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Abstract

The form factors and the coupling constant of the BsB
∗K and BsBK∗ vertices are calculated using 

the QCD sum rules method. Three-point correlation functions are computed considering both the heavy 
and light mesons off-shell in each vertex, from which, after an extrapolation of the QCDSR results at the 
pole of the off-shell mesons, we obtain the coupling constant of the vertex. The form factors obtained have 
different behaviors but their simultaneous extrapolation reaches the same value of the coupling constant,
gBsB∗K = 8.41 ± 1.23 and gBsBK∗ = 3.3 ± 0.5. We compare our result with other theoretical estimates 
and compute the uncertainties of the method.
© 2015 Elsevier B.V. All rights reserved.

Keywords: QCD sum rules; Strong meson vertex; Meson form factors; Strong coupling constant

1. Introduction

In the recent years, many new charmonium and bottomonium states have been observed at the 
B-factories. As an example, in the bottomonium sector, the Belle Collaboration reported the ob-
servation of two charged narrow structures in the π±Υ (nS) (n = 1, 2, 3) and π±hb(mP ) (m =
1, 2) mass spectra of the Υ (5S) → Υ (nS)π± and Υ (5S) → hb(mP )π± decay processes [1]. 
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These narrow structures were called Zb(10610) and Zb(10650). As pointed out by the Belle Col-
laboration, the proximity of the BB̄∗ and B∗B̄∗ thresholds and the Zb(10610) and Zb(10650)

masses suggests that these states could be interpreted as weakly bound BB̄∗ and B∗B̄∗ states. 
In particular, using the one-boson exchange model and considering S-wave and D-wave mix-
ing, the authors of Ref. [2] were able to explain both, Zb(10610) and Zb(10650), as BB̄∗ and 
B∗B̄∗ molecular states. The main ingredients in the one-boson exchange model are the effective 
Lagrangians that describe the strong interactions between the heavy and light mesons. These La-
grangians are characterized by the strong coupling constants in the considered vertices which, 
in general, are not known. These heavy–heavy–light mesons coupling constants are fundamental 
objects since they can provide essential information on the low energy behavior of the QCD. 
Depending on their numerical values, a particular molecular state may or may not be bound. 
Therefore, it is really important to have reliable ways to extract these values based on QCD cal-
culations. However, such low-energy hadron interaction lies in a region which is very far away 
from the perturbative regime. Therefore, we need some non-perturbative approaches, such as the 
QCD sum rules (QCDSR) [3–5], to calculate the form factors and coupling constants of these 
vertices. There are already some QCDSR calculations for the heavy–heavy–light vertices like 
the B∗Bπ [6], Bs0BK [7], B∗

s BK∗ [8], B∗B∗ρ [9], BsBK∗
0 , B∗

s BK1 [10] and B∗
s BK [11]. 

In the charm sector, various vertices were evaluated with this approach and the results are sys-
tematized in [12]. Here we calculate the form factor and the coupling constant at the BsB

∗K
and BsBK∗ vertices in the framework of three-point QCDSR. More specifically, we evaluate the 
gBsB∗K(Q2) and gBsBK∗(Q2) form factors in three different ways, considering, one by one, each
of the mesons in the vertex to be off-shell. From these form factors, we extract the gBsB∗K and 
the gBsBK∗ coupling constants.

2. The QCD sum rule for the BsB
∗K and BsBK∗ vertices

To perform the QCDSR calculation and obtain the form factors and coupling constants of the 
vertices BsB

∗K and BsBK∗, we follow our previous works, as Ref. [12]. The starting point is 
the three-point correlation function given by:

Π
(Bs)
μ(ν)

(
p,p′) =

∫
d4xd4y〈0|T {

jK(∗)

μ (x)
(
jBs

)†(y)
(
jB(∗)

(ν)

)†(0)
}|0〉eip′·xe−iq·y, (1)

for the Bs meson off-shell, and:

Π(K)
(
p,p′)

(μ)ν
=

∫
d4xd4y〈0|T {

jB(∗)

(μ) (x)
(
jK(∗)

ν

)†(y)
(
jBs

)†(0)
}|0〉eip′·xe−iq·y, (2)

for the K or K∗ meson off-shell. In Eqs. (1) and (2), q = p−p′ is the momentum of the off-shell 
meson and p and p′ are the momentum of other ones. The currents j (M) are the currents asso-
ciated with each meson in the vertex and contain the quantum information about the state. The 
correlation functions in Eqs. (1) and (2) allow to obtain two different form factors corresponding 
to the same vertex. In this way, the vertex is tested by two different mesons, the heavier and 
the lighter ones in the corresponding vertex. The calculation of these two correlation functions 
allows to reduce the uncertainties of the evaluation of the coupling constant of the vertex [12].

Eqs. (1) and (2) contain different numbers of Lorentz structures, and for each structure, we 
can write a different sum rule. In principle all the structures would give the same result. However, 
due to different approximations each structure can lead to different results. Therefore, one has 
to choose the structures less sensitive to the different approximations. To obtain the sum rule, 
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Fig. 1. Perturbative diagrams for the Bs(Bs) off-shell meson (left) and for K(K∗) off-shell meson (right), for BsB
∗K

vertex (BsBK∗ vertex).

these functions are calculated in two different ways: using quarks degrees of freedom – the 
QCD side; and using hadronic degrees of freedom – the phenomenological side. In the QCD 
side, the correlators are evaluated using Wilson’s operator product expansion (OPE). The duality 
principle allows us to obtain an interval in which both representations are equivalent. Therefore, 
in this region, we can obtain the QCD sum rule from where the form factors are evaluated. To 
improve the matching between the two sides, we perform a Borel transformation to both QCD 
and phenomenological sides.

2.1. The QCD side

The QCD side is obtained using the following meson currents for the BsB
∗K vertex:

jB∗
μ (x) = b̄γμq,

j
Bs

5 (0) = ib̄γ5s,

jK
ν (y) = s̄γνγ5q (3)

and the following ones for the BsBK∗ vertex:

jB
5 (x) = iq̄γ5b,

j
Bs

5 (0) = ib̄γ5s,

jK∗
μ (y) = q̄γμs. (4)

Here, q , s and b are the light, strange and bottom quark fields respectively. Each one of these 
currents has the quantum numbers of the associated meson. In the case of K off-shell meson, we 
use, as usual in QCDSR, the pseudoscalar current for it, see Refs. [6] (D∗Dπ), [13] (D∗

s DK)

and [11] (B∗
s BK). The general expression for the vertices has different structures, which can be 

written in terms of a double dispersion relation over the virtualities p2 and p′2, holding Q2 =
−q2 fixed:

Γ
(
p2,p′ 2,Q2) = − 1

4π2

∞∫
smin

ds

∞∫
umin

du
ρ(s,u,Q2)

(s − p2)(u − p′ 2)
, (5)

where the spectral density ρ(s, u, Q2) can be obtained from the Cutkosky’s rules.
The invariant amplitudes receive contributions from all terms in the OPE. In the case of form 

factors, the main contribution in the OPE is the perturbative term, which is represented in Fig. 1, 
for the two cases that we are considering, the Bs(Bs) and K(K∗) meson off-shell for the BsB

∗K
(BsBK∗) vertex.
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In order to obtain the form factor, we have to choose one of the different structures appear-
ing in Eqs. (1) and (2). As commented above, different structures can lead to different results. 
Therefore, one has to choose the structure less sensitive to higher dimension condensates, that 
provide a better stability as a function of the Borel mass, and that have a larger pole contribution, 
when compared with the continuum contribution. This is considered a “good” structure. If there 
is more than one “good” structure, the others can also be considered to estimate the uncertainties 
of the method.

For BsB
∗K form factor and in the case Bs off-shell meson, we choose the p′

μp′
ν structure, 

because it satisfies the criteria above. For K off-shell meson, we can work with both pν and 
p′

ν structures In this case, we are going to work with the p′
ν structure while the other one will 

be used for the estimate of the uncertainties. The corresponding perturbative spectral densities, 
which enter in Eq. (5), are:

ρ(Bs)
(
s, u,Q2) = 3

2π
√

λ

[
(2mb − 2ms)E − 2mbB

]
, (6)

for the p′
μp′

ν structure of the Bs off-shell case, and

ρ(K)
(
s, u,Q2) = − 3

2π
√

λ

[
A

(
p · p′ − 2k · p − mbms + m2

b

) + 2π
(
m2

b − k · p′)], (7)

for the pν structure in the K off-shell case. In both cases, the quark condensate contributions are 
neglected after the Borel transform.

For BsBK∗ vertex, we use the pμ structure for Bs off-shell meson and for K∗ off-shell meson, 
we have pμ and p′

μ structures, both giving excellent sum rules. Again we show the results for 
one structure and the other is used to estimate the uncertainties. The perturbative contribution to 
the spectral density, when the Bs meson is off-shell is:

ρ(Bs)
(
s, u,Q2) = 3

2π
√

λ

[
A

(
p · p′ − mbms − 2p · k) − p′ · k]

(8)

for the pμ structure. In this case, the quark condensate, 〈qq̄〉, contribution to the same structure 
is:

Π 〈qq̄〉 = ms〈qq̄〉
(p2 − m2

b)(p
′ 2 − m2

s )
. (9)

For K∗ off-shell case, the spectral density, for both structures, is given by:

ρ(K∗)(s, u,Q2) = − 3

2π
√

λ

{
pμ

[
A

(
p · p′ − mbms − m2

b

) + m2
b − k · p′ − mbms)

]

+ p′
μ

[
B

(
p · p′ + mbms − m2

b

) − k · p + m2
b

]}
. (10)

In Eqs. (6) to (10) we have defined λ = λ(s, u, t) = s2 + t2 + u2 − 2st − 2su − 2tu, s = p2, 
u = p′ 2, t = −Q2 and A, B and E are functions of (s, u, t), given by:

A = 2π

[
k0√
s

− |	k|
| 	p′|

cos θ
p′

0√
s

]
; B = 2π

|	k|
| 	p′|

cos θ; (11)

E = −π |	k|2
	′ 2

(3 cos θ − 1), (12)

|p |
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where

|	k|2 = k0
2 − m2

i ; cos θ = −2p′
0k0 − u − m2

i − ηm2
b

2| 	p′||	k|
;

p′
0 = s + u − t

2
√

s
; | 	p′|2 = λ

4s
; k0 = s + m2

i − εm2
b

2
√

s
; (13)

Finally, the OPE side, is calculated using Eq. (5) with the limits in the integration given by: 
smin = (mb +ms)

2 and umin = t −m2
b for Bs off-shell and smin = m2

b −m2
s and umin = t +m2

b −m2
s

for K off-shell, for BsB
∗K vertex. And smin = (mb)

2 and umin = t +m2
b for Bs and K∗ off-shell 

for the BsBK∗ vertex.
Since we are dealing with heavy quarks, we expect the perturbative contribution to dominate 

the OPE. Besides, in Ref. [11] it was shown that the gluon condensate contribution to the D∗Dπ

and J/ψD∗D vertices was negligible, as compared with the perturbative contribution. For these 
reasons, we do not include the gluon condensate and higher dimension condensates in the present 
work.

2.2. The phenomenological side

The three-point functions from Eqs. (1) and (2), when written in terms of hadron masses, 
decay constants and form factors, give the phenomenological side of the sum rule.

2.2.1. For the BsB
∗K vertex

The meson decay constants fK , fBs and fB∗ are defined by the following matrix elements:
〈
0
∣∣jK

ν

∣∣K(p)
〉 = ifKpν, (14)〈

0
∣∣jB∗

μ

∣∣B∗(p′)〉 = mB∗fB∗ε∗
μ

(
p′), (15)

and

〈
0
∣∣jBs

5

∣∣Bs(p)
〉 = m2

Bs

mb + ms

fBs , (16)

and the vertex function is defined by:
〈
K(q)

∣∣B∗(−p′)Bs(p)
〉 = −g

(K)
BsB∗Kεμ∗(p′)(2p − p′)

μ
, (17)

which is extracted from the effective Lagrangian [14]:

LBsB∗K = igBsB∗K
[
B∗μ(B̄s∂μK − ∂μB̄sK) − B̄∗μ(Bs∂μK̄ − ∂μBsK̄)

]
. (18)

Saturating the correlation function with Bs , B∗ and K intermediate states we arrive at

Π(Bs)
μν = −fKfBs fBmB∗m2

Bs
g

(Bs)
BsB∗K(q2)

(ms + mb)(p′ 2 − m2
K)(q2 − m2

Bs
)(p2 − m2

B∗)

×
[
pμp′

ν

(
1 − (m2

K − q2)

m2
B∗

)
− 2p′

μp′
ν

]
+ “continuum”, (19)

for an off-shell Bs . Using the matrix element of K meson equal to
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〈
0
∣∣jK

5

∣∣K(q)
〉 = m2

K

ms

fK, (20)

we arrive at an expression for an off-shell K:

Π(K)
μ = −fB∗fKfBs mB∗m2

Bs
m2

Kg
(K)
BsB∗K(q2)

(mb + ms)ms(p2 − m2
B)(p′ 2 + m2

B∗
s
)(q2 − m2

K)

[
−2pμ + p′

μ

(
1 + (m2

Bs
− q2)

m2
B∗

)]
+ “continuum”. (21)

2.2.2. For the BsBK∗ vertex
In this case, the effective Lagrangian is [14]:

LBsBK∗ = igBsBK∗
[
K∗μ(B∂μB̄s − B̄s∂μB) + K̄∗μ(Bs∂μB̄ − B̄∂μBs)

]
, (22)

from where we can extract the vertex element, which is given by:

〈
K∗(q)

∣∣Bs

(−p′)B(p)
〉 = ig

(K∗)
BsBK∗ε∗μ(q)

(
p + p′)

μ
, (23)

and the matrix elements which introduce the meson decay constants fK∗ , fBs and fB are:
〈
0
∣∣jK∗

μ

∣∣K∗(p)
〉 = fK∗ε∗

μ(q)mK∗ , (24)

〈
B(p)

∣∣jB
5

∣∣0〉 = fB

m2
B

m2
b

, (25)

and

〈
0
∣∣jBs

5

∣∣Bs

(
p′)〉 = fBs

m2
Bs

mb + ms

. (26)

After some algebra we arrive at the following expression:

Π(Bs)
μ = −i

fK∗fBfBs mK∗m2
Bs

m2
B

(m2
b + msmb)(p2 − m2

B)(p′ 2 − m2
K∗)(q2 − m2

Bs
)

× g
(Bs)
BsBK∗

(
q2)[−2pμ + p′

μ

(
1 − m2

B − m2
Bs

m2
K∗

)]
+ “continuum”, (27)

when Bs is off-shell.
For K∗ off-shell we arrive at:

Π(K∗)
μ (p,p′, q) = − fBfK∗fBs mK∗m2

Bs
m2

B

(msmb + m2
b)(p

2 − m2
B)(p′ 2 − m2

Bs
)(q2 − m2

K∗)

× g
(K∗)
BsBK∗

(
q2)[pμ

(
1 − (m2

B − m2
Bs

)

m2
K∗

)

+ p′
μ

(
1 − (m2

Bs
− m2

B)

m2
K∗

)]
+ “continuum” (28)
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Table 1
Hadronic parameters used.

K K∗ Bs B∗ B

m (GeV) 0.49 0.89 ± 5 5.40 5.20 5.28
f (MeV) 160±1.4

±44 220 ± 5 208±10
±39 250±10

±29 191 ± 0.87

3. The sum rule

The sum rule is obtained after performing a double Borel transform (BB), P 2 = −p2 → M2

and P ′ 2 = −p′ 2 → M ′ 2, to both the phenomenological and OPE sides:

BB
[
Γ OPE(I )

μ

](
M,M ′) = BB

[
Γ phen(I )

μ

](
M,M ′), (29)

where M and M ′ are the Borel masses and I is the off-shell meson.
In order to eliminate the continuum contribution in the phenomenological side, instead of do-

ing the integrals in Eq. (5) up to ∞, we do the integrals up to the continuum threshold parameters 
s0 and u0. The threshold parameters are defined as s0 = (mi +Δi)

2 and u0 = (mo +Δo)
2, where 

Δi and Δo are usually taken as 0.5 MeV, and mi and mo are the masses of the incoming and 
outgoing mesons respectively.

In Eqs. (19), (21), (27), (28), g(I)
BsB∗K(Q2) and g(I)

BsBK∗(Q2) are the form factors when the I
meson is off-shell. As in our previous works, we define the coupling constant as the value of the 
form factor, g(I)(Q2), at Q2 = −m2

I , where mI is the mass of the off-shell meson.

4. Results and discussion

Table 1 shows the value of the hadronic parameters used in the present calculation. We have 
used the experimental value for fK of Ref. [15], for fB∗ and fBs from Ref. [16] and for fK∗ of 
Ref. [17].

We neglect the light quark mass (mq = 0.0 MeV). The strange and bottom quark masses were 
taken from the Particle Data Group (PDG) and have the values ms = 104 + 26 − 34 MeV and 
mb = 4.20 +0.17 −0.07 GeV respectively. In the next subsections, we show the two form factors 
used to extract the coupling constants of each vertex.

4.1. BsB
∗K vertex

In the case of a Bs off-shell meson, we work with the p′
νp

′
μ structure. In Fig. 2(a) we show 

the contribution of the pole versus the continuum contribution for the sum rule and in Fig. 2(b) 
the stability of the form factor as a function o Borel mass, for Q2 = 1 GeV2 and three different 
values for the continuum thresholds. We use the usual relation between the Borel masses M ′ and 
M [12]: M ′ 2 = m2

K

mB∗
s
−m2

b

M2.

From Fig. 2(b) we clearly see a window of stability for M2 ≥ 10 GeV2, and from Fig. 2(a), we 
can see that the pole contribution is bigger than the continuum contribution for M2 ≤ 19 GeV2. 
Therefore, there is a Borel window where the sum rule can be used to extract the form factor.

In the case of a K meson off-shell, we have two structures in Eq. (21) that can be used: p′
μ

and pμ. Both structures give good sum rule results, that means a good pole–continuum con-
tribution and good stability. We show in Fig. 3(a) and (b), respectively, the pole–continuum 
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Fig. 2. (a) The pole–continuum contributions for the BsB
∗K sum rule for the Bs off-shell and (b) g(Bs )

BsB∗K
(Q2 =

1 GeV2) stability for different values of the continuum thresholds.

Fig. 3. (a) The pole and continuum contributions for BsB
∗K sum rule with the K off-shell and (b) the g(K)

BsB∗K
(Q2 =

2 GeV2, M2) stability for different values of the continuum thresholds.

contribution and the stability only for the pν structure. For the p′
μ, we obtain a very similar 

result and we use it to evaluate the uncertainties.
From Fig. 3, we find a Borel window 10 GeV2 ≤ M2 ≤ 14 GeV2 where the sum rule can be 

used to extract he form factor.
In Fig. 6 we show the QCDSR results for these two form factors, represented by squares and 

triangles for the cases of the Bs and K off-shell respectively.

4.2. BsBK∗ vertex

For the case of the Bs meson off-shell, we use the structure pμ. In Fig. 4(a) and (b) we 
show the pole–continuum contribution and the Borel mass stability respectively. Once more, we 
see that we get a Borel window 10 GeV2 ≤ M2 ≤ 12.5 GeV2 where these both conditions are 
satisfied and where we can use the sum rule to extract the form factor. Also, for the Bs meson 
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Fig. 4. (a) The pole–continuum contributions for BsBK∗ and in (b) g(Bs )
BsBK∗ (Q2 = 1 GeV2, M2) stability for different 

thresholds.

Fig. 5. (a) The pole and continuum contributions for BsBK∗ sum rule for K∗ off-shell and (b) the g(K∗)
BsBK∗ (Q2 =

2 GeV2, M2) stability for different values of the threshold parameters.

off-shell case, we have other structure, p′
ν , to work with. In this case, the result includes the light 

quarks condensate which do not modified substantially the sum rule. The p′
ν structure will be 

used to evaluate the uncertainties.
In the case of the K∗ off-shell meson, we show the figures of stability and pole–continuum 

contribution for p′
μ structure, in Fig. 5. In the structure pμ, we get similar results, that means a 

good pole–continuum contribution and good stability.
The sum rule result for both form factors are shown in Fig. 7 through triangles and squares 

for Bs and K∗ off-shell respectively.

5. Coupling constant

The coupling constant in the vertex, is obtained when the form factor is extrapolated to Q2 =
−m2

I , where mI is the mass of the off-shell meson. In order to minimize the uncertainties, we 
work with two form factors in each vertex, one with the heavier meson in the vertex off-shell and 
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Table 2
Form factors and coupling constants obtained by extrapolation.

Form factor Coupling constant

g
(Bs )
BsB∗K

(Q2) = 3.18 exp−Q2/32.98 gBsB∗K = 7.55

g
(K)
BsB∗K

(Q2) = 8.25 exp−(Q2/6.68)2
gBsB∗K = 8.00

g
(Bs )
BsBK∗ (Q2) = 80.88

58.86+Q2 gBsBK∗ = 2.72

g
(K∗)
BsBK∗ (Q2) = 2.49 exp−Q2/2.63 gBsBK∗ = 3.37

Fig. 6. The gBsB∗K(Q2) form factor, extrapolation function for K and Bs meson off-shell.

the other with the lighter meson off-shell. Both form factors should give the same value for the 
coupling constant.

In Table 2, we show, for each vertex, the function that fits the QCD sum rule results for the 
form factors, which is then extrapolated to Q2 = −m2

I , to determine the coupling constant value. 
From Table 2 we see that the two form factors in the same vertex, give similar results for the 
coupling constant.

In Figs. 6 and 7, we show the parametrizations given in Table 2 for the QCDSR results for 
the form factors gBsB∗K(Q2) and gBsBK∗(Q2) respectively. The squares and triangles give the 
QCDSR results for the heavier and lighter off-shell mesons in the vertices respectively. We also 
show in these figures the values obtained for the coupling constant.

6. Uncertainties of the QCDSR method

Looking at Figs. 6 and 7, we can see a error bar at the endpoint of the curves. To evaluate 
these error bars, we compute the sum rule taking into account the errors in the masses, decay 
constants, continuum threshold parameters and also we study a variation on the Borel mass in 
the window of Q2.
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Fig. 7. The gBsBK∗ (Q2) form factor, extrapolation function for K∗ and Bs meson off-shell.

Table 3
Percentage deviation of the coupling constant related to each parameter for both vertices with the meson I off-shell.

Parameters Deviation %

g
(I)
BsB∗K

g
(I)
BsBK∗

I = Bs I = K I = Bs I = K∗

fK∗ = 220 ± 5 (MeV) – – 1.95 1.94
fB = 191 ± 8.77 (MeV) – – 3.91 3.88
fK = 159.8 ± 1.4 ± 0.44 (MeV) 1.04 1.04 – –
fB∗ = 208 ± 10 ± 29 (MeV) 16.29 16.30 – –
fBs = 250 ± 10 ± 35 (MeV) 12.06 12.07 3.61 3.51
mb = 4.20 + 0.17 − 0.07 (GeV) 15.81 23.39 9.83 28.42
ms = 104 + 26 − 34 (MeV) 1.23 24.71 7.21 19.78
M2 ± 10% (GeV) 4.29 1.85 6.45 18.57
�s ± 0.1 and �u ± 0.1 (GeV) 13.51 4.90 9.32 12.35

Our procedure is that in each computation, all the parameters are kept fixed and only one 
changes within its intrinsic error. In Table 3, we show the intrinsic uncertainty for each of the 
sum rule parameters.

We also consider the other good sum rules, for each off-shell meson in each vertex and we 
also put the third meson off-shell to better estimate the errors.

6.1. Other mesons of shell and other structures

For the BsB
∗K vertex, we calculated the B∗ off-shell form factor. Since the B∗ meson has 

a small mass difference when compared with the Bs meson mass, we expect to obtain a similar 
result to the one obtained for Bs off-shell. Computing the sum rule, we observe that there are two 
structures: the p′

μp′
ν and pμp′

ν . The pμp′
ν structure does not give a good stability in the Borel 
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mass, therefore it is not considered. The other structure, p′
μp′

ν , gives a good stability and the pole 
is larger than the continuum contribution.

To extrapolate the QCDSR results, we use the fit

g
(B∗)
BsB∗K

(
Q2) = 1.21 exp−Q2/13.65 (30)

for the form factor, and the resulting value for the coupling constant is: gBsB∗K = 8.64. This 
result is very similar to the one showed in Table 2, as expected.

Also for this vertex, in the case of the K meson off-shell, we have other structure, p′
μ, which 

gives a good sum rule, very similar to the pμ used before. In this case the form factor is extrapo-
lated by

g
(K)
BsB∗K

(
Q2) = 9.69 exp−(Q2/7.43)2

, (31)

and the resulting value for the coupling constant is: gBsB∗K = 9.45, in a very good agreement 
with the results in Table 2.

For BsBK∗, we perform the sum rule for the B off-shell meson. Again, we expect to obtain 
a similar result to the one obtained for Bs off-shell, since this meson has a small mass difference 
when compared with the B meson mass.

We get sum rules for the two structures, pμ and p′
μ. The pμ structure does not give good 

stability in the Borel mass. Therefore, it is not considered. The other structure, p′
μ, gives good 

stability with the pole being bigger than the continuum contribution. The QCDSR results for the 
form factor can be extrapolated by

g
(B)
BsBK∗

(
Q2) = 104.71

66.97 + Q2
(32)

and the coupling constant is

gBsBK∗ = 2.77.

This is a very similar result to the one obtained in Table 2.

7. Conclusion

We have used the three-point QCD sum rules to study the form factors in the vertices BsB
∗K

and BsBK∗. In each case, we have considered two different sum rules, for two different mesons 
off-shell. We have studied the Borel stability and pole dominance in each case and have deter-
mined the Borel window where the sum rules can be used. To get the coupling constant in each 
vertex, we have used the extrapolation method developed in previous works [12]. This extrap-
olation method has a systematic error which comes from the choice of the analytic form of the 
extrapolating functions. We consider only monopole, exponential and Gaussian parametrization: 
g

(I)
MM2M3

(Q2) = A exp−Q2/B , g(I)
MM2M3

(Q2) = A exp−(Q2/B)2
and g(I)

MM2M3
(Q2) = A

B+Q2 .
There are no physical reason for using these forms. However, they are the usual forms used by 

experimentalists and also they have only two parameters, A and B , that present some regularity, 
in all our form factors. For instance, when the heavy meson is off-shell, the form factor is harder 
as a monopolar function, and the B cut-off parameter is a big number. By the other hand, when 
the light meson is off-shell, the parametrization is usually exponential or Gaussian and have a 
smaller B cut-off parameter. These cut-offs are showed in Table 4.
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Table 4
Cut-off parameters for both vertices.

Off-shell meson BsB
∗K BsBK∗

Cut-off parameters

A B A B

Bs 3.18 32.98 80.88 58.86
B∗ 1.21 13.65 – –
K 8.25 6.68 – –
B – – 104.71 66.97
K∗ – – 2.49 2.63

We have also performed a very extensive study of the uncertainties to estimate the errors in the 
coupling constants. After considering all good sum rules and including the uncertainties study, 
we obtain the coupling constant equal to:

gBsB∗K = 8.41 ± 1.23 (33)

and

gBsBK∗ = 3.3 ± 0.5 (34)

We can compare our results with other theoretical predictions using arguments of heavy 
hadron chiral perturbation theory (HHChPT), where the couplings for the bottom–light vertex 
gB∗

s BK are related to the charm–light vertex gDsD∗K through the relation [18,19]:

gBsB∗K = gD∗
s DK

mB

mD

, (35)

where mB∗ = 5.2 and mD = 1.8693 are the experimental masses. For gDsD∗K we can use our 
previous QCDSR result [13] of gD∗

s DK = 3.02. Therefore, we obtain gBsB∗K = 8.39, which 
is in excellent agreement with our result. This result shows that the relation with charm–light 
vertex can give a good estimate of the couplings in the bottom–light vertex. The uncertainties 
are about 20%, that is in complete agreement to the technique of QCDSR. The greatest source of 
uncertainties found in this work is due to the mass of the bottom quark.
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