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Abstract
We report the observation of the controlled expansion of a two-dimensional (2D) quantum gas
confined onto a curved shell-shaped surface. We start from the ellipsoidal geometry of a dressed
quadrupole trap and introduce a novel gravity compensation mechanism enabling to explore the
full ellipsoid. The zero-point energy of the transverse confinement manifests itself by the
spontaneous emergence of an annular shape in the atomic distribution. The experimental results
are compared with the solution of the three-dimensional Gross–Pitaevskii equation and with a 2D
semi-analytical model. This work evidences how a hidden dimension can affect dramatically the
embedded low-dimensional system by inducing a change of topology.

1. Introduction

When the motion of a dynamical system is constrained within a particular domain new effects may occur.
In particular if one or more degrees of freedom are frozen the system can be described by an effective low
dimensional theory [1]. For example the classical rigid pendulum oscillates in a two-dimensional (2D)
plane but is described by an effective one-dimensional (1D) equation. In the quantum world numerous
examples exploit this possibility to obtain new effects, as for example the realization of 1D channels [2],
mesoscopic quantum devices [3] or Hall effect in 2D electron gases [4]. Any physical low dimensional
system is still embedded in a higher dimensional space whose properties can affect the motion. For example
the curvature of the constrained surface is expected to give rise to additional potential terms [1, 5, 6], while
the inhomogeneity of the confining potential contributes through a slow variation of the zero point energy
[2, 6, 7].

Ultracold atom experiments offer a unique playground to probe lower dimensions [8, 9], with many
impressive achievements, as for example the simulation of the 1D Lieb–Liniger model [10], the observation
of the 2D Berezinski Kosterlitz Thouless model [11, 12] or the possibility to realize synthetic dimensions
[13, 14]. They recently enabled the discovery of new dynamical effects in 2D [15–17]. For interacting
systems, the effective dimension can change the nature of interactions [18, 19] which in turn modifies the
equation of state [20, 21]. Recently, the original topology of a Bose–Einstein condensate (BEC) spread onto
a closed spherical surface has motivated several theoretical studies [22–26], and an experiment aiming at
this goal is currently installed in the International Space Station [27].

In this article, we report the direct observation of the effect of the inhomogeneous zero-point energy on
a gas confined to an ellipsoid surface. A novel gravity compensation mechanism enables the exploration of
the full ellipsoid in the spirit of the space experiment of [27]. We demonstrate how the motion restricted to
the surface is strongly affected by the transverse frozen degree of freedom, resulting in an annular shape as
shown in figure 1. Our work illustrates how the inhomogeneity of the underlying three-dimensional
potential can induce a change of topology in the effective 2D Hamiltonian and how this effect become
predominant in a pseudo-microgravity environment. In contrast to most experiments where it is only a
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Figure 1. Sketch of the experiment reported in this work: a quantum gas (light gray annulus) is constrained to move on a
spheroidal surface (meshed surface). Left: thanks to gravity compensation the atoms explore a large fraction of the surface. Right:
when gravity is over compensated the atoms accumulate at a given height because of the inhomogeneous transverse zero-point
energy, see text for details. The shadow at the bottom shows the integrated density distribution of the gas, blurred by a 4 μm
point spread function to reproduce the experimental imaging resolution. The field of view is 120 μm × 120 μm.

small correction to the external potential, here the quantization of the transverse motion is central to the
realization of an annular gas.

To constrain the motion of the atoms to a surface, we make use of adiabatic potentials realized with
radio-frequency (rf) dressed ultracold atoms. They allow to access a variety of trapping geometries [28]
from double wells [29–32] to bubble traps [33] and even reach the 2D regime [21]. Thanks to the high
degree of control on all parameters they are ideally suited to study superfluid dynamics [34–37]. By time
averaging [38, 39] or multiple dressing [40] even more configurations can be realized, as smooth
ring-shaped waveguides [41, 42] or multiple wells [40].

2. Gravity compensation in a shell shaped trap

Our experimental setup is described in [21, 43]. Briefly, 87Rb atoms in the F = 1 ground state are placed in
a rotationally invariant quadrupole magnetic field of main vertical axis z. The atoms are dressed by an rf
field produced by three antennas with orthogonal axes, fed by a homemade direct digital synthesis device,
allowing for a full control of the rf polarization and a fine tuning of its parameters. The resulting potential,
within the rotating wave approximation (RWA), can be derived following the approach introduced in [44]
(for a review see also [45]) and reads [21]:

VRWA
3D (ρ,φ, z) = �

√
(α�− ω)2 +Ω(ρ,φ, z)2 + Mgz, (1)

where �2 = ρ2 + 4z2, (ρ,φ, z) are the usual cylindrical coordinates, α is the quadrupole gradient in the
horizontal plane in units of frequency, ω is the rf frequency, Ω(ρ,φ, z) is the local atom-field coupling
amplitude and the last term is the gravitational potential. Ω(ρ,φ, z) depends on the orientation of the rf
polarization with respect to the local static magnetic field [45]. For the choice of a circular polarization of
axis z, Ω(ρ,φ, z) = Ω0/2 × (1 − 2z/�) and the potential is rotationally invariant. Hereafter we will drop the
explicit φ dependence in all quantities. The locus of the energy minimum in equation (1) belongs to a 2D
ellipsoidal isomagnetic surface, defined by � = r0 ≡ ω/α, slightly deformed by the gravitational sag [21].
We note that Ω(ρ, z) reaches its maximum value Ω0 at the bottom and vanishes at the top of this surface.

The confinement to this ellipsoid is rather strong. If we assume that the atoms are confined to the
ground state of the motion transverse to the surface, we can derive an expression of the potential for the 2D
motion along the ellipsoid. If we neglect the deformation of the surface due to the gravitational sag, we
obtain a simple expression for the effective 2D potential:

VRWA
2D (z) =

�Ω0

2
+

(
Mg − �Ω0

r0

)
z +

�ω⊥(z)

2
, (2)

where the atoms move on the isomagnetic surface, and we have used ρ2 = r2
0 − 4z2, for |z| � r0/2 in

equation (1). In this expression we have neglected the geometrical effect of the curvature on the
potential [1], resulting in a energy difference of order �

2/(Mr2
0) between the poles and the equator, about

h × 0.1 Hz with our parameters. Equation (2) shows that the inhomogeneity in rf coupling amplitude
results in a force acting against gravity. Gravity can be compensated by an appropriate choice of the
magnetic field gradient, fulfilling αg = Mgω/(�Ω0). The last term in equation (2) involving the transverse
confinement frequency ω⊥(z) is a witness of the higher dimension, entering through the zero-point energy
of this degree of freedom [6, 7]. It scales as α(z)/

√
Ω(z), where α(z) and Ω(z) are the local gradient and

coupling respectively. This quantum effect is responsible for the spontaneous change of topology when
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Figure 2. In situ atomic density distribution for an ensemble of N � 105 atoms, evidencing the gravity compensation
mechanism and the spontaneous change of topology, as the quadrupole gradient α increases. (a) Experimental measurement,
(b) and (c) full GP numerical simulation, top and side views respectively. The pink vertical line corresponds to the observed
threshold for gravity compensation, slightly lower than the naive expectation αg/(2π) = 7.54(4) kHz μm−1, see text for details.
For each picture of (a) and (b) the field of view is 120 μm × 120 μm, the color scale spans [0–35] μm−2, and the dashed red
circles indicate the ellipsoidal radius at equator ρ ≡ r0. (b) The simulated density profiles are convoluted with a Gaussian of
1/
√

e-radius σ = 4 μm to reproduce the experimental imaging resolution. For (c) the field of view is 60 μm × 60 μm and the
dashed red line is the adiabatic surface r = rs(θ), see text for details.

gravity is overcompensated, as shown in figure 2: the zero-point energy contribution to the effective
potential becomes dominant as the atoms are pushed towards the top and Ω(z) vanishes.

To demonstrate this effect we initially load the adiabatic potential with a moderate gradient
α/(2π) = 4.14(6) kHz μm−1 and a circularly polarized rf dressing field of frequency ω/(2π) = 300 kHz
and maximum coupling amplitude Ω0/(2π) = 85.0(5) kHz. A radio frequency knife of frequency
ωkn/(2π) = 104 kHz, linearly polarized along the vertical axis, allows to control the trap depth while
preserving the rotational symmetry. We then increase the gradient within 300 ms while keeping all the other
parameters constants, and record an in situ picture of the atomic density distribution using a standard
absorption imaging scheme with the probe beam propagating along the z axis [21].

Figure 2 shows that for increasing values of the gradient α, the atomic cloud expands progressively to fill
the ellipsoidal surface and, when gravity is overcompensated, i.e., for α/(2π) � 7.40(8) kHz μm−1, takes a
stable annular shape close to the equator. Interestingly, the compensation occurs for a gradient slightly
lower than the naive expectation αg = 2π × 7.54(4) kHz μm−1. A correct modeling of the system,
including beyond RWA correction to equation (1) and an exact description of the frozen degree of freedom
is necessary to obtain the quantitative agreement shown in figure 2 between theory and simulation, as
detailed below. We emphasize that the gradient α and the coupling Ω0 are calibrated with independent
measurements, see appendix A, and that there is no free parameter in the simulations shown in figure 2.

3. Effective two-dimensional potential

In order to refine the theoretical description of the ring formation, we first use a Floquet (Fl) expansion
[46, 47] to include beyond RWA terms, see appendix F for details. We find that even for our moderate
coupling amplitude Ω0/ω = 0.28 it is necessary to include the first five manifolds, up to ±2 photons, to
reach convergence in the computation of the adiabatic potential VFl

3D(r, θ). Here, (r, θ,φ) are the spherical
coordinates, see figure 2(c), and VFl

3D does not depend on φ. Using this more accurate potential, we compute
numerically the mean-field atomic wave function with the Gross–Pitaevskii (GP) equation. The GP
equation is propagated in imaginary time on a discrete grid to obtain the three-dimensional ground
state [48]. We exploit the rotational invariance to speed up the computation and use a map to ellipsoidal
coordinates to achieve good accuracy at every point of the surface4.

Finally, we develop an improved semi-classical 2D description of the potential restricted to a surface,
improving the accuracy of equation (2). For each angle θ we compute the potential VFl

3D(r, θ) and find its
minimum as a function of r, thus defining the constrained surface r = rs(θ). For each point of this surface
we also compute the local Hessian matrix and obtain the transverse confinement frequency ω⊥(θ) from its

4 The details will be published elsewhere.
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Figure 3. Right axis: effective potential on the surface V Fl
2D(θ) (solid red line), V Fl

3D(rs(θ), θ) (dashed blue) and V RWA
2D (z) (dotted

black). Left axis: surface density computed with the full 3D model (grey shaded area), the 2D semi-classical model (black solid
line) and 2D Thomas–Fermi solution (dashed red line). The trap parameters are: ω/(2π) = 300 kHz, Ω0/(2π) = 85.0(5) kHz
and α/(2π) = 7.68(9) kHz μm−1. See text for details.

largest eigenvalue. The improved semi-classical 2D potential reads:

VFl
2D(θ) = VFl

3D(rs(θ), θ) +
�ω⊥(θ)

2
. (3)

Figure 3 evidences the difference between the quantum VFl
2D(θ) and the classical VFl

3D(rs(θ), θ) effective
potentials, differing by the zero point energy contribution, see equation (3). Beyond RWA corrections
explain the differences with the simple potential VRWA

2D (z), which nevertheless captures qualitatively the
stabilization mechanism.

In particular, a classical particle evolving on the dashed blue potential curve would be pushed towards
the top of the spheroid where the rf coupling vanishes, inducing Landau–Zener spin flips. As a
consequence, a classical particle can not be trapped with this configuration. The zero energy contribution
provides the necessary barrier preventing the atoms to climb to the top of the ellipsoid.

With the parameters of figure 3, corresponding to the last column of figure 2, the local effective trapping
frequency along the surface is ωs/(2π) � 20 Hz, and the transverse one varies with θ over the cloud extent
and is equal to ω⊥/(2π) = 526 Hz at the peak density of the GP groundstate. The chemical potential of the
groundstate is μ/h � 450 Hz above the potential VFl

3D at the peak density. Therefore the quantum gas is well
described by an effective 2D model, with a chemical potential μ2D = μ− �ω⊥/2 < �ω⊥ [49]. To illustrate
this point figure 3 compares the surface density computed with the full 3D simulation (grey shaded area) to
effective 2D solutions obtained with the semi-classical potential of equation (3): the 2D GP solution
(solid black curve) and 2D Thomas–Fermi profile (dashed red curve), see appendix B. Equation (3) thus
enables a simple and accurate description of the effective 2D dynamics.

4. Discussion

When gravity is compensated, any variation of the rf amplitude of technical origin has an important effect.
As a consequence, the rf polarization must be controlled with high accuracy, and the amplitudes and phases
of the three antennas are optimized to the 10−2 level. After a careful optimization of the rf polarization, the
annular gas still presents fluctuations in the density distribution along the annulus of about 30% rms, with
three apparent maxima corresponding to a modulation of the chemical potential of ∼h × 300 Hz
(or ∼14 nK). We have checked that this is due to the small size and distance of the horizontal rf antennas
creating the circular polarization, both of order 10 mm, leading to an rf field amplitude modulation at the
level of 1% in a region of size 0.1 mm, with three minima. We note that for all adiabatic potentials the 2D
criterion implies μ < �ω⊥, while ω⊥ � Ω0 to ensure the adiabatic following of the dressed spin state. As Ω0

enters in the effective potential as a reference energy, see for example (2), fluctuations of the local chemical
potential are of the same order of magnitude than those of Ω0. For our parameters μ/Ω0 ∼ 5 × 10−3 and
targeting a control of the local chemical potential at the 10 percent level would require an unprecedented
control of the rf dressing inhomogeneities at the 0.05 percent level.
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Figure 4. (a) Atom number as a function of the holding time in the trap, for a gradient of α/(2π) = 7.54(8) kHz μm−1,
evidencing a double exponential decay in semilog scale. The black solid line is a fit to the data. (b) Lifetime in the surface trap as a
function of the quadrupole trap gradient: the blue/red symbols correspond to the two characteristic timescales, the error bars are
the fit uncertainties. (c) Estimated critical temperature (blue circles) for N = 2 × 105 atoms and measured upper bound on the
temperature (red squares) with the same atom number, see text for details.

For gradients above 7.6 kHz μm−1, the cloud reaches regions where the rf amplitude is too low to
ensure efficient rf dressing [44, 50, 51], and we observe increased Landau–Zener losses and a reduced
lifetime in the trap, as shown in figure 4. We find that the loss dynamics always follows a double exponential
decay as illustrated in figure 4(a). We note that the shortest time scale is still much longer than what we
expect for three-body losses that remain low for the typical peak density of 3 × 1013 cm−3 in the
experiment, see appendix C. Interestingly we have found that the cloud temperature decreases on a
timescale compatible with the smallest of the two time scales, and reaches then a stationary value below
25 nK, see appendix A. This suggests that an energy-dependent loss mechanism is at play. Indeed, when the
effect of gravity is compensated, thermal atoms can explore a significant fraction of the surface and
approach the top of the bubble, where the rf coupling vanishes. There they undergo a spin flip to an
untrapped state, in a Landau–Zener process, resulting in an energy-dependent filtering of the thermal
distribution. The zero-point energy contribution to the potential acts as a barrier preventing these losses for
low energy atoms, allowing to stabilize the gas.

Finally it is worth mentioning that the atoms constrained on the ellipsoidal surface evolve in a highly
non separable potential that can not be written as a product of two harmonic oscillators. This affects the
transverse excitation spectrum: the energies do not form a regular ladder, as for the harmonic oscillator. It
would be interesting to study how this effect impacts the quantum gas properties: for example one can
expect a modification of the usual equilibrium predictions relying on the harmonic oscillator partition
function [22, 23, 25]. By diagonalizing the single particle Hamiltonian and computing the density of states
ρ(E) we find that, for low energies, it follows a power-law scaling ρ(E) ∝ Ed, where the exponent decreases
smoothly with the gradient from d = 2 to d = 1/2 when the ring forms. Using ρ(E) to compute the ideal
Bose gas critical temperature T0

c (N), we have verified that for the typical atom number in figure 2,
N = 2 × 105, the estimated temperature is always below T0

c (N), see appendix E, as shown in figure 4(c).
A more rigorous analysis would require to evaluate the BKT transition temperature as the trap topology
changes but goes beyond the scope of this work.

5. Conclusion

In conclusion we have reported an attempt to compensate gravity in a shell shaped dressed quadrupole trap,
taking advantage of the anti-gravity force induced by the inhomogeneous rf coupling. We have
demonstrated that the inhomogeneous transverse confinement plays an important role in determining the
equilibrium shape and triggers the appearance of an annular shaped quantum gas. Therefore we have
demonstrated a new method to produce a ring-shaped quantum gas using a particularly simple setup that
does not require supplementary oscillating fields [39] nor optical potentials [52]. We stress that the effect
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shown here is also relevant in the context of the realization of bubble shaped ensembles in microgravity
using adiabatic potentials [24, 27]. Our work shows that achieving a homogeneous surface density in these
systems seems challenging, as the requirement on magnetic gradient and rf field homogeneity is very high
when the relevant energy to be compared to is the chemical potential. A first step towards improving the
homogeneity would be to use larger antennas and/or smaller surfaces.

A consequence of this work is that the quadrupole dressed trap will spontaneously result in an annular
trap geometry under microgravity environment. Once combined with the possibility to tune dynamically
the rf polarization it offers an interesting platform to study rotating superfluids in anharmonic traps, on
Earth or in space. Indeed, close to the gravity compensation setting, the harmonic confinement vanishes
and the trap at the bottom of the shell has a quartic leading order, leading to new equilibrium vortex
distributions in a rotating frame [53]. Furthermore, starting from the annular gas, one can use a small
change of the rf polarization to rotate the gas [37] and then reduce the gradient to reconnect the cloud, thus
implementing a protocol to prepare correlated states [54].
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Appendix A. Methods

Static magnetic field control. In order to calibrate precisely the gradient of the quadrupole coils, we measure
the vertical displacement of the cloud in the dressed quadrupole trap as a function of the dressing
frequency ω, from 300 kHz to 3 MHz and from a linear fit we extract directly the gradient in units
of kHz μm−1. We load the trap with a reduced coupling Ω0/(2π) � 40 kHz such that the atoms are always
at the bottom of the ellipsoid, and measure the vertical position of the atoms after a 23 ms time-of-flight
using an additional imaging axis along an horizontal direction. An ensemble of large coils along three
orthogonal axis allows to cancel the static homogeneous magnetic field at the position of the atoms:
therefore the center of mass of the cloud is not displaced in the horizontal plane when the gradient changes.
We repeat this procedure for different gradients in the range 4.14(6) to 8.49(9) kHz μm−1 covering all the
data presented in this work and achieve a relative uncertainty of one percent. The experimental values of the
gradient given in the main text result from a linear interpolation at any gradient between the measured
points.

Radio-frequency spectroscopy. To determine precisely the rf coupling amplitude we perform rf
spectroscopy [47, 55]: using a weak additional rf field, produced by an antenna aligned with the vertical
axis, we probe the energy difference between the dressed states at the position of the atoms. When the
frequency is resonant this probe field induces losses that are recorded after typically 500 ms of weak rf probe
pulse. We repeat this measurement for various probe frequencies and record a loss spectrum. At low
gradient the resonant frequency is always larger than the effective coupling due to the gravitational sag. A
careful comparison with the simulated density distribution is necessary to accurately infer the coupling
amplitude. We find Ω0 = 2π × 85.0(5) kHz, see figure A1.

For larger gradients, when gravity is overcompensated and the atoms climb on the surface, the local
energy difference between dressed states is reduced. As shown in figure A1 this results in a reduction of the
resonant frequency and a broadening of the spectrum. The zero-temperature GP simulation captures both
effects. Furthermore small variations of the simulation parameters (Ω0 or α) result in noticeable changes of
the simulated distribution, allowing us to estimate the uncertainty on the rf coupling amplitude at the level
of ±0.5 kHz. We note however that several systematic effects can affect this comparison: the experiment is
done at small but finite temperature, while the simulation assumes zero temperature, and the spectroscopic
signal depends also on the probe polarization, which is not modeled.

Fine tuning of the rf polarization. The measurements reported in figure 2 and the comparison with
numerical simulations assume a perfectly circularly polarized rf field (with respect to the z axis). To achieve
this we control the amplitude and the phase of the signals fed to the three dressing antennas. We find that
the most sensitive configuration to finely tune the polarization is the over compensated ring trap: any
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Figure A1. rf spectroscopy signal: atom number as a function of the rf probe frequency (open blue circles), Gaussian fit to the
data (dashed red curve) and simulation (solid yellow curve). The trap parameters are ω = 2π × 300 kHz,
Ω0 = 2π × 85.0(5) kHz and α = 2π × {4.14, 7.40, 7.54} kHz μm−1 for (a)–(c) respectively.

imbalance in the polarization results in density inhomogeneities along the ring. The optimization procedure
proceeds as follows: we first roughly equilibrate the amplitudes of the two horizontal plane antennas with a
dephasing of δΦ ∼ π/2. This usually results in an inhomogeneous ring with two local density maxima. We
then tune the third, vertical axis antenna to balance the atom number between the two maxima by tuning
its amplitude Az and change their relative position on the ring by controlling its phase φz, such that we
obtain two opposite maxima along one diameter of the ring. Now changing δΦ results in a simultaneous
rotation of the two maxima by some angle φ0(δΦ). We observe that φ0(δΦ) ∼ arctan[(δΦ− δΦopt)/σΦ]/2
where δΦopt is the optimal phase difference and the width σΦ is minimized when the amplitudes of the two
horizontal antennas are perfectly balanced. After a few iterations we obtain an almost homogeneous atomic
ring, as shown in figure 2.

In situ imaging. We use a homemade four lenses imaging objective attached to the camera. The depth of
view is about 100 μm, larger than the vertical distance traveled by the atoms in the picture series of figure 2.
The resolution is 4 μm (Rayleigh criterion), limited by the numerical aperture ∼0.1. After alignment and
focus adjustment using a triaxial translation stage, we take several pictures of a small cloud at the bottom of
the trap while moving the imaging system along an horizontal axis. From a fit of the center of mass of the
cloud position as a function of the displacement, measured on the translation stage, we obtain a
magnification of 7.78.

Temperature estimation. To estimate the atomic cloud temperature, one could use the in situ density
profile and the knowledge of the equation of state [20, 56]. Unfortunately we cannot rely on this method as
the in situ pictures are significantly affected by the limited resolution of our low numerical aperture (∼0.1)
objective. Therefore we use a time-of-flight measurement, that allows to estimate the velocity distribution.
However this method is not well adapted to our experiment: as the initial cloud is very far from a simple
harmonically trapped ensemble, we cannot rely on a simple model to describe the cloud expansion. It has
been shown that an expansion from ring or bubble shaped traps results in subtle interference phenomena.
Furthermore we are limited in our vacuum cell to time-of-flight ttof � 30 ms. Even if we assume a ballistic
expansion of the cloud, purely driven by the initial thermal velocity distribution, such that the rms size σ

obeys σ2 = σ2
0 + kBTt2

tof/M, the temperature is accurately determined when the second term is larger than
the first one. This results in a limit temperature sensitivity T � σ2

0M/(kBt2
tof) � 20 nK, where we assumed

σ2
0 � r2

0 for a ring shaped distribution.
We note also that for a low-dimensional system the expansion along the initially frozen degree of

freedom results typically in a similar ballistic expansion, governed by the initial velocity fluctuations
v2 ∼ �ω⊥/M. This also sets a limit on the temperature measurement: T � �ω⊥/kB � 24 nK for our
parameters.

Despite the complex expansion dynamics, we observe that the density profile after time-of-flight displays
a bi-modal shape, with a background Gaussian pedestal. Using a simple Gaussian fit we extract the rms size
and deduce an upper bound for the temperature Tmax. For all the data presented in this work we find Tmax
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varying from 60 nK, at low gradients, to 25 nK, when the ring shape appears, probably limited by the above
mentioned factors for the lowest temperatures.

Appendix B. Derivation of the effective two-dimensional model

We provide here a short summary of dimensional reduction on a surface [1, 5–7], adapted to the geometry
of the experiment reported in the main text. The full mathematical derivation will be discussed elsewhere
and we focus only on the key ingredients. In particular we have verified that the contribution of the surface
curvature itself is small compared to the inhomogeneous transverse confinement and does not play a key
role. Therefore we start by recalling that the mean field groundstate is found by solving the
three-dimensional GP equation:

μψ =

(
− �

2

2M
Δ+ V(r) + g|ψ|2

)
ψ,

where the wavefunction ψ ≡ ψ(r) is normalized to the number of particles: N =
∫

d3r|ψ|2, μ is the
chemical potential, M is the atomic mass, and g = 4πas�

2/M is the two-body interaction strength, with as

the low energy s-wave scattering length.
When one dimension is strongly confined by a tight harmonic oscillator of frequency ω⊥, such that the

atoms occupy only the groundstate along this dimension, an effective 2D GP equation can be derived [49]:

μψs =

(
− �

2

2M
Δs +

�ω⊥
2

+ Vs +
g√
2πσ

|ψs|2
)
ψs,

where ψs, Δs, Vs are the wavefunction, Laplacian and potential, restricted onto the surface, respectively, and
σ =

√
�/(Mω⊥) is the length scale associated to the transverse confinement ω⊥.

Since we neglect here all curvature effects, we may connect directly this equation with the notations of
the main text:

μψs = − �
2

2M

1

rs(θ)2 sin θ

∂

∂θ

(
sin θ

∂ψs

∂θ

)
+

(
VFl

2D(θ) +
g√

2πσ(θ)
|ψs|2

)
ψs,

where VFl
2D(θ) ≡ V(rs(θ), θ) + �ω⊥(θ)/2. We then obtain the Thomas–Fermi solution by neglecting the

kinetic energy term resulting in:

|ψs|2 =
√

2πσ(θ)

g

(
μ− VFl

2D(θ)
)
.

As shown in the main text this simple form captures the main features of the dimensional reduction.

Appendix C. Estimation of three-body losses

In order to estimate the three-body losses, one has to solve the equation Ṅ = −K3

∫
dr n(r, t)2, where the

density profile n(r, t) must be computed self-consistently and K3 = 6 × 10−42 m6 for 87Rb. On the one
hand, if we assume a three-dimensional ring geometry, with a Thomas–Fermi density profile

n3D(r, z) = μ3D
g

(
1 − (r−r0)2

R2 − z2

R2
z

)
, where R =

√
2μ/(Mω2

r ), Rz =
√

2μ/(Mω2
z ) are the horizontal and

vertical Thomas–Fermi radii respectively, and the chemical potential is μ3D = �
√
ωrωz

√
2Nas/(πr0) [57],

we find that three-body losses obey: N(t) = N0/(1 + γ3DN0t), where:

γ3D =
K3

16π3asr0a2
r a2

z

,

where ar,z =
√

�/(Mωr,z) are the harmonic oscillator length scales. On the other hand, if we assume a 2D

ring geometry, with density profile n2D(r, z) = μ
g2D

(
1 − z2

R2
z

)
e
− (r−r0)2

a2
r√

πar
, where g2D = g/(

√
2πar), the chemical

potential is μ2D = �(ωrω
2
z )1/3(3Nas/r0)2/3/(2(2π)1/3), and we find that three-body losses obey:

N(t) = N0/(1 + γ2DN4/3
0 t)3/4, where:

γ2D = K3
35/6(asr2

0a2
r a4

z )−2/3

35 × 22/3π8/3
.

Remarkably we find that the value of γ2D is not changed if one assumes that the dimensional reduction
occurs along the radial coordinate (instead of the vertical one).

8



New J. Phys. 24 (2022) 093040 Y Guo et al

Figure C1. Analysis of the dimensionality and loss rate for a gradient of α/(2π) = 7.54(8) kHz μm−1. Top graph: ratio of the
chemical potential to the strong confinement energy μ/�ω⊥ computed using a 3D (2D) model, blue circles (red squares). Bottom
graph: measured loss dynamics (square symbols) and double exponential fit (solid black curve), compared to expected
three-body losses using a 3D (2D) model, matching the measured atom number, solid blue (dashed red) curves. See text for
details.

Figure C1 shows the result for the three-body loss rate estimation for the shell potential with
over-compensated gravity, using a very simple model of harmonic ring trap, with frequencies
ω⊥/(2π) = ωr/(2π) ∼ 500 Hz and ωz/(2π) ∼ 20 Hz, as discussed above, and the measured atom number
as an input. It confirms that the gas is in the 2D regime μ < �ω⊥ and that the loss dynamics cannot be
explained by three-body losses. We note that the harmonic ring trap model is a very crude approximation of
the effective 2D potential on the shell (due to a significant anharmonicity), leading to an overestimation of
the peak density and hence of the three-body loss rate.

Appendix D. Analytic formulas with rotating-wave approximation

As mentioned in the main text the RWA formulas are useful to derive analytic formulas. In particular, using
equation (1), that we recall here:

VRWA
3D (ρ,φ, z) = �

√
(α�− ω)2 +Ω(ρ,φ, z)2 + Mgz,

one can evaluate with good accuracy the transverse confinement frequency. Assuming a strong transverse
confinement, such that the correction due to the gravitational potential is small, the atoms are localized
close to the resonant surface � = r0. Locally, the tangent plane to this surface is given by the angle β such
that tanβ = −ρ/(4z) = −tan[θ]/4 and the transverse confinement is given by:

ω⊥(z)2 =
1

M

d2

du2
VRWA

3D (ρ− u sin β, z + u cos β,φ)

∣∣∣∣
u=0

,

where ρ =
√

r2
0 − 4z2 on the surface. A lengthy but straightforward calculation gives:

ω⊥(z) � α(z)

√
�

MΩ(z)
, (D.1)

where α(z) = α
√

1 + 12z2/r2
0 is the gradient along the normal to the surface, Ω(z) = Ω0/2 × (1 − 2z/r0) is

the rf coupling on the surface and we have neglected a (small) correction in (D.1) of order (Ω0/ω)2.
Figure D1 compares the prediction of equation (D.1) to an exact numerical computation, as explained

in the main text. The agreement is remarkably good, at the level of a few percents for the range displayed.
The second panel shows the variations of the gradient and rf coupling on the resonant surface. These simple
analytical formulas are useful to understand our results, however we note that the accuracy needed to match
quantitatively the experimental results is obtained only with more involved numerical methods.
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Figure D1. Top graph: transverse local confinement frequency as a function of θ, computed with the full Floquet potential (solid
blue line) or with the analytical RWA result of equation (D.1) (dashed red line). Bottom graph: local transverse gradient α(z),
normalized to the maximum gradient 2α (solid blue curve) and local rf coupling Ω(z), normalized to the maximum coupling Ω0

(red dashed curve), computed on the resonant surface z = r0 cos θ/
√

1 + 3 cos2 θ.

Appendix E. Critical temperature

To estimate the critical temperature for Bose–Einstein condensation in our trap, for different gradients, we
compute the ideal gas result T0

c . As the trap geometry is highly non trivial we compute it using the exact
single particle spectrum, obtained by a numerical diagonalization of the Hamiltonian. We make use of the
cylindrical symmetry about the vertical axis to simplify the spectrum computation, introducing the angular
momentum m quantum number. Then the number of atoms in the excited states is:

N ′ =
∑

(m,n)�=(0,0)

gm

exp
[
εm,n−μ

kBT

]
− 1

,

where g0 = 1 and gm = 2 for m > 0 is the degeneracy of the state with energy εm,n and n labels the single
particle eigenstates. In this expression the sum runs over all the states, except the groundstate ε0,0. In order
to have a reasonable computation time, we include states up to energies Emax = ε0,0 + kB × 144 nK. We then
evaluate the sum when μ→ ε0,0 to obtain the critical atom number as a function of the temperature or
equivalently T0

c (N).
From the knowledge of the single particle spectrum we can also evaluate the density of states ρ(E) and

study how it varies when we increase the gradient. We find that ρ(E) ∝ E2 at low gradients, as expected for a
3D harmonic oscillator, ρ(E) ∝ E1 at moderate gradient, characteristic of a 2D harmonic oscillator and then
evolves towards ρ(E) ∝

√
E as the gradient increases, evidencing the change of topology. As the low energy

density of states increases with the gradient, the critical temperature decreases but remains above the
estimated upper bound for the temperature in the experiment. Figure E1 shows the dependence of T0

c (N)
with the gradient, for a total atom number of N = 105.

Appendix F. Floquet expansion

We briefly summarize here how we perform the Floquet expansion adapted to our study. We start by
recalling the Hamiltonian for an atom of total spin F̂ in a combination of a static inhomogeneous magnetic
field and oscillating homogeneous magnetic field:

Ĥ0 =
p̂2

2M
+ [ω0(r) +Ωz(r, t)]F̂z +Ω+(r, t)F̂+ +Ω−(r, t)F̂−,

where ω0(r) is the local Larmor frequency, due to the static field and Ω±,z(r, t) are the couplings induced by
the oscillating field, in the π, σ± polarizations and F̂± = F̂x ± iF̂y are the raising and lowering operators.
Here we assume that the atomic spin adiabatically follows the inhomogeneous static magnetic field and that
the rf-dressing coils are large enough such that the rf-field can be considered as homogeneous. However,
even if the rf field is homogeneous, the coupling Ωz,±(r, t) are not because their relative orientation with

10
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Figure E1. Critical temperature of the ideal Bose gas for N = 105 atoms, as a function of the gradient and for rf dressing with
ω/(2π) = 300 kHz and Ω0/(2π) = 85.0(5) kHz.

respect to the inhomogeneous static field depend explicitly on the position. To transform Ĥ0 in an explicitly
time-independent Hamiltonian we proceed in two steps: first we treat the π polarization term exactly
following the approach of reference [58] resulting in a renormalization of the σ± couplings by Bessel
functions weights and second we perform the Floquet expansion, looking for a solution of the form
[46, 47]:

|ψ〉 =
∑

n

ei(nω−E/�)t|ψn〉,

resulting in an infinite system of coupled equations:

E|ψn〉 = D̂n(r)|ψn〉+
∑
k �=0

V̂k(r)|ψk+n〉,

where D̂n(r) = p̂2/(2M) + n�ωÎ − δ(r)F̂z + V̂0(r), δ = ω − ω0(r) being the local detuning and the
coupling terms are

V̂k(r) =
∑

l

[
Ω̃(l+1+k)

+ (r)cl(r)F̂+ + Ω̃(l+1−k)
− (r)cl(r)∗F̂−

]
,

where Ω̃(l)
± (r) is the lth harmonic of the rf coupling Ω±(r, t) and cn(r) = Jn[Ω0ρ/ω�]e−inφ is the Bessel

weight due to the π polarized rf component. To obtain finally the effective dressing potential VFl
3D(r) we

truncate the Floquet expansion to |n| � 2, find the eigenvalues by a standard diagonalization algorithm and
repeat this procedure for each needed spatial position. We have verified that using a larger Floquet
Hamiltonian does not change the results, meaning that the eigenvalues are correctly evaluated with the
second order expansion.
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