which generated 107,466 SNPs.
These markers were filtered separately for each population using the parameters established, and then these
separated datasets were combined through intersection comparisons, yielding a final dataset of 7414 high-quality
SNP markers. For EG2 predictions, 332 and 296 SSR markers were used for EG2-S1 and EG2-S2, respectively.

Using these datasets, we performed PCAs for EG1 (Supplementary Fig. S14) and EG2 (Supplementary
Fig. S15). In the figures, the colors of the genotypes correspond to their BLUP values, and their shapes correspond
to population structure in EG1 and site in EG2. As expected, for the SC trait, there were no clear associations
between markers and BLUPs, underlining the challenge of creating genomic prediction models. Additionally,
the subpopulation structure in EG1 was evident.

Genomic prediction. From the BLUP and marker datasets, we fit genomic prediction models using the
traditional statistical approaches (BRR and SM-GK) and the ML algorithms (AdaBoost, MLP, RE, and SVM)
selected. For EG1 (Supplementary Fig. S16), EG2-S1 (Supplementary Fig. S17) and EG2-S2 (Supplementary
Fig. §18), no substantial changes were observed when changing the prediction approach. After applying Tukey’s
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Prediction scenario Inter2 Inter3
Subpopulation prediction 224 17
GT1x PB235 345 20
GT1 x RRIM701 454 62
PR255 x PB217 591 119

Table 1. Feature selection strategies performed on the marker dataset considering the intersection among
the three methods established (Inter3) and the intersection among at least two out of the three methods
established (Inter2).

multiple comparisons test, we found equivalent performance values for SVM, SM-GK and BRR for all the exper-
imental groups. The worst performance was observed for MLP, however, considering the default architectures
employed in scikit-learn®.

Additionally, we also tested the inclusion of FS techniques for increasing model performance in ML algo-
rithms. Using the Inter2 approach, we selected 539 (~7.27%), 69 (~20.78%) and 82 (~27.70%) markers for EGI,
EG2-S1 and EG2-S2, respectively. For Inter3, 113 (~1.52%), 8 (~2.41%) and 15 (~5.07%) markers were identi-
fied. This SNP subsetting approach was beneficial for EG1 (Supplementary Fig. S19A), EG2-S1 (Supplementary
Fig. S20) and EG2-S2 (Supplementary Fig. S21); however, there were less pronounced improvements for data
from EG2 sites, which was expected because of the limited SSR marker dataset. We considered that, even with
increased predictive accuracies, to achieve better results, a wider set of markers would be required. Then, we
considered the best strategy for EG2-S1 to be the combination of the Inter2 FS approach with SVM and that for
EG2-S2 to be the combination of Inter3 FS with the AdaBoost ML algorithm.

Even though FS approaches boosted prediction accuracies for EG1, when analyzing model performance by
calculating the Pearson correlation between the real and predicted BLUPs for each family separately, we observed
that this better performance was caused by the predictions coming from the family with the largest number of
individuals, which showed a clear inefficiency of the model for the other families. However, when analyzing
predictive power within families (Supplementary Fig. S19B), such an approach was not sufficient for obtaining
a reliable prediction with this evident data stratification. In this context, different from EG2, we developed an
approach specific to datasets similar to EG1, i.e., a methodology with high capabilities to supply accurate predic-
tions, even considering the subpopulation structure present in a dataset.

Considering a genomic prediction problem based on the creation of a regression model for a dataset contain-
ing genotypes that belong to different groups of genetically similar individuals, we modeled such a task by divid-
ing the prediction into different stages (Fig. 1) and creating a divide-and-conquer approach for prediction. The
basis of such an approach is that closely related genotypes will share QTLs that might not be the same in another
group of genotypes. Therefore, we created a different neural network for each biparental population (divide
part), coupled with an intrapopulation system of FS and with a different form of hyperparameter estimation.
Following this division part, the separated systems were combined using an additional step (the conquer part).
To do so, another neural network was created to infer which subpart of the system should be used for prediction.

Feature selection at the subpopulation level. The selection of subsets of markers was performed
according to each EG1 network using the four different tasks: (i) subpopulation prediction, (ii) EG1-Popl BLUP
prediction, (iii) EG1-Pop2 BLUP prediction, and (iv) EG1-Pop3 BLUP prediction. As expected, each ES strategy
returned a different quantity of markers (Table 1). For each subset of markers selected considering Inter2 and
Inter3, we evaluated their performance using the ML algorithms selected. Some of the models created for task (i)
did not present any mistakes (Supplementary Fig. $22), which was expected due to the subpopulation structure
present in the dataset and their evident linear separability. For this task, we considered the most suitable FS
strategy to be the Inter2 approach.

For EG1-Popl (Supplementary Fig. $23), EG1-Pop2 (Supplementary Fig. S$24) and EG1-Pop3 (Supplementary
Fig. S25), the best accuracies were observed for the combination Inter2-SVM. However, considering the overall
performance with the other algorithms, the best approach for SNP subsetting was Inter3. For this reason, we
selected this strategy for the BLUP prediction task. Interestingly, there was no intersection between these three
Inter3 datasets in the populations; the only case of overlap was a single SNP marker in Pop2 and Pop3.

From the genomic regions flanking these markers selected for BLUP prediction, we could retrieve several
instances of correspondence between rubber tree sequences and CDSs from the Malpighiales clade in the Phy-
tozome database. From the 20 markers used in Pop1 for prediction, 62 in Pop2, and 119 in Pop3, we found CDS
correspondence for the genomic regions related to 8 (40%), 27 (~43.55%) and 48 (~40.32%) SNPs, respectively.
Even though there was no obvious complementarity among these markers due to the absence of intersections, we
found GO terms with similar biological processes (Supplementary Tables S1-S3), indicating common molecular
processes related to these genomic regions.

Neural network creation.  With the marker dataset established through FS for EG1 subtasks, we estimated
the best hyperparameter configuration for creating the networks proposed: (i) subpopulation prediction in EG1
(Supplementary Fig. S26), (ii) BLUP prediction in EG1-Pop1 (Supplementary Fig. S27), (iii) BLUP prediction
in EG1-Pop2 (Supplementary Fig. $28), and (iv) BLUP prediction in EG1-Pop3 (Supplementary Fig. $29). With
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0.00

Predictive Accuracy (R Pearson Coefficient)

-0.25

Neural network N-1HL | N-2HL |LR AF

EG1 (Subpopulation Prediction) 45 25 0.005 | Rectified linear activation
EG1 (BLUP Prediction in GT1 x PB235) 10 3 0.005 | Rectified linear activation
EGI1 (BLUP Prediction in GT1 x RRIM701) 30 7 0.005 | Rectified linear activation
EG1 (BLUP Prediction in PR255 x PB217) 42 4 0.005 | Rectified linear activation

Table 2. Hyperparameter definition for each one of the created neural networks in experimental groups 1
(EG1) and 2 (EG2) considering (i) the number of neurons selected for the first hidden layer (N-1HL), (ii) the
number of neurons selected for the second hidden layer (N-2HL), (iii) the learning rate (LR), and (iv) the
activation function (AF).
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Figure 2. Predictive accuracies for stem circumference BLUP prediction in experimental group 1 (EG1)
considering (A) a fourfold cross validation (CV) scheme (50 times repeated) and (B) a leave-one-out CV
strategy. The models used for prediction were a single-environment model with a nonlinear Gaussian kernel
(SM-GK), Bayesian ridge regression (BRR), and the proposed strategy using the divide-and-conquer approach.
The labels indicate the results from Tukey’s multiple comparison test.

the exception of network (i), which is a classification task, for each hyperparameter combination, we evaluated
the MAPE and R Pearson coefficient values using the development set to select the best configuration for predic-
tion. For network (i), several hyperparameter combinations returned prediction capabilities without mistakes
(Supplementary Fig. $26), which led us to select the configuration with the minimum value for the loss function
(Table 2).

For networks (ii), (iii) and (iv), we selected the best hyperparameter combination by evaluating the plot pro-
files. We selected the combinations closest to the right corner of the plots (Supplementary Figs. $27-S29), ideally
representing the best MAPE and R Pearson coefficient simultaneously. Interestingly, for the four networks, the
best activation function was ReLU, and the learning rate was 0.005, only changing the quantity of neurons in
the established HLs. An evaluation of the predictive performance of these networks compared to the traditional
genomic prediction approaches with k-fold CV built in the development set revealed significant improvement
and effective performance in each population, different from the FS performed using these datasets combined
(Supplementary Fig. S19).

The network modeled for EG1-Pop1 showed the largest increases (Supplementary Fig. S30), with a mean
improvement of 9 times the initial obtained accuracies. EG1-Pop2 (Supplementary Fig. S31) and EG1-Pop3
(Supplementary Fig. $32) showed increases of 7 and 3 times, respectively. In addition to such significant improve-
ments, the models’ performance was also more stable, with the predictive accuracies having a narrow distribution,
as observed in the boxplots’ conformations.

Divide-and-conquer approach. All of the individual networks were combined to create the proposed
approach in EG1. Compared with the traditional approaches, this approach showed a mean improvement of 4
times the initial accuracies (Fig. 2A) in the k-fold evaluations. Moreover, BRR and SM-GK presented equivalent
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performance values. Additionally, when analyzing the performance of the development set for predicting the
BLUP values of genotypes from the test set, we found Pearson R coefficients of 0.39, 0.42, and 0.81 for BRR,
SM-GK, and the proposed approach, respectively, showing the methodology’s efficiency even for data not in the
development set.

As the final step in model evaluation, we performed a LOO CV split to check whether an increase in the
training data improves prediction accuracy. By contrasting the real BLUP values with the predicted values, we
found R Pearson coefficients of 0.14, 0.16 and 0.68 for BRR, SM-GK, and the proposed approach, respectively.
The regression curve clearly indicates the proposed approach’s appropriateness for rubber tree data (Fig. 2B).

Discussion

GS has emerged as a potential tool for application in plant breeding programs*-34%_In rubber tree, previously
obtained results>* have demonstrated the potential of such a technique for reducing breeding cycles. Because of
the strong commercial rubber demand, there have been many economic incentives for rubber tree production
in more environments beyond its natural range'. Considering the difficulty of achieving ideal conditions for
cultivating H. brasiliensis and the rubber demand, the development of more efficient varieties is needed. However,
Hevea’s long life cycle considerably reduces breeding efficiency'®. Therefore, the application of GS in rubber tree
represents an alternative for achieving the desired rubber production in less time by replacing clone trials and
reducing the long period of phenotypic evaluation®

The main objective of rubber tree breeding programs is to increase latex production with rapid growth*.
Increased SC development can be associated with several rubber tree characteristics, such as growth®, latex
production?, and drought resistance®”. Due to the high versatility of SC in evaluating rubber trees®-1%!, we
proposed to develop more effective models for predicting this trait, providing a method to be incorporated into
the estimation of tree performance. The lack of high genotype variability in the datasets used represents a real
scenario for rubber tree breeding programs®, which face the difficulty of generating a population® In addition
to the within-family approach suggested for GS with full-sib families by?, the use of interconnected families is a
common strategy for perennial species?>10>1%,

Using these dataset configurations, we evaluated ML algorithms as a more accurate methodology for pre-
dicting SC, a complex trait? obtained a mean accuracy for rubber production in a CV0 scenario of 0.53, which
increased to 0.56 when selecting a set of markers based on heterozygosity values. In a CV1 scheme, the mean
values ranged between 0.33 and 0.60. In the proposed work, we observed even lower accuracies when using SC
instead of rubber production, which is in accordance with the findings of?>. In?, the authors achieved mean
accuracies ranging between 0.19 and 0.28 in a CV 1 scenario, contrasted with a CV2 scheme with values ranging
between 0.84 and 0.86. For unknown tested genotypes, the predictive accuracies in rubber tree are low, and the
inclusion of GS in Hevea breeding programs is therefore still not feasible.

Using the traditional approaches for prediction, we achieved LOO configurations of 0.14 and 0.16 for the BRR
and SM-GK approaches, respectively, which is similar to what? observed. The BRR and SM-GK methodologies
were selected to represent a parametric and a semiparametric approach!®. Different from BRR, which estimates
marker effects, SM-GK estimates genotype effects through a relationship matrix obtained with a reproducing
kernel”®. Even though? found similar results when using a linear and a nonlinear kernel for the estimation of the
genomic relationship matrix'%, considered GK to have a more flexible structure and a higher associated perfor-
mance. Therefore, considering these findings together with the fact that no significant differences have been found
among statistical models for GS*»6%7, we selected only these two statistical models for predictive evaluation.

Even though some previous attempts did not reveal significant differences in employing ML in GS compared
with traditional linear regression methodologies®***35%1%  this is not what we observed in our study, which
corroborates the findings of*>*»1971% Thijs discrepancy may be explained by the different strategies used in the
ML algorithms, especially distinct neural network architectures, training methodologies, and CV scenarios.
The design of neural network architectures is an important step in using deep learning for prediction because
differences in the definition of topologies can lead to decreased accuracies®'.

Several factors are known to influence prediction accuracy in GS, such as the relationship between the indi-
viduals used to train models and those that will be predicted?, the size and structure of the populations used*,
the trait heritability'®, the marker density''’, and the linkage disequilibrium (LD) between the set of markers
used and the associated QTLs!!". This last aspect is especially critical in the datasets employed because of the
limited set of markers obtained through GBS and SSR genotyping. Considering the reduced accuracies obtained
with the CV1 technique already described in*?, it was expected that when using a K-fold strategy, the same
observations would be found for the traditional regression models.

One of the main challenges in GS is the high dimensionality of the features in the datasets because the number
of SNPs is much larger than the number of phenotypic observations'!? (‘large p, small #’ problem). Although a
greater saturation of markers enables an increase in the probability of finding LD, a larger number of markers
in the same LD block does not contribute to better prediction performance''’. In this context, FS techniques
may be an alternative strategy for building a predictive model, considering that not all markers are related to a
specific phenotype!'® and that the quantity required for this task directly depends on the complexity and genetic
architecture of the traits used'’. Therefore, like?$2114-118 and!° we decided to test the prediction improvements
by using an FS technique to enhance network performances.

Subset selection showed improvements for EG2 (Supplementary Figs. S20, S21); however, there were no siz-
able improvements because of the genetic complexity of SC'?° and the low density of SSR markers'*!. In EG1,
although an overall improvement in prediction accuracy was observed (Supplementary Fig. S19), when evaluat-
ing the intrapopulation predictive accuracy, we observed clear inefliciency of the approach, probably caused by
the different allele substitution effects between the three subpopulations employed!'’. In such a scenario with
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unbalanced interconnected families, novel approaches are needed, and in this work, we have proposed the use
of a divide-and-conquer strategy.

In computer science, the divide-and-conquer paradigm is based on the principle that if a problem is not
simple enough to be solved directly, it can be divided into subproblems, and their results can be combined!?*. In
our prediction task, the BLUPs of the populations could not be properly predicted together; thus, we separated
the problem into different networks for prediction, combining the strategy into a single network structure. Such
an approach has already been applied to the development of neural network architectures!?*-1%%; however, such a
formulation has not been explored in genomic prediction. In addition to increasing prediction accuracies, such an
approach can reduce the time required for network training and hyperparameter estimation'?, supply superior
model interpretability without loss of performance'?’, and be used in combination with other models'*, including
traditional genomic prediction methods. Considering that in genomic prediction, most of the scenarios include
different population structures, such a paradigm can benefit the application and development of GS strategies.

In our dataset, most of the observed variance within SNP markers was caused by population structure, which
is clearly shown by the PCA results (Supplementary Fig. S14). As this strong variability can be associated with
several genomic regions and influence various traits differently and simultaneously in the populations'*, we
hypothesize that traditional genomic prediction models are not capable of capturing these interpopulation dif-
ferences related to SC QTLs. This is the main reason why performing FS on these unbalanced datasets together
was not a promising strategy in our study. As intrapopulation QTLs are not transferable to other populations,
the main effects on phenotypic variation are specific to the within-population genetic structure'®. In this sense,
the prediction task in single populations can be seen as simpler than that in multiple populations'*!, which
was the basis for developing the divide-and-conquer strategy. Considering the specific effects of causal genetic
variants within populations'**!3?, we tried to incorporate such factors into separate networks with their specific
hyperparameter optimization processes.

Interestingly, FS steps performed in the three different populations of EG1 returned different markers, but
these markers were putatively associated with genes acting in similar biological processes. GO mRNA splicing
was found in the intersection set of markers selected for the three populations. The occurrence of genetic varia-
tion related to such a regulatory process may influence the transcription of diverse mRNAs from the same gene
in different ways. Such diversity of molecules may be related to differences in phenotypic performance, leading
to increased plant capabilities'**~'%. Additionally, base-excision repair was found in both Pop1 and Pop3, which
represents a very important defense pathway for maintaining genomic integrity'*” and is clearly essential for
rubber tree growth and development'*. Due to the increased quantity of individuals in Pop2 and Pop3, more
GO categories were found, including important processes for plant growth, such as response to different types
of stress and several metabolic processes'?’.

Different studies have reported the use of deep learning for genomic prediction with various datasets, includ-
ing for humans®'*3, sows!?”, and plant species such as soybean'®, wheat*!**%*%2, maize®, and strawberry and
blueberry'®. Even though all of these studies used deep learning, the neural network creation approaches were
not the same; some of them included architectures of convolutional neural networks (CNNs)!96197113 'while others
included MLPs***3*32 or both approaches*>"% There is no consensus on the efficiency of neural networks for
genomic prediction; however, we decided to use such an architecture for combining multiple training processes
into a single predictive structure.

For each of the neural network architectures, we employed an MLP structure. We did not include convolu-
tional operations because of the reduced quantity of markers obtained through FS. Additionally, CNNs were
developed for extracting unknown patterns from the dataset, and as we hypothesized that FS operations might
work as indicators of QTL regions, such operations would not be necessary. To define the most promising net-
work architecture, we used a grid search, testing different combinations of hyperparameters as already performed
in relation to GS strategies®>****2. Although other researchers have used the ‘trial and error’ approach to define
the network topology'*, we preferred to develop a strategy that could be replicated in other predictive scenarios,
especially with other traits and crops.

The approximation of functions through neural networks was supported first based on'*’ and later on'*!,
which extended the theorem of'*’, proving that any continuous function can be represented by a neural network
with one HL containing 2n + 1 nodes (n features) and a more complex activation function than that usually
employed by current researchers®”. It has already been proven that one HL is capable of universal approximation
by using a complex activation function®'*?->; however, when using regular functions, such as sigmoid and
ReLU functions, there is reduced efficiency of such networks. In this context'*, suggested that two HLs could
be a solution for this reduced efficiency. In addition, the usage of an additional HL can substantially reduce the
total number of required nodes for a satisfactory predictive capability®?, and it has already been shown that some
problems can be solved only by the use of two HLs!*>!4748, In practical situations, a neural network architecture
with two HLs generalizes better than that with one and has been considered a superior approach!**1#°. Therefore,
in our study, we decided to include two HLs in our proposed architecture, representing a network with more
complex training complexity'.

Concerning the quantity of hidden neurons in a neural network, many researchers have developed different
strategies, aiming at increasing accuracy and prediction while decreasing errors'*.°! has already proven that in
a network architecture with two HLs, the number of nodes required to achieve a reasonable predictive accuracy
with m samples and g output neurons is /(q + 2)m + 2y/m/(q + 2) in the first HL and q\/m/(q + 2) in the
second HL. However, the quantity of suggested nodes tends to lead to overfitting of the training data with any
arbitrary small error'®, and considering the capability of predicting unknown data, these values can be con-
sidered the maximum number of nodes in an artificial neural network structure®’. The lower bound for hidden
neurons was already proposed by'*!, which can be useful for accelerating the learning speed, but there was no
evidence on separating this quantity across HLs, and the study was based on an MLP with 3 HLs'¥. Thus, in

Scientific Reports :18 ~  https://doi.org/10.1038/541598-022-20416- . ature portfolio
ports | (szzé)nltzcﬁlf’ 2@durtcsy of Spn%écr'ﬁ%%urc,Stcrms of use af)ply. Rights rcscrvcd1



www.nature.com/scientificreports/

our architecture definition, we decided to test a large quantity of neurons, considering the findings of®!, as our
upper bound.

The created network coupling the population-specific architectures could increase the initial prediction capa-
bilities by more than four times. Such an improvement represents the first attempt to develop a ML strategy
for genomic prediction in rubber tree, with a high potential to be adapted to other species with the same data
configuration. Considering a broader scenario with distantly related genotypes belonging to a population with
undefined structure, this same approach could be applied. Instead of relying on the predefined stratification,
clustering analyses could be performed and used for the divide part. Such a practice is already common in breed-
ing, i.e., taking advantage of population structure for model prediction through multivariate techniques'®*1%°.
Taking into account the importance of such group configuration in the differentiation of multiple traits'**-1°8, the
strategy developed represents a promising approach for several plant species with a difficult prediction scenario.

The use of GS in rubber tree can optimize breeding programs, and the incorporation of ML techniques can
be seen as a new possibility for building more robust models with higher associated prediction capabilities. By
using data from rubber tree breeding programs, we were able to generate promising predictive results for a highly
complex trait and a novel strategy for prediction, which has significant potential to enhance selection efficiency,
and reduce the length of the selection cycle. Although our results confirmed the efficiency of the methodology
proposed for rubber tree data, to properly evaluate the full potential of the method in other species and broader
scenarios, our approach should be investigated in further studies with more genetically diverse populations in
contrasting environments.

Data availibility

All the genotypic data from this study are available in the Supplementary Material and under NCBI accessions
PRJNA540286 (ID: 5440286) (GT1 x PB235 and GT1 x RRIM701) and PRJNA541308 (ID: 541308) (PR255 x
PB217).
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