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Abstract

The form factors and the coupling constant of the By B*K and Bg BK™* vertices are calculated using
the QCD sum rules method. Three-point correlation functions are computed considering both the heavy
and light mesons off-shell in each vertex, from which, after an extrapolation of the QCDSR results at the
pole of the off-shell mesons, we obtain the coupling constant of the vertex. The form factors obtained have
different behaviors but their simultaneous extrapolation reaches the same value of the coupling constant,
gB,B*k =841 £ 1.23 and gp pg+ = 3.3 +£0.5. We compare our result with other theoretical estimates
and compute the uncertainties of the method.
© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

In the recent years, many new charmonium and bottomonium states have been observed at the
B-factories. As an example, in the bottomonium sector, the Belle Collaboration reported the ob-
servation of two charged narrow structures in the 77 (nS) (n = 1,2, 3) and n*h,(mP) (m =
1,2) mass spectra of the 7' (55) — Y (nS)n* and Y'(55) — hp(mP)n™ decay processes [1].
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These narrow structures were called Z;,(10610) and Z, (10650). As pointed out by the Belle Col-
laboration, the proximity of the BB* and B*B* thresholds and the Z;(10610) and Z;(10650)
masses suggests that these states could be interpreted as weakly bound BB* and B*B* states.
In particular, using the one-boson exchange model and considering S-wave and D-wave mix-
ing, the authors of Ref. [2] were able to explain both, Z;,(10610) and Z;(10650), as BB* and
B* B* molecular states. The main ingredients in the one-boson exchange model are the effective
Lagrangians that describe the strong interactions between the heavy and light mesons. These La-
grangians are characterized by the strong coupling constants in the considered vertices which,
in general, are not known. These heavy—heavy-light mesons coupling constants are fundamental
objects since they can provide essential information on the low energy behavior of the QCD.
Depending on their numerical values, a particular molecular state may or may not be bound.
Therefore, it is really important to have reliable ways to extract these values based on QCD cal-
culations. However, such low-energy hadron interaction lies in a region which is very far away
from the perturbative regime. Therefore, we need some non-perturbative approaches, such as the
QCD sum rules (QCDSR) [3-5], to calculate the form factors and coupling constants of these
vertices. There are already some QCDSR calculations for the heavy—heavy-light vertices like
the B*Bm [6], ByoBK [7], By BK* [8], B*B*p [9], B;BK{, BfBK; [10] and By BK [11].
In the charm sector, various vertices were evaluated with this approach and the results are sys-
tematized in [12]. Here we calculate the form factor and the coupling constant at the ByB*K
and By BK* vertices in the framework of three-point QCDSR. More specifically, we evaluate the
8B,B*K (0% and g B,BK* (0Q?) form factors in three different ways, considering, one by one, each
of the mesons in the vertex to be off-shell. From these form factors, we extract the gp p+x and
the gp, g+ coupling constants.

2. The QCD sum rule for the B;B*K and B; B K* vertices
To perform the QCDSR calculation and obtain the form factors and coupling constants of the

vertices B;B*K and B;BK*, we follow our previous works, as Ref. [12]. The starting point is
the three-point correlation function given by:

N <C .B. IO in'-x —ig-v
s (p, ') = / dxd*y T {iK" ) (%) ) (GE) )0y Ty (1)
for the B; meson off-shell, and:
.B® K0 . in-x —ig-
1% (p, '), = f d*xa*yOIT{j&) ) (GE") 0 (G®) O )10 e, ()

for the K or K* meson off-shell. In Egs. (1) and (2), ¢ = p — p’ is the momentum of the off-shell
meson and p and p’ are the momentum of other ones. The currents j™) are the currents asso-
ciated with each meson in the vertex and contain the quantum information about the state. The
correlation functions in Egs. (1) and (2) allow to obtain two different form factors corresponding
to the same vertex. In this way, the vertex is tested by two different mesons, the heavier and
the lighter ones in the corresponding vertex. The calculation of these two correlation functions
allows to reduce the uncertainties of the evaluation of the coupling constant of the vertex [12].
Egs. (1) and (2) contain different numbers of Lorentz structures, and for each structure, we
can write a different sum rule. In principle all the structures would give the same result. However,
due to different approximations each structure can lead to different results. Therefore, one has
to choose the structures less sensitive to the different approximations. To obtain the sum rule,
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Fig. 1. Perturbative diagrams for the By (By) off-shell meson (left) and for K (K*) off-shell meson (right), for Bs B*K
vertex (Bs BK* vertex).

these functions are calculated in two different ways: using quarks degrees of freedom — the
QCD side; and using hadronic degrees of freedom — the phenomenological side. In the QCD
side, the correlators are evaluated using Wilson’s operator product expansion (OPE). The duality
principle allows us to obtain an interval in which both representations are equivalent. Therefore,
in this region, we can obtain the QCD sum rule from where the form factors are evaluated. To
improve the matching between the two sides, we perform a Borel transformation to both QCD
and phenomenological sides.

2.1. The QCD side

The QCD side is obtained using the following meson currents for the By B*K vertex:
JE ) =byug.
J3" () =ibyss,
i ) =5nysq 3)
and the following ones for the B;BK* vertex:
J3 () =iqysb,
J3* ) =ibyss,
K 0) = aqws. )

Here, g, s and b are the light, strange and bottom quark fields respectively. Each one of these
currents has the quantum numbers of the associated meson. In the case of K off-shell meson, we
use, as usual in QCDSR, the pseudoscalar current for it, see Refs. [6] (D* D), [13] (D} DK)
and [11] (Bf BK). The general expression for the vertices has different structures, which can be

written in terms of a double dispersion relation over the virtualities p? and p’z, holding Q% =
2 .
—q~ fixed:

9 b )
(2 p2 0%) = — d/d p(s,u ’ 5
or™ )= | & | M D= ®
Smin Umin
where the spectral density p(s, u, Q%) can be obtained from the Cutkosky’s rules.

The invariant amplitudes receive contributions from all terms in the OPE. In the case of form
factors, the main contribution in the OPE is the perturbative term, which is represented in Fig. 1,
for the two cases that we are considering, the B;(Bs) and K (K *) meson off-shell for the B; B*K
(B BK*™) vertex.
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In order to obtain the form factor, we have to choose one of the different structures appear-
ing in Egs. (1) and (2). As commented above, different structures can lead to different results.
Therefore, one has to choose the structure less sensitive to higher dimension condensates, that
provide a better stability as a function of the Borel mass, and that have a larger pole contribution,
when compared with the continuum contribution. This is considered a “good” structure. If there
is more than one “good” structure, the others can also be considered to estimate the uncertainties
of the method.

For By B*K form factor and in the case B; off-shell meson, we choose the P;/L p,, structure,
because it satisfies the criteria above. For K off-shell meson, we can work with both p, and
p., structures In this case, we are going to work with the p! structure while the other one will
be used for the estimate of the uncertainties. The corresponding perturbative spectral densities,
which enter in Eq. (5), are:

p®) (s, u, Q%) = [2mp —2my) E —2my B], ©

2f

for the p), p;, structure of the By off-shell case, and

p(K)(s, u, Q2) = —L[A(p -p' =2k p—mpmy +m12,) + Zn(m% —k-p)], (7
2 ﬁ

for the p, structure in the K off-shell case. In both cases, the quark condensate contributions are

neglected after the Borel transform.

For By BK™ vertex, we use the p,, structure for By off-shell meson and for K* off-shell meson,
we have p, and I’;/L structures, both giving excellent sum rules. Again we show the results for
one structure and the other is used to estimate the uncertainties. The perturbative contribution to
the spectral density, when the By meson is off-shell is:

3
p® (s, u, %) = m[A(p -p' —mpms —2p-k) = p'-k] ®

for the p,, structure. In this case, the quark condensate, {¢g), contribution to the same structure
is:

; ms(qq)
7499 — S ) 9)
(p? —mp)(p'* = m3)
For K* off-shell case, the spectral density, for both structures, is given by:
- 3
P K (5,10, 0%) =~ {pu[A(p - — mmy —m3) 4}~ k- — mym,)]
27/ A
+p,[B(p-p +mpms —mp) —k - p+mpl}. (10)

In Eqgs. (6) to (10) we have defined A = A(s, u,t) = 2412 4 u? —2st —2su — 2tu, s = p2,

u= p/z, t= —Q2 and A, B and E are functions of (s, u, t), given by:
koo Kl — p) Kl
A=27r[ 0 |q| 0s6 — ] = ucose; (11)
S 17
712
E=-— |_| (BcosH — 1), (12)

|p'|?
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where
S - 2phko — u — m* — nm?
k> =ko®> —m};  cosf =— Po™0 — ™
2[p’|lk|
2 2
, Stu—t = A — s+ m;—emy
Po="37% =7 0 205 (13)

Finally, the OPE side, is calculated using Eq. (5) with the limits in the integration given by:
Smin = (mp+my)? and wip =t —m% for By off-shell and s,,;;, = mZ —mf, and u,,i, = t—l—mlz, —mf,
for K off-shell, for By B*K vertex. And spin = (mp)? and uyin = t ~|—mi for B; and K* off-shell
for the B; BK* vertex.

Since we are dealing with heavy quarks, we expect the perturbative contribution to dominate
the OPE. Besides, in Ref. [11] it was shown that the gluon condensate contribution to the D* D
and J /¢ D*D vertices was negligible, as compared with the perturbative contribution. For these
reasons, we do not include the gluon condensate and higher dimension condensates in the present
work.

2.2. The phenomenological side

The three-point functions from Egs. (1) and (2), when written in terms of hadron masses,
decay constants and form factors, give the phenomenological side of the sum rule.

2.2.1. For the ByB*K vertex
The meson decay constants fx, fp, and fp+ are defined by the following matrix elements:

(0]iX K (p))=ifk po. (14)
(012" |B*(p')) = mp+ fores;(P), (15)
and
m2
(0] |Be(p)) = WTBXmeBS, (16)

and the vertex function is defined by:
K
(K (@)|B* (=) By(p)) = =g i (') (20 = 1) - (17)
which is extracted from the effective Lagrangian [14]:
Lp,prx =igp, sk |B*" (Bsd,K — 8, B;K) — B*(B;3,K — 3, B;K)]. (18)
Saturating the correlation function with By, B* and K intermediate states we arrive at

B
— Ik /B fBMB*M%A,g%A_B)*K(CIZ)

e =
M g mp) (02 = ) (g2 — m) (p? — m)
2 2
m2 —
X [Pup/v (1 - (I;(nfq)) - 2P;1PL} + “continuum”, (19)
B*

for an off-shell By. Using the matrix element of K meson equal to
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2
mg

(0]i& |k (@)= = fk. (20)

ng

we arrive at an expression for an off-shell K:

K
7 _fB*fKfBSMB*m%Sm%(gE;S;*K(qz)
KTy mOmy (92 = mB) (P2 4 ) g — i)
(my —q?)
|:—2pu + p;L (1 + %)} + “continuum”. (21)
B*

2.2.2. For the By BK* vertex
In this case, the effective Lagrangian is [14]:

Lp g+ =igp,k+[ K™ (B0yBy — Byd,B) + K™ (Bs3,B — B3, By)], (22)
from where we can extract the vertex element, which is given by:
(K*(@)| Bo(=p') B(D) =gy, gic-™ @) (p+ '), (23)
and the matrix elements which introduce the meson decay constants fx=, fp, and fp are:
(0% | k*(p)) = fe€f(@mp-, (24)
2
m
(B(p)|js’|0)= fz—%, (25)
my
and
2
m
0|5 B, (p)) = f5,—2—. 26
(O1s™ 18+ () = F ;7 - (26)
After some algebra we arrive at the following expression:
B _ fx+ fB f,m=my my
g (mj, + mgmp) (p2 — my)(p'? —my.) (g2 —mp )
2 2
Mg — "B, PP
X ggfgl{* (qz) |:—2pM + pL(l - T)} + “continuum”, 27
K*
when By is off-shell.
For K* off-shell we arrive at:
&S, fBfx+ f;mismy my
;= (p.p.q)=— Yy a3
(mgmp + mb)(P - mB)(P - mBs)(q - mK*)
2 2
(K" (2 | me—mp)
X gBSBK*(q )| Pull- - 2
M
(my —m%)
+ pIL(l — Sf)] + “continuum” (28)
I7ZI(>,<
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Table 1
Hadronic parameters used.
K K* By B* B
m (GeV) 0.49 0.89+5 5.40 5.20 5.28
f (MeV) 1605} 22045 208%19 25009 1914 0.87
3. The sum rule
The sum rule is obtained after performing a double Borel transform (BB), P? = —p? — M?

and P'? = —p’? — M’2, to both the phenomenological and OPE sides:
BB[ 2P D) (M, M) = BB D(M, M), (29)

where M and M’ are the Borel masses and I is the off-shell meson.

In order to eliminate the continuum contribution in the phenomenological side, instead of do-
ing the integrals in Eq. (5) up to co, we do the integrals up to the continuum threshold parameters
so and ug. The threshold parameters are defined as so = (m; + A)? and ug = (my + A(,)Z, where
A; and A, are usually taken as 0.5 MeV, and m; and m, are the masses of the incoming and
outgoing mesons respectively.

In Egs. (19), (21), (27), (28), gg)B*K(Qz) and ggs)BK*(Qz) are the form factors when the 1
meson is off-shell. As in our previous works, we define the coupling constant as the value of the
form factor, g(l)(Qz), at Q2 = —m%, where m is the mass of the off-shell meson.

4. Results and discussion

Table 1 shows the value of the hadronic parameters used in the present calculation. We have
used the experimental value for fx of Ref. [15], for fp+ and fp from Ref. [16] and for fx+ of
Ref. [17].

We neglect the light quark mass (m, = 0.0 MeV). The strange and bottom quark masses were
taken from the Particle Data Group (PDG) and have the values ms; = 104 + 26 — 34 MeV and
mp =4.2040.17 —0.07 GeV respectively. In the next subsections, we show the two form factors
used to extract the coupling constants of each vertex.

4.1. B;B*K vertex

In the case of a B off-shell meson, we work with the p), p;L structure. In Fig. 2(a) we show
the contribution of the pole versus the continuum contribution for the sum rule and in Fig. 2(b)
the stability of the form factor as a function o Borel mass, for 0> = 1 GeV? and three different
values for the continzuum thresholds. We use the usual relation between the Borel masses M’ and
M[12]: M'? = "k M2,

mpk—n,

From Fig. 2(b) we clearly see a window of stability for M? > 10 GeV?, and from Fig. 2(a), we
can see that the pole contribution is bigger than the continuum contribution for M2 < 19 GeV?.
Therefore, there is a Borel window where the sum rule can be used to extract the form factor.

In the case of a K meson off-shell, we have two structures in Eq. (21) that can be used: P;;
and p,. Both structures give good sum rule results, that means a good pole—continuum con-
tribution and good stability. We show in Fig. 3(a) and (b), respectively, the pole—continuum
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Fig. 2. (a) The pole—continuum contributions for the BgB*K sum rule for the Bg off-shell and (b) ggjg* K(Q2 =

1 GeV?) stability for different values of the continuum thresholds.
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Fig. 3. (a) The pole and continuum contributions for Bg B* K sum rule with the K off-shell and (b) the 31(3[51)3* K (Q2 =

2 GeVZ, M?) stability for different values of the continuum thresholds.

contribution and the stability only for the p, structure. For the p;L, we obtain a very similar
result and we use it to evaluate the uncertainties.

From Fig. 3, we find a Borel window 10 GeV? <M?<14 GeV? where the sum rule can be
used to extract he form factor.

In Fig. 6 we show the QCDSR results for these two form factors, represented by squares and
triangles for the cases of the By and K off-shell respectively.

4.2. B{BK* vertex

For the case of the By meson off-shell, we use the structure p,. In Fig. 4(a) and (b) we
show the pole—continuum contribution and the Borel mass stability respectively. Once more, we
see that we get a Borel window 10 GeV? <M?<125 GeV? where these both conditions are
satisfied and where we can use the sum rule to extract the form factor. Also, for the By meson
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Fig. 5. (a) The pole and continuum contributions for By BK* sum rule for K* off-shell and (b) the g By B K*(Qz =
2 GeVZ, M?) stability for different values of the threshold parameters.

off-shell case, we have other structure, p/,, to work with. In this case, the result includes the light
quarks condensate which do not modified substantially the sum rule. The p/, structure will be
used to evaluate the uncertainties.

In the case of the K* off-shell meson, we show the figures of stability and pole—continuum
contribution for p;L structure, in Fig. 5. In the structure p,, we get similar results, that means a
good pole—continuum contribution and good stability.

The sum rule result for both form factors are shown in Fig. 7 through triangles and squares
for B; and K* off-shell respectively.

5. Coupling constant

The coupling constant in the vertex, is obtained when the form factor is extrapolated to Q2 =

—m%, where m is the mass of the off-shell meson. In order to minimize the uncertainties, we

work with two form factors in each vertex, one with the heavier meson in the vertex off-shell and
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Table 2

Form factors and coupling constants obtained by extrapolation.

Form factor Coupling constant
B —_02

g5 g (0) =3.18exp= /3298 8B,k =755
K (02 2

g5 peg (01 =8.25exp=(27/068) 8B, Bk =8.00
(Bs) 2y _ __80.88 —

gB;;fK*(Q )_W . 8B;Bk* =2.72

g5 e (02) =2.49exp= 07263 g, B+ =3.37

10

O Bs off shell
v Koff shell

-40 ' —2|0 ' 0 ' 20
Q*(GeV?)

Fig. 6. The g gk (Qz) form factor, extrapolation function for K and By meson off-shell.

the other with the lighter meson off-shell. Both form factors should give the same value for the
coupling constant.

In Table 2, we show, for each vertex, the function that fits the QCD sum rule results for the
form factors, which is then extrapolated to Q% = —m%, to determine the coupling constant value.
From Table 2 we see that the two form factors in the same vertex, give similar results for the
coupling constant.

In Figs. 6 and 7, we show the parametrizations given in Table 2 for the QCDSR results for
the form factors gp g+ k(0% and g BB x+(0?) respectively. The squares and triangles give the
QCDSR results for the heavier and lighter off-shell mesons in the vertices respectively. We also
show in these figures the values obtained for the coupling constant.

6. Uncertainties of the QCDSR method

Looking at Figs. 6 and 7, we can see a error bar at the endpoint of the curves. To evaluate
these error bars, we compute the sum rule taking into account the errors in the masses, decay
constants, continuum threshold parameters and also we study a variation on the Borel mass in
the window of Q2.
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Fig. 7. The gp pk* (Q3) form factor, extrapolation function for K* and By meson off-shell.

Table 3
Percentage deviation of the coupling constant related to each parameter for both vertices with the meson 7 off-shell.
Parameters Deviation %
[ )

8B, B*K 8B, BK*

I = By I=K I =By I=K*
fr+ =220+5 (MeV) - - 1.95 1.94
fp=191+8.77 (MeV) - - 3.91 3.88
fx =159.8 £1.4+£0.44 (MeV) 1.04 1.04 - -
fpx =208 £10£29 (MeV) 16.29 16.30 - -
fB, =250+ 10435 (MeV) 12.06 12.07 3.61 3.51
mp =4.20+0.17 — 0.07 (GeV) 15.81 23.39 9.83 28.42
my =104 4+ 26 — 34 (MeV) 1.23 2471 7.21 19.78
M2+ 10% (GeV) 4.29 1.85 6.45 18.57
As £0.1 and Au £0.1 (GeV) 13.51 4.90 9.32 12.35

Our procedure is that in each computation, all the parameters are kept fixed and only one
changes within its intrinsic error. In Table 3, we show the intrinsic uncertainty for each of the
sum rule parameters.

We also consider the other good sum rules, for each off-shell meson in each vertex and we
also put the third meson off-shell to better estimate the errors.

6.1. Other mesons of shell and other structures

For the ByB*K vertex, we calculated the B* off-shell form factor. Since the B* meson has
a small mass difference when compared with the By meson mass, we expect to obtain a similar
result to the one obtained for B off-shell. Computing the sum rule, we observe that there are two
structures: the p/, p;, and p,, p;,. The p, p; structure does not give a good stability in the Borel
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mass, therefore it is not considered. The other structure, pL P, gives a good stability and the pole
is larger than the continuum contribution.
To extrapolate the QCDSR results, we use the fit

’ Y
ggfg)*K(QZ) =1.21exp 0-/13.65 "

for the form factor, and the resulting value for the coupling constant is: gp g+x = 8.64. This
result is very similar to the one showed in Table 2, as expected.

Also for this vertex, in the case of the K meson off-shell, we have other structure, p;L, which
gives a good sum rule, very similar to the p, used before. In this case the form factor is extrapo-
lated by

g5 px (0%) = 9.69exp= (@747, 31)

and the resulting value for the coupling constant is: gg pxx = 9.45, in a very good agreement
with the results in Table 2.

For By BK*, we perform the sum rule for the B off-shell meson. Again, we expect to obtain
a similar result to the one obtained for By off-shell, since this meson has a small mass difference
when compared with the B meson mass.

We get sum rules for the two structures, p,, and p;L. The p,, structure does not give good
stability in the Borel mass. Therefore, it is not considered. The other structure, p;L, gives good
stability with the pole being bigger than the continuum contribution. The QCDSR results for the
form factor can be extrapolated by

104.71
(B) 2
8.k (Q°) = Ge07 4 2

and the coupling constant is

(32)

gB,BK* = 2.717.

This is a very similar result to the one obtained in Table 2.
7. Conclusion

We have used the three-point QCD sum rules to study the form factors in the vertices By B*K
and By BK*. In each case, we have considered two different sum rules, for two different mesons
off-shell. We have studied the Borel stability and pole dominance in each case and have deter-
mined the Borel window where the sum rules can be used. To get the coupling constant in each
vertex, we have used the extrapolation method developed in previous works [12]. This extrap-
olation method has a systematic error which comes from the choice of the analytic form of the
extrapolating functions. We consider only monopole, exponential and Gaussian parametrization:
S, (@) = Aexp™ @78 gl 1 (0%) = Aexp™ /P and gif 4y (07) = 55

There are no physical reason for using these forms. However, they are the usual forms used by
experimentalists and also they have only two parameters, A and B, that present some regularity,
in all our form factors. For instance, when the heavy meson is off-shell, the form factor is harder
as a monopolar function, and the B cut-off parameter is a big number. By the other hand, when
the light meson is off-shell, the parametrization is usually exponential or Gaussian and have a
smaller B cut-off parameter. These cut-offs are showed in Table 4.
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Table 4
Cut-off parameters for both vertices.
Off-shell meson BsB*K ByBK*
Cut-off parameters
A B A B
By 3.18 32.98 80.88 58.86
B* 1.21 13.65 - -
K 8.25 6.68 - -
B - - 104.71 66.97
K* - - 2.49 2.63

We have also performed a very extensive study of the uncertainties to estimate the errors in the
coupling constants. After considering all good sum rules and including the uncertainties study,
we obtain the coupling constant equal to:

gBSB*K = 841 + 123 (33)
and

8B;BK* =33+0.5 (34)

We can compare our results with other theoretical predictions using arguments of heavy
hadron chiral perturbation theory (HHChPT), where the couplings for the bottom-light vertex
8B*BK are related to the charm-light vertex gp p+k through the relation [18,19]:

mp
8B,B*K = &D!DK — > (35
mp

where mp+x = 5.2 and mp = 1.8693 are the experimental masses. For gp pxx we can use our
previous QCDSR result [13] of gprpk = 3.02. Therefore, we obtain gp p+x = 8.39, which
is in excellent agreement with our result. This result shows that the relation with charm-light
vertex can give a good estimate of the couplings in the bottom—light vertex. The uncertainties
are about 20%, that is in complete agreement to the technique of QCDSR. The greatest source of
uncertainties found in this work is due to the mass of the bottom quark.
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