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ABSTRACT ARTICLE HISTORY
Scale mixtures of normal distributions are useful for statistical procedures Received 24 April 2020
involving symmetric and heavy-tailed data. Ferreira, Lachos, and Bolfarine Accepted 18 September 2020
(2016) defined a multivariate skewed version of these distributions that offers
much-needed flexibility by combining both skewness and heavy tails. In this
work, we develop a linear mixed model based on skew scale mixtures of nor- ; :

AR . , models; Local influence
mal distributions, with emphasis on the skew Student-t normal, skew-slash .

. o > . ; analysis; Skew scale

and skew-contaminated normal distributions. Using the hierarchical structure mixtures of normal
of the model, we develop maximum likelihood estimation of the model distributions
parameters via the expectation-maximization (EM) algorithm. In addition, the
standard errors are obtained via the approximate information matrix and the
local influence analysis is explored under some perturbation schemes. To
examine the performance and the usefulness of the proposed method, we
present simulation studies and analyze a real dataset.

KEYWORDS
EM algorithm; Linear mixed

1. Introduction

The scale mixtures of normal distributions (Andrews and Mallows 1974) are a group of thick-tailed
distributions that are often used for robust inference of symmetrical data. Moreover, this class
includes distributions such as the Student-¢, slash and contaminated normal, among others. However,
this class is inappropriate for dataset that are skewed and present heavy-tails, such as, data on family
income (Azzalini, Capello, and Kotz 2003) or on substance concentration (Lachos and Bolfarine
2007). Thus, appropriate distributions to fit these skewed and heavy tailed data are needed.

Azzalini (1985) proposed the univariate skew-normal distribution and it was generalized to the
multivariate case by Azzalini and Dalla-Valle (1996) and Azzalini and Capitanio (1999). The
multivariate skew-normal densities extend the multivariate normal model by allowing a shape
parameter to account for skewness. The probability density function (PDF) of the generic element
of a multivariate skew-normal distribution is given by:

f(y) =2¢,(ylmE)0, (AT 2 (y—p),  yeR", (1)

where ¢, (.|u, X) stands for the PDF of the n-variate normal distribution with mean vector p and
covariate matrix X, ®;(.) represents the cumulative distribution function (CDF) of the standard
normal distribution. When 4 =0, the skew-normal distribution reduces to the normal distribu-
tion (Y ~ N,(u X)). An n-dimensional random vector Y with PDF as in (1) will be denoted by
SN, (p, X, A). Its marginal stochastic representation is given by:
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where |Ty| denotes the absolute value of Ty, Tp ~ N;(0,1) and Ty ~ N,(0,1I,) are independent,

« d 5

=" means “distributed as” and I, denotes the identity matrix of order n. From (2) it follows
that the expectation and variance of Y are given, respectively, by:

2
ElY] =pu+ \/:21/25,
i

2
Var[Y] = X — ZX1/255'2!/2,
TC

YL pu4+ 228\ To| + (I, — 667)"/>Ty), with &= )

Linear mixed models (LMMs) have become important tools for practicing statisticians, commonly
utilized to analyze continuous repeated measures, grouped and longitudinal data, among others.
They are used in several areas, like agricultural, environmental, biomedical, economic and social
science applications (see, e.g. Diggle, Liang, and Zeger 1996). The increasing popularity of these
models is due to the flexibility they offer to model the correlation between and within samples,
frequently present in longitudinal data (Laird and Ware 1982) and grouped data (Henderson
1984), as well as the capacity to model balanced and unbalanced data.

Repeated measures data are typically generated by observing a number of subjects repeatedly
under different experimental conditions. Observations of the same subject are usually made at
different times, as in longitudinal studies. Mixed-effects models assume that the intra-subject
model relating the response variables to time is the same for all subjects, but the model parame-
ters may vary between subjects. Despite their appealing statistical properties, a standard but pos-
sibly restrictive assumption in LMMs is that the random effects and the residual components
follow a normal distribution. Hence, considerable interest has been focused on relaxing the nor-
mality (symmetry) assumption and jointly estimating the random effects and model parameters.

Some recent works have incorporated asymmetric distributions to the random effects in
LMMs. For instance, Ma, Genton, and Davidian (2004) considered a generalized flexible skew-
elliptical distribution to represent the density of the random effects and proposed complicated
algorithms for maximum likelihood (ML) and Bayesian inference using MCMC methods.
Arellano-Valle, Bolfarine, and Lachos (2005) defined a skew-normal linear mixed model which
assumes that the random effects follow a skew-normal distribution and presented an expectation-
maximization (EM)-type algorithm to perform ML estimation. Lachos, Ghosh, and Arellano-Valle
(2010) proposed the skew-normal/independent linear mixed model, based on the multivariate
scale mixtures of skew-normal (SMSN) family of distributions, where an EM-type algorithm for
ML estimation is also presented. Yu, O’Malley, and Ghosh (2014) introduced a new class of
extended multivariate skew- ¢ distributions, which allows different degrees of freedom to accom-
modate heterogeneity in tail-heaviness across outcomes. More recently, Kahrari, Ferreira, and
Arellano-Valle (2019) introduced a flexible class of linear mixed models by assuming that the ran-
dom effects and model errors follow a multivariate skew-normal-Cauchy distribution.

In the context of asymmetric distributions, Ferreira, Bolfarine, and Lachos (2011) proposed a
new family of asymmetric univariate distributions called skew scale mixtures of normal distribu-
tions (SSMN), generated by the normal kernel (as the skewing function), using otherwise sym-
metric distributions of the class of scale mixtures of normal distributions (Andrews and Mallows
1974; Lange and Sinsheimer 1993). Ferreira, Lachos, and Bolfarine (2016) developed a multivari-
ate version of the skew scale mixtures of normal distributions, providing an EM algorithm and
the observed information matrix for multivariate responses. Following Lachos, Ghosh, and
Arellano-Valle (2010), in this article, we develop a new family of linear mixed models, where the
random effect follows a SSMN distribution and the error term follows a multivariate scale mix-
tures of normal (SMN) distribution.
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Investigation of the influence is an important step in data analysis after the parameter estima-
tion. The identification of problems caused by influential aspects may give ideas for improving
the model assumptions and/or input data to establish a better model. Local influence by minor
perturbations of a statistical model is a useful tool for sensitivity analysis (Cook 1986). For
example, Lesaffre and Verbeke (1998) developed local influence for LMMs under the normal dis-
tribution. This measure involves the first and second partial derivatives of the log-likelihood func-
tion. So, when this function involves intractable integrals, direct application of Cook’s (1986)
approach may require hard calculation. A second approach for local influence, based on condi-
tional expectation of the complete-data log-likelihood at the E-step of the EM algorithm, was
developed by Zhu and Lee (2001). For some applications using their approach, see for example,
Zeller et al. (2010), Zeller, Lachos, and Labra (2011), Ferreira and Paula (2017) and Ferreira and
Arellano-Valle (2018).

Section 2 presents the multivariate skew scale mixtures of normal distributions and their par-
ticular cases. Section 3 proposes the SSMN linear mixed models, the maximum likelihood estima-
tion using the EM algorithm (Dempster, Laird, and Rubin 1977) and a simulation study
investigate the functionality of the proposed model. In Sec. 4, we develop local influence analysis
by Zhu and Lee (2001)’s approach. Finally, Sec. 5 presents an application of the model to the
data collected as part of the famous Framingham heart study.

2. Multivariate skew scale mixtures of normal distributions

Andrews and Mallows (1974) presented necessary and sufficient conditions under which a con-
tinuous symmetric random variable Y may be generated as the ratio Z/U where Z and U are
independent, Z has a standard normal distribution and U is a positive random variable. This
symmetric family, named scale mixtures of normal (SMN) distributions, includes distributions
such as the Student-t, slash and contaminated-normal distributions. All these distributions have
heavier tails than the normal.

We say that an n-dimensional vector Y has a SMN distribution (Lange and Sinsheimer 1993)
with location parameter p € R" and a positive definite scale matrix X if its density function
assumes the form:

o0

fily) = j Gl u E)dH (1 7)

3)
o0 1

= |2n2|71/zj u"? exp [—Eu(y —p) XYy — p)|dH(u, 1), y € R",
0

where H(u, ) is the CDF of a one-dimensional positive random variable U indexed by the par-
ameter vector 7. For a random vector with a PDF as in (3), we use the notation Y ~
SMN,,(p, X; H), while when g =0 and X =1, we use the notation Y ~ SMN, (H).
Its stochastic representation is given by:
Y=p+U"2Z,
where Z ~ N,(0,X) and U is a positive random variable with CDF H independent of Z.
Definition 1. A random #n-dimensional vector Y follows a skew scale mixtures of normal distri-

bution with location parameter u € R”, a positive definite scale matrix X and skewness parameter
A € R” (Ferreira, Lachos, and Bolfarine 2016), if its density function is given by:

) = 260)® (472 y — ), y € R, @

where fo(+) is defined as in (3). For a random vector with a PDF as in (4), we use the nota-
tion Y ~ SSMN,(m, X, i; H).
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Remark. Conditioned on U, we have that:
Frv=aly) = 26,y ), (2T (y — )

=2%®mm4$®(wﬂﬂT%fTYmhy—M)

Therefore, Y|U = u ~ SN, (u,u 'L, u"'/?4).
If n=1, then, we have the univariate SSMN distribution developed in Ferreira, Bolfarine, and
Lachos (2011). In the next section, we describe some distributions of the SSMN class.

2.1. Examples of SSMN distributions

o The skew Student-t normal (StN) distribution with v >0 degrees of freedom, denoted
by StN,(u, X, 4;v).

The use of the t-distribution as an alternative to the normal distribution has been frequently
suggested in the literature. For instance, Little (1988) and Lange, Little, and Taylor (1989) recom-
mended using the Student-t distribution for robust modeling.

Considering U ~ Gamma(v/2,v/2), the PDF of Y takes the form:

rey)

)
—n - d ’ — n
f(Y)zzr‘(Z)nn/ZV /2|E| 1/2(1+ > (I)l(}’—rz‘ l/z(y_”))) YER >
2

(e
v
where d = (y — ) "7 (y — p). In this case, UY =y ~ Gamma((v+n)/2, (v +d)/2).
The skew Student-t normal distribution was first developed by Gémez, Venegas, and Bolfarine
(2007). In that paper, the authors showed that the StN distribution can present a much wider

asymmetry range than the one presented by the ordinary skew-normal distribution (Azzalini
1985). When v T oo, one gets the skew-normal distribution as the limiting case.

o The skew-slash (SSL) distribution, with shape parameter v > 0, denoted by SSL,(u, X, A;v).
The distribution of U is Beta(v,1), 0 < u < 1 and v > 0. Its PDF is given by:

1
75 =20 [ 0, ol D) (572 ),y e

When v T 0o, one gets the skew-normal distribution as the limiting case. For this distribution,

we have that U|Y =y ~ TG(v+n/2,d/2,1), where TG(a,b,t) is the right truncated gamma
distribution, with PDF f(x|a, b, t) = y(;’%t)x“‘l exp (—bx)L(o,)(x), 7(a,b) = Iob ule"dy is the
incomplete gamma function and I4(-) denotes the indicator function.

e The skew-contaminated normal (SCN) distribution, denoted by SCN,(u,X,4;1,7),0 <v <
1, 0<y<1

Here, U is a discrete random variable taking one of two states. The probability density func-
tion of U, given the parameter vector T = (1,7)', is denoted by h(u;1) = V) + (1 = v) ).
It, thus, follows that:

£3) = 2{v, (5l 7'E) + (1 = ), (5w D)0, (AT=2(y ), ye R
The conditional distribution U|Y =Y is also a degenerated function, given by f(u|]Y =y) =

Jﬁ{yd)n(% I3 Vﬁlz)]l(u:"/) + (1 - l/)d)n(Y’ 3 E)H(uzl)}’ where fO(Y) = V¢n(Y’ 13 yilz) + (1 - V)¢n
(y» w X).
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The skew-normal distribution is a particular case of the skew-contaminated normal distribu-
tion when y=1.

3. The SSMN linear mixed model

The mixed linear model for continuous responses, proposed by Laird and Ware (1982), is
expressed by:

Yi:XlTﬁ+Zibi+€i; i=1,..,m, (5)

where Y; : n; X 1 is a vector of responses of the m individuals, xiT :n; X p is the model matrix
corresponding to the fixed effects, f is a p x 1 vector of unknown parameters describing the
population mean, named fixed effects, Z; : n; x q is the model matrix corresponding to the vector
of random effects b; : ¢ X 1 and €; : n; X 1 is the vector of the errors. Typically it is assumed that
the random effects b; and the residual components €; are independents with b; # N,4(0,B) and
6 N, (0,¢,), for i=1,...,m. B=B(a) and ¥, = ;(y) are dispersion matrices, usually associ-
ated with inter- and intra-unit, depending on a number of unknown parameters a and 7,
respectively.

Arellano-Valle, Bolfarine, and Lachos (2005) (see also Lin and Lee 2008) proposed a skew-nor-
mal linear mixed model (SN-LMM) based on multivariate skew-normal distributions (Azzalini

and Dalla-Valle 1996; Azzalini and Capitanio 1999) defined as:

Yl‘:XlTﬁ—f—Zibi—‘rGi, i=1,...,m,

iid

| ©)
b, SN, (0,B,2), & "N, (0.%,),

where b; and € are independent and 4= (4, ...,/“Lq)T is the wvector of asymmetry
ofb;, i=1,..,m.

The linear mixed model developed in this work extends the SN-LMM defined in Eq. (6), by
considering that b; follows a distribution in the SSMN class, as follows:

Y,' = X;rﬂ + Zib,’ + €;,

b; 0 o; 0 A _
~ SSMNy, 11 , , sHY, i=1,..,m.
€ 0 0 o1, 0

Although, we cannot find a marginal distribution for Y;, we have an attractive hierarchical rep-
resentation, which enables estimating the model parameters via the EM algorithm. Next, we prove
that, although, the terms b; and ¢; are not independent, they are not correlated.

The joint conditional distribution of (b;, €;)|U; is given by:

bi — 0\ _ifo;, O —1/2( A .
(61-) ‘Ul = U ~ SNnﬁ»l <(O>>ul ( 0 O'gln[ ’ui 0 N 1= 1,...,m. (7)

Using the proposition 2.18 given in Lachos (2004) and considering the conditional distribution
in (7), with h=2, C;=(10) (1x (n;4+1)) and C, = (0 I,) (n; x (n; +1)), we have that
ClTYi = b; and C2T Y; = €. So, b;|U; and €;|U; are conditionally independent.

_1)2
Let &; = \/% (é) and C= (1 0) (1 x (n; +1)). Then, using the proposition 2.9 given in
Lachos (2004), we have that C'Y; = b;, C'XC = alz,/u,-, Cc'x!25, = % and §* = 2

i/ 1+u; 12 it

A= T In this case,

u; *
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g )
b|U; = u; ~ SNy|o0, =2, —1|. 8
| u 1< ” \/E> (8)

Therefore,

bi ~ SSMN, (0,07, ; H). 9)

Let C= (0 I,,) (n; x (n; +1)). It follows that C'Y, = ¢, C'EC = ‘;—?In,,, C'E25=0, & =
0, A" =0. Hence,

0.2
€i|U,' = Uu; ~ Nn,- (0, —elni
u

i
and so
€ ~ SMN,,(0,02L,;H). (10)

As a result, E[e;] = 0 and Cov(b;, €;) = E[bi€;] — E[bj]E[€;] = Ey,[E[bi|Uj|E[e;|Uj]] = 0.
By the results given in Eqs. (9) and (10), the SSMN-LMM can be represented as:

Y,' = XlTﬂ + Z[b,' + €j,

b; % SSMN; (0, 62, 4; H), (11)

& " SMN,, (0,021, H), i=1,..,m.
Using the conditional distribution of b;|U; = u; in Eq. (8), the model can be represented hier-
archically as follows:

ind _
Yi|bi, Uu; I’YL an (X,Tﬁ + Zibis u,' 105111,)’
bi|u; ind SN, (0, uflai, ui_l/zi>e (12)
Ui % H(r).

Lee and Nelder (2004) provide a discussion of the differences between conditional and marginal
models in models in the presence of random effects, discussing the advantages of the conditional
over marginal models and considering the first as fundamental, for which marginal predictions
can be made.

If € ~ SMNy(0,X; H), we have that E[e;] = 0. When b; ~ SSMN; (0,07, 4; H), then, E[b;] =
U i e /2 ~ .
copAEy, [ \/w—lﬂ}’ with ¢ = \/; (see Ferreira, Bolfarine, and Lachos 2011). So,

U;!
E[Yl] = Xiﬁ + CO'b)vEUy. —_—t Zi.

A1+ U712

The PDF corresponding to (12) is given by:

+00 p+00 .
fyv) = ZJ J b, (vl B+ biZiy ;' 071,) by (0110, ;' 3) Dy <%) h(us; )duidb;. (13)
b

—00 JO

The model in (12) can be rewritten as
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md

Y| by iy t; ™ Tﬂ—i—Zb,,u_l al,),

b|u,,t lfr\lslN] ti, Gb 2
\/1+)/u Ui+

H(t) and

nd

T“dTN(O, 1;(0, +00)), i=1,...,m

where TN(u, a?; (a, b)) represents the univariate truncated-normal distribution of N; (,u, 02) lying
within the interval (a, b) (Johnson, Kotz, and Balakrishnan 1994). The PDF in (13) can be
expressed as:

+00 pt+oo ptoo
f(y,-)=zj j j b (T B+ 0,20y L, ) by (00, 53 )

—o00 JO (14)

X, (t,-|)ub,4, ai)h(ui; T)dt;du;db;.
If A=0 and U=1, the model (11) becomes the classical mixed effects model. If 1 # 0, but
U=1, it becomes the skew-normal linear mixed model introduced by Arellano-Valle, Bolfarine,
and Lachos (2005), with b; a scalar. If b; = 0, it has the features of skew scale mixtures of nor-
mal models discussed by Ferreira, Bolfarine, and Lachos (2011). The mixed model presented
here, in addition to the generalizing class of asymmetric normal mixed effects models, enables a
process of estimation through the EM algorithm with analytical expression in the M-step. In
addition, we propose an approximation to the observed Fisher information matrix as in
Lin (2010).

3.1. Maximum likelihood estimation via the EM algorithm

Finding the ML estimate of the parameter vector @ by direct maximization of the log-likelihood
(14) can be a hard task because of the intractable integrals. Thus, we prefer to implement the EM
algorithm introduced by Dempster, Laird, and Rubin (1977), which has several appealing features,
such as stability of monotone convergence with each iteration increasing the likelihood, and sim-
plicity of implementation. One of the major reasons for the popularity of the EM algorithm is
that the M-step involves only complete data ML estimation, which is often computationally sim-
ple. We refer to McLachlan and Krishnan (2008) for details and many applications of the
EM algorithm.

Lety = (le,...,ynE)T, b= (bl,‘..,bm)T,u = (ul,...,um)T and t = (tl,...,tm)T. Then, treating u,
b and t as missing data, it follows that the complete log-likelihood function associated with y, =

(yT,uT,bT,tT)T is given by

N 1 &
C(Bly,) o —- log o, — z_o,g;ui<Yi —x B bZ) (v, —x B~ biZ)

m m

1 1 )
—mlog O'i - FZu,bIZ — Fz(tf — 2/Ltibi + lzblz),
b

where N = > | n;.
It follows that the expectancy with respect to t, u and b, conditional on y of the complete log-
likelihood function (E-step), is given by:
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=E
I o T —(k) — (k) )
g =) -0 2 2 )l 7))
N 1 & <A<k) = (k) ~ (k) A2<k>>
fglogagfmlogo%fz?_iz ub?, + 2, —2ith, +7*b; ),
i=1

— (k)
where tfuctf, = E[Tfobﬂyi,H(k)], d,e,f > 0.

- (k ~ (k
The M-step maximizes Q<0|0( )) with respect to 0, obtaining a new estimate 0< H). The EM

algorithm of the model is described below:
. A (k) . ND) —~(k) —~F) ~& ~(
E-step: Given @ =0 ', calculate for i=1,...,n, &;", ub, , ub*, , b2, , tb,
using (A5)-(A10) (Appendix A).

k) (k)

and #2,

M-step: Update é(k+l> maximizing Q(0|é(k)> about @, obtaining the following analytic expres-
sions

~(k+1)
B

I
=
_‘
N
S
%
4
4‘
/N
S
S
>y

|
SR
g
o,
>_/

N i=1
~ (k+1) 1 I~ W ~(k k)2
7 - %Z(ubzi +82, — 2A(k)tbi 4 W g2 )

(16)

where X = (xir ...,x;)T of dimension N x p, Z = (ZlT ...,Z;)T dimension N x 1,
T ) —(k) —~(k)
= [aln], i ], o = T
length k, k> 0. As recommended by Lange, Little, and Taylor (1989), Lucas (1997) and Berkane,
Kano, and Bentler (1994), who pointed out difficulties in estimating 7 due to problems of
unbounded and local maxima in the likelihood function, we consider the value of 7 to be known.
In the application, we use the Akaike information criterion (AIC) (Akaike 1974) to select an
appropriate value of the parameter 7.
The iterations of the above algorithms are repeated until a suitable convergence rule is satis-

fied, e.g. ||gk+D) — 0(k>|\ or |¢ (o%+D) — ¢ (G(k))\ is sufficiently small, say 107. A set of reasonable

initial values can be obtained by computing 3(0)’ where 65(0) and 62@ are the estimates of the

T
®)

s .

1;} and 1; is a ones vector of

normal linear mixed model. The estimate 1(0) can be the skewness of Y — Xf (0).

3.1.1. Simulation study

The objective of this study is to investigate the functionality of the proposed model and to check
the standard errors provided by the approximation of the observed Fisher information matrix
(see Appendix B). Similarly to Arellano-Valle, Bolfarine, and Lachos (2005), we formulate the fol-
lowing SSMN-LMM model:
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Table 1. Mean, empirical standard error (ESE) and the standard deviation (SD) for estimates based on 500 samples from
SSMN-LMM.

SN model

m =200 m =500 m = 1000
Parameter
(True value) Mean SD ESE Mean SD ESE Mean SD ESE
Po(=1) -0.972 0.131 0.494 -0.995 0.052 0.054 -0.999 0.038 0.037
pi1(2) 2.000 0.011 0.011 2.000 0.007 0.007 2.000 0.005 0.005
Ba(1) 0.996 0.070 0.070 1.002 0.043 0.044 1.001 0.030 0.031
O'g (0.25) 0.249 0.013 0.013 0.250 0.008 0.008 0.250 0.006 0.006
3(0.5) 0.486 0.107 0.129 0.498 0.058 0.063 0.499 0.043 0.044
2(3) 3.379 1.548 3.518 3.131 0.836 1.004 3.099 0.605 0.657

StN model (v =3)
Parameter m =200 m =500 m = 1000
(True value) Mean SD ESE Mean SD ESE Mean SD ESE
Pol=1) -0.978 0.089 0.092 -0.993 0.053 0.055 -0.995 0.035 0.039
p1(2) 2.001 0.012 0.013 2.000 0.008 0.008 2.000 0.006 0.006
Pa(1) 0.997 0.074 0.078 1.000 0.048 0.048 0.999 0.034 0.034
ag(O,ZS) 0.250 0.023 0.021 0.252 0.016 0.013 0.251 0.011 0.010
d;(0.5) 0.484 0.099 0.109 0.498 0.065 0.069 0.499 0.049 0.048
A3) 3.054 1.093 1.896 3.056 0.688 0.994 2.946 0.478 0.646
SSL model (v =3)
Parameter m =200 m =500 m = 1000
(True value) Mean SD ESE Mean SD ESE Mean SD ESE
Pol=1) -0.976 0.103 0.101 -0.992 0.055 0.059 -0.996 0.038 0.041
pi(2) 2.000 0.014 0.013 2.000 0.008 0.008 2.000 0.006 0.006
pa(1) 0.997 0.080 0.081 1.001 0.048 0.050 1.001 0.034 0.035
ag (0.25) 0.249 0.014 0.015 0.250 0.009 0.009 0.250 0.006 0.006
7,(0.5) 0.487 0.101 0.104 0.493 0.059 0.063 0.495 0.041 0.044
2(3) 3.186 1.240 2.342 3.124 0.813 1.183 3.036 0.563 0.737
SCN model (v = 0.3 and y = 0.8)

Parameter m =200 m =500 m = 1000
(True value) Mean SD ESE Mean SD ESE Mean SD ESE
Pol=1) -0.977 0.118 0.115 -0.995 0.051 0.055 -0.999 0.035 0.037
pi1(2) 1.999 0.011 0.012 2.000 0.008 0.007 2.000 0.005 0.006
Pa(1) 1.004 0.074 0.072 1.005 0.044 0.045 0.999 0.033 0.032
O'g (0.25) 0.249 0.013 0.013 0.250 0.008 0.008 0.250 0.006 0.006
3(0.5) 0.486 0.094 0.105 0.492 0.057 0.061 0.499 0.039 0.043
2(3) 3.267 1.305 2.156 3.131 0.844 1.045 3.102 0.582 0.670

Yij = ﬁO -I—ﬁltij + ﬁZW,‘ + b; +8ij>
bi ~ SSMN, (0,03, 4; H), (17)
gj ~ SMN,, (0,,02L,;H), i=1,..,m,

where tj =j—3, j=1,..,5 w; = 1 for i=1,..,m/2 and 0 elsewhere and m =200, 500 and
1000. The true values of the parameters are: i, = —1, f; =2, f, =1, ¢ =025, o} =0.5,
A=3. For StN and SSL we use v=3 and for SCN, v = 0.3 and y = 0.8 (which are considered
fixed in the simulation study). We simulate 500 random samples of each SSMN-LMM. In each
replication, we obtain the parameter estimates based on EM algorithm and the standard error
estimate, that is, the mean square root of the diagonal elements of the inverse of the approxi-
mated observed information matrix (Appendix B). With 500 estimates of the parameters and the
empirical standard errors, we present in the Table 1 the mean of the parameter estimates (Mean),
the empirical standard errors (ESE) measured by the average values of the standard error esti-
mates and the Monte Carlo standard deviation of the parameters (SD). This table shows that the
bias related to all parameters tends to zero and the estimation method of the standard errors
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m = 200 m = 500 m = 1000

00 02 04
00 02 04

Figure 1. Simulation results based on 500 datasets. True density (solid line), density with mean of the estimated parameters
(dashed line) and estimated densities of 500 random samples (grey lines). Random samples with m =200 (left panel), m =500
(center panel) and m = 1000 (right panel): (a) skew-normal; (b) skew Student-t normal; (c) skew-contaminated normal.

provides relatively close results when the sample size increases in all SSMN-LMM models. So, it
seems that the ML estimates using the EM-type algorithm present good large sample properties
and calculations of the observed information matrix are correct and reliable.

Also, for each parameter estimate of the random sample, we construct the density estimates of
the random effects of the SSMN-LMM. Figure 1 shows the density estimates over the 500 datasets
with length m =200, m =500 and m =1000, the Monte Carlo average of this density estimates
and the true densities, for SN, StN, SSL and SCN models. It seems that the additional flexibility
afforded by the SSMN representation is sufficient to capture quite accurately the true underlying
features of the random effects.

4. Local influence analysis

We use the approach of Zhu and Lee (2001) in the incomplete data context. Consider a perturbation
vector @ varying in an open region € R?. Let /.(0,wly,), 0 € R? be the complete-data log-likeli-
hood of the perturbed model. We assume there is a @, such that £.(6, woly.) = ¢:(0]y,) for all 6.

Let 0,, be the maximizer of the function Q(6, w|@) = E[/.(0, oly, )y 0]. Then, the influence graph is
defined as a(w) = (0" fo(w))", where fo(w) is the Q-displacement function defined as:

folw) = 2[(010) - @(0./0)].



COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATION® 1

The normal curvature C, g, of a(w) at @y in the direction of a unit vector d, which is used to
summarize the local behavior of the Q-displacement function, is given by

Croa(0) = —2d" @y d = 2dTAgo{—é(é\é) }ﬂAwodT

where Q<9|9) :82Q(0\é)/8080T|0:9 and Aw:82Q(0,w|(9)/808wT|0:9w. The expression

. A A _1
—Qu, = AI,O{—Q <0|0)} Ay, is used to detect influential observations.

We use the spectral decomposition of the (“2% to construct the measure M(my) and its graph-
ics. We have that

n
. .
—2Qu, = Y Mxexey,
k=1

where (1,€1), ..., (An, €,) are the eigenvalue-eigenvector pairs of the matrix —ZQ%, with 4; >
w2 lg>lg1=..= 4, =0 and ey,...,e, are elements of the associated orthonormal basis. As
in Zhu and Lee (2001), we use all eigenvectors corresponding to nonzero eigenvalues to detect
influential observations. Let A, = M) (o + Ag)s € = (et ... e},) and

q

M(0) =) e

k=1
Following Lee and Xu (2004), we use 1/n+ c*SM(0) as a benchmark to regard the Ith case as
influential, where ¢* is an arbitrary constant (depending on the real application) and SM(0) is the
standard deviation of {M(0),,! = 1,...,n}.

4.1. The Hessian matrix

The matrix Q, (6) has elements given by:

a:;g’;f) - -GingD(fJ*)x,

708) 1 o x ol ]

aa?;(gf) - - laup) 20— xp (@ )z 27D (0 )2
5;35;[‘? Lo e b ow]

s

#a(00) _wa(09) _
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~ sk

where Qu(B) = (Y —XB) DU )(Y - Xp), € = [21..t2,]’, U =[in1], it ]7, Ub =

[@11;,...,@m12m]T, Ub? = [ubzll;rl,...,ubzmlzm]—r, D is a diagonal matrix and 1,,: m X 1 is a

column vector of 1’s.

4.2. Perturbation schemes

In this section, we consider six different perturbation schemes for SSMN-LMM.

4.2.1. Case weights perturbation
Let o = (o1, ..., a)m)T a vector m x 1 with wy = (1,...,1)T. Then, the perturbed Q-function is
given by

Q(0.010) =3 i (016),
i=1

. 20(6.0ld -
where Q; (0|0> is as in (15). In this case, the matrix A, = % = (A;,A;,A;,Aj)
e b d

‘w:wg,

has elements given by
1 Ak %
Ap =X [D(Y - xp)p*(U") - D(2)D* (Tb )],
e
1 ~ % -
Ap=5 [(Y —Xp)"'D(Y - Xp)D*(U") + 2'D(z)D* (Ub2 )
e
—ZZTD(Y — Xﬂ)D* (6\b*):| — ﬁ [I’ll ny ... I’lm],
e
1 1 [T 5~ .~ 51"
Ap=——=1, 4+ |Ub> +t —2itb+/’b’| and
b ay, 20,
10 T
A== {tb - Abz] ,
%%
where
&llnl 0n1 e 0111
0, al,, - 0,
D*(fl*) _ 2 2 2
0,, 0,, - amly,

is a matrix of order N x m, 0,, and 1,, are vectors of zeros and ones, respectively, of length n;.

4.2.2. Perturbation on the scale parameter o2

This perturbation scheme is introduced in the form o2

€w;

=o2/w;, w; >0, i=1,..,m. So, the

perturbed Q-function is given by

m
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The vector of non-perturbation is @y = (1,...,1)" and the matrix A, has elements

Ap = %XT [D(Y —Xp)p*(U") — D(Z)D* (I/JT)*)},

Ap = 2—(174 [(Y —Xp)'D(Y — Xp)D*(U") + Z'D(2)D* (U/b\2>
—22"D(Y - xpp* (Tb )],
Az =A; =0y,

with 0,, is a vector of zeros of length m.

4.2.3. Perturbation on the scale parameter o7
This scheme is obtained perturbing the parameter 0'12,(u =o0}/w;, w; >0, i=1,..,m. The per-
turbed Q function has the form

m

Q(o,w|é) = —glog o2 — 2—(1rg > (U,-Qi(/;) —2UbZ] (y, — x] B) + ﬁb\zizjzi)

B IS — 1S (5 RIS
— log é—f‘ﬁZwiszi —mizwi(tzi — 2/th; + X bzi).
i=1 i=1 i=1

Under this perturbation, the vector @y = (1,....1)" and the matrix Ay, has elements
Ap =0, and Ay = 0y,

1

1
=54 )
Oy

Ai =57 (06 48 — 2+ 5] and &, = L[ - ]
b

where 0,, , is a matrix of zeros of order m x p.

4.2.4. Perturbation on the asymmetric parameter ).
This perturbation scheme is introduced considering A, = w;d. Letting o = (wy, ..‘,a)n)T and
@o = (1,...1)", the perturbed Q-function is
« N 1 <N/ —~ e
Q(0.010) = ~Tlogo? ~ (0:(B) — 206z (v, — x B) + 0P 2] Z,)
0 o
1 GK— 1 K ~ ~
2 2 2
—mlogay, — To*izszi - Z—GZZ(tzi — 2w;th; + A" w; b2i>.

i=1 b i=1
The matrix A, has elements

Ag = 01, p and Agg =0,,
-
A

(&

izo_i;[;ﬁ —tT)}T and Al:%[ﬁa—zzb@]
. b

4.2.5. Explanatory variable perturbation

The interest here is to perturb a particular explanatory variable allowing, for example, to detect
ill-conditioning in the matrix X (Belsley 1991). With this condition, the perturbation scheme of
variable X, has the representation:
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x, = xiT + SywiAn. v E{L..,p}

Wa,;

where S, is the standard deviation of the variable X, and A,, , is a matrix of zeros of order n; x
p,> with the vth column of 1s. In this case, @y = 0,, and the perturbed Q-function is given by:

Q(O,w|9) = - ! Z[U,-(Qi(ﬂ) - Za),-SVﬁvl;;( — X [3) + nwzszﬁ )

2
207 —

—2UbZ] (v, — X B Scoif,1,) + UB 2]

N ) 2 1 — - )
—Elogae — mlog a;, —FZubzi __;Z,Z( L — 20th; + 2B

b i=1
It follows that the matrix A, is given by:
S, .
Ap = o [AVTID(Y ~xp)p*(0") - ,X"D*(0") — Al D*(2)D* (Ub )},

Sy

Ay =~ [ (Y — Xp) D" (0 *)+ZTD*(ITb*)} and

A= Ai =0,.

4.2.6. Response variable perturbation
The perturbation of the response variable Y is in the form y; =y, + S,w;1,, where S, is the

standard deviation of the vector of the observed values Y. In this case, wy = 0,,, and

Q(O,wm) Z{ ( )+ 2081, (v, — %/ B) + ﬂiwfsi)
-1
—2Ub,vZZ.T (y,. ~x B+ wiln) + ﬁﬁiZ?Zi]
T i=1 %% i=1

It follows that the matrix A, has elements

S}V T (v
Ap=2X"D(0),
S}’ T (vr* T (T ”
Ap =2 |(Y—Xp) D (0") —2'D*(Ub") | and
t= o

Ay =A; =0,

5. Application

The mixed models developed in this article are applied to a conjoint longitudinal dataset collected as
part of the famed Framingham heart study, analyzed previously by Lachos et al. (2007). The conjoint
dataset includes the levels of blood cholesterol over time according to age and sex of m =200 individ-
uals selected randomly. Thus, we can formulate the following SSMN-LMM model:

Yij = fo + Prsexi + frage; + Bstij + bi + &,
bi ~ SSMN, (0,07, 2; H), (18)
&ij ~ SMNm (on,’ O-glni; H)’ i=1..,200,
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Figure 2. Histogram of the cholesterol (Framingham data).

where Yj; is the level of cholesterol (mg/DL) divided by 100 at the jth sampling time for subject i
and t; is (time — 5)/10, with time measured in years from baseline; age; is age at baseline; and
sex; is the gender indicator (0 =female, 1 =male). The number of repetitions j of each individual
varies from 1 to 6. The histogram of the dependent variable is presented in Figure 2, which indi-
cates large skewness (sample skewness of 0.69). Table 2 presents the descriptive statistics for the
levels of cholesterol and age of the individuals.

Table 3 presents the estimates of the parameters of the Normal-LMM and SSMN-LMM,
together with the standard errors of the estimates. We use the AIC to choose the best values for
v and ). Notice that the estimates of regression coefficients are similar in all models, but the scale
and asymmetry parameters are slightly different, since the skew-normal model has a higher level
of asymmetry than the others. Note also that in all models, only the regression coefficients of the
sex variable are not significant. The AIC value, based on the likelihood function, indicates that
the data are best fitted utilizing the skew contaminated-normal mixed model, although, the skew
Student-¢ normal mixed model presents a close value.

With the aim to compare the SSMN-LMM with a competitor, we fitted the in Eq. (18) using
the scale mixtures of skew-normal (SMSN) distributions (Branco and Dey 2001), using the pack-
age “skewlmm” (Schumacher, Matos, and Lachos 2020). This class of distributions incorporates
asymmetry and heavy tails but presenting different coefficients of asymmetry and kurtosis than
SSMN. The particular cases of this class are the “skew-t,” “skew-slash” and “skew contaminated-
normal” distributions. Besides, both SSMN and SMSN belong to a broad and flexible class of
distributions obtained by both scale and shape mixtures of skew-normal distributions (Arellano-
Valle, Ferreira, and Genton 2018). According to Table 4, we obtained similar log-likelihoods and
AIC values of the competitors SMSN, in particular StN and SCN, but the SSMN model was
slightly better than SMSN.

5.1. Diagnostic analysis

The previous results indicate that the SSMN-LMM models fit that dataset better, with the SNC
distribution significantly better. Thus, now we realize diagnostic analysis for the SNC-LMM
model in the perturbations schemes discussed in Sec. 4.

The graphs of diagnostics (M(0)) are shown in the Figure 3, with cutoff points in the form

M(0)) + ¢*SD(M(0)), with ¢* equals 2 or 3, where SD(-) is the standard deviation.
Individual 39 exerts a large influence on the case weight and in the scale parameter o7 pertur-

bations, still exerting influence on the perturbation in the parameter of scale ¢2. This individual,
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Table 2. Framingham cholesterol data: Descriptive statistics for the levels of cholesterol and age of the individuals.

Minimum Mean Maximum Standard deviation
Level of cholesterol (mg/DL)/100 1.29 234 430 0.46
Age (years) 31.0 42.47 62.0 7.89

Table 3. Estimates of the parameters of the SSMN-LMM models for cholesterol data. Estimates of the asymptotic standard
errors are given in parentheses.

Models
Parameters Normal SN SSL StN SCN
Po 1.715(0.152) 1.476(0.134) 1.511(0.132) 1.526(0.130) 1.518(0.131)
P -0.013(0.055) -0.026(0.049) -0.024(0.048) -0.031(0.047) -0.029(0.048)
b2 0.015(0.004) 0.011(0.003) 0.011(0.003) 0.011(0.003) 0.012(0.003)
b3 0.283(0.020) 0.282(0.020) 0.279(0.019) 0.271(0.019) 0.274(0.019)
0; 0.049(0.002) 0.049(0.001) 0.026(0.001) 0.036(0.001) 0.029(0.001)
oy 0.141(0.015) 0.317(0.044) 0.137(0.020) 0.186(0.021) 0.134(0.015)
A - 2.892(0.297) 1.515(0.131) 1.730(0.129) 1.302(0.106)
v - - 3 7 0.3
y - - - - 0.3
é(f)) - 186.081 -167.632 -154.129 -141.606 -140.344
AIC 384.162 349.264 324.258 299.212 298.688
Table 4. Log-likelihoods and AIC values of the SMSN-LMM.
Distribution Skew-slash Skew-t Skew contaminated-normal
£(0) -145.237 -142.693 -140.369
AIC 306.474 301.386 298.738

a woman, has low cholesterol levels (mean of 1.5) and advanced age of 59years in relation to
the others.

The perturbation analysis in the parameter of asymmetry A indicates several points possibly
exerting influence (2, 7, 26,131, 160, 172 and 174). These individuals have high levels of choles-
terol, without specific characterization of age and sex. These individuals possibly affect, in add-
ition to the estimation of the A, the estimated mean and variance of the model.

The perturbation analysis in the response variable and in the explanatory variable age present
individuals 43 (male) and 156 (female) as influential. They are characterized by having advanced
age, 62 and 57 years, respectively.

6. Conclusions

The article presented a new class of linear mixed models, through of the class of asymmetric scale
of mixtures of normal distributions developed by Ferreira, Bolfarine, and Lachos (2011) and
Ferreira, Lachos, and Bolfarine (2016). An EM algorithm was developed, which presented analytic
expressions for the estimators at the M-step. The approximated observed information matrix was
computed by the product of the score vector based on the Q-function. Diagnostic analysis was
developed using the approach of Zhu and Lee (2001). A simulation study was developed to evalu-
ate the performance of the maximum likelihood estimators, the accuracy of the standard errors
and the estimates of the random effects. Moreover, we showed that the skew contaminated-nor-
mal and skew Student-f models generate better results than the normal and skew-normal ones, in
the context of linear mixed models for the Framingham cholesterol dataset. Finally, the local
influence analysis was applied to the best model (SCN-LMM).
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Figure 3. Diagnostic analysis to cholesterol data: (a) Case-weight perturbation, (b) Perturbation on the asymmetric parameter 4,
(c) Perturbation on the scale parameter az (d) Perturbation on the scale parameter rr,z,, (e) Perturbation on the response variable
and (f) Perturbation on the explanatory varlable age.

Of course, further extensions of the current work are possible. For example, the proposed
method can be naturally extended by considering a multidimensional random effect. Other exten-
sions include a Bayesian treatment via Markov chain Monte Carlo (MCMC) sampling methods in
the context of SSMN-LMM.
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Appendix A
Elements of the E-step of the EM algorithm

We have that:
f(uix bi, tily; 0) :f(bi‘Yi’ Ui, i 0)f(ti|yi’ Ui, o)f(”i‘yi’ 0)'
Hence,
;zi = Ey, [UiEt, [Eb, [b,—|y,~, Uis ti} Iy u,} ly;» 0}'

From Eq. (14), we have that:
f<Yi|0) = J
From lemma 2.2 of Lachos (2004), since k(u) = 1/u, we have that:

F(yilbi> ui, 0)f (bi|ui, 0) = &, (v;1x] B + biZi, 62 /uiky,) b, (bi]0, 03 /)
(B [+ 012,20 (02 (5 ). ) = £l O By ),

+00

JO - JO Dof(yi|b,', Ui, 0)f(b,<\u,~, 0)f(ti\bi, 0)f(u,, 0)dtiduidbi.

—00

(A1)

where A; = u;! (0;2 + JE’ZZ,.TZ,v)_l. Thus, the joint density can be expressed as
£ (ys> wir bis 6:]0) = f (y;lus 0)f (bily;» wi> 0) (t]bs, 0)f (i, 0). Using the same Lemma, we have that

F(bily,ui 0)f (:|bi, 0) = ¢, (bi| Ao, *Z] (y; — x| B), Ai) b, (8] 281, 03) 1(1 > 0)
= ¢, (biln; + A0, 20,(ti — my), 1) by (] Any 0% + 22 A)L(t: > 0)
=f(bily, ui i, 0)f (tily,» usr 0),
where 5, = Ao, 2Z] (y, — ] B), A} = (0,2 + 0,22/ Z)) " and &, = (A" + 226;2) . So, we have the following

relation:

S (ui b tily;,0) = ¢, (vilx/ B, [07L,, + G322, ])

X ¢ (bi|’7i + 76,28:(t; — Any),s 5i)¢1 (ti|/1’7i’ a + ;“zAf)H(ti > 0). (42

Let Z; = \/# Since T;|y;, u;,0 ~ TN(/lr/,-, o% + 22A;, (0, + 00), then, we have that
E[Ti\yi, u,-,0] =+ /o2 + 2 AiWo(Z;) and (A3)
E[T}ly, us 0] = 220 + o} + 22Ai + Iy 03 + 22 AiWo (Z0). (A4)

From (A2), we have that b;ly;, u;,t;,0 ~ N; (17,- + ai;,éi(ti — /111,-),5,-), and then, the necessary useful quantities for
2

the implementation of the EM algorithm are given in the following equations:

— ~ A /
Mbi = 7]{Ui + (T_iEU' |:Ui5,' O'i + AZA,‘WQ)(Z{) ‘yi, 0], (AS)

— L) 20, P
ubzi = 1’]12 U,' + ?EU, (U,éf'yl, 0) + o'_;/lEU' |:Ui5i O'i =+ /LZAinJ(Zi)
b b
4 A%

AN
+Eu [Usily, 0] + - B0, (571y,.0) (A6)
b

23
Aggi Eu, {Ui(j?\/Man(Zi) [y, 0],

b

- 2o 20, s 5 aa
bzi = 77!2 + ?EU‘ (Oﬂyz, 0) + :’1 EU’ |:0, O'i + )»ZAiWq)(Zi)b’i,o}
b b

o

¥ 0]

. (A7)

14
. A An; . )
+Ey, [8ily;» 0] +9EUI. (Aid?ly,, 0) — aff Ey, {b?w/ai + 22AWo(Z))
b b

Yio 0]’
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-~ 23
tbi = /J’]IZ + /IEU’ (5,’|Y,—, 0) + FEU, (A;5i|yi, 0)
b

(A8)
+11;Ey, {\/qu’(z") v, 0]
Z‘i = /l"li + EU; {\/mwtb(zi) Yi’o} and (A9)

lai = ;LZ'LZ + O'i + ;LZEU' (Ai‘yi, 0) + ;Lr’iEUx |:\/ O'i + ;uzAiWQ)(Zi)|yi, 0] (AlO)

Calculation of Ey, [g(Ui)\y,., 0], where g is an integrable real function, as presented in Egs. (A5)-(A10).
From Eq. (A1), we have that

—+00 [4»00

7000y =2 [ [ 0 Gl B [, + 22 blo N2 (3, B )

0
X d)(/h—bl) h(ui; r)dbidui (A11)
Op
e Tp . ~1[2 27 T b
=2 [on (Yi‘xi B u; [Geﬂn: + 0, ZiZ, })Eh,\y,,u, o o h(ui; T)du;.
0 b

By lemma 1 given in Arellano-Valle, Bolfarine, and Lachos (2005), for u = o;2A;Z] (yi fxiTﬁ) =n, T=A,;
a=0, B=1/0p, #=0 and Q=1, we have that:

j.b,‘ ;J’]
B, {cp (_) v, ui,H} Y
T A/ O'i + )}A,’
Therefore,
+00 n.
f(yi|0) = ZJ O, (yi|x;ﬂ, ui’l [aﬁ]l,,, + aﬁZ,-Zﬂ)(I) L — h(ui;r)dui. (A12)
0 \/ O'l27 + /12/\,'

The conditional expectation Ey, [g(U;)]y;, 0] can be rewritten as:

T B L g(u)f (y;|wi» 0) h(ws; T)du;
Euy [g(UD)] = Jg(ui)f(ui|Yi’0)dui — Jf (il 0)h(ui tydus

According to (A12), f(y;|u;, 0) is given by
A
\/ 05 + )NZA,‘

that is, Y[u;, @ ~ SNy, (#;, Xi, &), with g, = x] B, T; = ;! [of]l,,x + O'ZZJZiZ,T] and

f(Yi|ui’ 0) =2¢,, (Yi|XzTﬁ’ ”;1 [Ggﬂm + O'lz;ZiZz‘T])CD

}' 71/2A*
J=—2 B [6%1,, + 0?Z,Z]] "z,

o2y/o2 + 22A;

So, the expected values above are obtained via numerical integration based on the conditional distribution of Ujly;.

Appendix B
Approximated information matrix

The PDF of y; in (13) involves an integral, which makes it hard to compute the expected information matrix
(1()). Thus, we consider the same strategy used by Lin (2010) by obtaining an approximation to I(0) through the
following expression:
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